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LINEAR SUPERGROUP ACTIONS. I:
ON THE DEFINING PROPERTIES

OSCAR ADOLFO SANCHEZ VALENZUELA

ABSTRACT. This paper studies the notions of linearity and bilinearity in the

category of supermanifolds. Following the work begun by [OASV2], we deal

with supermanifoldifications of supervector spaces. The R.11'-module oper-

ations are defined componentwise. The linearity and bilinearity properties

are stated by requiring commutativity of some appropriate diagrams of super-

manifold morphisms. It is proved that both linear and bilinear supermanifold

morphisms are completely determined by their underlying continuous maps,

which in turn have to be linear (resp., bilinear) in the usual sense. It is ob-

served that whereas linear supermanifold morphisms are vector bundle maps,

bilinear supermanifold morphisms are not. A natural generalization of the

bilinear evaluation map Hom(V,W) x V —► W ((F,v) >-> F(v)) is given and

some applications pointing toward the notions of linear supergroup actions and

adjoint and coadjoint actions are briefly discussed.

Introduction. This paper gives a generalization of the evaluation map we have

at the level of supervector spaces and morphisms,

*: Hom(V,W)x V -^W

(1) (F,v)^F(v)

to the realm of supermanifolds (for the sake of definiteness, we shall adopt the

definition of supermanifold as given by [Manin]).

Thus, we first review those devices by which we may (functorially) assign super-

manifolds and morphisms to supervector spaces and linear maps. In this direction

we have, on the one hand, the correspondence already introduced in [Kostant] and

[Leites],

cf//eetd(supervector spaces) —> cf/f/ectd(snpermari\iolds)

V = V0® Vy h+ SV := (Vo,C°°|v ® A(VX*))

which can be easily supplemented with a corresponding assignment of morphisms

JKw/i-^idmd(supervector spaces) —+ Jfor/irfidmd(supermanifolds)

(Wom(V,W))o 3F^SFE Mors(5V, SW)

so as to get a functor.   This, however, can be understood in terms of classical

differential geometry via vector bundles and bundle maps.

On the other hand, we have given arguments in [OASV2] suggesting that, in

generalizing some of the notions of differential geometry to supergeometry, one

should shift from SV to Vg := S(V © UV)—the supermanifoldification of V.
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Following the rules of linear superalgebra developed in [OASV1], we provide a

supermanifold morphism

(2) (Eom(V,W))sxVs-^Ws

which generalizes (1).

After defining and studying the meaning of linearity and bilinearity in the su-

permanifold setting, we verify that (2) is an example of what we have called a

superbilinear morphism. Furthermore, for each F E Hom(V, W) (i.e., for each point

in the underlying manifold of (Hom(V, W))g), the restricted morphism Vs -» Ws

that results from (2) is an example of what we have called a superlinear morphism.

This was already pointed out in [OASV2].

We prove that a superlinear morphism, say Vs —► Ws, is completely determined

by its underlying continuous map V —► W and the latter has to be linear in the

usual sense.

In complete analogy, we prove that—under certain symmetry assumptions—a

superbilinear morphism

(3) UsxVs-> Ws

is also completely determined by its underlying continuous map U x V —> W and

the latter has to be bilinear in the usual sense. The reconstruction process, how-

ever, is not as direct as it is in the superlinear case; this time it depends on the

symmetry assumptions that specify the homogeneity behavior of (3) under scalar

supermultiplication at the level of the second factor (i.e., Vs). An analogy can be

established with maps U x V —> W of complex vector spaces which may be either

C-linear or C-antilinear in the second entry. Besides, there is another important

difference between the superlinear and superbilinear cases, consisting in the fact

that, in general, superbilinear morphisms are not vector bundle maps.

