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A FRACTAL-LIKE ALGEBRAIC SPLITTING
OF THE CLASSIFYING SPACE FOR VECTOR BUNDLES

V. GIAMBALVO, DAVID J. PENGELLEY AND DOUGLAS C. RAVENEL

ABSTRACT. The connected covers of the classifying space BO induce a de-

creasing filtration {Bn} of H,(BO; Z/2) by sub-Hopf algebras over the Steen-

rod algebra A. We describe a multiplicative grading on Ht {BO; Z/2) inducing

a direct sum splitting of Bn over An, where {An} is the usual (increasing) fil-

tration of A. The pieces in the splittings are finite, and the grading extends

that of H*n2S3 which splits it into Brown-Gitler modules.

We also apply the grading to the Thomifications {Mn} of {B„}, where

it induces splittings of the corresponding cobordism modules over the entire

Steenrod algebra. These generalize algebraically the previously known topo-

logical splittings of the connective cobordism spectra MO, MSO and MSpin.

Introduction. The classifying space for vector bundles, BO, is of longstanding

interest in topology. We will describe a splitting of the mod 2 homology algebra

of BO, having applications to connective cobordism Thom spectra. The splitting

will be multiplicative; in other words it will be fully compatible with Whitney

sums of vector bundles. It differs from other familiar splittings in topology in the

way it interacts with the connected covers of BO and the Steenrod algebra A of

cohomology operations. We will explain how this interaction is analogous to the

geometric properties of the boundary of the fractal Mandelbrot set (or M-set) [PR].

The boundary of the M-set has two attributes: First, patterns become more

elaborate upon magnification. Second, patterns visible at one level of magnifica-

tion actually reappear under further magnification (self-similarity). The second

property is Mandelbrot's idea of a fractal structure [M], while the first is an addi-

tional feature of certain fractals, like the boundary of the M-set. Our results about

certain subalgebras of the algebra H*BO over the Hopf algebra A reveal precisely

these two features.

Specifically, consider the decreasing algebra filtration {Bn} of H»BO provided

by the images of the connected covers, and the standard increasing Hopf algebra

filtration {An} of A, where An is generated by the first 2™ Steenrod squares. The

analogy to the geometric properties of the boundary of the M-set is now made

precise by interpreting "pattern" to mean a multiplicative direct sum splitting of

an algebra Bn over the Hopf algebra An, "magnification" as descending in the

filtration {Bn}, and "more elaborate" as ascending in the filtration {An}.
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Then the first property is that the multiplicative splitting we define on H*BO

induces a direct sum splitting of each Bn as an An-algebra. For instance, we obtain

an A0-algebra splitting of H*BO, and an A3-algebra splitting of H*BO(8). In

[GPR] we showed how to build the various levels of magnification into a fractal

Steenrod algebra preserving a multiplicative splitting of a fractal H*BO.

The second (fractal-like) property is that patterns reappear after further mag-

nification. We will show that this is also a characteristic of our filtration: The

An_i-algebra Bn-y (with its splitting as described above) reappears in rescaled

form inside its own subalgebra Bn. In fact, we will show precisely how the A„_i-

algebra Bn is built as a tensor product, with the main role played by many rescaled

(i.e. redimensioned, but not merely suspended) copies of the A„_i-algebra Bn-y.

Finally, since our splitting extends the well-known splitting [BP, Sn] of HtQ2S3

into Brown-Gitler modules, and our summands are also finite, they could be re-

garded as a generalization of Brown-Gitler modules.

The two properties we have just informally described are illustrated by Figures

1 and 2, respectively. After we state the two main theorems precisely, the notation

for the generators in the figures will be clear.

These results have immediate application to cobordism Thom spectra, in par-

ticular to the 7-connective cobordism spectrum MO(8), an object of considerable

interest for application in homotopy theory [BM, DI, D2, D3, DGIM, DMl,

DM2, DM3]. We will use the fractal structure of H*BO to describe a ladderlike

phenomenon, in which we see that each Thom subalgebra in the ladder of connected

covers is built solely from copies of the connected cover from the next lower rung in

the ladder, as follows: Let Mn be the homology image in H,MO of the nth distinct

connective cobordism spectrum (the Thomification of Bn). The coaction-quotient

isomorphism [Kl, Li, PI, P2] describes Mn entirely in terms of the A„_i module

structure of Bn modulo a certain ideal Jn. Our splitting results will show that

this An_i algebra Bn/ Jn is essentially a product of many redimensioned copies of

Bn~y. In short, Mn can be completely described just using the next lower rung in

the ladder of connected covers of BO. For instance, since M3 is the homology of

MO(8), this latter result actually reduces H*MO(8) to understanding H*BSpin

as an A2 module. Of course H„BSpin is itself further split as an A2 module by

our results. This should lead to greater success in exploiting MO(8) as a tool for

understanding the stable homotopy groups of spheres.

A brief outline of our plan is as follows:

In §1 we state our main theorems precisely, indicate connections and applications

to cobordism, and explain what we mean by a fractal A-splitting and a fractal A-

map.

In §2 we set the stage for producing the fractal splittings by introducing the

bipolynomial Hopf algebra generators over the two-local integers, describing how

the connected cover images Bn are generated by them, and how we will manage

the action of Steenrod operations using nice two-local lifts provided by T. Lance.

In §3 we explain why and how we must modify the bipolynomial generators to see

the fractal splitting. We give an explicit _f(2) formula for the modified generators,

which hints at a relationship to Brown-Gitler spectra. We also discuss and record

the properties they possess that will be crucial to demonstrating how they produce

a fractal splitting. We defer the proof that they have these properties to a final

section of the paper.
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FIGURE 1.   The splittings of Theorem 1.1 are illustrated by

the first two grades in H+BSO = By over Ay,

and the first grade in H,BSpin = B2 over A2-

H„BSO: uf  -  Un       ul       UB  -   U»        Ut   -

ul

Njd):       ul  —  ui ,     ul      u,o  —  Un     •••     ujo •••

uf,

Nj{2): u-3     —     u, q U10 uzi     —    U22 ••■ u,,   •••

^v Us Ui 1 UB U? 1

^~~-_^-/ Uf 9

FIGURE 2.   Theorem 1.2 is illustrated by the isomorphisms f\ and f^

carrying the Ai-algebra H»BSO = By to the tensor factors ^2(1)

and J\_(2) of H,BSpin = £_. Note that /, increases the

dimension of a generator in grade 2m by 2m+q.
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§4 is devoted solely to developing several Z^ number-theoretic facts about bi-

nomial and multinomial coefficients, and about a certain formal power series, that

will be needed later.

In §5 we prove our two main theorems using what we have previously assem-

bled, and finish by showing that the fractal redimensionings in the second theorem

actually do respect the grading of the splittings in the way one would hope.

§6 provides the proof we deferred in §3.

1. The splitting of H*(BO; Z/2), and its implications for cobordism. To

state our main result on the algebraic splitting of BO, we need to establish a

little notation regarding its connected covers. The nth distinct connected cover is

BO(4>(n)), where <j>(n) is the dimension of the nth nontrivial homotopy group [St].

