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THE DYNAMICS OF ROTATING WAVES
IN SCALAR REACTION DIFFUSION EQUATIONS

S. B. ANGENENT AND B. FIEDLER

ABSTRACT. The maximal compact attractor for the RDE ut = uxx + f {u,ux)

with periodic boundary conditions is studied. It is shown that any w-limit set

contains a rotating wave, i.e., a solution of the form U(x — ct). A number

of heteroclinic orbits from one rotating wave to another are constructed. Our

main tool is the Nickel-Matano-Henry zero number. The heteroclinic orbits are

obtained via a shooting argument, which relies on a generalized Borsuk-Ulam

theorem.

1. Introduction. We investigate the global dynamics of the scalar reaction

diffusion equation (RDE) on the circle

(1.1) ut = uxx + f{u, ux),        x € 51 = R/2ttZ,

with periodic boundary conditions for x € [0,2-rr], and under suitable assumptions

on /. Equation (1.1) admits special solutions of the form u(t, x) — U{x — ct) which

are called rotating waves. Using zero-number (or lap-number)-type arguments we

obtain the following two main results. The w-limit set of any trajectory of (1.1)

contains a rotating wave or a steady state (Theorem 3.1). Any rotating wave or

steady state U with unstable dimension i(U) connects to at least [i(U)/2] + 2 other

rotating waves or steady states (Theorems 4.1, 4.2). These results can be seen as

an attempt to describe the dynamics of (1.1) on the maximal compact attractor.

We assume throughout that the nonlinearity f(u, p) satisfies

(1.2a) /: R2 -+ R is real analytic.

(1.2b) There exists Ki > 0 such that uf(u,0) < 0 for all u with \u\ > Kx.

By the first assumption, the initial-value problem associated to (1.1) defines a local

semiflow <j>t on the Sobolev space X = H3(S1):

(1.3) 4>t:X^X    (0<t), tiot-&(«o) :=«(*,-)>

where u(t,x) denotes the maximal solution of (1.1) with u(0, •) = urj. We pick

s > 3/2 so that X embeds into C^S1).

Since our nonlinearity is real analytic, solutions of (1.1) are real analytic functions

for t > 0 and x e S1 (see [29]).

Assumptions (1.2a) and (1.2b) are not strong enough to guarantee the existence

of a global semiflow <f>t on X. In order to obtain a global semiflow we supplement

the conditions (1.2a, b) by assuming that the nonlinearity has at most subquadratic

growth in p. More precisely we assume that there exist constants C > 0, 0 < 7 < 2,
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such that

(1.2c) |/(«,p)|<C(l + foP),

uniformly for u in compact intervals.

Global existence of solutions u(t, x) is known, even if f(u,p) grows quadratically

in p [2]. The reader may also wish to consult [41, pp. 110, 111] for an example

of blow-up in finite time when f{u,p) grows superquadratically in p. We assume

subquadratic growth in order to ensure existence of w-limit sets and of the maximal

compact attractor A (cf. [2, Theorem 5.3]). These sets are defined as follows. For

any trajectory {4>t{uo): t > 0} the w-limit set is given by

(1.4) u>{uo) = {u £ X: 3tk f oo such that <fitk{uo) —+ u}.

The maximal compact attractor of (1.1) is defined by

(1.5) A = {u £ X: 3tk T oo and Uk £ X such that

sup||ufc|| < oo and <j>tk{uk) —> u).

For any uo £ A the trajectory {<f>t{uo)}t>o may oe uniquely extended to negative t

(backward uniqueness holds here since all orbits are real analytic).

We refer the reader to Henry's book [20] for more information on general semi-

flows like {0t}, and to [19] for a survey on maximal compact attractors.

This paper is devoted to a qualitative description of both u(u0) and A, much in

the spirit of Hale [19]. Note that A consists of all w-limit sets, and their connecting

orbits, which are defined as follows. Given nonempty subsets A, B of X we say

that A connects to B if there exists a global trajectory u(t, •) = 4>t{ur,), (SR, such

that

(1.6) ACQ(«0),        BCuj{u0),

where the a-limit set a(uo) is defined like w(uo) but tk —► oo is replaced by tk —►

—oo. We call u(t, ■) a connecting orbit or an (orbit) connection.

A principal feature of equation (1.1), which is reflected in w and A, is equivariance

with respect to the group S1 acting by shifting x. Indeed let

(1.7) Re.X^X,        (R$u0){x) := u0(x + 0)

denote the shift in x by 6 £ S1 = U/2irT. Then <j)t commutes with Rg,

(1.8) <j>t o Re = Re o <}>u

because the nonlinearity / does not depend on x. This motivates the following

terminology. A steady state U £ X is a solution of (1.1) with Ut — 0. We call U

homogeneous if R$U = U for all 0 £ S1. Otherwise we call U nonhomogeneous or

standing wave. On the other hand, we call U £ X a rotating wave of speed c ^ 0 if

(1.9a) {4>tU){x) = U(x - ct) = {R-etU){x),

i.e.

(1.9b) -cU' = U" + f{U,U')-

For c = 0, a rotating wave becomes a standing wave. Note that standing waves

occur in circles given by {RgU: 0 £ S1} (similarly, A is invariant under the action

Re).   By Corollary 3.2 any nonstationary time periodic orbit u(t, ■) of (1.1) is a
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rotating wave. But rotating waves are of a transient character: by Corollary 2.4

below they are all unstable. This is a manifestation of a more general phenomenon

in order preserving systems; see [23; 24, Theorem 2.4; 37, Theorem 2] for a dis-

cussion. If U is a hyperbolic rotating wave, i.e. a hyperbolic periodic orbit of (1.1),

then its unstable manifold WU(U) belongs to the maximal compact attractor A.

The asymptotic behavior of the flow on WU(U) seems to be governed by the di-

mension i(U) of the (local) unstable manifold Wn; we call i(U) the instability index

of U. For those who contend that rotating waves may not exist, we give an example

below.

The main tool in our analysis of w-limit sets and the maximal compact attractor

is the zero number. For any continuous (j>: S1 —> R, the zero number z(<j>) is the

number of sign changes of <f>, not counting multiplicity; i.e. z(</>) is the maximal

integer n < oo such that there exist 0 < xn+\ — x0 < xi < ■ ■ ■ < xn < 2tt with

<j>{xi) ■ <p(xt+1) < 0       (0 < i < n);

put z(0) := 0. Note that z is finite on A, by analyticity, and is even. The cru-

cial property of z{(j>), going back to Nickel [40] essentially and revived by Matano

[35] and Henry [21], is the following. For any solution v(t,x) of the x-dependent

equation

vt = vxx + g(x,v,vx),        x£S1,

with g sufficiently regular and g(x, 0,0) = 0 the function t —► z(v(t, ■)) is nonincreas-

ing with t. The proof just uses maximum principles; see e.g. [35, 7]. Analyticity is

used below, to obtain a sharper version of this result: z(v(t, ■)) drops if, and only

if, x —► v(t,x) has a multiple zero for some x (Corollary 5.3).

We can now formulate our main results. Theorem 3.1 states that any w-limit set

w(uo) has to contain a rotating wave or a steady state. In contrast, for the scalar

equation

(1.10) Ut = Uxx + f(u),

x £ [0,1] with various boundary conditions, it is known that w(uo) consists of

exactly one stationary solution [35]. Only if all steady states and rotating waves are

hyperbolic can we prove an analogous uniqueness statement for (1.1); see Theorem

3.3. Here we call a standing wave type steady state U hyperbolic if Ux (coming

from the circle RgU of rotating waves) yields the only purely imaginary eigenvalue

of the linearization, namely an eigenvalue 0.

Concerning the rest of the maximal compact attractor A, i.e. orbit connections,

we consider the unstable manifold Wu of a given steady state or rotating wave U

with instability index i(U). Through it, U connects to the closest homogeneous

steady state above (resp. below) U (Theorem 4.1), and to at least [i(U)/2] other

rotating waves or steady states Wk, 0 < 2k < i(U) (Theorem 4.2). The zero number

discerns them:

z(wk -U) = 2k.