Once the notions of linearity and bilinearity in the supermanifold context are

clarified and an appropriate analog of the evaluation map (1) is defined, we obtain

some insight about linear supergroup actions. Thus, for example, when we restrict

(2) to the particular case W = V = Vo © Vy, we may consider the supermanifolds

(4) {5(Hom(V,V))}*    and    {Hom(V,V)sY

consisting of those subsupermanifolds of 5(Hom(V, V)) and Hom(V, V)s respec-

tively, described in local coordinates by the condition of having a nonzero Berezinian

(cf. [Leites]). Since a given matrix with entries in the augmented superalgebra

C°°(X) <g> A(^) —* C°°(X) is invertible if and only if the corresponding matrix

with entries in C°°(A) is (cf. [Kostant] or [Leites]), it follows that the underlying

manifolds of the supergroups (4) must be GL(Vb) x GL(Vi) and GL(V), respec-

tively. Their odd dimensions are also easy to deduce from this fact; they are

2dimVbdimVi and (dimV)2, respectively. Moreover, these supergroups act—in

the sense of (2)—on the supermanifold Vs-

There is also a possibility of obtaining—along classical lines—the notion of su-

peradjoint and supercoadjoint actions originally defined in [Kostant]. The starting

point would be to give ourselves a Lie superalgebra Q = $o © 9i and to consider

its supermanifoldification Qs- Then, we use the Lie superbracket bilinear map

0 x g —► g, together with some symmetry assumption, to construct a superbilinear
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bracket

(5) [, ]:0s xgs ->gs.

Once a supermanifold generalization of the Lie superbracket is defined, there is a

unique manner of making sense of the superadjoint representation

(6) ao-.Qs -+End(0S)^(End0)s

and hence of the superadjoint action by means of the following diagram:

0s x 0s —^ 0s
(') ao x id8s \ / action

(End0)s X0s

where the action morphism is the one obtained via (2) with V = g = W.

Furthermore, (2) is also useful in generalizing the pairing between a supervector

space and its dual (i.e., taking W = R), and we may apply the resulting construction

to the Lie superalgebra V = q and obtain the superbilinear pairing

(8) (, ):(0*)sX0S-Rs.

Definition of the coadjoint representation is then obtained upon requiring the com-

mutativity of the appropriate diagram involving the supermanifold morphisms (5),

(6) and (8) as well as the actions gotten via (2). Explicit constructions and examples

will be given in a forthcoming paper.

1. Supervector spaces and supermanifolds. Let V = Vo © Vy be a given

(m, n)-dimensional supervector space (over R). According to [Kostant] (see also

[Leites]), there is an (m, n)-dimensional affine supermanifold that is naturally as-

signed to V = Vq © Vy; namely, the supermanifold

(1-1) SV:=(Vo,C°°\v®/\(Vy*)).

We may think of the rule

(1.2) V ^SV

as a correspondence between objects in the category of supervector spaces and

objects in the category of supermanifolds. Then, it is only natural to ask ourselves

if there is also a natural assignment of morphisms; that is, a correspondence

(1.3) Eom(V,W)3F^SFEMor(SV,SW).

The answer to this question is: yes, when we restrict ourselves to F 's in the even

subspace (Hom(V, W))0. In fact, it is well known that the supermanifold morphism

(1.4) SF:SV->SW

is completely determined by the superalgebra morphism

(1.5) (SF)#: C°°(W0) ® f\(Wy*) - C°°(V0) ® /\(Vy*)

(cf. [Kostant], [Leites]) and the latter can be constructed from F as follows: first,

we may take advantage of the existing functorial correspondence between vector

spaces and their duals:

V.-,V*=Hom(V)R))

Eom(V,W)^F^F* EHom(W*,V*).
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Then, the condition F E (Hom(V, W))0 implies the pair of conditions

(1.7) F*(W^)EV0*    and    F*(W*) C V*.

Since for any vector space U we have

(1.8) U* = Rom(U, R) C Sym(U) C C°°(U),

U* Ek(U*),

the conditions (1.7) can be used to define the restrictions

(1.9a) (SF)#\w.m} = F*\w- ® id |{1}: Wy* ® {1} - V0* ® {1},

and

(1.9b) (SF)*\{1}9W. = id |{1} ® F*\W; : {1} ® Wy* -» {1} ® Kx*.

