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ASYMPTOTIC PERIODICITY OF THE ITERATES
OF POSITIVITY PRESERVING OPERATORS

M. MIKLAVCIC

ABSTRACT. Assume that

(AI) X is a real Banach space.

(A2) X+ is a closed subset of X with the following properties:

(i) if xe X+, y € X+, a e [0, oo) then x + y & X+ and ax € X+;

(ii) there exists Mo € (0, oo) such that for each x € X there exist x+ e X+

and x_ 6 X+ which satisfy

_=_+-__,        ||_+|| < Mo||x||, ||x_||<Mo||x||

and if x = j/+ — j/_ for some y+ 6 X+, j/_ _ X+ then y+ — x.|- 6 X+;

(iii) if x e X+, y e X+ then ||x|| < ||x + y\\.
(A3) B is a bounded linear operator on X.

(A4) BX+ C X+.
(A5) Fq is a nonempty compact subset of X and limn—oo dist(_J"x, Fq) = 0

whenever x 6 X+ and ||x|| = 1.

Then Bnx is asymptotically periodic for every x 6 X.   This, and other

properties of B, are proven in the paper.

1. Introduction. It is well known that the iterates of operators with some com-

pactness and some positivity properties are asymptotically periodic, e.g. [1, 3, 4, 5,

7, 8]. This implies that the peripheral point spectrum of the operator consists of

finitely many roots of unity which is quite remarkable. Assumptions A1-A5 repre-

sent results of an attempt to isolate the crucial properties of the space and of the

operator which make the asymptotic periodicity possible.

It may be somewhat surprising that the space has to satisfy only assumptions AI

and A2 [1, p. 714]; see also [7], however, this is important in the statistical theory

of deterministic processes [2, 5]. For example, if r is a map of the unit interval into

itself and if

(Bf)(x) = -f[ f(y)dy
ax Jr-'[0,x]

for a probability density / E Lx(0,1), then Bnf describes the evolution of densities

generated by the deterministic system {r"}. Assumption A5 can be verified for

some r [5]. In certain cases, although Bnf is not eventually periodic in L1, it

is, however, eventually periodic in a space that contains Dirac-delta functions.

One would expect that such situations occur typically when the sequence {r"x} is

eventually periodic for almost all x. There are plenty of such spaces which satisfy

also AI and A2. For example, we can take that X = ba(S,W,TVj [1, p. 160], the

space of bounded, real-valued, finitely additive set functions on a field §? of subsets
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of a set S and X+ = {p E X\p(E) > 0 for all E E %}, or, if IT is a cr-field, we can

take X = ca(S, e?', R) [1], the space of countably additive members of ba(S, _?, R).

Assumption A2 seems to be intuitively clear, except possibly for "and if" part

in A2ii. However, if X = R3, X+ = {(x,y, z)[z > \Jx2 +y2} and if B represents

the rotation around z-axis by an angle equal to irrational multiple of 7r then all

assumptions A1-A5 are satisfied except for "and if" part in A2ii, and of course, we

do not have asymptotic periodicity in this case.

Assumption A5 was introduced in [5] and a simple way to verify it is given by

the following:

THEOREM 1.1. Suppose that T is a bounded linear operator on a (real or

complex) Banach space W and that

(1) limn_>00(l/n)(Tn_,2/) =0 for all x EW and allyEW*,

(2) ||Tm — _C|| < 1 for some integer m > 1 and some compact linear operator K

on W.

Then there exist a E (0,1), b < oo, and a nonempty compact set F C W such

that dist(Tnx,F) < ban whenever n > 1, x E W and \\x[[ < 1.

We write (x,y) instead of y(x) whenever x EW and y E W* (the dual of W).

This theorem is a slightly modified version of Theorem VIII.8.3 [1] and is proven

in §6. Condition 2 of the theorem was introduced in [4] and has been very often

used in studies of the behaviour of the iterates of T, e.g. [1, 7, 8]. Assumptions of

the theorem are more restrictive than A5; for example, let X = Lp(0,1) for some

1 < p < oo and (Bf)(x) = xf(x) a.e. for f EX.