More generally, we may prescribe the graph of t —* z(u{t, ■) — U) pretty much

arbitrarily (but nonincreasing), and still find a trajectory u(t, ■) £ Wu C A which

realizes this particular graph (Theorem 4.3).

These results belong to a series of attempts to understand the dynamics of some

simple infinite-dimensional dynamical systems given by scalar equations. The global
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dynamics of (1.10) has been investigated e.g. in [3, 7, 8, 11, 19-21, 35, 36, 43].

One approach relies on Conley's index and the variational structure to establish

connecting orbits; for a summary see [43, §§22-24].  The variational structure of

(1.10) comes in via the continuous Ljapunov functional

V{U):=L   (lu*-F^)dx>        *» = /(«),

±V{u{t,-)) = - j\2tdx

which forces u(t, ■) to approach a steady state. The other approach relies on the

discrete Ljapunov functional z(u(t, •)); for a summary see [8]. While there are

variational problems without any known z (e.g. (1.10) with x £U C R", n > 2 and

Au instead of uxx) there are also nonvariational problems which admit a discrete

Ljapunov functional, e.g. (1.1) or differential-delay equations

(1.11) 6(t) = -/(«(t),ii(t-l))

with negative feedback [31, 32]. Actually, [31, 33] contain results which are some-

what analogous to those presented here; Conley's index is used in [31] but not in

[33]. A common feature, and indeed difficulty, of (1.1) and (1.11) is the occurrence

of conjugate complex (nonreal) eigenvalues for the linearized equations. This led us

to consider (1.1) with periodic boundary conditions. Besides, uj{uq) would be just

a steady state for x £ [0,1] with say Dirichlet boundary conditions. In this context

we note that Matano has constructed a Ljapunov functional of (1.1) with Dirichlet

conditions [38].

To establish connections for (1.1), we follow the same basic idea as in [8]. We

encode the dropping times in a mapping between spheres, which we call the y-map.

Surjectivity of the y-map will provide lots of connections in Theorem 4.3. To prove

y is surjective, we actually prove y is essential (i.e. not homotopic to a constant

map) by homotopy to the case of linear /. For (1.10), i.e. with real eigenvalues,

we invoke the Borsuk-Ulam theorem to prove y is essential. This time we need

the complex analogue of the Borsuk-Ulam theorem, due to Hopf and Rueff [26],

because complex eigenvalues occur. Equivariance of (1.1) with respect to the action

(1.7) of Re helps. Here is a concrete example for equation (1.1). Consider

(1.12) «, = £«11+!/(i()I+li(ii),        xG51=R/27rZ

for small e > 0. To be specific we choose

g{u) = ±u3,        h{u) = u(l - {6u)2)

with 8 > 0 small. Rotating waves U of (1.12) with speed c are periodic solutions of

eUxx + {g(U) + cU)x + h{U) = 0

with minimal period p > 0 such that 27r = mp for some integer m. Writing

gc(u) := g(u) + cu, this is equivalent to the first-order system

(1.13) eUx = V-gc(U),       Vx = -h(U).

For 6 tending to zero, h(u) = u + o(l) holds uniformly on compact subsets. For

h(u) = u and e small, (1.13) is the singularly perturbed Van der Pol oscillator; see
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[17, 28, 39] for a detailed discussion. We introduced 6 small to meet assumptions

(1.2a), (1.2b). The reader can easily verify that (1.2c) is also satisfied. The periodic

solultion of the singular Van der Pol oscillator is well known: it is a relaxation

oscillation following V = gc{U) most of the time, except for two rapid transition

layers of width 0(e2/3). The minimal period pe is

p£ = (3-21og2)|c| + 0(e2/3)

and the amplitude is approximately 2|c|3/2. These solutions exist only for c < 0:

there are no rotating waves with c > 0. For the original system (1.12) we thus

obtain a finite number of rotating waves Um with speeds

one for each m with 1 < m < Me, where M£ —► oo for e —♦ 0. The wave Um has 2m

rapid transition layers, z(Um) = 2m, i(Um) = 2m — 1, and Um connects to each

wave U3 with j < m (because the Um provide all rotating waves by uniqueness of

the limit cycle of (1.13)), and to the two homogeneous steady states U = ±1/6.

Moreover each w-limit set consists of exactly one of these waves or a homogeneous

steady state.

Pursuing the viscosity limit e —► 0 in (1.12), our rotating waves Um provide

time-periodic solultions of the inhomogeneous scalar hyperbolic equation

(1.14) ut-g(u)x = h(u),        x£S\

with 2m admissible rotating shocks. We believe that our results on connecting

orbits still hold for this case mutatis mutandis. In particular, the zero number

z(u(t, ■)) should be nonincreasing along entropy solutions u(t, ■) of (1.14). Using

characteristics, it is clear that t —> z(u(t, •)) can change only at shocks. From

the applications point of view, the homogeneous conservation law h = 0 can be

interpreted as a caricature of gas dynamics. In this case u(t, ■) tends to equilibrium

under suitable assumptions on g [9, 13, 30], and also [43, §16]. Similarly, equations

(1.12) and (1.14) may be understood as a caricature of the dynamics of a reactive

gas. However, we do not pursue the viscosity limit any further in this paper.

We did not try to keep this paper self-contained. We introduce the main concepts

briefly, e.g. zero number, invariant manifolds, strong and fast (un)stable manifolds,

normal hyperbolicity. For background information on zero number and invariant

manifolds see [7]; for normal hyperbolicity see [4, 16, 20, 25]. In [8] a rather self-

contained treatment of the simpler case (1.10), where / is independent of ux, has

been given.

Our paper is organized as follows. In §2 we discuss the implications of z for

linear equations (Theorems 2.1 and 2.2). As a corollary we obtain that all rotating

waves are unstable. §3 is devoted to our study of w-limit sets (Theorems 3.1 and

3.3) establishing the significance of rotating waves. Some connections from rotating

and standing waves are discovered in §4 (Theorems 4.1 and 4.2) together with an

analysis of z(u(t, ■)) on their unstable manifold (Theorem 4.3). We conclude the

paper in §5 with an appendix on the dropping of z(u(t, ■)) for multiple zeros of

x i-v u(t,x) (Theorem 5.1).

ACKNOWLEDGMENT. We are indebted to H.-W. Henn and D. Puppe for their

benevolent help with topology, and to G. Keller for the slick application of Birkhoff's
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recurrence theorem in the proof of Lemma 2.3. The manuscript was typed carefully

and efficiently by E. Urmitzer.

2. Spectral theory of the linearized flow. The Frechet derivative of the

flow <j>t on X is given by the following recipe:

w = d(pt{u0) -v

holds iff there is a solution U(s,x) of

(2.1) Us = Uxx + a{s,x)Ux+b{s,x)U,        x £ S1, 0 < s < t,

such that

(2.2) U(0,x) = v{x),    U{t,x) = w{x),        x£S\

Here the coefficients a and b are given by

a(s,x) = fp(u(s,x), ux(s,x)),

b(s,x) = fu(u(s,x), ux{s,x))

for x £ S1 and 0 < s < t.

In this section we study the linear operator T = d<f>t(ua): v —» w defined by (2.1)

and (2.2) for arbitrary real analytic functions a(s,x) and b(s, x) on S1 x [0,t]. It

follows from standard regularity theory that T is a bounded compact operator in

the Hilbert space X (see [20]). The Riesz-Schauder theory of compact operators

then tells us that the spectrum of T is given by a sequence of eigenvalues of finite

multiplicity, {Aj}J=o,i,2,...- We assume that these A^ are ordered by |Aj| > |AJ+i|,

and that they are repeated in the sequence {Aj}J=o,i,... according to their algebraic

multiplicity.

In the special case that the coefficients a(s, x) and b(s, x) do not depend on

s £ [0, t] the eigenfunctions of T coincide with those of the differential operator

where a(s,x) = a(x) and b(s, x) = b(x). Using ODE techniques one can obtain a

complete description of the oscillation properties of the eigenfunctions of A (the

basic ideas probably go back to Sturm).