We will study its image

Bn = lm{H,(BO(4>(n));Z/2) -+ H,(BO;Z/2)}

in the homology of BO. For n < 3 this represents no loss, since the map in homology

is injective for these first several connected covers, By = H*BSO, B2 = H*BSpin,

and B3 = HtBO(8) [St]. For n > 4, however, they differ. H9B0(<p(n)) begins in

dimension <p(n), which is approximately 2n, while Bn begins in dimension 2".

When reading Theorems 1.1 and 1.2, the reader should refer to Figures 1 and

2 in the Introduction, which provide low-dimensional illustrations of the structure

the theorems provide.

Our first theorem will explicitly describe the Hopf subalgebras Bn in a way that

illustrates the fractal A-splitting over the Steenrod algebra. Let a(i) be the number

of ones in the dyadic expansion of i.

THEOREM 1.1. There is a set of polynomial generators {ui: i > 1}, with u, in

dimension i, for H»(BO; Z/2), and an algebra grading \\ || defined on Ht(BO; Z/2)
by declaring Ui to be homogeneous of grade 2m where 2m — 1 < i < 2m+1 — 1, such

that:

(a) Bn = Z/2[ufn'i]: t > 1] where e(n,i) = 2m^fo,n-(a(i)-D}.

(b) For all a E An and all homogeneous b E Bn, ||(&)a|| = ||.||. Thus the grading

induces a direct sum decomposition of Bn over the subalgebra An of the Steenrod

algebra.

(c) The grading || || restricts to twice the familiar weight grading [BP] on

H*(n2S3)EH.(BO),

since u2m_y will be the coalgebra primitive in its dimension.

Some comments are in order about the theorem:

(1) The description in part (a) of polynomial generators for Bn is much more

transparent when one encapsulates it by noting that Ui lies in Ba^)-y but not in

.B_(,-), and that (JB„)2 C Bn+1.

(2) The obvious fact that the grading as defined on H*BO actually induces a

grading on all the _?n's could be phrased by saying that the grading || || based on

the Ui's is parallel to the filtration {Bn}.

(3) Part (b) is what we call a fractal action of the Steenrod algebra, where the

splitting of the Bn into finite summands according to the grading || || is respected by

ever more of the Steenrod algebra as n grows [GPR]. This is the fractal A-splitting
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that is analogous to the first geometric M-set property, namely more elaborate

patterns under magnification.

This leads to the following useful terminology.

DEFINITION. An algebra homomorphism /: H*(BO;Z/2) -» H„(BO;Z/2) is

called a fractal A-map if f\Bn is an A„-module homomorphism.

Our second major theorem will utilize the generators u, from Theorem 1.1 to

demonstrate the second (fractal) property for the filtration {Bn}, namely the

rescaled reappearance of each An_i-algebra Sn-i inside its own subalgebra Bn.

This is the result which we will then apply to cobordism.

To state the theorem, we need some terminology regarding two particular sub-

algebras of _/* BO. One is

L = Z/2[u2m_y: m > 1] = H*(Q2S3) C B0,

the other is

P = Z/2[u2m : m > 1].

Recalling from 1.1(a) that the Uj's are parallel to {Bn}, we have the intersections

Ln = Lr\Bn = Z/2[u2" ,uf    ,...,u2n+i_y,...]

and

Pn = PnBn = Z/2[ul"m : m > 1].

THEOREM 1.2. H+BO has a tensor product decomposition L®P®[(g)q>1 N(q)]

into polynomial subalgebras which satisfies:

(a) N(q) has its polynomial generators precisely in dimensions i + 2m^'+g for

all i > 1, where m(i) = [log2(z + 1)]; in other words, 2m - 1 < i < 2m+1 - 1, as in

Theorem 1.1.

(b) Let Nn(q) = N(q) n Bn for n > 0. Then the subalgebra Bn actually decom-

poses into Ln ® Pn <8>[(££>„>, Nn(q)] as a product of An-y-algebras.

(c) For every q > 1 there is an isomorphism fq: Bo —► N(q) of polynomial alge-

bras, sending Ui to a generator in dimension i+2m^+q (not necessarily wi+2m(o+<i),

and its restriction induces an An-y-algebra isomorphism fq: Bn-y —> Nn(q) for ev-

ery n > 1.

Two comments are in order about this theorem.

(1) Part (b) could be phrased by saying that the tensor product decomposition

of H*BO is parallel to the filtration {Bn}, and fractal over {A„_i}.

(2) Part (c) asserts the second (fractal) property, the rescaled reappearance of

each A„_i-algebra jB„_i inside its subalgebra Bn, via fractal A-isomorphisms /,.

The alert reader will realize that the mere existence of the fractal redimensioning

isomorphisms /, of Theorem 1.2 ensures that a grading with the properties of

Theorem 1.1 must exist, since fq increases the dimension of u, by 29 • 2m'!', which

is a constant times the underlying fractal grading. We will be using the bigrading

provided by considering both dimension and fractal grading, and we can refer to

elements as being homogeneous in either sense. In Theorem 1.2(c) we remarked

that fq(ui) is not necessarily ui+2m(i)+,. Nevertheless, we will prove in Lemma

5.13 that fq(ui) is homogeneous with respect to the fractal grading as well as with

respect to dimension.   While we could in principle obtain Theorem 1.1 as a slick
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corollary to Theorem 1.2, this would undesirably obscure the nature of the grading,

so we will provide a direct proof with explicit formulae for the _i's.

Now we will provide an application of Theorem 1.2 to cobordism, to obtain a

ladderlike decomposition of the A-algebras

Mn = \m{H,(MO(4>(n))) -» Ht(MO)},

which correspond to the _?n's under the Thom isomorphism H*(MO) = Ht(BO).

As before, Mn actually coincides with the homology _/»(MO(0(n))) of the cobor-

dism Thom spectrum provided n < 3 (i.e. through MO(8)).

The analysis of M„ is simplified by the coaction-quotient method [Kl, Li, PI,

P2], which provides yi-algebra isomorphisms

Mn S A* UA^ (Bn/Jn) __ (A* 0A.ni Z/2) ® (Bn/Jn),

where J is the ideal (uy,u3,... , „2m-ii • • •) generated by the subalgebra L =

H„(U2S3) C H*(BO), and Jn is the intersection ideal

7nBn = (uf,uf    ,...,«_»+!_!,...)

generated by the subalgebra Ln. Note that A denotes the Steenrod algebra, while

A* is its dual.

Thus the main task in understanding the A-algebra Mn is to describe the An_i-

algebra Bn/Jn. It is toward this goal that our application can aim, since Theorem

1.2 provides precisely an An_i-decomposition of Bn/Jn. So we have

COROLLARY  1.3.   Mn is isomorphic as an A-algebra to

A*DA-n_i     Pn 0 (g)Nn(q)   ,

where Pn is trivial over An_i, and every Nn(q) is isomorphic as an An_y-algebra

(up to redimensioning) to Bn-y-

Corollary 1.4.

H,(MO(8)) £ A* \3A-2     P3 <g) ̂(redimensioned) H»(BSpin)

as A-algebras.

These corollaries provide the ladderlike description of the cobordism algebras

that we alluded to in the Introduction. It was through empirical observation [GP]

of these corollaries that we actually came to suspect the fractal structure for H*BO

embodied in the two main theorems.

