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TRAVELLING WAVE SOLUTIONS TO A GRADIENT SYSTEM

JAMES F. REINECK

ABSTRACT. Given a system of reaction-diffusion equations where the nonlin-

earity is derived from a potential with certain restrictions, we use the Conley

index and the connection matrix to show that there is a travelling wave solution

connecting the maxima of the potential.

1. Introduction. We consider a system of reaction-diffusion equations

/     % dui      d2u      ., . .
(1-1) -jrr = -g=; + fi(ui,...,ud),        i = l,...,d,

where u(f,r): R2 —► R. We assume that the fi are derived from a potential F, i.e.

ft(uy,...,Ud) = FUi(uy,...,Ud), i=l,...,d,

for some F: Rd —» R. We are looking for travelling wave solutions of 1.1, i.e.

nonconstant, bounded solutions of the form

««(£, r) =Ui(f + 9r),        i = l,...,d.

Thus, each ut is a function oi f + 9r alone. We write Ui(t) for Uj(£ + 9t). The

system 1.1 then becomes a system of ordinary differential equations

u" = 0u'i - fi(uy,...,ud),        i=l,...,d,

where ' denotes d/dt. We can write this as a system of first order equations. We

introduce the notation U(t) = (uy(t),... ,Ud(t)), V(t) = (vy(t),... ,Vd(t)). The

system then becomes

(1.2) U' = V,

v' = ev - vf(u).

We assume that over some convex set Ai, F has three critical points, two maxima

My and M2, and a point M3 of Morse index d — 1. (Precise assumptions on F will

be given below.) We will be interested in solutions which satisfy 6 > 0 and

(1.3) U(t) -7 My    ast-+ +00,        U(t) -»• M2    as t -* -00,

i.e. the solution (U(t),V(t)) is a connecting orbit between the rest points (M2,0)

and (My,0) in the local flow generated by 1.2.

Let H(U, V) = [[V[\2/2 + F(U). H: Rd x Rd -» R is called the energy function.

Along any solution (U(t),V(t)), we have (d/dt)H(U(t),V(t)) = 9[[V[[2. Thus for

9 ^ 0, H is a Lyaponov function and the flow generated by 1.2 is gradientlike. It
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follows that the only bounded solutions are critical points and orbits connecting

the critical points. In contrast, when 9 = 0 we have a Hamiltonian system.

We make the following assumptions on F:

AI. Fe62(Rd,R).

A2. There is a compact, convex set Ny c Rd such that At is a component of

F_1([a, oo)) for some number a.

A3. The restriction of F to Ai has three nondegenerate critical points, two

maxima My and M2, and a point M3 of Morse index d - 1. F(M^) < F(M2) <

F(My).
A4. (2F(Mi) - 2F(U) - (U - My,VF(U))) > 0 for all (U,V) E [Wu(My,0) U

Ws(My,0)] in the flow from 1.2 with 9 = 0.

REMARKS 1.4. The convexity of Ai will be used to construct an isolating

neighborhood in Rd x Rd. A3 can be weakened somewhat. M3 need not be a

single rest point, but can be replaced by a collection of several rest points and

orbits connecting them. This will be discussed in §3.

Hypothesis A4 can also be weakened. The precise hypothesis is

A4'. In the flow generated by 1.2 with 9 = 0, there is no connected collection of

bounded orbits containing the rest points (My,0) and (Af2,0).

Some assumption such as A4 or A4' is needed to prevent "pathologies", i.e.,

the very strange behavior which has been observed in Hamiltonian systems. A4 is

easier to verify, so we state the main result using it. The inequality in A4 may hold

for all U in Ny, for example.

The main result is

THEOREM 1.5. Let F satisfy A1-A4. Then there is a solution of 1.2, 1.3 for
some 6 > 0.

In [1] Conley sketches a proof of Theorem 1.5 using the continuation property

of the Conley index. The proof we give here illustrates the use of the connection

matrix and avoids some difficult estimates in the case d > 2.

In §2 we construct an isolating neighborhood for the system. In §3 we use the

Conley index and connection matrix to prove Theorem 1.5 under the assumptions

A1-A3, A4'. In §4 we show that A4 implies A4'.

ACKNOWLEDGMENT. I would like to thank David Terman for suggesting the

problem and for helpful discussions.