The point we wish to make in this section is that the main results of the Sturm

oscillation theory (i.e. Theorems 2.1 and 2.2 below) also hold true in the general

case when a and b are allowed to depend on time.

Our first result in this direction is

THEOREM 2.1. Let {^j}j>o be the ordered sequence of eigenvalues of T re-

peated with algebraic multiplicity. Then for all j > 0 we have \\2j\ > |A2j+i|-

This theorem implies that {\2j-1, ^2j}, for j > 1, is a spectral set for the

operator T. Let Eij denote the real generalized eigenspace of {A2J-i,A2:;} for

j > 1, and let E0 be the real eigenspace corresponding to the isolated eigenvalue

A0. In particular dimR E0 = 1, dimR E2j = 2 (j > 1) by Theorem 2.1.
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Our other result is

THEOREM 2.2. Any nonzero u £ E^j has only simple zeros, and moreover

z{u) = 2j.

The proof of these two theorems will be based on the following lemma. First we

introduce some more notation.

For j = 0,1,2,... define rj = |Aj|, and let Fj C X be the generalized eigenspace

of T belonging to all those eigenvalues A which satisfy |A| = r,. Then Fj is finite

dimensional.

LEMMA 2.3.   Any nonzero real u £ Fj has only simple zeros.

PROOF. Let T\Fj have the Jordan decomposition T\Fj = S+N, with 57V = NS,

S semisimple and N nilpotent. Let a real u £ Fj\{0} be given. Then we can

consider the sequence of vectors Uk £ Fj given by Uk = Tk{u) (k £ I), and the

corresponding sequence of integers Zk = z(uk).

Since the operator T is defined by solving the parabolic equation (2.1), the

sequence of zero numbers Zk is nonincreasing. Moreover, if u = uo has a multiple

zero then z\ is strictly less than zq by Theorem 5.1. Therefore it is sufficient to

show that Zk does not depend on k.

In order to do this we study the asymptotic behavior of the Uk as k —* ±oo. The

binomial theorem states that

Tku = jr(k\sk-lNlu

for any k £ Z, where m is the largest integer for which Nm • u ^ 0 (recall that N

is nilpotent so that such an m exists). In particular we have

uk = Sk-mi^Nmu + 0{km-1)\        {k ->±oo).

Therefore Vk defined by Vk — k~mr~( ~m'uk satisfies

(S\k-m   Nm

Vk=\ — ]        -ru + °W       (fc->±oo).
\rjj m!

By construction the matrix S/rj is simple, with all its eigenvalues on the unit

circle. We claim that there exist sequences k„, tending to +oo or -oo, respectively,

for which

{S/rj)k» ~m -»id    asn^oo.

Indeed, let S/rj be represented by the diagonal matrix diag(«i,..., sn), where each

Sj satisfies \sj\ = 1. Then S/rj acts on the TV-torus

TN = {(*i,...,zN)eCN\ \zj\ = 1}

by multiplication: (zi,...,zn) *-* (siZ\,... ,snzn). By the Birkhoff recurrence

theorem [42], there exists a u* £ TN and sequences fc* —► ±oo such that

(S/rj)k"~mu* -* u*. Canceling each component of u* on both sides, this proves

our claim. For a reference see also [12, Chapter 3.1, Lemma 1].
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Using our asymptotic expansion for the Vk we get

vfn -» Nmu/m\        (n -» oo).

The convergence takes place in the X-topology, so that we certainly have C1 con-

vergence. Hence, if Nmu has only simple zeros, then so will vk for large n, and in

fact z(u*n) = z(v^n) = z^n = z(u) will be independent of n, which implies that u

has simple zeros.

Thus the proof will be complete if we can show that Nm(u) has only simple

zeros. Again, we look at a sequence of vectors

wk = {T/rj)k ■ Nmu = {S/rj)k ■ Nmu.

As before, z(wk) {k £ Z) is nonincreasing (since N ■ Nmu — 0). It follows that

z(wk) is constant for k large, and that for any large integer fco, Wk0 will only have

simple zeros (Theorem 5.1). Then, using the sequence k~ —► — oo defined above we

see that

wk--m+k0 = (S/r3)k--mwko - wko        (n -» oo)

so that z(wk-_m+k ) = z(wk0) if n is large enough. This means that the sequence

z(wk) is constant and that none of the Wk can have a multiple zero. Hence Nmu =

wo has only simple zeros, and the proof is complete.    □

PROOF OF THEOREMS 2.1 AND 2.2. If the coefficients a(t,x), b(t,x) in (2.1)

vanish identically, then (2.1) becomes the standard heat equation and the eigenval-

ues Xj and the spaces E2j defined above are given explicitly by

Ao = 0,        £o = {£|£eR},

X2j-i = A2j = e"3 *,        E2j = {£,- cosjx - r)j sinjx\£j, r\j £ R}.

In particular we see that Theorems 2.1 and 2.2 are true in this case. We shall now

present a continuation argument which shows that these theorems also hold for

general a and b.

For any 0 £ [0,1] we consider an operator Te on X defined by w = Te ■ v iff there

is a solution U(s, x) of

(2.1),? Us = Uxx + 0a{s,x)Ux+0b{s,x)U,        x£S\ 0<s<t,

(2.2)e U{0,x)=v{x),    U(t,x)=w(x)        (x£S1).

Then we have a one parameter family of eigenvalues Aj(0) of T6. As before, we

define rj{0) = \Xj(0)\, and we let Fj(0) denote the generalized eigenspace of T8

corresponding to those eigenvalues A with |A| = rj(0).

Since Te: X —> X depends continuously on 0 £ [0,1], perturbation theory [27,

§IV.3] implies that the rj(0) are continuous functions of 0. The subspaces Fj(0)

vary upper semicontinuously with 0: given un £ Fj(0n), \un\ < 1, for 0n —► 0Oi

there exists a convergent subsequence of un converging to uo £ Fj(0o).

Now define the integer Zj(0) to be the zero number of some u £ Fj(0)\{O}.

By Lemma 2.3, Zj(0) is independent of the choice of u. We claim that z3(0) is

continuous in 0 (and hence independent of 0). Indeed, if 0n —» 0q we may choose

un £ Fj(0n), \un\ = 1 converging to u0 £ F-j(0q) in X and hence in C1.   By
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Lemma 2.3 and |uo| — 1, all zeros of uq are simple. Therefore Zj(0n) = Zj(0o) for

n sufficiently large.

Thus the Zj{0) are constant. At 0 = 0 one easily sees that

Z2j-i{9) = Z2j{9) = 2j       ft = 1,2,...)

and zq(0) = 0- This implies that r2j{0) > r2j+i{0) for all 0, as r2j = r2j+i would

force z2j and z2j+i to be equal. Theorem 2.1 is therefore true. To complete the

proof of Theorem 2.2 we observe that Theorem 2.1 implies that the spaces E2j and

F2j coincide, so that Theorem 2.2 follows from Lemma 2.3.    □

COROLLARY 2.4. Let U be a (rotating or standing) wave. Then i(U) £ {z(Ux)

— l,z(Ux)}. In particular, all waves are unstable.

PROOF. We give a proof in case U is a standing wave. The case of a rotating

wave is analogous by the transformation x ^ x — ct. Obviously, Ux ^ 0 is an

eigenfunction of T with eigenvalue 1. Thus 1 £ {X2j-i,X2j} with 2j := z(Ux) by

Theorem 2.2 and 2j — l < i(U) < 2j by Theorem 2.1. This proves the corollary.    □

3. The w-limit set. Let Uo £ X be an arbitrary initial value. Then, as we

noted in the introduction, there exists a global solution u(t, ■) = (j>t(uo) (t > 0) of

ut = uxx + f(u,ux) with u(0, •) = uq. The smoothing properties of the semiflow

(f>t ensure that the orbit u(t, ■) is precompact in X, and that the w-limit set u>(uo)

is a compact connected subset of the maximal compact attractor A C X of the

semiflow.