2. Lifting to the two-local bipolynomial generators. The main purpose

of this section is to develop aspects of the bipolynomial Hopf algebra generators for

Hf(BO). Then we will be equipped to define the fractal generators ut which will

enable us to prove the theorems of §1.

We will synthesize various features of the bipolynomial Hopf algebra generators

{xt} developed by Husemoller [Hu], Baker [Ba], Kochman [K2], and Lance [La].
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To do this, we must consider coefficients in Z(2), the integers localized at 2, as well

as Z/2.
The doubling map [Sw, p. 494] gives an A-Hopf-algebra isomorphism

H»(BO;Z/2) -► H.{BU;Z/2).

Let B0 be H*(BU;Z(2)) with the dimensions of the generators halved. Then B0

is a bipolynomial Hopf algebra [Ba], and B0 <8> Z/2 = B0 = H*(BO;Z/2). Let

d, E B0 be the coalgebra primitive in dimension i dual to the Chern class c«. A set

of polynomial generators {a:,: i > 1} for Bo can be obtained from the primitives

by the Witt polynomials

fc

(2.1) dl=dy2k=2>s2y
;=o

where i = j-2k, j odd. Then B0 = Z{2)[xi] and H,(BO; Z/2) = B0®Z/2 2 Z/2[Xi].

A simple proof that the _i's are polynomial generators for _?o can be found in [La].

Note that Xi = d^ precisely when i is odd. These generators are very well behaved

with respect to the inclusions Bn c So- m fact the work of Baker [Ba] and

Kochman [K2] implies the following

LEMMA 2.2. Bn = Z/2[xfn't]: i > 1], where e(n,i) = 2max{°-"-(aW-1)> as

in Theorem 1.1.

To fully exploit this we need to describe the Steenrod algebra action on H,(BO)

in terms of the x^s. Lance [La] has constructed a Z{2\ lift of the total dual square

Sq = Ylt>o Sq'- This lift, also denoted by Sq, satisfies the Cartan formula over _f(2)

(Sq is a ring homomorphism) and has a particularly simple formula when evaluated

on the primitives:

(2-3) diSq = Y/-^-(l~t)dl.t.
t>o l       ^ '

We will denote by t,-i( the coefficient

i-t\   t   J
It is possible in theory to compute the action of the dual squares on the x^s from this

formula and (2.1), but the computations rapidly become intractible. Fortunately

we can do most of the computations on the primitives. It is essential to observe

that the nature of the Witt polynomials ensures that, to compute Xj.2k Sq mod 2,

we need not know the d}.2i Sq exactly for I < k, but only mod2'+1. The next

lemma gives an example of how this idea will be applied.

LEMMA 2.4. Let f: Bo —► Bo be an algebra map, and f = f (_) Z/2. Then

f(xj.2i Sq') = f(xj.2i) Sq* for all I < k, t < N, if and only if f(dj.2i Sq') =

f(dj.2,) Sq' mod 2l+1 for all I < k, t < N.

PROOF. Since we need to relate the polynomial generators to the primitives

we must use the Witt polynomials (2.1). First note that the z?(2)-Cartan formula
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gives the following congruence, which we will henceforth use frequently and without

further comment. If y E B0, and /(y Sq') = f(y) Sq* mod 2k for all t < N, then

f(y2 Sq*) = f(y2) Sq' mod 2k+1 for all t < N. Now proceed by induction on k as

follows (fc = 0 is not special). We will compare

fc

f(dy2k Sq') = f(2kxr2* Sq') + X. /(2fc-'4'2„_( Sq')
;=i

with
fc

/(_>) Sq' = /(2fc_,.2t) Sq' + £ /(2*-'_£__«) Sq*-

(=1

For either desired implication, the two summations are congruent mod2fc+1 by

induction and the above remark, so both implications are now immediate.    □

Many computations with the mod 2 Steenrod algebra are simplified by use of

the Adem relations. While these do not lift, the integral two power squares on the

integral primitives nevertheless do determine the entire mod 2 action. In particular

LEMMA 2.5. Let f, f be as in Lemma 2.4. Then f is a fractal A-map if and

only if f(d{) Sq2* = /(d, Sq2') mod 2"W+1 for all s < a(i).

PROOF. The forward implication is just a specialization from Lemma 2.4. In

the other direction, to show that / is a fractal A-map, it is clear from the mod 2

Adem relations and Lemma 2.2 that we need only show the mod 2 statement

f(Xi Sq2') = f(Xi) Sq2'    for s < a(i).

Proceeding by induction on v(i), we consider the hypothesis

f(di Sq2') = f(dt) Sq2'    mod 2"«+1.

Just as in the proof of (2.4), we consider the Witt sum for di on each side, and

note that by induction all but the first terms are pairwise congruent since, on all

the bipolynomial generators in question, a is identical to a(i), but v is less than

v(i). Thus the first pair matches also, i.e.

f(2^XlSq2') = /(2^>_;)Sq2'    mod2"W+1,

so we are done.    □

We mention in passing that the second author has developed an alternative

approach to some of what follows using a lift of the total dual x Sq. For the record

we give its formula here:

*xs, = g(-irV^ ('I')*-,.

This approach would eliminate the need for Lemma 4.7 and simplify the proof of

Theorem 3.2(4). However, to use it here we would first need to develop its validity

as a Z(2) lift, something Lance has already provided for the total dual Sq.
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3. The homogeneous splitting generators. Now that we have some infor-

mation about Bo we can define the polynomial generators Ui which will induce the

splitting we want to demonstrate. Given the nice description of the B„'s in terms

of the x;'s, it would be fortunate if the x^'s themselves could simply be declared

homogeneous, and our task completed. Perhaps the reader has already guessed,

though, that things are not this easy. For instance, the relations x2 Sq = xy,

x3 Sq1 = x\, Xi Sq1 = X3 + X2X1, X5 Sq1 = xf, X5 Sq2 = X3 aptly illustrate the need

both for corrections to the Xj's and for the use of 2mW (with m(i) = [log2(z + 1)])

to define the grading as a function of dimension of homogeneous generator. In

particular, it seems we must correct x5 to u5 = x5+ X3X2, so that U5 Sq2 = X3 and

_5 Sq1 = 0, and thus the grading is preserved on u5 by both Sq1 and Sq2, which is

required since a(5) = 2.

We will actually "correct" the x,'s to produce our Uj's by providing explicit

elements f(di) to "correct" the integral primitives dj. These corrections will in fact

be chosen just from L = Z(2)[x2r_i: r > 1] C Bo, as follows.

Let / = _^r>1 x2r-y, i.e. the formal sum of the generators in L. We begin by

defining an algebra homomorphism f: _?0 —► £ (which we think of as the correction

to the d,'s) as follows:

(3.1) f(dl) = (-iyrl,)+1-*\i

where m = rh(i) = [log2(z)], i.e. fh is the integer satisfying 2m < i < 2m+1, and | j

means projection to dimension i. The reader should note the subtle (but crucial for

our purposes) distinction between the function rh(i) defined and used here and the

function m(i) = [log2(i + 1)] in Theorems 1.1 and 1.2. They of course differ only

when i is one less than a power of 2. In the future, if we write just rn or m, the

reader should carefully note its value from the context, particularly since it may be

applied to various dimensions in the course of a single argument.