2. An isolating neighborhood. To apply the Conley index and connection

matrix to our problem, we need to construct an isolating neighborhood in Rd x Rd

for an interval of 9 values. Also, we will deform the flow to simplify computations.

We begin by defining two deformations. Let 6i: Rd —* Rd have the properties

(a) Gy (x) = F(x) in a neighborhood of My.

(b) Gi(x) = F(x) for all x <£ int(Ai).

(c) My is the only critical point of Gi in Ai.

Such a Gy exists because My is a maximum and Ai is convex. G2 is defined

similarly, with M2 replacing My in (a) and (c). For i = 1,2, define homotopies

Hi(x, s) = sGt(x) + (1 - s)F(x),        s E [0,1].

Note that for each s, the function H,(-,s) still satisfies assumption A2.
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For i = 1,2,8 E [0,1], we have equations

(1.2.i.«) U' = V,        V = 9V - VHt(U, s).

where VHi(U, s) means gradient in the t«j only.

LEMMA 2.1. Suppose (U(t),V(t)) is a solution to 1.2.i.s with U(t0) E dNy.

Then U(to) is not internally tangent to Ny, i.e. for any e > 0, there is a t with

\t-t0\ <e andU(t) (£Ny.

PROOF. The proof follows Conley [1].

±Hi(U(t),s)\t0 = (VHi(U(t0),s),V(to)).

If this is not 0, then U(t) crosses dAi transversally, and the result is clear. So

suppose (d/dt)Hi(U(t),s)\to =0. Then

^HiMt),s)\t0 = d2F(U(t0)) + 9(VHi(U(to),s),V(t0)) - ]\VHi(U(t0),s)\\2 < 0

since Ai is convex.    D

LEMMA 2.2. There is a T > 0 such that for any s E [0,1], 9 > T there is

no solution (U(t),V(t)) of 1.2.2.S with U(t) E Ny for all t and U(t) -► M2 as

t —7 —oo. Similarly, if 6 < —T, then there is no solution with U(t) E Ny for all t

and U(t) —7 M2 as t —> +cx>.

PROOF.   This proof is due to Terman [7].   We do the case 0 > 0; a similar

argument works for 9 < 0.

For A > 0, let

Sx = {(U,V)\[Vl\>X\Ul-(M2)i\}

where (M2)j denotes the ith coordinate of the rest point M2 E Rd. We show that

there is a T\ > 0 such that 9 > T\ implies that S\ is positively invariant relative to

Ai x Rd. We do this by computing the vector field on dS\ and show that it points

into S\ .A boundary face of S\ has the form

|Vj| = \\Ui - (Afa)il    for some z,        [Vk[> X[Uk - (M2)k[    for k ^ i.

There are four cases, e.g., Vj = A(f/j - (M2)j), Vj > 0. Let (uj, i>j) = (A, -1) be the

outward normal. Then

(A, -1) • (u'i,v'i) = Xvi - 9Vi + dUiH2(U,s)

= (X- 9)(Ui - (M2)i) + dUiH2(U,s)

<0

if 0 > 0 is large because M2 is a maximum of F, hence of H2(-, s). The other cases

are similar.

To complete the proof, we compute the eigenvectors of the linearized equation

at M2 and show that they point into 5a if 9 is large enough. Since Sx contains

no rest points, this will establish the result. Let M = Hessian of F at M2. Since

M2 is a local maximum, the eigenvalues of M at M2 are all negative, — Ai,..., —A<j
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with eigenvectors wy,...,Wd- The matrix for the linearized system is [_°M /7]. The

characteristic polynomial (in x) is

d

(2.3) Y[(X(X - e) - x^
i=l

so the eigenvalues are

x± = 9 ± v/02+4Aj.

The eigenvector associated to Xj is (u;j,XjWj). Xj —► oo as 0 —► oo so Xj points into

5a for # sufficiently large.    □

For an isolated invariant set 5, let h(S) denote its Conley index (see [1, 6]). Efc

denotes the pointed fc-sphere.

LEMMA 2.4.  For9>0,h((My,0)) = h((M2,0)) = Y;d,h((M3,0)) = Y,d+1.

For 9<0, h((My,0)) = h((M2,0)) = Ed, h((M3,0)) = E**"1.