If (S, _?, p) is a positive measure space and if W is any of the spaces L1 (S, _?, p),

ba(S, ■S'jR), ca(S, «?,R),. ■. [1, p. 511] then the assumption 2 of Theorem 1.1

is satisfied if T" is a weakly compact operator on W for some n > 1. Ii X =

L1(S,S',p) for some tr-finite measure space (S,^,p) and if B is Markov opera-

tor on X then A5 is satisfied if there is a weakly compact set F in X such that

limn_0Odist(_?na;,F) = 0 whenever x E X+ and \[x\\ = 1 [3].

I wish to thank T. Y. Li for many illuminating discussions and a critical reading

of the manuscript.

2. Results. Assumptions AI through A5 will be in effect throughout the rest

of the paper. Define

M = sup||£"||,
7l>0

Y = < y E X\y = lim Bn'x for some x E X and some 1 < ny < n2 < ■ ■ ■ >.
i—>oo J

THEOREM 2.1. M < oo and Y is finite-dimensional vector space. IfY = {0}

then lim„_00 ||5"z|| = 0 for every x E X.

This theorem and some other important properties of Y are proved in §3. Define

TV = dim Y > 0 and let E be the set of all x E X+ n Y such that ||_|| = 1 and if

x = y + z for some y E X+ C\Y, z E X+ n Y then y = tx for some t E [0,1]. Some

results of §4 are represented in the following theorem.
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THEOREM 2.2. E is a set of TV elements and if N > 1 then E is a basis for

Y. Moreover

(1) If x E E then \\Bx\\ > M~l and Bx = \\Bx\[y for some y E E.

(2) If [\B\[ = 1 then \\Bx\\ = 1 for all xEE.
(3) If x E E,y E E,x j^ y and h E X+ are such that x — hE X+ and y — hE X+

then lim^oo \\Bnh\\ = 0, moreover, if \\B\\ = 1 then \[x - h\\ = \\y - h\\ = 1.

Note that part 3 is commenting on "disjoint support" of elements of E.

If TV > 1 let ey,..., ejv be an enumeration of E. In this case define p: {1,..., TV}

^{l,...,TV}andA:{l,...,TV}-(0,||B||]by

Bei = \(i)ep(i).

p is one-to-one (Lemma 4.6).   Let mo be the smallest positive integer such that

m0th iterate of p is the identity map. We have that m0 < eNle and that Bm°x = x

for all x E E (Lemma 4.7).  Observe that if x = ey + Bey +-1- Bm°~1ey then

x E X+, [[x[\ > 1 by A2iii and Bx = x.

THEOREM 2.3. Suppose that TV > 1. Then there exist /i,...,/jv in X* such

that for all i,jE {1,... ,TV}

(1) limn^oo \\Bn(x - Z%=l(x, fk)ek)[\ = 0 for all xEX,

(2) (ei, fj) = Sij (Kronecker delta),

(3) 0 < (x, fi) < M[\x\[ for all x E X+,

(4) ||/4 <MM0,
(5) B*fv(l) = X(i)fi,

(6) Yvmn_O0(x,B*n(y - Y,k=y(ek,y)fk)) = 0 for all x E X and all y E X*.

This is our main theorem. It is proven in §5. Observe that if M = Mq = 1 then

fi is actually a positive tangent functional to e^ and hence, in some spaces X, fi is

uniquely determined by a. The following theorem concerning the spectrum of B

is also proven in §5 and it implies that if TV > 1 then

oo

Y = {xE X\Bmox = x}= \J{xE X\Bnx = x}.

71=1

THEOREM 2.4.   Suppose that

B x = cos ipx — sin ipy,     By = sin <px + cos <py

for some integer k > 1, tp E [0, 27r) and some x E X, y E X such that ||x||-r-||i/|| > 0.

Then N > 1, x E Y, y E Y and tp = 2-Kn/mo for some n E {0,1,...,mo — 1}■

The following theorem has applications in the study of the Boltzmann equation

[5, 6] and is proven in §5.