Our main results in this section are the following two theorems:

THEOREM 3.1. The oj-limit set of any solution of (1.1) contains a rotating

wave or a steady state.

COROLLARY 3.2.   The only periodic orbits of (1.1) are rotating waves.

THEOREM 3.3. If all rotating waves and steady states of (1.1) are hyperbolic,

then any orbit converges to exactly one of these rotating waves or steady states.

REMARK 3.1. If U € X is a homogeneous steady state of (1.1), i.e. ReU = U for

all rotations Re (cf. (1.7)), then we call U hyperbolic if the linearized flow d<t>t(U)

has no eigenvalues on the unit circle (0 < t < oo). If U £ X is a standing wave (or

a rotating wave with period r > 0) then

-^        ReU = Ux £ 0

is always an eigenfunction of d<j)T(U), 0 < r < oo (resp. r the period), with eigen-

value 1. In that case, we call U hyperbolic if this eigenvalue 1 is simple and (conse-

quently, by Theorem 2.1) no other eigenvalues occur on the unit circle. For rotating

waves U, this means that the periodic orbit U(t, ■) = U(x — ct) is hyperbolic in the

usual sense. For a standing wave U it implies that the manifold {ReU\0 <0< 2tt}

of shifted standing waves is normally hyperbolic in the sense of Hirsch, Pugh and

Shub [25], see also [16].

REMARK 3.2. We tend to believe that Theorem 3.3 holds without the assumption

of hyperbolicity. The autonomous reader is encouraged to reach a decisive answer.
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The proof of Theorem 3.1 will consist of a careful study of the zero number of

the functions ut(t, ■) and ux(t, ■) for orbits u(t, ■) in the maximal compact attractor

A. Theorem 3.3 then follows from an analysis of the zero number on the (strong)

stable (resp. unstable) manifold of rotating waves and steady states (cf. Lemma

3.8).
The next lemma is the key to the proof of Theorem 3.1. For each u £ A let

Eu c X be the subspace spanned by ut and ux. We are interested in those u £ A

for which Eu has (real) dimension 1, i.e. one of ut, ux is a multiple of the other.

Then u is a rotating wave (ut = cux ^ 0), or a standing wave (ut —0, ux ^ 0), or

a homogeneous nonstationary orbit (ut ^ 0, ux = 0). Let ur, £ X be an arbitrary

initial value, again.

LEMMA 3.4.   If u £ uj(uo) and v £ Eu\{0}, then v has only simple zeros.

PROOF. We argue by contradiction. Let u £ w(wo) and v £ Eu be given such

that v has a multiple zero.

Since w(uo) is contained in the maximal attractor A, there is an orbit u(t, ■)

(t £ R) through u £ uj(uq). By definition of Eu there exist a,/3 £ R such that

v(x) = aut{0, x)+pux(0, x). We can define v(t, •) for all t £ R by v(t, ■) = aut(t,-) +

0ux(t, ■). Then v(t, ■) is a solution of the linear parabolic equation

(3.1) vt = vxx + fp(u,ux)vx + fu(u,ux)v       (x£S1,t£R).

Hence if v has a multiple zero at t = 0 then there exists 8 > 0 such that v has

simple zeros at t = ±8, and such that z(v(6, ■)) < z(v(—8, ■)) holds (Theorem 5.1).

Now let u°(t, ■) = cj>t{uo) £ X denote the orbit through u0, which is of course

asymptotic to w(u0). Then there exists a large ti > 0 such that u°(ti,-) comes

arbitrarily close to u(8, ■) in the C3 topology (we use the smoothing effect of the

semiflow). Because u° = uxx + f(u°,ux) holds along the orbit u°(t, •), this implies

that v°(ti, ■) defined by v°(ti, ■) = cra°(ti, •) + f3ux(ti, ■) comes C1 close to v(8, ■).

The upshot is that we can choose ti so large that z(v°(ti, ■)) — z(v(6, ■)). On the

other hand the entire orbit u(t, •), £ € R belongs to w(«o) so that we can choose

a t2 > *i such that u0(*2,) comes C3 close to u(-8, ■). As above, we conclude

that v°(t2, ■) comes C1 close to v(-8, ■) so that z(v°(t2, ■)) = z(v(—8, ■)). But now

we have a contradiction, for v°(t, •) solves the linear equation (3.1), replacing u by

u° there, so that z{v(-8,-)) = z{v°{t2,-)) < z{v0(h,-)) = z(v{8,-)) < z{v{-8,-))

holds.    □

COROLLARY 3.5. If u £ oj(u0), v,w £ Eu and v and w have a common zero

then one is a multiple of the other.

PROOF. Indeed, if v(xo) = w(xo) = 0 for some x0 £ S1, then vx(x0)-w-wx(x0)-v

lies in Eu and has a multiple zero at Xq. Hence vx(xr,) ■ w — wx(xq) ■ v = 0 by

Lemma 3.4. If vx(xq) — 0 then v = 0, again by Lemma 3.4. Otherwise w =

{wx{x0)/vx{x0)) -v.

We can now prove Theorem 3.1. In fact we show a slightly stronger statement.

THEOREM 3.6. IfCc u(uo) is a nonempty closed, flow invariant subset, then

C contains a rotating wave or a steady state.

PROOF. Consider the function from C x S1 to R given by point evaluation:

e: C x S1 —> R, (u, x) —* u(x). The function e is continuous and C x S1 is compact,

so e achieves its maximum at some (U,x) £C x S1.
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It follows that Ux(x) = 0, and by flow invariance of C also that Ut{x) = 0.

But then Ut and Ux in Eu have a common zero, so that they are linearly de-

pendent. Hence U is a rotating wave or a steady state by the remarks preceding

Lemma 3.4. This proves Theorems 3.6 and 3.1.    □

In the remaining part of this section we shall prove Theorem 3.3. We therefore

assume that all steady states and rotating waves are hyperbolic (cf. Remark 3.1).

Let U £ A be a steady state, i.e. let U(x) be any solution of

Uxx + f(U,Ux) = 0,        U(x + 2n) = U{x).

Recall the definition [20] of the local strong stable and strong unstable manifold

of U. These smooth manifolds consist of those solutions u(t, ■) which approach U

exponentially fast as t —* +oo (resp. t —► —oo), without leaving a fixed small neigh-

borhood of U. These manifolds extend globally, as usual. Here we use backward

uniqueness which holds in our case by real analyticity; see [20, Chapter 6]. In case

U is homogeneous they coincide with the usual (local) stable and unstable manifold

off/.
Let T(t) — d(f>t(U) be the linearization of the semiflow at U. By Theorem 2.1,

the spectrum of T(t) is given by Xj = exp(t/j,j), j — 0,1,2,... with Re fij > Re fij+i

and Refi2j > Re/^+i- The instability index i(U) of U was defined as the number

of j with Rep,j > 0 (or |Aj| > 1).

Our main tool in the proof of Theorem 3.3 is the next result.

LEMMA 3.7. Let U be a hyperbolic steady state. Then z(u0 — U) < i(U) for

any ur, in the strong unstable manifold of U. If uq ^ U lies in the strong stable

manifold of U, then z(uo — U) > i(U) + 1.

PROOF. The idea of the proof is the following. Consider v(t, ■) := u(t, ■) — U

along the semiflow u(t, •) through uo- Note that v satisfies an equation

(3.2) vt = vxx + g(x,v,vx)

with g (x, v, p) := f(U(x)+v, Ux(x)+p)-f(U(x),Ux(x)). Because g(x, 0,0) = 0, the

zero number z(v(t, ■)) is nonincreasing with t. Basically, we expect v(t, -)/\\v(t, -)\\x

to approach an "eigenspace" E2j for the linearized semiflow as t —► ±oo. Then our

result follows because z = 2j on E2j, by Theorem 2.2. We shall consider the

technically more delicate case of the strong stable manifold, only, and leave the

other case to the reader.

Define

w = max(Re/i,: Rep,j < 0).

Then {exp tp,j: Re p,j■ = ui} is a spectral set for T(t) and we denote the correspond-

ing spectral projection in X by P. It follows from Theorem 2.2 that any nonzero

v £ Range(P)\{0} satisfies z(v) > i{U) + 1.