It is far from obvious that (3.1) even defines an algebra map as claimed, since

the di are only rational (not Z(2)) algebra generators, and L is only a _f(2)-algebra.

However, our next theorem will alleviate this concern.

Before continuing we pause to give an alternative formulation of (3.1) that hints

at an explicit connection to Brown-Gitler spectra. Recall that (twice) the weight

grading [BP] on i_»n253 (which our grading will extend) is the algebra grading

defined by ||x2m_1|| = 2m, and that it induces a splitting over the Steenrod algebra

heralding the stable splitting of fi2S3 into Brown-Gitler spectra. Moreover, note

that the grading extends naturally to L, and that the grade of a monomial equals

its dimension plus its total exponent. This basic fact (grade = dim + exp on L)

enables one to rewrite (3.1) as

~T {di) = (t+j)
V1   1   ' / ||2*('> + i1|l

where the subscript || indicates projection to grade (not dimension) 2m(*'+1. More-

over, in terms of d = ]>_t>i di we can go even further and write

m>0 V1+'/||2*+>
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in other words, 1/(1 + /) is followed by projection to all the Brown-Gitler modules

of precisely two-power weight in L (which do not, in fact, overlap in dimensions).

It is difficult for us to offer extensive further motivation for our formula for

f. Suffice it to say that its crucial features will be "fractal compatibility" with the

Steenrod algebra combined with r(x2'-i) = — 2_r-ii the latter ensuring that X2r_i

will be "corrected" into oblivion. This key correction is necessary since the grading

must be based on dimension via m(i) = [log2(i + l)], not rh(i) = [log2(i)]. However,

this "shift" to m(i) from fh(i) means that the Witt polynomials would no longer

always show that homogeneous Xj's correspond to homogeneous dj's, since the

X2r-i's would have the wrong grade. But Lance's Z(2) squaring operation formulae

make homogeneous dj's appear most promising. Thus f is designed to "homogenize"

the dj's by annihilating this obstruction without destroying the essence of Lance's

formulae for the action of the integral squares. Much of the rest of the paper is

devoted to showing that this vague strategy actually succeeds.

Our next step toward defining the Uj's is to define p: Bo —► Bo, the algebra

map that will send Xj to its "corrected" form Ui (except when i = 2r — 1, in which

case we will make no correction). We want p(dj) = di+ f(di), but merely defining

p = identity + f will not produce an algebra map. We can, however, accomplish

both purposes by defining p to be the composition of algebra maps p(l<_>f) A, where

A is the diagonal, and p the multiplication, in the Hopf algebra B0. Finally we

define Ui by letting t<2'-i = X2---1 for all r, and ut = p(xi) if i ^ 2r — 1.

We pause here to define important terminology for two qualitatively different

types of Steenrod operations we will need to consider. Suppose 2m < i < 2m+1 -

2. We will be considering operations Sq2 acting from dimension i downward to

dimension i — 2s, where s < a(i).   If i - 2s > 2m, in other words i — 2s lies in
nS

the same range we specified for i, then we say the action of Sq on (dimension) i

is strict, because it remained between the same pair of two powers. On the other

hand, if i — 2s < 2m, again with s < a(i), we say Sq2 is final on (dimension) i. We

say this because a final operation can occur only in a very special way, as follows.

Since a(i) > s, and 2m < i < 2m+1 - 2, clearly i > 2m + 2s - 1, i.e. i - 2s > 2m - 1.

Thus the only way a final operation can occur is if it lands in precisely dimension

2m - 1, and if s actually equals a(i) - 1, i.e. Sq2 is the largest, or final, operation

allowed (not every largest allowable operation is final, however).

The following theorem, establishing the crucial features of r and f, will be proved

in §6, after we develop some requisite Z(2) number theory.

Recalling from §1 that L = L® Z/2, we let r = f ® Z/2: B0 -» L. As usual,

denote by v(i) the exponent of the largest two-power dividing i.

THEOREM 3.2. Let m = rh(i) as above. Then the homomorphisms r and f

satisfy the following:

(1) f extends uniquely to an algebra map Bo —^ L.

(2) f(x2r_i) = —X2--_i for all r > 1.

(3) T(Bn)EBn.

(4) f (dj) Sq2' = t(di Sq2') mod 2u{l) + l if Sq2' is strict on i, i.e. if s < a(i) and
2m < i - 2s < i < 2m+1 - 2.

(5) f(dj) Sq2' =0mod2'/(^+1 if Sq2' is final on i, i.e. if s < a(i) and2m-l =
i - 2s < i < 2m+1 - 2.
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The following corollary records resulting important properties of

p = p®Z/2: Bo-^Bq.

COROLLARY 3.3.   (1) p(x2r-y) = 0 for all r > 1.

(2) p(xi) is indecomposable ifi^2r — l.

(3)p(Bn)EBn.

(4) p(di) Sq2' = p(dt Sq2') mod 2</^+1 if s < a(i) and Sq2' is strict on i.

PROOF. Since x2r_i = d2r_i, and pdi = dt 4-fdj, part (1) follows from (3.2)(2).

The formula p = p.(l®f)A shows that p = identity + f mod decomposables, and

if ij^2T — 1, clearly, fdj is decomposable from (3.1). This proves (2).

Part (3) follows from (3.2)(3) since p is just the mod2 reduction of p = p(l£_f)A,

which preserves Bn (recall Bn is a Hopf-subalgebra, being the image of a space).

For part (4), we may use (3.2)(4) to compute

pKSq2') =7i,2^(dj_2») = 7i,2»(dj-2» +fd^2,)

= dt Sq2' + f(di Sq2') = dt Sq2' + (fd<) Sq2'

= (pdz) Sqr    mod2"(')+1.    D

COROLLARY 3.4.   Bn = Z/2[u^n'l): i > 1].

PROOF. If i = 2r —1 we have Wj = xt. Otherwise uz = p(xi) = xt mod decompos-

ables by (3.3)(2), and „j E Ba(j)_i by (3.3)(3). Thus U* is an indecomposable

in Bn.    D

4. Some number theoretic lemmas. In this section we prove several dis-

parate results of a purely number theoretic nature which we will need shortly.

The first lemma is a collection of facts, all of which are both well known and easily

proved. We restate them here simply to allow the reader to follow the succeeding

proofs more quickly. Proofs and/or references may be found in [Si]. Most date

back to Legendre [Le].

LEMMA 4.1.   For any positive integers n, a, j

(1) a(a+j) <a(a) + a(j).

(2) a(n + 1) = a(n) + l-v(n + l).

(3) Ifa<2n then a(a) + u(a) < n.

(4) a(2n-j) = n-a(j)-y(j) + l.

(b)u(2"j) = n-u(]).

^ ^{ry,r2a...,r)-[T.^i)}-a(a).

The next lemma is a special case of more general congruence results about bi-

nomial coefficients which will appear in [GMP].