THEOREM 2.5. For each x E X there exist xy E Y and a unique xqEY such

that
1  ri—1

lim ||B"(x-_o)ll=  Hm    -Ttfi-n   =0;
n—>oo n—>oo    n *-^'

i=0
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moreover,

lim \[e~teBtx - Xy\[ = 0,
t—>oo

Bxy = xy and if N > 1 then xy = m^1 5_i_°o~  B*xo-

For i£l define P0x = Xo, Pyx = xy where _0 and Xi correspond to x as in the

Theorem 2.5. Po and Pi are projections and both commute with B. The following

theorem is proven in §6.

THEOREM 2.6. // ||5m — K\\ < 1 for some integer m > 1 and some compact

linear operator K then there exist a E (0, oo) and b E (0, oo) such that

1 n_1 h
\[Bn(I -Po)\[<be~an,       -'spBi-P1    <-,     He-'e^-PiH <be~at

n t-^ n
t = 0

for all n> 1 and all t > 0.

3. Properties of Y. Since F0 is a bounded set, A5 and A2ii imply that

{||.B"x|||rc > 0} is bounded for every x E X. The principle of uniform boundedness

implies that M < oo.

For x E X define

Q(x) = < y\y = lim Bn'x for some 1 < ny < n2 < ■ ■ ■ >.
I i^oo J

Note that Y = \JxeXQix) and if y E Q(x) then By E Q(x) and \[y\\ < M[\x\[;
hence BY EY.

LEMMA 3.1. If xEX then every sequence in {B"x|n > 0} has a subsequence

that converges to some element in X.

PROOF. If x E X+ and ||x|| = 1 then \\Bnx - x„\\ < dist(Bnx,F0) + 1/n for

some xn E Fq and all n > 1. A2ii and the fact that Fq is compact imply the lemma.

LEMMA 3.2.   Ifx0 EX,xE Q(x0), yE Q(x0) thenyEQ(x) and\\y[\ < M\\x\\.

PROOF. Pick s > 0, m > 1 and note that ||x - 5nix0|| < e/(l + M), \[y -

B"2xo|| < s/(l + M) for some ny > 1 and some n2 > ny + m.  Therefore [\y —
Bn2-n,x|| <£

LEMMA 3.3. If Xo EX and Xy,x2,... are in Q(xq) then there exist 1 < ny <

n2 < ■ ■ ■  and x E Q(xo) such that limi_>00 xn. = x.

PROOF. Pick 1 < my < m2 < ■ ■ ■ such that ||T3m'x0 - xt|| < 1/i for i > 1 and

apply Lemma 3.1.

Above lemmas imply the following.

LEMMA 3.4.   IfxEXthen
(1) Q(x) is a compact set,

(2) Q(x) = {0} tfinflllj/Wy E Q(x)} = 0 ?^lim„_<0O Bnx = 0,
(3) ifyEQ(x) thenQ(y) = Q(x),
(4) xEY iffxEQ(x),
(5) ifxEX+ thenQ(x) C X+.

LEMMA 3.5.   IfxEY,n>0, then x = Bny for some y E Q(x).

PROOF. By Lemma 3.4 x = lim,_oo Bn,x for some n < ny < n2 < ■ ■ ■. Apply

Lemma 3.1 to Bn'~nx.
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LEMMA 3.6.   If x E Y, y E Y, a E R, 0 E R then ax + (3yEY.

PROOF. By Lemma 3.5 there exist xn E Q(x), yn E Q(y) such that x = Bnxn,

y = Bnyn for n > 1. Lemma 3.3 implies that lim^oo xni = xo, limi_>00 yn, = yo

for some xo E Q(x), yo E Q(y), ny < n2 < ■ ■ ■; hence

ax + /3y = lim Bni(ax0 + /3y0).
i—>oo

LEMMA 3.7.   If xEY, y EY, n > 0 and Bnx = Bny then x = y.

PROOF. Lemmas 3.6, 3.4 imply that x-yE Q(x - y) = {0}.