Then, use the fact that (1.9a) can be extended uniquely to an algebra homomor-

phism Sym(Wo) ® {1} —» Sym(Vb) ® {1} and, since any C°° function in W0 can be

approximated by polynomials (i.e., by elements of the subalgebra Sym(iyo)), this

homomorphism can be further extended to

C°°(Wo)®{1}^C°°(V0)®{1}.

Similarly, (1.9b) has a unique extension to a Z-graded algebra homomorphism

{l}®A(W*)^{l}®A(Vy*),

and there is only one way of putting these two homomorphisms together so as to

obtain the desired superalgebra morphism

(1.10) (SF)# : C°°(W0) ® A(W*) ̂  C°°(V0) ® A(Vy*).

REMARK. One notes that the assignment

@/f/ectd(supervector spaces) —7 cf/f/ect*(supermanifolds),

V = Vo © Vy 7-7 SV := (Vo,C°°[v ® A(Vy*)),

together with the corresponding assignment of morphisms

J£e>r/i£idm.d(supervector spaces) —► J£or/i.didm,4(supermanifolds),

(Hom(V, W))o 9Fh SFe Mors(5V, 514^),

does not really leave the category of vector bundles and morphisms. In fact, the

supermanifold SV is just the exterior algebra bundle of the (trivial) vector bundle

Vb © Vy —7 Vb given via projection onto the first factor, and the supermanifold

morphism 5F is just a morphism of vector bundles. We shall have occasion of

finding less trivial supermanifold morphisms throughout this work, though.

2. Linear supergroup actions. Let V = V0 © Vy and W = Wo © Wy be finite

dimensional supervector spaces. Then Hom(V, W) is again a finite dimensional

supervector space and we may consider the supermanifold 5(Hom(V, W)). Just as

there is an action (or evaluation) map

*: Hom(V,7V) x V -» W
(2.1)
1     ; (F,v)^F(v)
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one would be naturally led to the question of what could be its supermanifold

counterpart; i.e., is there a "reasonable" supermanifold morphism

(2.2) "5*" : S(Hom(V, W)) x SV — SW

that we might call the action? What comes first to one's mind is a morphism that

restricts, in the appropriate sense, to the evaluation map $ and with a functorial

behavior under compositions.

On these grounds, however, a supermanifold morphism like (2.2) is not entirely

satisfactory. The reason is that the underlying manifold of 5(Hom(V, W)) consists

of

(2.3)
(Hom(V,W))0 = Hom(V0,W0) ©Hom(Vi,Wy) ~ Hom(V0, W0) x Uom(Vy,Wy),

whereas the underlying manifolds of SV and SW are Vo and Wo, respectively. In

particular, no matter what the actual supermanifold morphism (2.2) is, its under-

lying continuous map would have to be of the form

(2.4) (Hom(V0, W0) x Uom(Vy, Wy)) x V0 -► W0.

For this to be natural and have to do with the evaluation map V, Hom(Vi,Wi)

would have to play no role in it.

There is one easy way out of this problem, which consists of considering

S(V © nV) and S(W © I1W) rather than just SV and SW; n being the so-called

change of parity "functor" (see [Leites]). The supermanifold 5(V©nV) was called

in [OASV2] the supermanifoldification of V and was denoted by Vs.

Note. Let us briefly recall that if V = Vo © Vi is a supervector space, then,

nV = (nV)o © (nV)i is again a supervector space, with

(2.5) (nV)0 = V!    and    (nV)i=V0.

Furthermore, there is a natural odd isomorphism

(2.6) 7r:V->nV

which allows us to identify nV with ir(V) and hence V itself with nnV, as 7t2 is

the identity. In fact, such a rr is defined via the conditions

(i) for each homogeneous v E V, nv is homogeneous and [nv[ = \v\ + 1;

(ii) in the sense of set theory, ttv = v.