PROOF. For a nondegenerate rest point p, h(p) = Efe where k is the number

of eigenvalues of the linearized equation with positive real part. The result now

follows easily from the form of the characteristic polynomial 2.3.    □

The following lemma is also from Terman's paper [7].

LEMMA 2.5. Let T be as in Lemma 2.2. Then there is a number K such that

U(t0) E Ny and ||V(i0)|| > A implies {U(t)\t E R} <£_ Ny in the flow generated by

1.2.i.s for i = l,2,8 6 [0,1] and [9\ <T. K depends on T, a bound on VHi(U, s)

for U E Ny, and the diameter of Ny.

Let N = Ny x {V[ \\V(t0)\[ < A}. From Lemmas 2.1 and 2.5 it follows that A

is an isolating neighborhood for the flow generated by 1.2 with \9\ < T, hence for

\0\ <T + 6 for sufficiently small S. For any such 9, let 5g be the maximal invariant

set contained in A. Since H is a Lyaponov function for 9 ^ 0, it follows that the

critical points {(Mt,0)\i = 1, 2, 3} form a Morse decomposition of 5« for 9^0.

3. The existence of a connection. Our plan to show the existence of a

solution to 1.2, 1.3 with positive 9 is as follows. We consider a flow on Rd x Rd x R

with coordinates (U,V,9). The critical points of this flow will be (Mj,0,T) and

(Afj,0, —T), i = 1,2,3. We will show that for any small drift in the —9 direction,

there is a connection from (M2,0,T) to (My,0, —T). We let the drift go to zero

and obtain a set which is the limit of these connections. This limit contains the

solution to 1.2, 1.3.

We assume that the reader is familiar with Morse decompositions, the Conley

index, and index nitrations. References include [1, 2, 3, and 6].

NOTATION. Let {M,r|7r E P} be a Morse decomposition of 5 with P a partially

ordered set. Choose an index filtration. Let I C P be an interval. Then

C(M„,MV.) = {x\u*(x) C Mw,oj(x) C M„,},

M(I)=({JmAu\    (J   C(M^,Mnl)\,

H(tt) = H*(h(Mi); Z2)    (singular homology),

H(I) = H*(h(M(I)); Z2)    (singular homology).
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We briefly outline the portions of the connection matrix theory which we shall

use. Details can be found in [4]. If (A*, A) is an attractor-repeller pair in an isolated

invariant set 5, then we can find a compact triple of spaces (A2, Ai, Ao) such that

(A2,A0) is an index pair for 5, (Ny,No) is an index pair for A, and (N2,Ny) is

an index pair for A*. We consider N2/Ny as a pointed space with the equivalence

class of Ai as the distinguished point, and similarly for the other two pairs. There

is a long exact homology sequence of pointed spaces

• ■ • - Hq(Ny/N0) -» Hq(N2/N0) - H0(N2/Ny) £ Hq-y(Ny/N0) - ■ ■ •

Since this is essentially independent of the triple, we write

-► Hq(A) -» Ha(S) - Hq(A*) ̂  Hq-y(A) -*■■■

where Hq(S) denotes Hq(h(S)), etc. We call d the flow defined boundary map.

Exactness implies that if H(S) = 0, then d is an isomorphism. If C(A*, A) ^ 0,

then H(S) = H(A) © H(A*), and it follows that d is identically zero. So we have

LEMMA 3.1.   Ifd^O, thenC(A*,A) ^ 0.

Given a Morse decomposition {M^tt e P}, Hit and ir' are adjacent in the partial

order with it < n', then (M(n), M(tt')) forms an attractor-repreller pair in M(ir, ir').

It follows that there is a flow defined boundary map 9(7r',7r). The connection

matrix puts restrictions on these maps, and allows us to compute unknown maps

from known ones. For an interval I in P, we define

CA(I) = @H(n).
ttEI

A map A(I): CA(I) —> CA(I) can be thought of as a matrix [A(7r',7r): H(tt') ->

H(tt)] indexed by pairs of elements of I. A(F) is called upper triangular if A(7r', tt)

= 0 if 7T •£ 7r'. A(F) is called a boundary map if each A(7r',7r) has degree —1

and (A(F))2 = 0. It is not difficult to show that if A(F) is an upper triangular

boundary map, then so is the restriction A(I) to any interval I. Thus (CA(I), A(I))

is a chain complex. Let HA(I) denote its homology. An upper triangular boundary

map A(F) is called a connection matrix if

(i) for 7r < 7r' and 7r and tt' adjacent, A(7t', 7t) : H(ir') —► 17(7!-) is the flow defined

boundary map.