LEMMA 3.8.   For each x E X there exists a unique xo E Y such that

lim 5"(x-x0) = 0;
n—>oo

moreover, x0 E Q(x).

PROOF. Pick ny < n2 < ■■ ■ and y E Q(x) such that lim,;_00 Bnix = y. Let

2/« E Q(x) be such that y = Bnyn for n > 1 (Lemmas 3.5, 3.4). Lemma 3.3 implies

that (by renaming a subsequence) we may assume that limj_oo yn. = Xo for some

Xo E Q(x). If m > nt then

[[Bm(x - x0)[[ < M\\Bn'x - y[\ + M[[yn, - x0||

and therefore limn_0O Bn(x — xo) = 0. If lhrin^oo Bn(x - z) =0 for some z E Y

then Bn(z - xq) = Bn(x- xo) - Bn(x - z) -+ 0 as n —* oo, so, Q(z - xo) = {0} by

Lemma 3.4 and since z — xqE Q(z — xo) we have z = xg.

LEMMA 3.9.   IfxEY,yE Q(x) and y - x E X+ then y = x.

PROOF. Define yy = y, y0 = x, z0 = y — x E X+ n Y and suppose that Zq ̂  0.

Since zq E Q(zq) we have by Lemma 3.4 that a = inf{||z|||2 6 Q(zo)} > 0 and that

Q(z0) C X+. Suppose that we have found y0, yy, ■ ■ ■, yk+y in Q(x) and z0, Zy,...,zk

in Q(zo) for some fc > 0 such that t/j+i = yi + Zi for 0 < i < fc. By Lemma 3.2

yk+y = limj_>0o Bn'yk for some ni < n2 < ■■■ and by choosing a subsequence

we may assume (Lemma 3.1) that both Bn,yk+y and Bnizk converge. Define

2//C+2 = limt_00S"'t/fc+1, zk+1 = limi_00 Bn'zk. By Lemma 3.4 yk+2 E Q(x)

and zk+1 E Q(z0) and also yk+2 = yk+1 +zk+y. Therefore there exist yo,yy,V2, ■ ■ ■

in Q(x) and -Zoi^i!^, • ■ ■ in Q(zo) such that yk+y = t/o + ^oH-r-2/t for all fc > 0.

Assumption A2iii implies that if 0 < n < m then [\ym — yn\[ = \\zn + ■ —h2m-i|| >

Il2n|| > <7 > 0 and this contradicts Lemma 3.3; therefore Zq = 0.

LEMMA 3.10.   IfxEX,yE Q(x) andy-xEX+ thenlimn^00Bn(y-x) =0.

PROOF. Let z = y — x and pick ny < n2 < ■ ■ ■ , zy E Q(z), yy E Q(y), xy E Q(x)

such that Bn'z —► Zy, Bn,y —> yy, Bn<x —► xi as i —> oo. So, Xi EY, yy E Q(xy)

by Lemma 3.4, zy = yy — xy E Q(z) C X+ and Lemma 3.9 implies that Zy = 0.

Lemma 3.4 implies that Bnz —► 0 as n —> oo.

THEOREM 3.11. For each xEY there exist z+ E X+ n Y, z- E X+ n Y such
that

x = z+-z-,    ||2+||<MM0||x||,     ||2_||<MM0||x||

and if x = y+ — y- for some y+ E X+ C\Y, y- E X+ Cl Y then y+ - z+ E X+.
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PROOF. Take x+,x_ as in A2ii. x = x+ - x_ = lim;_00 Bn'(x+ — x_) for

some ny < n2 < ■■■. We may assume (by renaming a subsequence of ni) that

lim;_00 Bn,x± = z± for some z± E Q(x±). By Lemma 3.10

lim Bn(z+-x+) =0.
71—>O0

If x = y+ — y_ for some y± E X+ D Y then g := y+ — x+ E X+, so, y+ —

z+ = g + x+ — z+ and since y+ — z+ E Q(y+ — z+) there are my < m2 < ■ ■ ■

such that y+-z+ = lim^oo Bm'(y+ - z+) = limi^00(Bm't/ - Bm'(z+ - x+)) =

limwoo5m"9€X+.