More precisely, if U is a homogeneous steady state, then i(U) is odd and

Range(P) = i5j([/)+1 in the notation of §2. Alternatively, if U is a standing wave,

then A = 1 is an eigenvalue so that i(U) may be odd or even: if i(U) — 2N -1, then

the eigenvalues A2W-1 = 1 and A2JV form a spectral set in the sense of Theorem

2.1, and RangeP is the eigenspace belonging to A2N; hence RangeP C E2n- If

i(U) = 27V, then one either has Range(P) = E2N+2 (when |A2jv-i-i| = |A2jv+2|)

or Range(P) is the eigenspace belonging to A2JV+1 (when |A2at+i| > ^2^+2!),



556 S. B. ANGENENT AND B. FIEDLER

RangeP C E2n+2. In each case one sees that indeed z(v) > i(U) + 1 by Theorem

2.2.

From here on, the proof is analogous to the arguments given in [7]. For the

convenience of the reader, we sketch the line of reasoning. On the strong stable

manifold, the difference v — u — U tends to zero for t —> oo. For ^/INIx we have

the following alternative:

(a) H-W-ft
t—oo    ||t>||

or

(b) lim "v   „ ,/ " = 0.
t^oo        ||v||

Case (a) holds for v in a submanifold of codimension 1 (within the local strong

stable manifold Wss) which we call the fast stable manifold Wis. Case (b) holds for

the remaining v in IVs8. For a reference see [7, 16].

Assume that case (b) holds. Then

lim   ,,^"'' ,, = we Range P\{0}

exists for a subsequence tn —* oo. Applying Theorem 2.2 to the above discussion

of Range P we see that w (and likewise v(tn, ■) for tn large) has at least i(U) + 1

zeros (all of them being simple).

If case (a) holds, then v(t,-) has only simple zeros for most t > 0 (cf. Corollary

5.3, or [6]). But then z(v(t, ■)) = z(v) for any v near v. Picking v in Wss\Wfe, case

(a) applies to v and

z(v(0, ■)) > z(v(t, ■)) = z(v) > i(U) + 1,

completing the proof.    □

PROOF OF THEOREM 3.3. The proof is indirect and will be given in three

steps. We begin with an outline. Let ur> £ X be an initial value with w-limit set

w(uo). By Theorem 3.1, oj(uq) contains a steady state or a rotating wave U, which

is hyperbolic by assumption. In step 1 below we show that we may assume U to

be a steady state, without loss of generality. Assuming {£/} C w(u0), w(u0) has to

contain orbits V+ ^ Rg{U) resp. V" ^ Re>{U) in the strong stable manifold Wgs

of Rg(U) (resp. the strong unstable manifold W|,u of Re>{U)) for suitable, possibly

different 0,0' (step 2). Since the linearizations about Rg{U) and R$'{U) have the

same spectrum, Lemma 3.7 tells us that

(3.3) z(V--Re(U))<z(V+-Re'(U)).

In Step 3 we prove that for any steady state U and for any V £ oj(uq)\{U} the

difference V — U has only simple zeros, and z(V — U) is independent of the choice

of V £ oj{u0)\{U}. Picking V := V+ and U := R„{U) for a from 0 to 0', (3.3)

implies

(3.4) z(V~ - Re(U)) < z(V+ - Re(U)).

On the other hand V+ and V~ are both in <jj(u0)\{Re(U)}. Hence step 3 also

implies

z{V~ - Re{U)) = z{V+ -Re(U)),
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a contradiction to (3.4). Therefore {U} = w(u0). It remains to prove steps 1-3.

Step 1. Without loss of generality, w(wo) contains a hyperbolic steady state U.

Otherwise, w(u0) contains a rotating wave U with speed c ^ 0 (Theorem 3.1).

Consider the semiflow Vt := Rct<t>t generated by the parabolic equation

ut = uxx + cux + f(u, ux).

On the circle R$(U), 0 < 0 < 2-n, each R$(U) is a standing wave for the semiflow tpt.

Moreover there exists a 0 such that Rg(U) £ u(tpt{uo)) by definition of the w-limit

set; we may assume that 0 = 0 without loss of generality. So U is a standing wave

for Vti but a rotating wave of (not necessarily minimal) period r = 2tt/c for <pt-

Being hyperbolic for (j>t, U remains hyperbolic for ipt', in the notation of §2:

drpT{U) = d(RCT<j>T{U)) = RCTd<j)T{U) = d<j>T{U)

since ct = 2ir and R27t = id. Now suppose we have shown that w(^t(uo)) = {U}.

For <j>t this implies

w(uo) = w(&(u<>)) C  (J Rew(ii>t(uo)) = i^U: 0 £ S1},
ees1

i.e. ui(uq) consists of the single rotating wave U. This proves step 1.

Step 2. Suppose {£/} C w — w(uo) for some steady state U. Then there exist

V+ £ (W^ n oj)\{Re(U)},    V £ (W$? n u)\{Re>{U)}

for suitably chosen 0 and 0'.

If w contains anything besides U then, by normal hyperbolicity of the point or

circle RU := {ReU: 0 £ S1} (cf. [25], Remark 3.1, and [20, p. 108]), there exists

a neighborhood M of RU such that w\A/ is nonempty. Hence there is a sequence

<„ | oo such that <t>t„{uo) —* U in X, and such that the orbit <f>t(uo) leaves A^ in

each time interval tn <t < tn+i. Define

sn :=sup(s€ (in-i»*n): <t>s{uo) £X\M),

Un ■= <t>sn{Uo)-

Then all un lie on d M, and because the sn tend to infinity as n —► oo we may

extract a subsequence of the un which converges to a V+ £ u(uq).

By construction we have <j>tn-an{un) —» U as n —> oo so that tn — sn —> oo as

n —* oo (otherwise we could take a subsequence such that tn — sn —> t* and obtain

4>t'{y+) = U, which is clearly impossible). Therefore the orbit <l>t{V+), t > 0, is

contained in M. By normal hyperbolicity [25] of the set RU of steady states, this

orbit lies in the local strong stable manifold Wga of some single ReU; cf. [20, p.

108]. Of course, V+ £ RgU because V+ £ dM.

A similar argument shows the existence of V~.

Step 3. For any steady state U and for any V £ w(uo)\{U} the difference V - U

has only simple zeros and z(V - U) is independent of the choice of V.

Indeed, z(t) := z(u(t, ■) — U) is nonincreasing along u(t, ■) — <fit{uo) so that z(t)

is constant, say, for t > t^. If V - U had a multiple zero then z((j>t(V) - U) would

strictly decrease at t = 0 by Theorem 5.1. However we can find a large t2 > tt such

that the orbit segment {u(t2 +t, -)}|t|<i comes arbitrarily close to {^t(V)}|t|<i so
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that z(u(t2 +1, •) — U) would have to drop at some t close to zero. This contradicts

the fact that z(t) is constant for t > t\.

It is clear from the above argument that z(V — U) equals the eventual value of

z(u(t, ■) - U), i.e. does not depend on V. This completes the proof of Theorem

3.3.    □

4. Connections. Let U be a hyperbolic steady state or a hyperbolic rotating

wave of our semiflow {4>t}t>o (cf- Remark 3.1). In this section we shall consider the

problem of determining the asymptotic behavior of orbits on the strong unstable

manifold Wau of U.

Recall that i(U) was defined to be the number of eigenvalues A of d<j)T(U) with

|A| > 1, counted with algebraic multiplicity. We shall assume that i(U) > 0 (cf.

Corollary 2.4). Define w± £ X by

w+ = mf(w > U: w is a steady state),

w- = s\ip(w < U: w is a steady state).

Then we have

THEOREM 4.1. Let U be a steady state with i(U) > 0 or a rotating wave.

Then w+ and w- are well defined. They are homogeneous steady states satisfying

w- < U < w+, i(w±) = 0, and U connects to both w+ and W-.