Thus, instead of (2.2), one would attempt an action morphism of the form

(2.7) 5*: S(Hom(V, W)) x Vs -► Ws

which at least has the possibility of producing an underlying continuous map of the

form

(2.8) (Hom(V0, W0) © Uom(Vy,Wy)) x (V0 © Vy) - W0 © Wy.

In this case, we know that Hom(Vo, Wo) acts on Vb and Hom(Vi,lVi) acts on Vi

and therefore we have a chance of recovering the action of (Hom(V, W))o on V.

But this is not exactly (2.1), yet. If we insist on getting (2.1) as the underlying

continuous map of a supermanifold morphism, we are led to a morphism of the

type

(2.9) Vs ■ Hom(V, W)s x Vs - Ws.
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Now, if we are going to follow classical analogies, appropriate notions of linearity

and bilinearity must be introduced. In fact, at the classical level, the map

*: HomfV.WO x V — W,

(F,v) 7-7 F(v),

yields, for each F E Hom(V, W), a linear map

*F: V -► W,

V r-7 t (v),

whereas the map * itself is bilinear. §§3 and 4 below will be devoted to the

characterization of linearity and bilinearity in the supermanifold setting. In the

meantime, however, we can find supermanifold morphisms like (2.2), (2.7) and

(2.9) by a heuristic use of the methods of §1: we note first of all that, associated to

the bilinear map (2.1), there is a linear map

*: Eom(V,W)®V^W,

F®v^ F(v),

whose corresponding supermanifold morphism

(2.13) 5$: 5(Hom(V,W)<g>V)^57V

may be constructed as in §1. In fact, note that the map $ is homogeneous of degree

zero, for

|$| + |F| + \v\ = \$\ + \F®v\ = \$(F®v)\ = \F(v)\ = \F\ + \v\.

Now, even though our approach in §1 to the morphism 5$ was independent of any

use of coordinates, let us try here to give an explicit description of it in terms of a

special set of linear coordinates; namely, assume that we are given graded bases

{vi;sr. i€{l,2,...,dimV0}, / E {1,2,... ,dimVy}},

{wa; tA: a E {1,2,..., dim W0}, A E {1,2,..., dim Wy}}

of V and W. Then, their corresponding dual bases

{y;e/:2€{l,2,...,dimVb}, / E {1,2,... ,dimVi}},

{ya;cA: aE {1,2,...,dimWo}, A E {1,2,...,dimWy}}

give (global) coordinate systems on the supermanifolds SV and SW, respectively.

Let us assume that Hom(V, W) has been equipped with the basis

{Ebj,FBj; Pbj, Qbj}

for which

Hom(Vo,W0) =a span{£(,j•: Ebj(vt) = 6ijWb, Ebj(si) = 0},

HomfVi,^) ~span{FBJ: FBJ(Vl) =0, FBj{si) = SutB},

Kom(Vy,Wo) a span{P6J: PbJ(v%) = 0, PbJ(Sl) = 6uwb},

Hom(V0,IVi) ~ span{QBj: QB](vi) = °~ijtB, Qbj(si) = 0},

and let us denote by {Ab], DBJ; FbJ, QB]} the corresponding dual basis. This gives

a (global) coordinate system on S(Hom(V,W)). It is easy to see then that

(2.17)
{Ab]®xl, DBJ®x\ rfcJ®£7, eBj'®{7; Ab3®^, DBJ®^, TbJ®x\ SB] ®x1}

is a (global) coordinate system on the supermanifold 5(Hom(V, W) ®V).
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2.1 PROPOSITION.   The effect of the superalgebra morphism

(S$)*: C°°(W0) ® /\(W*) -* C°°((Hom(V, W) ® V)0) ® /\((Hom(V, W) ® V)*y)

with respect to the coordinate systems above is given by

(S$)*yb = Y,Ab3®xJ - ^r6J ® e7,

j J

(S<l>)#cB = J2 0Bj ®x>+J2 dBJ ® t'-
i J

PROOF. We only have to compute the effect of the dual map

$* Erlom(W*,(llom(V,W)®V)*)

with respect to the given basis. This can be done by writing out $*yb and $*cB as

linear combinations of the basis (2.17) and computing the values (F®v, $*yb) and

(F ® v, $*cB) in two different ways: on the one hand, since |$| = 0, the definition

of $* says that, for homogeneous decomposable elements F ® v of Hom(V, W) ® V

and for any ip E W*,

(*) (F ® v, $» = ($(F ®v),ip) = (F(v),iP).