PROOF OF THEOREM 2.1. All that we still have to show is that dimF < oo.

Let Fy denote the closed convex hull of Fq U {0}. Note that Fy is compact, convex

and OEFy. Define

S+ = {xex+nr|||x|| < l}.

If x € 5+\{0} let y = x/||x||, and since y E Y there are ny < n2 < ■ ■ ■ such that

y = limj_00 Bn'y; hence y E F0 by A5 and x = \\x\\y + (1 — ||x||)0 E Fy. Therefore

S+ C Fi and S    is compact. Define

Sy = {x E X\x = y — z for some y E S   ,zES   },

S = {xgF|MM0||x|| < 1}.

Clearly, Sy is totally bounded and hence it is compact. Theorem 3.11 implies that

S E Sy and hence S is compact. Thus S is compact in Y and therefore dim Y < oo.

4. Properties of E. If TV = 0 then E = 0, so, assume TV > 1 throughout this

section.

LEMMA 4.1. E is not empty and {^t=1 ctiXi\ai E [0,oo), Xj E E for i =

1,..., TV + 1} is dense in X+ n Y.

PROOF. Let xi,..., xN be a basis of Y. Define T : RN ->• Y by

N

T(cxy,...,aN) = ^atiXi.

i=l

Define C = T~XX+. The following properties of C will be needed.

(1) If x E C, y E C, a E [0, oo) then x + y E C, ax E C.

(2) If x € C and -x E C then x = 0 (by A2iii).

(3) C is closed and C ^ {0} (by Theorem 3.11 and TV > 0).

Let Cy be the convex hull of {x E C\\\x[\ = 1}. Note that Cy is nonempty, compact

and the property 2 of C implies that 0 ^ Cy. Hahn-Banach theorem gives us

yo E RN and 7 E R such that

0 < 7 < (x,y0)

for all x € Ci. Hence (x,y0) > 7||x|| for all x E C. Define D = {x E C\(x,y0) = 1}.

D is nonempty, compact and convex. Let Ey be the set of extreme points of D. By

verification

E={m\Tx\XGEl}-
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The Krein-Milman theorem implies that

{JV + l N + l }

y^ aiXi ai > 0, Xi E Ey for i = 1,..., TV + 1 and  2J ai = 1 \
i=l i=l J

is dense in D and this completes the proof.

LEMMA 4.2. Suppose that xy,..., xk are distinct elements ofE. If (ay,..., ak)

E Rk and Yl*=i aixi € X+ then ai > 0 for i = 1,..., fc.

PROOF. Let Pk be the lemma as stated. Pi is implied by A2iii. Assume that

fc > 1 and Pk-y is true. Suppose (ay,... ,ak) E Rk, y = Yli=yaixi e X+ and

aj < 0 for some j. Since JZi^j aixi — V ~~ ajxj e ^+' Pk-i implies a% > 0

whenever i / j; and A2iii implies am > 0 for some m. Define x = amxm — y and

let z+,z- be as in Theorem 3.11; hence

x = amxm -y = - Yl a%x% = z+ - Z-.
i^m

Pk-y and j ^ m imply z+ / 0. Theorem 3.11 implies amxm — 0+ E X+ Cl Y and

—ajXj - z+ E X+ n Y~. Definition of E implies z+ = txm and z+ = rxj for some

t E (0, am], r E (0, —aj] and therefore xm = Xj. Contradiction.

LEMMA 4.3.   E contains precisely TV elements and these form a basis for Y.

PROOF. Let Xy,..., xk be distinct elements of E. Lemma 4.j and A2iii imply

that if x = 5Z»=i aixi e X+ then 0 < a, < ||x|| for i = 1,..., fc. Thus xy,... ,xk
are linearly independent; hence |.E| < TV. Assume fc = [E\. By Lemma 4.1 S =

(Si=i A^tlA € [0,00) for i = 1,..., fc} is dense in A+ ny, and because J2t=y $t ^

fc|| 2~2i=i Pixi\\2 whenever Pi E [0,00) for i = 1,..., fc we have that S = X+ n Y.
Theorem 3.11 implies span{xi,... ,xk} = Y and fc = TV.