LEMMA 4.2. Let N and s be positive integers. For any integer a (positive or

negative])

if either i/(a + 1)<N — s — 1 or s < N - s.
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PROOF. The binomial coefficient formula

{'+•)•£(')<>'-)

obtained by expanding (1 + c)x+y = (1 + c)x (1 + c)y yields

{r-i)-{ra-i) = T, { t )-{r-i-t)-

We will show that each term in the sum is divisible by 2S+1. Since t < 2s — 1 we

must have v(t) < s — 1. Now if s < N — s, we have

u ( 2    \=N- u(t) >N-s + l>s + l.

On the other hand if s > N — s and u(a + 1)<N — s — lwe need to look at both

factors. For the second factor we have

-(2,_ai_0=^(fCT(2^))^-(2a-O--(a-r-l)>^)-(iV-.-l).

So

i/((2r)(2^-i-<))-iv"^)+i/(i)"7v+s+i=s+L d

We will need two more specialized consequences of this:

COROLLARY 4.3.   Ifi<2N and s < a(i) then

<-')• r+/ -) ̂ h-, - <-')-^ c/)—■■
PROOF. We begin by applying the previous lemma with a = —2N + i — 2s — 1.

To do this we must first verify that either s < N — s or u(a + 1) < N — s — 1. So

suppose s > N - s. Then i < 2N says a(i) + v(i) < N, and a(i) > s + 1 gives

u(i) <N-s-l<s-2. Hence u(a + 1) = v(-2N + i - 2s) = u(i) < N - s - 1.

The lemma now gives

/-2" + i-2*-l\      fi-29-l\ ,oS+1
{       r-i       )^{  2--i  )   mod2    •

Using the identity

on the left side we can rewrite this as

(4.4) (-l)*-'(^,+,,_r'-1)-('_r_71)    mod*"'.

Now 2W/2S = 0mod2l/(i) + 1, since from above v(i) < N - s - 1. With this

information the reader may check that the congruence we seek now follows from

(4.4).    D
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COROLLARY 4.5.   Ifi<2N and s < a(i), then there is a congruence of Lance

coefficients

H,2° = li+2» ,2>    mod2"W+1.

PROOF. This is similar in many ways to the previous corollary. We again apply

Lemma 4.2, this time to obtain

/i-28-l\ _ (2N+i-2s- l\ +1
{ r-i ) = {     2--1     J   mod2

by letting a = i — 2s — 1. Our hypothesis again ensures that those of Lemma 4.2

are satisfied. Moreover as in the proof of (4.3), we have 2^/2* = 0 mod 2"W+1,

and thus the congruence above is equivalent to

i     (i~2s\_     2»+i      /2"+»-2'\     mod2,W+i
i-2>\   2s    )- 2»+i-2° {        2s        )     m0(XZ

which is the desired congruence among Lance coefficients.    □

When we prove Theorem 3.2 we will need

LEMMA 4.6.   The multinomial coefficient

(     2N~i     )=0   mod2"W+1
\ry,r2,...,rsJ

if X_t=i 2*n = 2N, i < 2N, and v(r,) < a(i) - I for some I.

PROOF. Let i = j ■ 2k, j odd. Then we need to show under the above conditions

that

j 2"- y>*+i.
\ry,r2,...,r3J .

Now

v(     2N~i     ) =Ta(rt)-a(2N-i)
\ry,r2,...,rsJ      ^ '

= Y, *(rt) - a(2N~k -j)=J2 a(rt) -(N-k+1- a(j))

= Y<x(n) -N + k-l + a(j) + a(ri)

> Y airt) - N + k + l + i/(rt) + a(rt)

= Y a(rt) -N + k + l + a(n - 1) + 1

= Y, a(2'rt) + a(2ln -2l)-N + k + l + l

>a(2N -2l)-N + k + l + l

= N-l-N + k + l + l = k+l.    D

Our final lemma will allow us to compute with an alternate Z{2) lift of the

Steenrod squares that we will define in §6.
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LEMMA 4.7.   Let f(x) be the formal power series

W2f + 1\        1 t+y

feV     t     )2t + lX     ■
Then for all positive q,

PROOF. The series f(x) is familiar to combinatorists, the coefficients being the

Catalan numbers. Many properties of the series are well known, including that it

satisfies the quadratic equation (f(x))2 = f(x) — x [Br, p. 143f]. Thus we have

(/(_))« = (f(x))"~l - x(f(x))"~2. Inductively we have

^r=E((2,+r)=^h-(',+r)^^y'-'-
Letting v = t — 1, the coefficient of x9+v is

(2v + q+l\      q-1       _(2v + q\    (q-2\

\     v + 1     J2v + q + l      \v + l ) ' \2v + 2j

_/2v + q\    [q-1        (v + g)(q-2)l   _/2v + q\      q Q

V     v     J' [v + 1      (v + l)(2v + q)\       \     v     )2v + q

5. Proofs of the main theorems. In this section the proofs of Theorems 1.1

and 1.2 are completed. First consider Theorem 1.1, restated here for convenience.

THEOREM 1.1. There is a set of polynomial generators {_j: i > 1}, with Ui in

dimension i, for H*(BO; Z/2), and an algebra grading \\ || defined on H*(BO; Z/2)

by declaring _j to be homogeneous of grade 2m where 2m — 1 < i < 2m+1 — 1, such

that:

(a) Bn = Z/2[ufn'l): i > 1] where e(n,i) = 2max{°."-(Q(J)-1)}.

(b) For all a E An and all homogeneous b E Bn, ||(6)a|| = ||6||. Thus the grading

induces a direct sum decomposition of Bn over the subalgebra An of the Steenrod

algebra.

(c) The grading \[ \[ restricts to twice the familiar weight grading [BP] on

Ht(U2S3)EH4BO),

since _2m-i WJ" be the coalgebra primitive in its dimension.

PROOF. In §2 we defined Uj as

f p(Xi)     for i ? 2r - 1,
Ui= {

\ x2r_i    for i = 2r - 1,

and Corollary 3.4 gives part (a) of the theorem.

We define a grading on B0 by

(5.1) ||«i|| = 2m

where m = m(i) = [log2(i + 1)], i.e., 2m - 1 < i < 2m+1 — 1, as usual.   Since

u2r_i = x2r-y, and _/,n253 C B0 is _r/2[x2r_!], we have part (c) of the theorem.
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To prove part (b) we need to show that An respects the grading on Bn, i.e., for

all a E An and homogeneous b E Bn, \\(b)a\\ = [\b[[. From the Cartan formula and

Corollary 3.4 we see that it is sufficient to show that

(5.2) ||_jSq2'|| = H^ll    for s<a(i).

To do this we need to go back to So = Z(2)[ui]- Since we are abusing notation by

considering Mj both in Bq and B0, we will be careful to make statements "mod 2"

if this is all we claim. Our present goal is to prove (5.2) mod 2.