On the other hand, since $*ip is a linear combination of elements of the form

e®xE (Hom(V7V))*®V* ~ (Eom(V,W)®V)*, the values (F®v,$*ip) give rise

to expressions of the type (F®v,e®x)', these duality relations are then computed

in the graded sense (cf. [OASV1]):

(**) (F®v,e®X) = (-l)lvll£l(F,e)(v,X)

where v and e are assumed to be homogeneous. By letting F and v run through

{Ebj, FBj;Pbj,QBj} and {v^, s/}, respectively, one immediately shows that indeed,

$*yb and $*fB are given as in the statement.    □

The heuristic part of the argument that leads us to the supermanifold morphism

(2.2) consists of replacing the tensor products in the statement above by multipli-

cation in the superalgebra

C°°((tlom(V,W) x V)0) ® f\((Hom(V,W) x V)*y)

with the prefix pf (resp., p*) in front of the coordinates {Abj, DBJ;TbJ,QBj}

(resp., {xl; £7}), pi and p2 being the projection morphisms

py. S(Eom(V,W)) x SV - S(Eom(V,W)),

p2: S(Hom(V,W)) x SV ^ SV

onto the first and second factors, respectively. Thus, a coordinate expression for

the morphism (2.2) is given by

("5*") V - ^(PfAbi)(pfx>) - J>f r6J)(p2#^),

(2.19) t J
("s*-)#cB = J2(pf@B3)(pfxJ) + J2(pfDBJ)(pfzJ)
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which can be rewritten in matrix form as

,2.20) ("«*")*(£) =pf($    £)•*(£).

We remark that the strange minus sign that appears in (2.19) is important in order

to accomplish the last step (cf. [OASV1]).

We may proceed analogously and get coordinate expressions for the morphisms

(2.7) and (2.9), respectively. Thus, for example, a global coordinate system for

the supermanifold S{(Rom(V,W) © IHlom(V,W)) ® (V © nV)} is given by the
following set of even coordinates:

Ab:>®xi A^®*^ TreB:>®xi TreBj ®ntlI
, > DBJ®xi DBJ ®tv^ nTbJ®xl irTbJ ®n£I

(2.^1aj eB'®£7 O^®^ ttA^®^1 irAb"'®irxi

rbJ®t' r6J®7nr> nDBJ®^ rrDBJ®nxi

and odd coordinates:

A^®^      A^®^'      7reBj(gi^    tt9Bj ® ■Kxi
. . DBJ®^    DBJ ®irxi    TrTbJ®^     irYbJ ®irxi

(l.Zlb) qbj^xi     eBj07r£/    7rAbi®xi     nA^®*^

TbJ®xl      TbJ®TT^     ttDbj ®xl    nDBJ®TT^.

(It is clear that a global coordinate system for the supermanifold

5{Hom(V,W)(g)07/©mO}

is obtained by putting the last two rows in both sets equal to zero.) We then have

the following.

2.2 PROPOSITION.   With respect to the coordinate systems above,

(i) the effect of the superalgebra morphism

c°°((w © mv)0) ® f\((w © uw)*y)

C°°({Hom(V, W)®(V® nV)}0) ® A({Hom(V, W) ® (V © UV)}*y),

coming from the natural even extension

(2.12a) $: Hom(V, W) ® (V ® TIV) -► W © UW

of the linear map (2.12), is given by

(S$)#yb = 53 Ab] ® xj - ^T6J ® eJ,

3 J

(5$)#7TCB = - ^ @BJ ® *** + S °BJ ® ^'
3 J

(S$)*Tryb = 5] Ab] ® -kx1 + J] r6J ® ir£J,

3 J

(s$)*cB = 53 eB> ®x>+J2 dBJ ® £J;
3 j
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(ii) the effect of the superalgebra morphism

c°°((w © mv)0) ® r\((w © mv)i)