LEMMA 4.4.   If x E E then [[Bx[[ > 0 and Bx = \[Bx\[y for some y E E.

PROOF. Lemma 3.7 implies ||Sx|| > 0. Let y = ||.Bx||_1-Bx and suppose y =

u + v for some u, v in X+ n Y. Lemma 3.5 implies u = Buy and v = Bvy for some

uy E Q(u) C X+, vy E Q(v) C X+. Lemma 3.7 implies x = ||J3x||t«i + ||Bx||l)i;

hence ||i3x||ui = tx for some t E [0,1], so, u = ty and y EE.

LEMMA 4.5.   If xEE, n>l, XeR and Bnx = Ax then A = 1.

PROOF. |A| < 1 because M < 00. Lemma 3.4 implies x E Q(x) ^ {0} and

therefore ]A| = 1. A2iii implies A = 1.

LEMMA 4.6.   p is one-to-one.

PROOF. If p(i) = p(j) then BX(i)~1ei = BX(j)~1eJ and by Lemma 3.7 X(i)~1el

= X(j)~1eJ; hence i = j.

LEMMA 4.7. mo < eN^e and Bm°x = x for every x E E. Moreover, M_1 <

||5x|| < ||£|| for every xEE.

PROOF. Since p is one-to-one mo is well defined and mo < eNle. Lemma 4.5

implies Bm°x = x for all x E E. If x E E then 1 = \\Bm°-1Bx\\ < M||Sx||.
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LEMMA 4.8. IfxEE,yEE,x^y and h E X+ are such thatx-h E X+ and

y—h E X+ then linin—oo Bnh = 0; moreover, if ||P|| = 1 then ||x—«|| = ||j/ — h\ = 1.

PROOF. Let / = x - h, g = y - h and note that x = Bnm°f + Bnm°h and

y _ gnmoj + sramo^ for n > q. Lemma 3.1 implies that there are f0, go, h0 in

X+DY and nj < n2 < ■ • ■ such that Bn'm°f -> f0, Bnim°g -* g0, Bn<m°h -> n0 as

i —> oo. Therefore x = ho+fo and ?/ = «o+ffo- Definition of £ implies /io = 0 and by

Lemma 3.4 limn_00 Bnh = 0. Since x G Q(/) we have 1 < M||/|| = M||x-n|| < M

and similarly 1 < M\\y - h\\ < M.

5. Asymptotic periodicity.

PROOF OF THEOREM 2.3. For x E X and 1 < i < TV define 7i(x) by

J2i=yliix)ei = xo where xo is as in Lemma 3.8. Lemmas 3.8, 4.2 imply that

7,(x) > 0 if x E X+ and 1 < i < TV. If x E X, y E X, a E R, 0 E R then

Bn lax + py -J2(aliix) + Miiy))eA

<\a\   Wx-f>(x)eiJ    +\P[   Bn(y-J2liiy)A

and therefore 7,-(-) are linear functionals. If x € X then (Lemma 3.4) for some

ny < n2 < ■ ■ ■

N N

y^7t(x)e,   = lim    B"> y%(x)ei   = lim ||Bn>i|| < M||x||.
*—' 7—>O0 ^-^ j—>00

i=l t=l

Thus, A2iii implies that 0 < ^(x) < \\ Y£=1 li(x)ei\[ < M\\x\\ for x E X+, 1 < j <
TV. A2ii implies that |t,(x)| < MM0||x|| for all 1 < j < TV, x e X. Define /, e X*

by (x, /t) = 7t(x) ior x E X,l <i < TV. This proves parts 1, 2, 3, 4 of the theorem.