It is worthwhile at this point to consider again why this may work. First, simple

facts like x2 Sq1 = xi mod 2 show that one must define the grading using m(i)

(shifted two-power blocks) rather than fh(i) as in (3.1). On the other hand, if we

were to define the grading using m(i) as in (5.1), but making the generators xz

homogeneous (rather than the ttj), then the primitives

fc
El      tyk — l

2 Xj,2,

;=o

would not be homogeneous (even though Lance's Steenrod squares (2.3) suggest

trying to do this) if fc is positive and j is one less than a power of 2. For example,

consider di2 = 4xi2 + 2x§ + x\. Then X12 and x\ would have grade 8, but x\

would have grade 16. The map p is designed to remedy these incompatibilities. In

particular, if j = 2r - 1, then p(ij) = 0 from (3.3)(1), so pdj.2k = X_/=i 2'«2.2i

(note / now starts at 1), and this is homogeneous. Now, according to our guiding

principle, as long as the appropriate Steenrod operations preserve homogeneity on

the p(dj)'s (and the t^-i's), we can "solve" for the _j's, which are just p(xj)'s,

and retain homogeneity under the fractal A-action. We now proceed to prove (5.2).

First consider i = 2r — 1, recalling that «2r-i = X2r_i = d2>--i. Then (5.2)

holds, since the Lance coefficients in (2.3) yield u2r_y Sq   = u2r_1_1 mod 2 and
9s

u2r_, Sq    =0 mod 2 for s > 0.

Now for i ^ 2r - 1, let i = j ■ 2k, j odd, and m = [log2(t + 1)] as usual, and

proceed by induction on i. We have

fc-i

(5.3) pdi = pdj.2k = 2kur2k + Y 1luf.2<
1=6

where 6 = 1 if j = 2r — 1 and 6 = 0 otherwise.

Note that a(j ■ 2l) = a(j) = a(i) for all /, so the values of s relevant in (5.2)

are identical for all the u's in (5.3). Therefore from the induction assumption, the

mod 2 Adem relations, the Cartan formula, and the fact that j ■ 2l ^ 2r — 1, we

have

uj-2' Sq*    is homogeneous of grade 2m~k ■ 2l    mod 2

_ iy9 . _.9s +    nk — I

for / < fc, t < 2s. Thus so is _3t_o%-2'Sq , and hence (z_t=o u>-2'Sq ) is

homogeneous of grade 2m mod 2k+1~l. Thus the Z(2) Cartan formula ensures that

u?.2< Sq2     is homogeneous of grade 2m~l    mod2/c+1.
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Now applying Sq2   to (5.3) we get

p(di) Sq2' = 2kuy2k Sq2' + J2 2l(u2k2-')Sq2\

l=b

From above we know the summation is homogeneous of grade 2m mod 2fc+1, and

we will show that the left-hand side enjoys the same feature. There are two cases:

If the operation is strict, then by (3.3) (4) we have

p(di) Sq2' s p(di Sqr) = n,2,p(di-2s)   mod2fc+1,

and the latter is homogeneous of grade 2m mod 2k+1 since in this case m(i — 2s) =

m(i) = m.

On the other hand, if the operation is final, then

p(di) Sq2' = d% Sq2' + f (dt) Sq2' = n,2.d2m_y + 0

— H,2'U2m_y    mod2fc+1

by (3.2)(5) and our discussion when we defined final operations. Of course u2m_y

is homogeneous of grade 2m by definition.

So 2kUj.2k Sq2 must also be homogeneous of grade 2m mod 2k+1, and therefore

Uj.2k Sq is homogeneous of grade 2m mod 2. This completes the proof of Theorem

1.1.    □

We now turn our attention to the proof of

THEOREM 1.2. H„BO has a tensor product decomposition L®P<8i[(g)q>1 N(q)]

into polynomial subalgebras which satisfies:

(a) N(q) has its polynomial generators precisely in dimensions i + 2mW+(3 for

all i > 1, where m(i) = [log2(2 + 1)]; in other words, 2m — 1 < i < 2m+1 — 1, as in

Theorem 1.1.

(b) Let Nn(q) = N(q) D Bn for n>0. Then the subalgebra Bn actually decom-

poses into Ln ® Pn <g> [®o>i Nn(q)] as a product of An~y-algebras.

(c) For every q>l there is an isomorphism fq: Bo —* N(q) of polynomial alge-

bras, sending Ui to a generator in dimension i+2m^+q (not necessarily Wj+2m(.)+g),

and its restriction induces an An-y-algebra isomorphism fq: Bn-i —► Nn(q) for ev-

ery n > 1.

To construct the decomposition we explicitly construct the isomorphisms in-

volved, as follows.

LEMMA 5.4. There are fractal A-algebra maps fq: Bo —* B0 for q > 1 satisfy-

ing:

(1) Each fq(ui) is an indecomposable in dimension i + 2m^+q, and thus fq is a

monomorphism.

(2) fq(Bn)EBn+1.

PROOF. In order to define /,, we need a map that looks very similar, but is in

fact quite different. The idea is to try to send ttj to Ui+2m+q, but this will not work

if q > 1. We need to correct the generators in the image, just as we corrected the
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Xj's to get _j's. As usual, m = m(i) is given by 2m - 1 < i < 2m+1 - 2. Define

gq: B0 -* Bo by

[ ul+2m+q       for i^2r -1

(5.5) ( _j+2m+,-i    for z = 2r - 1

_i(xj) = 0

on the generators Xj and extend as an algebra map. Then define

(5.6) fq(ui) = ui+2m+q + gq(ui - Xj).

This can be written as

- f _j+2m+,    for i = 2r - 1 orq = 1,
(5-7) fqiUi) = I .

I gqiui)       otherwise.

Let gq=gq®Z/2 and fq = fq® Z/2 be the mod2 reductions, as usual. (Note that

for q > 1 gq(x2r_y) is very different from fq(x2r_y) since gq uses fh, while /, uses

m, in determining the two-power added to the dimension.)

Since Xj,_j E Ba^_x for all i, (5.5) shows that gq(Bn) C Bn+y, and thus the

same is true of /,, so (2) holds.

Now we will work to show that each fq is a fractal A-map. To do this we will

show

(5.8) /,(pdi)Sq2'=/,((pdOSq2')    mod2"<«'> + 1

for s < a(i), i ^ 2r — 1, and then apply Lemma 2.5, or rather a slight variation of

it, as we now explain. The point is that we wish to replace dj by pdj in Lemma 2.5.

This is no great problem, since pdj.2k with j odd is also built via Witt sums from

the pXj.2i's, which play the same role in the 5„'s as the _j-.2i's , with the exception

of the x2r_i's (recall px2r_y = 0). Therefore, all we need to do, in addition to

proving (5.8), is show that /, commutes with the appropriate (i.e. fractal) Steenrod

operations on the generators x2>-_i = u2r_y. We will do this straightforward mod 2

computation first. We have, for all q,

fq(X2r-y  Sq       )   =   fq(SotSXxr-l_1)   =  8o,SU2r + q-l+2r-l_y,

with the Kronecker 60tS nonzero only for s = 0. On the other hand, we can compute

(/gX2r_,)Sq =  U2r + q+2r_ySq =  p(x2r + q +2r _ y ) Sq =  p(d2r + q +2r _ y ) Sq       .

To the latter we may apply (3.3) (4) (since s < r - 1 implies (2r+q + 2r - 1) - 2s >

2T+q, i.e. the operation is strict), so it equals

72'+9+2'--i,2»p(d2''+9+2r-2s-i) = <So,sW2r+<j-i+2r-i_i    mod2,

as claimed, since s < r — 1 ensures that the Lance coefficient is <5o,s mod 2.