This result seems to be well known and holds for much more general types of

equations, cf. the type of reasoning in [23, 24] and, especially, [37, Theorem 8].

We sketch the proof. As in the proof of Theorem 3.3, step 1, we may assume U

is a steady state, without loss of generality. Since i(U) > 0, the largest eigenvalue

eMot of d<j)t{U) satisfies e^ot > 1. Let u(t, ■) be an orbit on the corresponding

one-dimensional fast unstable manifold (cf. [7]). Then

,       r        «t(*>-)
w =   hm   t:—;—rrr

« —oo|Mt,.)||

is the first eigenfunction of d<f>t{U), so that either tp > 0 or ip < 0. Suppose for

convenience that ip > 0. It follows that ut(t, •) > 0 for alH £ R because z{ut{t, ■)) is

nonincreasing. As we have assumed the existence of a maximal compact attractor

by (1.2a, b), u+ := supt u(t, •) exists. It is easily verified that u+ is a steady state,

and that any steady state v > u also satisfies v > u+. Hence u+ = w+ and u

connects to w+ via the orbit u(t, ■). Finally note that w+ — u+ is stable from

below, hence d<f)t{w+) cannot have eigenvalues outside of the unit circle. Taking

xp < 0, we similarly obtain a connection to W-. D

Our main result in this section is the following.

THEOREM 4.2. Let U be a hyperbolic steady state, or a hyperbolic rotating

wave, with unstable dimension i(U). Then for any k £ N, 0 < 2k < i{U), there

exists a rotating wave or steady state Wk such that w- <wk <w+, z(wk-U) = 2k,

U connects to wk.

Before we dive into the proof, we give a few comments. Because U is assumed

to be hyperbolic, U connects to u>k iff there exists an orbit u(t, ■) in the strong

unstable manifold Wsu of U such that Wk £ uj(u(t,-)) (cf. the proof of Theorem

3.3).
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If all steady states and rotating waves are assumed to be hyperbolic, then

oj(u(t, •)) consists just of wk by Theorem 3.3. However, this does not imply unique-

ness of the Wk'- given k as above, there might exist several Wk complying with the

conclusions of Theorem 4.2.

Invoking Theorem 3.1, it will be sufficient to obtain a trajectory u(t, ■) in the

(strong) unstable manifold Wsn of U such that

z{t) := z(u{t, ■) - U(t, •)) = 2k,

for all t £ R. Along our way, we will in fact prove that the function z(t) may be

prescribed arbitrarily (with z(t) even, nonincreasing and z(t) < i(U), of course),

and still there exists a trajectory u(t, ■) in Wsu realizing this given graph of z. We

single out this result in Theorem 4.3 below.

As was mentioned in the introduction, Theorem 4.2 shows some similarity with

results in [8] and [33]. In fact the main strategy of the proof follows [8], but

the underlying topology is different due to the occurrence of periodic orbits viz.

complex eigenvalues.

The main idea of the proof is the following. Replacing the flow <j>t by ipt '■=

R-Ct<t>t, if necessary, we may assume that U is a hyperbolic steady state (see the

proof of Theorem 3.3, step 1). For any orbit u ^ U in the maximal compact

attractor A we then define the dropping times

tn :=inf{teR: z{t) < 2n)

(thus -oo <tn< +oo), where z(t) = z(u(t, -) — U). Recall that v := u — U satisfies

the equation

(3.2) vt = vxx + g(x,v,vx)

with g(x,v,p) := f{U(x) + v,Ux(x) + p) - f(U(x),Ux(x)). Because g(x,0,0) = 0,

z(t) is nonincreasing in t. Moreover z(t) < i(U) for orbits u in the strong unstable

manifold Wsu of U, hence -oo = ijv < tN-i < • • • < h < t0 < +oo where TV is the

largest integer such that 27V < i(U).

These dropping times tn can be regarded as functions of the orbit u(t, •) on the

strong unstable manifold.

If we then choose t^ = tn-i — ••• — tk — —oo and tk-i = tk-2 = • • • = to —

+oo (for some integer k with 0 < 2k < i(U)), we get an orbit u with z(u(t, -) — U) =

2k for all t £ R, which shows that Theorem 4.2 is true.

We proceed to fill in the details. For the time being we shall assume that

i(U) = 27V + 1 is odd, deferring the case that i(U) = 27V is even to the end of

this section. Let E2N be a small 27V-sphere of radius e > 0 in the strong unstable

manifold Wsu of U.

DEFINITION OF THE j/-MAP. We shall now define a map y: E2N -tRxC"

which encodes the dependence of the dropping times on the orbit u in Wsu. Let

uq ^ U with z(uo) < 27V be given, and let u(t, ■) be the corresponding orbit with

u(0, •) = u0 and dropping times denoted by t„(uo). It will be convenient to consider

Tn{u0) = | tanh£„(u0)        (0 < n < TV)

(with tanh(±oo) = ±1), instead of the tn(uo).

Furthermore for each pair tn < £„_i we shall need a phase angle 0n £ R/2tt1.

Technically, our seemingly arbitrary, but crucial choice for 0n will be justified by
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Theorem 4.3, in particular cf. (4.1). The role of 0n is analogous to the sign an of

yn chosen in [8, (2.3)]. But our choice is not the only possible one. We define this

angle 0n as follows: if rn(uo) < rn_i(uo) put

sn(u0) = tanh_1[(rn(u0) + t„_i(u0))]        (1 < n < TV)

and let 0n{uo) be the sum (in the group R/27rZ) of the zeros Xj of the function

x —► u(sn(uo), x) — U(x) on S1. If rn < rn_i, these zeros are simple (Theorem 5.1),

hence their sum will always be finite. Put 0n{uo) = 1> if Tn(uo) = rn_i(u0).

Finally we need a sign a(uo) £ {±1} = 5° to define the y-map. This sign is

given by

i    \ _ f 0   if to = +oo,
\ sign(u(t, •) - [/(•))    for some t > to if to < +oo.

Note that the function u{t, ■) — U(-) has no zeros for t > to so that the sign ct(uo)

is well defined.

The y-map can now be defined as follows:

yo(u0) := o-{u0) ■ (5 - r0(u0))1/2,

yn(u0) = eM"(uo)(Tn_i(«o) - rn(u0))1/2    for 1 < n < TV,

and

y(uo) = (yo{uo),yi{u0),...,yN(u0)) gRx Cn.

Using the fact that £w(uo) = -00, i.e. that rjv(wo) = — \ we see that for any uq ^ 0

with z(u0) < 2TV

N N

Yl \Vn(uo)\2 = 2~To + IZ^"-1 _ r«) = X
n=0 1

holds, so that y is a map from T,2N into the unit sphere S2N in R x CN.

If y: T,2N —► 52VV is surjective, then for any sequence of dropping times there

exists an orbit «(•) with these dropping times by the definition of the j/-map. We

want to prove that y: H2N —> S2N is surjective.

THEOREM 4.3. The map y: E2N —* S2N defined above is essential, i.e. not

homotopic to a constant map. In particular, y is surjective. Thus for any nonin-

creasing sequence 00 > t'0 > t[ > ■ ■ ■ > t'N = —00 there exists an orbit u(t, ■) in the

strong unstable manifold of the steady state U with uo = u(0, ■) £ S27V such that

tk{uo) = t'k for al1 k with 0 < k < TV.

REMARK 4.1. This theorem, as stated here, holds for completely arbitrary (but

analytic) nonlinearities / = f(x,u,ux) for which (1.1) defines a global semiflow.

It is the rotating waves aspect, which made us restrict our attention to the S1-

equivariant setting / = f(u,ux).

Proof of Theorems 4.2 and 4.3 (for i{U) = 2TV + 1). The proof has
three ingredients. First we discuss continuity of the y-map. Then we give a homo-

topy from the nonlinear equation satisfied by u(t, ■) — U to a standard linear heat

equation. Invoking a theorem by Hopf and Rueff [26] will prove that the accord-

ingly deformed y-map, and hence the original y-map, is essential. The remaining

statements of the theorem are then immediate.
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We give a brief account of continuity of the y-map. For more details see [8, §2].