Since

N N

Bx-J2(Bx,fi)et = Bx-^2(x, X(i)~l B* fp(i))X(i)ep{i)
t=l 7=1

= B\x-Y^(x,X(i)-lB*fp(l))ei\

for every x E X part 5 is proven. Part 5 implies

N N

J2(xJk)(Bnek,y) = J2(x,B*nfk)(ek,y)
fc=i k=y

and

(x,B*n ly- f>fcly)/fc j\ = Un lx- f>,/fc>efcJ ,jA

whenever x E X, y E X* and n > 1. This proves part 6.
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Proof of Theorem 2.4. Note that for n > l

Bnkx = cos(ntp)x — sin(n<p)y,

Bnky = sin(ntp)x + cos(n<p)y,

inf {||cos/3x - sinpy\\ + ||sin/?x + cos Py[[} > 0.

Theorem 2.1 implies Y ^ {0} and hence TV > 1. Pick u E Y, v E Y such that

limn^oo Bn(x - u) = lim^oo Bn(y - v) = 0. Note that Bm°u = u, Bm°v = v.

Define a = m.o'P and

Uj := cos(ja)x — s'm(ja)y = B]km°x —► u    as j —> oo,

Vj := sin(,?'a)x + cosset)?/ = B3 m°y —► v    as j —* oo.

Therefore Uj±y = cosauj + sinauj and Vj±y = cosavj ± sin cm, for j > 2 and

||u|| + ||u|| > 0. This implies that cos a = 1, sina = 0, x = u, y = v.

LEMMA 5.1.   Ifm > 1, 0 < n <m- 1, t > 0 then

~        tkm+n j m_1 / / 27r\\
e     >   --rr-<-exp   -M 1 - cos —      .

f^(km + n)\     m m \     \ m J J

PROOF. If z = exp(2rri/m) then

°°        fkm+n m_1

f^0ikm + n)\      ^

PROOF OF THEOREM 2.5. Existence and uniqueness of xo is given in Lemma

3.8. Note that for n > 1, t > 0

.  n—l 1  n—1 1  n—i

- y Bkx = - y Bk(x - x0) + - 5" Bkx0,
n f-^1 n *-" n f-'

fc=0 fe=0 k=0

e-teBtx = e-t £ l-Bk(x - x0) + e~* £ ^Bkx0

k=o   ' fc=0

and that both first sums converge to 0 as n —► 00, t —► 00. Thus, if Y = {0} take

Xi = 0 and if Y ^ {0} then let Xi = m^1 YlT=o   Bkxo and observe that for n > 1

-yBkX0-Xy     <2J*MM
n z—' n

k=0

and that Lemma 5.1 implies for t > 0

e~l y T\Bkx® ~ xi   ^ imo ~ l)A/||x0|| exp ( -t (1 - cos — jj .

This completes the proof.

6. Quasi-compactness. If W is a Banach space let S?(yV) denote the set

of all bounded linear maps from W into W. If W is complex Banach space and

C : W -* W is such that C2 = I, \\Cx\\ = ||x|| and C(ax + py) =ax + 0y for all
xE\V,yEW,aEC, PeC then C is called conjugation on W. The following

theorem follows directly from the Theorem VIII.8.3 [1], see also [8].
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THEOREM 6.1. Suppose that W is a complex Banach space, T E J2f(W),

limn^00(Tnx,y)/n = 0 for all x E W and all y E W*, and \\Tm - K\\ < 1 for

some integer m > 1 and some compact K E 5?(W). Then there exist Ky E J2?(W),

Vy E 5?(W), a E (0,1), b < oo such that

(1) Ran(J^i) is finite dimensional and supn>0 \[Ky[\ < oo,

(2) ||Vi"|| <ban for n = 1,2,...,

(3) T" = K? + Vi" for n= 1,2,...,
(4) if C is a conjugation on W and TC = CT then KyC = CKy,

(5) if xo E Ran(Ky) then there exist xy,... ,xn in Ran(Ky) and Xy,..., Xn in C

such that xq = xy + ■ ■ ■ + xn, KyXi = Txi = XiXi, \Xi[ = 1 for 1 < i < n.

PROOF OF THEOREM 1.1. If W is complex then the statement is obvious.