(ii) HA(I) is isomorphic to H(I) for any interval I.

The existence of connection matrices is shown by Franzosa in [4]. The brief descrip-

tion here is incomplete, but it suffices for our application. The A2 = 0 condition

allows one to conclude that certain maps are nonzero. Condition (ii) is essentially

a rank condition. Since the homologies are Z2 vector spaces we have

dim H(I) = dim HA(I) = dim(ker A(I)) - rank A(I).

Thus there are restrictions on the rank of A and some submatrices.

LEMMA 3.2. Let {My,M2,M2} be a three set Morse decomposition of an iso-

lated invariant set 5, M2 < My in the flow defined partial order. Suppose that S

can be continued to M% and that M3 remains a repeller [or attractor] during the
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deformation. Then the flow defined boundary map d(2,1): Hq(2) —► Hq-y(l) is an

isomorphism for all q.

PROOF. (M(1,2),M(3)) is an attractor-repeller pair. Because M(3) remains a

repeller, M(l, 2) continues to the empty set, so H(l, 2) = 0, and the map d(l, 2) is

flow defined. The result now follows from the exact sequence

• • • - Hq(l) - Hq(12) - Hq(2) ** Hq_y(l) - - - •

of the attractor-repeller pair (My,M2).    D

LEMMA 3.3. Let S be the set isolated by N in the flow generated by 1.2,

{(Mj,0)|z = 1,2,3} the Morse decomposition for 0 ^ 0. Then for 9 > T, the

connection matrix in the flow defined partial order is

12    3 12    3

2 0    0    1     andfore^ ~T the matrix is    2

3 |_0   0   OJ 3 [o    1    1.

PROOF.   For 0 > T, we can use Hy and H2 to continue 5 to (Mi,0) and

(M2,0) in such a ways that the critical points remain repellers. For My this is just

the fact that energy increases; for M2 it follows from Lemma 2.2. Similarly, for

0 < —T, we continue 5 to the critical points in such a way that the critical points

remain attractors. Thus the maps 3(3,1) and d(3,2) are isomorphisms for 0 > T

and the maps 3(1,3) and 3(2,3) are isomorphisms for 0 < —T by Lemma 3.2.

Since H(l) and H(2) are both nonzero in the same dimension, there is no possible

nonzero map of degree — 1. The other connection matrix entries are zero by upper

triangularity.    D

We now consider the system on Rd x Rd x R

(3.4) U' = V,
V' = 6V -VF(U),

9' = e(9-T)(9 + T).

The following facts are proved in [5].

LEMMA 3.5. Ax [—T — n,T + n], n small, is an isolating neighborhood for the

flow generated by 3.4 if e is small enough.

Let 5 denote the set isolated by A x [-T -n,T + n].

LEMMA 3.6. {(Mj,0,T),(Mj,0, -T)\i = 1,2,3} forms a Morse decomposition

ofS.

LEMMA 3.7. Let A denote the connection matrix for 5. Then A has rank 3

and A has the form (where 1~ denotes (Mi,0, — T), etc.) :

1- 2" 3~    1+ 2+ 3+
1-    |~0 0 0      a 0 6
2~     0 0 0      7 6 0
3-110000
1+ 0 0 1
2+ 0 0 0 1
3+ 0 0 0

where a, /?, 7, and 8 are to be determined.
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The reason for Lemma 3.7 is as follows. —T is a fixed point in the 0 flow with

Conley index E°. By a variation of the product theorem for the index, it follows that

the rest points 1~, 2~, and 3~ have the same Conley index in the flow generated by

3.4 as they do in the flow from 1.2. The upper left block of the connection matrix

comes from the 0 = —T flow. The index of the fixed point T in the 0 flow is E1

so by the product theorem the indices of l+,2+, and 3+ are spheres of dimension

d + 1, d + 1, and d + 2 respectively. The lower right block of the connection matrix

comes from the 0 = T flow. The unknown entries in the upper right block of A

represent the connections which drift across from 0 = T to 0 = —T. The possible

maps of degree —1 are a,P, 7, and 6. The other maps cannot be nontrivial maps

of degree — 1. The rank condition on A is seen as follows. The Conley index of 5

is 0. This can be seen by "cancelling" the rest points at 0 = T and 0 = —T so 5

continues to the empty set. Thus

dim(ker A) — rank A = 0,    dim(ker A) + rank A = 6

so rank A = 3.