The transformed dropping times t„ depend continuously on uo because v = u-U

has only simple zeros before and after each dropping of z, cf. [6], and also [36]. If

rn < rn_i, then the phase angle 0n £ S1 also depends continuously on u0, again

because the zeros Xj which define 0n are all simple. If on the other hand rn_1 (uo) =

Tn{uo), then 0n may be discontinuous at uq- But yn("o) is still continuous at uo,

due to the factor (t„_x — Tn)1/2. The argument for the sign cr(wo) and yo(uo) is

analogous.

Recall that y was defined via

(3.2) vt-vxx + g(x,v,vx),

which is satisfied by v — u - U. Thus y also depends on g. This dependence is

continuous, if we consider g £ Ck(S1 x R2,R) and endow Ck with the compact

open topology (i.e. with the weak Whitney topology [22]). Of course we need

<?(a;,0,0) = 0 and a growth condition like (1.2b) in order to define y. For more

details, see [8, §2] again.

We construct the promised homotopy to linear g next. We split this homotopy

into two parts: first we follow

ge{x,u,p) :={l-20)g{x,u,p)+20{a{x)p + b{x)u)        (0 < 0 < §)

with a(x) := gp{x,0,0), b(x) := gu{x, 0,0), and after that

g\x, u, p) := 2(1 - 0)(a(x)p + b{x)u)       (| < 0 < 1).

Note that g1/2 is the linearization of g° = g at u = p = 0, and g1 = 0 provides the

standard heat equation.

What happens to our y-map during this homotopy? Consider 0 < 0 < |,

first. During this homotopy, the strong unstable manifold WBU of U (alias 0 in the

equation for v = u — U) is flattened until it coincides with its tangent space

TWsn(0) =E0®E2®---®E2N

at zero. Here we use the notation of §2 freely. Choosing the radius e of the sphere

£2JV small enough, we simultaneously obtain a homotopy of homeomorphisms of

e-spheres E2,^ to an e-sphere in the tangent space TWSU(Q), given by the eigen-

projection from Wsu to TWau(0); for complete details see [8, §2]. This provides us

with a homotopy y6 of y-maps belonging to ge.

It remains to show that y1/2 is essential. This is done via | < 0 < 1. By

Theorem 2.1 each E2j varies continuously during this second homotopy—and so

does the y-map. This continues the homotopy y6 of y-maps to \ < 0 < 1.

It remains to show that y1, associated to the standard heat equation, is essential.

For convenience we write y, E2N for y1, E2N. Recalling that

E0 = {£|£ £ R},    E2j = {£j cos jx + r\j swjxfa, r\j £ R}

for the linear heat equation, we may identify Eq © E2 © ■ ■ • © E2^ with R x CN by

N

f + X) & cos 3X ~ ^3 sin 3X -i^Ci+im,---^N+ iriN)

3 = 1
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The action of Re in R x CN is then given by

R${€,$i,$2,---,$n) = (^afi,"2^,---,"^^),

where a = eie, 0 < 0 < 2w.

We now claim that y = y(£, c) = (yo,2/i, • • • ,yjv)(f, c) has the following equi-

variance property:

(4.1)        y{atl,a^,a2g2,...,aNgN) = {ay0,a2y1,a4y2,... ,a2NyN){t],g)

for any a £ (—1,1) and a £ C with |a| = 1. This equivariance property is the

point of the second homotopy ^ < 0 < 1. It does not hold for x-dependent g. To

prove (4.1) we use that y belongs to the equation vt = vxx. If we therefore rotate

the initial value vo by Re the zeros of the corresponding orbit v also get rotated by

0. Since the phase of y„ (1 < n < TV) is given by the sum of 2n of such zeros, the

rotation has the effect of rotating yn £ C by 2n0.

Concerning the sign of £ and yo above, we note that the orbit through £ +

E[£7- cosjx — r\j sinj'a;] converges to the constant £ ^ 0 as t —» oo. Hence we have

sign(y0) = sign(£).

Thus y is equivariant in the indicated manner. The preceding arguments also

show that y maps the upper hemisphere {£ > 0} in Y?N into the upper hemisphere

{yo > 0} °f S2N C R x Cfc, and also maps the corresponding lower hemisphere

{£ < 0} into {y0 < 0}. Recall that, due to a theorem by H. Hopf y: E2Ar -» S2N

is essential iff its topological degree is nonzero. See e.g. [14, 15, 18, 22, 34] for a

background on the topological facts used. For the equators £2Ar_1 = {£ = 0}flE2Ar

and S2N_1 = {yo = 0} n S2N we obtain a map

Y^h-i^s™-1,       c-+(yi(0,c),...,yN(0,c)),

omitting £ = 0 = y0 so that E2^-1 C CN, 52Ar_1 C CN to simplify the notation.

By a Mayer-Vietoris argument degy = degY; for more details see [8, §2]. Finally

define maps <S>, *: C^ —* CN by

<%i, ...,(n) = fer.fr." • >?nn),        mi := Nl/j,

*(ci,...,fw) = (ci,f22,...,^),

and

A simple calculation shows that (4.1) implies the following equivariance property

for Z:

Z(a-c)=a2^Z{c.)

for all c G E2^-1 and a £ C with |a| = 1.

Invoking a theorem of Hopf and Rueff [26], this 5 ^equivariance implies Z is

essential (this is the generalized Borsuk-Ulam theorem mentioned in the introduc-

tion). Hence Y is essential, degy = degF ^ 0. Thus y = ye=1 and consequently

y6=0, our original y-map, are all essential. This completes the proof of Theorems

4.2 and 4.3 in case i{U) = 2TV + 1 is odd.

PROOF OF THEOREMS 4.2 AND 4.3 (FOR i(U) = 27V). In this case the spectrum

of T = d<fit(U) is given by A0,Ai,... with A2jv-i > 1 > X2n (recall that A2iv-i
and X2n are either complex conjugate or both real, and the first case is ruled
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out by our assumption that i(U) is even). The strong unstable manifold Wsu is

now 27V-dimensional and contains the fast unstable manifold Win belonging to the

eigenvalues Ao, Ai,..., A2JV-2 (cf. [7] for Wiu).

Let E27V_1 denote a small sphere in Wau, as usual, and let T,2N~2 denote its

intersection with Wfu. Topologically E2/v_2 is an equator in E2JV_1.

On E2N~2 we define tn, rn, a, 0n as before (using z{u - U) < 27V - 2 on Wiu

[7]), and (y0,yi,... ,yN-i)- T,2N~2 -» S2N~2 C R x C^"1 is essential. To define

a y-map

y. E2AT-1 ^ g2N-l  c R x CW-1 x R)

y = {yo, 2/1, • • •) Vn-IiVn), we need only one additional component yN: E2iV_1 —» R

such that y becomes essential. From E|yn|2 = 1 we obtain

|2/jv|2 = rjv-i + \ = tn-i ~ tn,

and we only need a sign for yjv. Since E2iV~2 divides E2iV_1 into an upper and

a lower hemisphere we can define yjv such that yw > 0 (resp. yN < 0) on the

upper (resp. lower) hemisphere. Note that yN is now a continuous function on

E2JV_1, since yN vanishes on the equator E2jV_2 (recall that tn = t-jv-i = —5 on

T,2N~2). Because y, thus defined, respects the partitioning of E2Ar_1 and S2N~X

into hemisphere, and because y is essential on the equators E2iV_2 and S2N~2,

Mayer-Vietoris again implies that y itself is essential as in [8, §2]. This completes

the proof of Theorems 4.2 and 4.3, finally.    □

5. Appendix on the zero number. In this appendix we prove, assuming

analyticity, that z(u(t, ■)) drops whenever x 1—► u(t,x) has a multiple zero. Recall

that for any continuous function <p(x) (x £ S1) the zero number z{<j>) is defined to

be the largest integer n < 00 such that there exist 0 < x„+i = xo < x\ < ■ ■ ■ <

xn < 2ir for which

4>{xi) ■ <p{xi+1) < 0       (i = 0,l,...,n).