Now we turn to proving (5.8). If i = 2r — 1, both sides are zero. If, however,

i'■ ̂ 2r - 1, we first claim that

(5.9) fq(pdi) = p(di+2m+q) + gq(p(di) - di) = p(dl+2m+q) + gq(fdi),

where 2m <i < 2m+1 - 1.

The subtlety of this claim is illustrated by the fact that it is clearly false for

i = 2r — 1, but we assert it nevertheless holds for all other differences of two two-

powers. We will sketch the four cases to consider:
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First, if i is not a difference of two two-powers, then neither is i + 2m+q. So a

Witt sum may be formed using (5.7) to obtain either fypdi = pdi+2m+i as desired,

if q = 1. or if q > 1, fqpdi = gqpdt = gq(di + fdj), which in turn by (5.5) is
pdi+2m+q +gqfdi.

On the other hand, if z is a difference of two two-powers, and q = 1, but i / 2r — 1,

then i + 2m+1 is also a difference of two two-powers, but not one less than a power

of 2, and one can check that both pdi and pdl+2m+i are Witt sums with a term

missing at the bottom, so by (5.7) fy carries the one sum to the other, as desired

(this fails for i = 2T — 1 because of the difference between m and fh). Finally, if i

is a difference of two two-powers, but q > 1 and i ^ 2r — 1, then i + 2m+q is not

a difference of two two-powers, and we proceed rather carefully, as follows. In this

case, clearly fq(pdl) = gq(pdi), so we only need show that p(di+2m+q) — gqdz = 0.

This follows from the definition of gq in (5.5), taking special note that the two

bottom terms in the Witt sums both in effect use fh(j) rather than m(j), and

hence match. (This too would fail if i = 2r — 1, due to the difference between rh(i)

and m(i).)

We now prove (5.8) by using formula (5.9). As a first step we show that

(5.10) ~gq(f (d,)) Sq2' =gq(f(di)Sq2')    mod2fc+1

for s < a(i).

To prove this, first note that gq is a fractal yl-map when restricted to L, i.e.

gq(x2r-y)Sq2   = 0,(x2r_iSq2')    for s < r.

To see this, observe that if q = 1, <7i(x2r_,) = 0, so gy commutes with all Steenrod

operations, while if q > 1, gq(x2r_y) = _2r_1+2»+r-i, and the calculation is now

similar to the mod 2 calculation we already made earlier in the proof for fq on x2r_i

(the requisite application of (3.3)(4) requires q > 1 though, in this case). Now since

r(Bn) clfl Bn = Ln by (3.2)(3), f(di) is actually a Witt polynomial in Ln (not

just in L) mod2fc+1, so (5.10) holds since gq is fractal on L.

From this point on we must consider strict and final operations separately:

Case I. Sq2   is strict on dimension i.

With Sq2   strict on i, we can take (5.10) one step further using (3.2)(4) to obtain

(5.11) g,(r(dt))Sq2' =(7,(f(dISq2'))    mod2fc+1.

Now we are ready to complete the verification of (5.8) in this case. Using (5.9)

and (5.11) the left side of (5.8) is

/,(pd,)Sq2' = p(dJ+2m+,)Sq2' + gq(r(di)) Sq2'

= p(dJ+2m+,)Sq2 +gq(f(diSq2 ))

= p(di+2m+q)Sq2' +^i^gq(fdl-2s)    mod2fc+1.

But the right side of (5.8) is fg(p(di) Sq2'), which (using (3.3)(4) since Sq2' is strict

on i) is congruent mod2A:+1 to fq(p(di Sq2')) = fq(p(n,2>di-2<>)). Again using the

fact that Sq2' is strict on i, so that m(i -2s) = m(i) = m, we may use (5.9) to

write the latter as

li,2»p(di-2s+2m + q) +7t,2»S'<7(fdi~-2»))-
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Thus the desired congruence holds provided we show that

p(dl+2m+q)Sq2   = 7j,2»p(d,_2»+2m+0    mod2fc+1.

But since Sq2   is strict on i, it is also strict on i + 2m+q, so again by (3.3) (4)

p(dj+2".+<;) Sq2   = p(di+2m+qSq2 ) =~ii+2m+qt2sp(di_2s+2m+q)    mod2fc+1.

The only remaining ingredient now is 7i+2m+">,2» = H,2s mod 2fc+1. But this follows

from the number theoretic Corollary 4.5.

Case II. Sq     is final on dimension i.

In this case, recall i — 2s = 2m - 1.

We begin with the left side of (5.8). By (5.9), fq(pdi) Sq2' = p(di+2m+q) Sq2' +

gq(fdt) Sq2 . Now although Sq2 is final on i, it will be strict on i + 2m+q, so we

may apply (3.3)(4), along with (5.10) (which we proved for both Cases I and II),

to see that the latter is congruent to

7i+2"'+i,2»P(di+2'»+«-2») + 9qiiTdi) Sq2 ).

However, the second term here is congruent to 0 by (3.2) (5) since Sq2   is final on i.

Moving now to the right side of (5.8), we have

fq((pdi)Sq2') = fq(dtSq2' + (fdi)Sq2') = 7<,a./,(*-_•) +0,

again by (3.2)(5). The latter is

li,2sfq(u2">-y) = 7tj2»W2m-l + 2m + 9  = -7i,2sP(dj+2m+<,_2» )

since 2m - 1 + 2m+q is odd. Now Corollary 4.5 completes the proof of (5.8) since

it shows that the Lance coefficients are congruent mod2fc+1.

This completes the proof that each fq is a fractal A-map.

It only remains to show (1), that fq(ui) is an indecomposable in dimension

i + 2m^+q. While it is clear from (5.6) that /q(wj) is indecomposable, it is far from

clear that it is homogeneous of dimension i + 2m^+q. However, from (5.7) and the

Witt polynomial form of the terms of (5.9), it is clear this will hold (inductively)

provided we show that for q > 1 gq(rdi) is homogeneous of dimension i + 2m+q,

where 2m < i < 2m+1 - 2.

We let dim denote the dimension of an element which is homogeneous with

respect to dimension, and let exp~ (respectively expu) denote the total exponent of

a monomial in the x's (respectively m's). Of course dim and exp are both additive

on products. Now since gq(x2m_y) = W2m(2«-'+i)-ii we have

(dim-r-expu)(.,x2m_1) = 2m(2«-1 + 1) = (2q~l + 1) ■ (dim + exP;r)(x2m_1).

Thus

(5.12) (dim + expjojj, = (2q~l + 1) ■ (dim + expj

on the generators of L, and hence (by additivity on products) on all of L. Of

course dim + exp- is just the weight grading on L, and we know from (3.1) that

since exp_(Z) = 1, fdj has weight i + (2m+1 - i) = 2m+1 (since i ^ 2m - 1, so
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fh(i) = m(i)). Also, by the definition of gq in (5.5), expu 05,= exp_ since q > 1.

Using these facts we can solve in (5.12) for

dim(gq(fdi)) = (2"-1 + 1) • (2m+1) - (2m+1 - i) = i + 2m+q,

as claimed.