Since A2 = 0, it follows that a = /? = 7 = <5. The rank condition implies that the

common value is 1. Thus (Mi, 0, — T) lies below (M2,0, T) in the flow defined partial

order. It follows that there is a finite sequence of Morse sets starting at (M2,0, T)

and ending at (Mi,0, —T) with a connection existing between adjacent sets in the

sequence. By Lemma 2.2, (M2,0, T) is an attractor in the 0 = T flow, so the second

set in the sequence must be (Mi, 0, -T) for some i. If i is not 1, then the sequence

can never reach (Mi, 0, — T) since it is a repeller. Thus there is an orbit connecting

(M2,0, T) and (Mi, 0, —T) for any small e. Let en be a sequence of positive numbers

tending to 0. For each n we get a connecting orbit cn from (M2,0, T) to (Mi, 0, —T)

in the flow generated by 3.4. The set cl(cn) = cn U {(M2,0,T), (Mi,0,-T)} is

compact, so the sequence cl(c„) has a convergent subsequence on the Hausdorff

metric on the compact subsets of A x [—T — n,T + n]. Denote this limit by c, and

let c(0) = c n (Rd x Rd x {6>}).

LEMMA 3.8. (See [5].) c is compact and connected. For 0 E [-T,T] c(0)

is nonempty, compact, connected and invariant in the flow generated by 1.2. For

0^0, the set {i[c(0) n (Mj, 0,0) ^ 0} is a totally ordered subset in the flow defined

partial order on {(Mj,0,9)\i = 1,2,3}.

The fact that c(9) is a compact invariant subset of A implies that it consists of

rest points and connecting orbits.

For i = 1,2,3 define B{ = {9\c(0) C (Mj, 0,9)}.

LEMMA 3.9.   (See [5].) Bt is open in [-T,0) U (0,T]. For 0/0, let

j = ini{j[c(0)n(Mj, 0,0)^0},

k = sup{fc|c(6>) fl (Mfe, 0,0) # 0}

(the inf and sup in the flow defined order).    Then there is a 6 > 0 such that

(0-6,0) EBj and (0,0+ 6) E Bk.

Thus c consists of pieces of Morse set and discrete jumps. Because the Morse

decomposition breaks down at 0 = 0, these jumps could, in theory, cluster at 0 = 0.

However, the energy function prevents this.
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We can now establish the existence of a travelling wave solution for the system

with hypothesis A4'.

THEOREM 3.10. Let F satisfy A1-A3, A4'. Then there is a 0 E (0,T) such

that there is a connection from (M2,0) to (Mi,0) in the flow generated by 1.2.

PROOF. -T E By. Let 0 = sup{0|[-T,0] C By}. Since (M1;0) is a repeller for
0 < 0, Lemma 3.8 implies 0 > 0. Since T E B2, 0<T.

Case 1. 0>O. Then there is a connection from (M2,0) to (Mi,0) at 9. If not,

then c(0)fl(M3,0,0) ^ 0. M3 is a repeller in 5# for 9 > 0 because energy increases,

so Lemma 3.9 would imply (9, T) C B3 which is impossible.

Case 2. 0 = 0. Then define 0 = ini{9\[9,T] C B2}. 9>0 since 0 = 0. If 0 > 0,
then the fact that M3 is a repeller implies c(9) n (Mi,0,9) ^ 0. So we have a

connection at 9. We finish the proof by showing that 9 = 0 is impossible.

Suppose 9 = 0. Since c is compact, both (Mi,0) and (M2,0) are contained in

c(0). c(0) is compact and invariant, so it consists of bounded orbits. By Lemma

3.5, c(0) is connected. Thus c(0) is a connected set of bounded orbits in the flow

for 9 = 0 which contains (Mi,0) and (M2,0), contradicting A4'.    □

REMARK 3.11. The above argument does not require (M3,0) to be a critical

point. M3 could consist of several critical points and connecting orbits, and M3

could vary with 9 as connections come and go. What is needed is

(a) h((M3,0)) = E^1 for 9 = -T, h((M3,0)) = Ed+1 for 9 = +T.