I
C°°({(Eom(V, W)®U Hom(V, W)) ® (V © nV)}0)

® f\({(rlom(V,W) ®\111om(V,W)) ® (V ®UV)}*y)

coming from the natural even extension

(2.12b) $: (Hom(V,lV)©nHom(y,IV))<g>(V©nV)^lV©niV

of the linear map (2.12a) is given by

(S$)*yb = 53 Abj ® zJ - 5Z r6J ® ̂  + £ *Abi ® ̂  + X.7rr6J 0 7r^'

(5$)#ttcb = - 53 QBi ® t^ + 5ZjDBJ ® ̂

+53 tqBj' ® ̂ +53 7r-c'BJ ® ̂ J'

(S$)#7ry6 = 53 Abi ® *** + 5Z r'J ® ̂  + H 7ri4*i ® ̂  - 53^r^ ® ̂ '
y j i j

(5$)#?b = 53 eBj ® xj + 53 £>BJ ® £J - 51jreBi ® *** +12nL>BJ 0 7r^J-
y j j j

PROOF. In both cases the proof is completely analogous to that of 2.1; the

only difference is that the computation of the linear maps (2.12a) and (2.12b) is

to be carried out according to the following extension rules: for each homogeneous

F E Hom(V, IV) and v E V, we have

Hom(v, w) ® nv -7 niv,

F®-kv^(-1)^tt(F(v)).

It is then clear how to put (2.12) and (2.22) together to get what we have called the

natural even extension, (2.12a), of (2.12). Similarly, we can extend (2.12a) itself

and get (2.12b) as follows: first of all, for each F E Hom(V, W) and v E V, we may

define

nHom(V,7V)®V-niv-

7rF® v 1-7 ir(F(v))

so as to have a natural isomorphism

nHom(V,lV) 2 Hom(V,mV).

Then, note that an obvious combination of (2.22) and (2.23) with the fact that 7r2

is the identity suggests to further set, for each homogeneous F E Hom(V, IV) and

each v E V,

n Hom(v, iv) ® nv — niv
(2 24)

7rF®irt;i-(-l)|,rr|F(t;).
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REMARK. In order to keep using the notation introduced in 2.1, let us note that

if U is any supervector space, then, for each homogeneous x E Hom(U, R) and each

homogeneous ueU, (u,\) = (-1)'"' 'x'x(w)- Therefore, in computing expressions

of the form (7™, 7rx), we will have

(™,7rX) = (-l)|UW>,

as the reader can easily verify.

Finally, as in the proof of 2.1, the computations that lead to the statements are

straightforward and are better left to the reader.    □

Just as before, we may obtain the supermanifold morphisms (2.7) and (2.9)

after a formal replacement of the tensor products appearing in (i) and (ii) above by

multiplication in the appropriate superalgebras and suitable projection morphisms

as prefixes of the corresponding factors. We may also write the resulting expressions

in matrix form as

and

(2.26)
(9 )# (yb + *yh\_*( a* + wA»i     r" + vrr" \   #/»»' + kx' \

(S)    \cB+ncB)-Pl   [eB>+TreBi    Dbj+ttDbj)   P*  {^+7r^)

respectively, for the minus signs appearing in (i) and (ii) are precisely those required

by the rules of linear superalgebra to accomplish these steps (cf. [OASV2]).

REMARK. We shall see in §4 that the morphisms (2.7) and (2.9) thus obtained

from 2.2 are examples of superbilinear morphisms. We have already used the coor-

dinate expressions of these morphisms in the various constructions encountered in

our work with supervector bundles [OASV2].