Assume W is real. Let Z = W x W, Zy = W* x W* be the usual complexifications

of W,W* defined by

||(i,V)|| = supW[\ax-0y\\2 + \\px + ay[\2\a E R,p E R,a2 + p2 = 1}.

Define V = Tm - K, T0(x,y) = (Tx,Ty), K0(x,y) = (Kx,Ky), V0(x,y) =

(Vx,Vy), Cy(x,y) = (y,x), C2(x,y) = (x,-y) for (x,y) E Z. It is easy to ver-

ify that To,K0,V0 are in Sf(Z),K0 is compact, V0 = T0m - K0, \\V0\\ = [\V\[ < 1
and Cy and C2 are conjugations on Z and both commute with To- If x E Z, y E Z*

then

(T0"x,2/> = (Tnxr,yr) - (TnXi,yi) +i(Tnxr,yi) +i(TnXi,yr)

for some (xr,xt) E Z, (yr,yt) E Zy. Let Ky E S?(Z), Vy E 5f(Z), a E (0,1),
b < oo be as given by Theorem 6.1. Applying Cy and C2 one can show that

Ky(x,y) = (K2x,K2y), Vy(x,y) = (V2x,V2y) for some V2 E^f(W), some compact

K2 E Sf(W) and all (x,y) E Z; moreover, ||V2"|| = ||Vi"|| < ban, \\K^\\ = \\K?\\,

Tn = K% +V2n for n > 1. Let F be the closure of K2{x E W\\\x\\ < sup„>0 \\K$\\}.

PROOF OF THEOREM 2.6. Let Z = X x X and Yc = Y x Y be the complexifi-
cations of A" and Y (as above). Define B0(x,y) = (Bx,By), K0(x,y) = (Kx,Ky)

for (x,y) E Z. Let Ky E 2C(Z), Vy E ^f(Z), a E (0,1), b < oo be as in Theorem

6.1 (corresponding to Bo). As above Ky(x,y) = (K2x,K2y), Vy(x,y) = (V2x,V2y)

for some K2 E 5f(X), V2 E Sf(X) and all (x,y) E Z.
Suppose xo E Ran(/£i) and let Xy,... ,xn,Xy,..., Xn be as in Theorem 6.1. Since

|Aa| = 1 and BqX% = XiXi for 1 < i < n Theorem 2.4 implies that xo E Yc and,

clearly, 50xo = KyXo- This implies that if x E Ran(K2) then x EY and K2x = Bx.
Pick x E X,n > 1. Then Bnx = K%x + V2nx = Bn~lK2x + V2nx and since

K2x E Y there exists (Lemma 3.5) Xo E Y such that K2x = Bxo- Therefore

Bnx = Bnx0 + V2"x and by Lemma 3.8

||B"(/-Po)|| = ||V2"||<6a".

If this inequality is used in the proof of Theorem 2.5 (§5) then the other two

inequalities are obtained.

REFERENCES

1. N. Dunford and J. T. Schwartz, Linear operators, Part 1, 4th printing, Interscience, New

York, 1967.

2. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic

transformations, Math. Z. 180 (1982), 119 140.



ASYMPTOTIC PERIODICITY OF THE ITERATES 479

3. J. Komornik,  Asymptotic periodicity of the iterates of weakly constrictive Markov operators,

Tohoku Math. J. 38 (1986), 15-27.

4. N. Kryloff and N. Bogoliouboff, Sur les proprietes en chaine, C. R. Acad. Sci. Paris 204 (1937),

1386-1388.

5. A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators,

Trans. Amer. Math. Soc. 286 (1984), 751-764.
6. M. MiklavfiC,  On limit states of a linearized Boltzmann equation, SIAM J. Math. Anal. 19

(1988), 150-152.
7. H. H. Schaefer, On positive contractions in Lp spaces, Trans. Amer. Math. Soc. 257 (1980),

261-268.

8. K. Yoshida and S. Kakutani, Operator-theoretical treatment of Markoff process and mean ergodic

theorem, Ann. of Math. (2) 42 (1941), 188-228.

Department of Mathematics, Michigan State University, East Lansing,
Michigan 48824