This completes the proof of Lemma 5.4.    □

To complete the proof of Theorem 1.2 from Lemma 5.4, merely note Ln and

Pn are ^4„_i subalgebras of Bn, and looking at dimensions shows that the tensor

product of the inclusions and the fq 's give the desired isomorphism.

We will finish this section by showing that the maps fq have a rather comforting

feature. Since our fractal grading using homogeneous generators u% apparently

underlies the ability to redimension the fractal A-algebra Bq with the /,'s, one

would hope that fq carries itj to an element which is homogeneous with respect to

the grading as well as with respect to dimension.

LEMMA 5.13.   fq(ui) is homogeneous of grade 2m^+q.

PROOF. As with the proof of (1) in Lemma 5.4, this will follow inductively from

(5.7) and (5.9) if we show that gq(rdi) has this grade for q > 1 and 2m < i <

2m+1 - 2. Now on the generators x2r_y of L,

grade(gg(x2--_i)) = grade(u2r_1+2r+,-i) = 2r+q~1 = 29_1 ■ grade(x2r_i)

provided q > 1, so by additivity grade ° gq = 29_1 • grade on all of L.   Thus

grade(<7,(fdj)) = 2«-J • grade(fdt) = 2q~x ■ 2m^+1 = 2m^+q as claimed.    □

6. Proof of Theorem 3.2.

THEOREM 3.2. Let fh = rh(i) as above. Then the homomorphisms r and f

satisfy the following:

(1) f extends uniquely to an algebra map Bo —* L.

(2) f(x2r_i) = —X2---1 for all r > 1.

(3) r(Bn) c Bn.

(4) f(dj)Sq2' =f(d,Sq2')mod2'/W+1 «/Sq2° is strict on i, i.e. if s < a(i) and
2m < i - 2s < i < 2m+1 - 2.

(5) f(dj) Sq2' = 0 mod 2"(i> + 1 j/Sq2' is final on i, i.e. if s < a(i) and 2m - 1 =
i - 2s < i < 2m+1 - 2.

PROOF. The first step is to show that f, which was defined only on the integral

primitives, actually produces f(xj) with integral coefficients. This will follow from

Lemma 2.1 of [La], provided we verify the required hypothesis. This reduces to

showing that for any odd j, if we let

,    1 \        ~i 1        \        11     7\2rf,<J'2fc) + 1-i.2fc\

hk(Xy,...,X2r_y,...)=T(d:j.2k) = ((-l) )\.2k,

then

hk(xi,...,x2r-i,...) = hk-y(x\,...,x22r_y,...)    mod2fc.

Letting fh = fh(j ■ 2k) and SI = J2r>y x\r-n the reader can verify that this means

we must show

((-l?^l-^\2k =((-Sl)2*-^k-\2k    mod2fc.



A FRACTAL-LIKE ALGEBRAIC SPLITTING 453

Since SI = I2 mod 2, when we work mod 2k we have

(_s/)2--,.2*->  _ (_,_)_*-,••_*-»  = (_!)>*-> (_/)9»+»-i.2» = (_/)2*+'-i-2*)

and the result follows.

The second claim of the theorem follows immediately from the definition in (3.1),

since x2r_i = d2r_,, and 2™(2"-1)+1 - (2r - 1) = 1.

To prove the third claim, r(Bn) C Bn, it is sufficient to show that r(xj) E

Ba(i)-y- Looking at the Witt sum, for this it is sufficient by an inductive argument

to show that f(dj) E B_(j)-i mod 2"W+1. Looking at the formula for f(dj) we see

. „ /   2™+1 - i   \

w = (-i),EL,r.l...irJ«51*?-a*-i
R

where the sum is over all R = (ry,r2,... ,rs) such that X_r;(2( — 1) = i and

£_?"( = 2m+1 -i. We will show that if x\l ■ ■ ■x23s_l does not lie in _?Q(,)_i then the

coefficient is divisible by 2"(J' + 1. Now a monomial x^1 • • ■ x2|_j lies in BQ(j)_i only

if all its terms x2'l_1 do, and xr2'-i *s m B<*(i)-i provided v(ri) > e(a(z)-l,2'-l) >

a(i) - I. Thus it will suffice to show that

/om+l _,\

*('.^)£"") + 1

if v(ri) < a(i) — I for some /. This is assured by Lemma 4.6, which was proved in

our number theory section.

Now we turn to part (4). Note in this case that m(i) = fh(i) = m(i — 2s) =

m(i — 2s), all of which we will call m here. To evaluate the left side we need to

compute the action of the Steenrod algebra in L. It is convenient to use a different

lift of the total Steenrod square Sq to L C Bo- This lift will also obey the integral

Cartan formula, and agree with the usual Sq mod 2, and therefore agree with the

Lance lift on ?(d,) mod 2u^+l. Let / = J2r>i :E2r-i as usual. Now mod2,

/ Sq = I + I2 + I4 + ■ ■ ■ ,

so the lift defined by

(6.D ,Sq_£_i_ (* + >),«

will be correct mod 2, since (2*<t"1) is odd precisely if t + 1 is a power of 2. In L

the action of the Steenrod algebra preserves the weight grading, which is dimension

+ exponent. Since in this grading f(dj) is homogeneous of grade 2m+1, we must

have f(di) Sq2 also homogeneous of grade 2m+1 mod 2"',)+1. We are now ready to

compute carefully the left side of (3.2)(4), freely using (6.1), Lemma 4.7, the Z(2)

Cartan formula, the fact that rd, is a Witt polynomial in L, the subscript || for
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weight projection, | for dimension projection, and the fact that I has exponent 1:

f(dt)Sq2'=(-ir/2m+1-|JSq2'

_/     n2m + ,-i|| c>   2s        //     ;\2m + 1-'M o   vi
— (-I) ||2m+i hq     =((-/) ||2m+i Sq)| j_2s

= ((-l)2m+1-lSq\[2m+l)\i_2s = ((-lSq)2m+1-*\\2m+i)\i_2s

V - /    j-2s

/os+1   i   om+1       ,- \ im+1 _ ;

= f —IV" I I_-_-_/2m+1-(i-2») mod2"W + 1

The right side of (3.2)(4) is

ndiSq2') = 7i,a.?(4_a.) = -^ (•' rr) (-ir2'(r+I-(-2'))u_2s.

Note that here the hypothesis 2m <i - 2s is crucial to the validity of this formula

for f (d,_2s)- Thus to complete the proof we need to show that

Y /2s+1+2m+1 -A        2m+1 - i

i     >   y 2s ) 2m+1 + 2S+1 - %

Corollary 4.3 guarantees the validity of this final congruence, completing the proof

of part (4).

Finally, we prove part (5). Since all of A preserves the weight grading mod 2

on L, Lance's squares must preserve it mod2"(,) + 1 on fdj. Now fd% has weight

2m+1, so the element (fdt)Sq2' has weight 2m+1 mod 2"W+1. But since Sq2' is

final on i, it also lies in dimension 2m — 1, and we claim no nonzero element in

this dimension can have weight that large. This is because in terms of the __r—l's,

weight = dimension + exponent on L, and exponent < dimension, so weight <

2 • dimension.    □
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