If cf> £ C1(S1) has only simple zeros, then z{4>) is simply the number of zeros of

u.

Let a, b, c be real analytic functions of (£, x) £ S1 x [0, r] for some r > 0, a > 0,

and let u(x,t) be a classical solution of the linear parabolic equation

(5.1) ut = a(t,x)uxx + b(t,x)ux + c(t,x)u        (x £ Sl, 0 < t < r).

Then for 0 < t < t, u is a real analytic function in (x, t), cf. [29]. It is known under

much weaker conditions that z(u(t, ■)) is a nonincreasing function of t.

Our assumption that all coefficients a, b and c are real analytic allows us to

characterize those moments in time when z(u(t, ■)) drops.

THEOREM 5.1. 7/x >-> u(t0,x) has a multiple zero at to £ (0,r), then z(u(t, ■))

drops at t = t0-

We postpone the proof of this result, which will be based on a careful study

of the zero set of u(t,x) near a point where u(to,-) has a multiple zero. Near

such a point we shall be able to compute the relevant part of the Taylor series

to apply a classical method: the Newton polygon described e.g. in [5, pp. 494-

518; 10, §2.8]. The exhaustive treatment in [5] includes a very readable account

of Newton's original work!   The method implies that the local zero set of u(t, x)
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S

sl+r t-

^2 y y3 yk

fc = 2/ is even k = 21 + 1 is odd

FIGURE 5.1. The Newton polygon of u(t0 + s, xo + y)

consists of certain analytic curves. The way these curves are shaped will then imply

the theorem.

From here on let {to,Xo) be such that u(to, •) has a multiple zero at xo- Write

x = xo + y, t = to + s, and assume that for fixed t0

u{t0,x0 + y) = Ayk + O{yk+1),

where A ^ 0, k > 2, and 0(yk+1) denotes an analytic function of y divisible by

yk+1. We calculate the Taylor series of (s, y) *-> u(to + s, xo + y).

LEMMA 5.2.   If2m<k, then

.k-2m

dTu(t0, xo + y) = A"oV*_ + 0(yfc-2m+1),

where oq = a(to,xo).

PROOF (BY INDUCTION ON m).   For simplicity we assume that A = 1.   For

m = 0 the result is trivially true. Let the lemma be proved for m < mo- Then

d^0+1u = d?°{auxx + bux + cu)

= E (™£){dra(dltu)xx+drb(ditu)x+drcditu},
m+l=mo

by Leibniz's rule.

The induction hypothesis implies that there is only one term which is not divisible

by yfc-2mo-i) namely

d™°+1u{to, xo + y) = a(t0, x0)(d?°u)xx + ©(/-^o-i)

_    m0+l_2U_,,fc-2m0-2   ,   ^)/   fc-2m0-l\

_a°        (fc-2m0-2)!y +U(2/ J'

which proves the lemma.    D
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This lemma enables us to compute the Newton polygon of the Taylor series of

u(to + s, xo + y) at (0,0). In fact, let

u(t0 + s, x0 + y) = J3 umnymsn;

m,n

then umn = 0 if m + 2n < k. The Newton polygon consists of the convex hull of

{(m, n): umn ^ 0} from below. If k — 21 is even, then the Newton polygon is given

by the straight line through (k, 0) and (0,/). Otherwise, if k = 21 + 1, then the

Newton polygon consists of two line segments: One from (fc,0) to (1,1), and one

from (1,1) to (0, / + r) for some 1 < r < oo.

PROOF OF THEOREM 5.1. To exhaust the zero set of u near (to, xQ) the Newton

polygon method first suggests to consider the analytic function

4>(o, y) = y~k ■ u(t0 + y2a, xo + y) = J2 umnym+2n-kcrn

m,n

for small |y|. By the implicit function theorem, we obtain analytic solution curves

(5.2) a = aJ(y)os = y2aj(y),        l<j<2l

if
U{a):=*{c,0)=     Yl    Umn(jn

m+2n=k

has only simple zeros a = Oj(0) (here k = 21 or 21 + 1). We employ Lemma 5.2 to

calculate the polynomial U(a) explicitly as

En passant we mention that the relevant part u of u,

u(s,y):=yku(^)=     £    umnymsn,

\y    '        m+2n=k

satisfies the standard heat equation

Us   =   O,0Uyy.

Note that U(a) relates to the fcth Hermite polynomial Hk(z) (in the notation of

[1]) as follows:

U(a) = k\(^Tc^)k y     J71)nn  „ (-^=)k  ^

2n<k      v /     \ v /

= kK^)kHk(^=),

choosing a sign for \J—a, consistently. In fact, Hk(z) has only real simple zeros.

Hence all zeros of U(a) are indeed simple, and negative. For u(t, x) = u(to+s, x0+y)

we thus obtain / parabolic curves of zeros

s = y2°~j(y),     i<j<i,

whose branches point backwards in time, i.e. they are contained in {t < to}-
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In case k = 21 is even, these curves exhaust the zero set of u near (to, xo), cf. [5,

10]. In case k = 21 + 1 and r = oo there is exactly one additional curve of zeros

given by y = y(s) = 0. Finally, we have to consider the case k = 21 + 1, 1 < r < oo.

In that case we solve

<{>(s, n) := s~V+r)u(t0 + s, x0 + srn)

m,n

for small |s|. Again, we obtain an analytic solution curve

(5.3) n = r}(s) •*> y = srr)(s)

starting at the simple zero rj = r/(0) ^ 0 of r\ —> 0(0, n) = u0,i+r + ui^n. As before,

the Newton polygon method implies that the curves (4.2), (4.3) exhaust the zero

set of u(t,x) near (to,xo).

In any case, u(t, ■) has near xo

at most one zero,    if t > to,

exactly k zeros,    if t < to,

provided \t — to\ is small. All these zeros are simple by the implicit function theorem

argument above. Hence at least k — 1 zeros of u(t, ■) disappear as t crosses to- Since

we had assumed that xo was a multiple zero we have k > 2, so that Theorem 5.1 is

true.    □

We conclude this appendix with the following corollary of Theorem 5.1:

COROLLARY 5.3.   Letu,v be classical solutions of

ut=uxx + f(x,t,u,ux)        x£S1,0<t<r,

where f: S1 x [0, r] x R2 —► R is real analytic. Then, z(u(t, ■) — v(t, ■)) is finite and

nonincreasing in t for any t £ (0, r]. Furthermore, if z(u(t, ■) — v(t, ■)) is constant

near t = to, then u(to, ■) — v(to, ■) has only simple zeros.

PROOF. The solutions u and v are analytic on (0,r] x S1 [29]. Now consider

w(t, x) = u(t, x) — v(t, x). This function satisfies

wt = wxx + a(t, x)wx + b(t, x)w,        x £ S1, 0 < t < r,

where

a(x,t)= /   fp(x,t,u(0,t,x), ux(0,t,x))d0,
Jo

b(x,t)= /   fu(x,t,u(0,t,x), ux(0,t,x))d0,
Jo

and

u(0, t, x) = 0u(t, x) + (1 - 0)v(t, x).

Clearly a and b are analytic on (0, r] x S1 so that we can apply Theorem 5.1 to w

and thereby complete the proof.    □

NOTE ADDED IN PROOF. After this paper was written we were informed that

both H. Matano and P. Massat have independently considered the very same prob-

lem which we had considered. There is some overlap between their results and

ours.
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In addition, together with J. Mallet-Paret, the second author (B.F.) has been

able to resolve the problem mentioned in Remark 3.2, concerning the uniqueness

of the rotating wave in an omega-limit set. These results will be published in a

forthcoming paper on Poincare Bendixon theory for scalar reaction diffusion equa-

tions. Finally, the first author (S.B.A.) has found that Theorem 5.1 also holds for

nonanalytic coefficients. Thus the results of this paper are true if the nonlinearity

/ has two continuous derivatives. The proof of Theorem 5.1 in the nonsmooth case

will appear in the Journal fur die reine und angewandte Mathematik under the title

The zeroset of a solution of a parabolic equations.
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