(b) {(Mx,0), (M2,0), (M3,0)} for a Morse decomposition of Sg for 9^0.

(c) For 9 = ±T, the connection matrices are as in Lemma 3.3, i.e. we can deform

as in Lemma 3.2.

(d) F(u) < F(M2) for any u E M3.

Thus A3 can be weakened considerably. A picture of F for d = 2 is shown in Figure

1. M3 consists of several critical points and connections.

V"3       m2   3.       h3  m;     m;J

Figure 1
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4. Separation of critical points. In this section we show that the inequality

A4 implies A4'.

LEMMA 4.1.   Assume A4. Let

(U(0),V(0))E[WU(My,0)UWS(My,0)]\{(My,0)}

for the flow from 1.2 with 9 = 0.  Then there is at e R with U(t) <£ Ny.

PROOF. We may assume Mi = 0. Then \\U\\ is the distance from U to My.

We have d||<7||2/d* = 2(U,V). This is positive for (U,V) E W"(Mi,0)\{(Mi,0)},
negative for (U,V) E Ws(Mi,0)\{(Mi,0)}.

^=\\U\\2 = 2({V,V) - (U, VF(U))) = 2(2F(My) - 2F(U) - (U, VF(U)))

since the stable and unstable manifolds are contained in the energy level set

r7_1(F(Mi)). Since this is nonnegative, it follows that d||c7||2/di is larger than

a positive constant in forward time for (U, V) E Wu(My,0)\{(My,0)} and in back-

ward time for (U,V) E IVs(Mi,0)\{(Mi,0)}. Since Ai is bounded, the result

follows.    □

LEMMA 4.2. Let p be a hyperbolic rest point in a local flow on some

manifold, and let N be a compact neighborhood of p. Suppose that each x E

(Wu(p) U Ws(p))\{p} leaves N in either forward or backward time. Then there

is a neighborhood U of p such that each point ofU\{p} leaves N in either forward

or backward time.

PROOF. By Hartman's theorem, there is a neighborhood V of p such that the

flow in V in conjugate to the linearized flow in V. By the basic theory of linear equa-

tions, there are coordinates (xy,..., Xd) in some neighborhood of p with the origin at

p and such that the flow has the form (x,t) —» (elxy,... ,etxk,e~txk+y,... ,e~tXd).

If k = 0 or k = d, then the result is clear. Otherwise, choose e such that

{(xy,.. .,Xd)\ \xi\ < 2e for each i} C V. Note that locally, Wu(p) = {(xy,...,Xd)\

Xi = 0 for i = k + 1, ...,d}, W9(p) = {(xy,... ,xd)|xt = 0 fori = 1, ...,k}.

Let Ai = {(xy,... ,Xfc,0,... ,0)| |xj| < e for i = 1,.. .,k and Xj = e for some j}.
Then Ky is a topological (d— l)-sphere and Ky C Wu(p) so each point leaves A in

forward time. For 0 < 6 < e let

Ks = {(xy,... ,Xd)||xj| < e for i < fc, |xd = e for some / < fc

and [xj | < 6 for j = k + 1,..., d}.

Since A is closed and Ky is compact, each point in K6 leaves A in forward time if

6 is small enough. Choose such a 6 and let

U = {(xy,... ,Xd)[ |xj| < £ for i < k, [xj\ < 8 for j = k + 1,... ,d}.

Then U is a neighborhood of p. If x E U\Ws(p), the x will intersect Ks in forward

time, so x leaves A in forward time. If x E Ws(p)\{p}, then x leaves in backward

time by hypothesis.    □

Lemmas 4.1 and 4.2 show that A4 implies A4', so Theorem 1.5 is proved. In

the course of proving this we showed that A4 can be replaced by the conclusion of

Lemmal 4.1, i.e. that every point in the stable and unstable manifold of (Mi,0)

except the rest point itself leave Ai x Rd in forward or backward time.
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Degree theory and the deformation Hy show that the function (2F(My)-2F(U)-

(U, VF(U))) could have just one zero in Ai, namely My. My is a minimum, so the

positivity is assured if Mi is the only zero in Ai.
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