We would like to close this section by noting that if we restrict (2.7) and (2.9)

to the special case V = W, we get at least two supergroups in sight with a more

or less expected geometric (and algebraic, as will follow from §3) meaning: namely,

the supermanifolds

(2.27) {S(Hom(V,V))}*    and    {Uom(V,V)s}*

consisting of those subsupermanifolds of 5(Hom(V, V)) and Hom(V, V)s respec-

tively described in local coordinates by the condition of having a nonzero Berezinian

(cf. [Leites]). Since a given matrix with entries in the augmented superalgebra

C°°(X) ® f\(Y) —7 C°°(X) is invertible if and only if the corresponding matrix

with entries in C°°(X) is (cf. [Kostant] or [Leites]), it follows that the underlying

manifolds of the supergroups (2.27) must be GL(Vo) x GL(Vi) and GL(V), respec-

tively. Their odd dimensions are also easy to deduce from this fact and they are

2dimVodimVi and (dimV)2, respectively. Moreover, these supergroups act on the

supermanifold SV according to the morphisms 5* and *s, respectively.

3. Superlinearity. It has been recognized that, in the supermanifold category

we have dealt with in [OASV2], the supermanifold R1'1 = (R, Cg ® f\(R*)) plays

the same role as R does in the category of C°° manifolds. This is to be understood
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in the sense that, for any coordinate neighborhood U of a given supermanifold

(M,$f), there is a one-to-one correspondence

(3.1) ^(U)~Mors((U,^\U),(R,C£®/\(R*))).

Furthermore, this correspondence can be turned into a superalgebra morphism (cf.

[OASV2]). This involves the introduction of two supermanifold morphisms

(3'2) miR'I'xR'I'-.R'l1

that endow R1'1 with the structure of an abstract superalgebra (i.e., associativ-

ity, commutativity and distributivity hold true by requiring that certain diagrams

involving the morphisms s and m be commutative). Then, any two supermani-

fold morphisms tp, ip E Mors((U,sf\U), (R,Cg5 ® f\(R*))) can be summed and
multiplied according to

(3.3) <p + ip := s o (tp x ip)    and    <p ■ tp := m o (tp x tp)

respectively. Free R111-modules are then constructed as usual; namely, by just

taking a direct product of copies of R1'1 with itself and endowing the resulting

supermanifold with sum and scalar multiplication morphisms defined component-

wise (cf. [OASV1] and [OASV2]). Thus, if we denote by R*1* the supermanifold

R1!1 x R1'1 x • • • x R1'1 (k copies), then

(3.4) ak: Rfc|fc x Rfc|/c - Rk^k,        pk: R111 x Rk\k -* Rk^k

are defined in terms of s and m and the projection morphisms

Tj: Rklk x Rfc|A: — R1|x;    projection onto the j'th factor, 1 < j < 2k,

Pi: R1'1 x Rk^k -* R1!1;    projection onto the (i + l)st factor, 0 < i < k,

as follows:

/n r>\ <Jk = S0(TyX Tk+y) X s o (t2 X Tk+2) X ■ ■ ■ x s o (rk X T2k),
(3.6)

Pk = mo (Po x py) x mo (p0 x p2) x ■■■ x mo (p0 x pk).

In other words, if we denote by

(3.7) Pl: R^^R1'1, l<i<k,

the projection morphism onto the ith factor, we will have

(3.8) PiOcrk = so(Ti x rk+l)    and    pt o pk = m o (p0 x pt),

which completely determine the morphisms ck and pk.

Having this structure introduced in the supermanifold Rfcl*, it makes sense to

ask whether or not a given supermanifold morphism

(3.9) /^R^^R111

preserves it    that is, whether or not L satisfies the equalities

(3 10)       ^ ° ^fc = s ° {^ ° (ri x r2 x • • • x rfc) x L o (rk+l x rk+1 x • • • x r2k)},

L o pk = m o {p0 x L o (py x p2x ■■■ x pk)},
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understood as supermanifold morphisms. We have called such an L superlinear (cf.

[OASV2]). It is our purpose here to characterize all superlinear supermanifold

morphisms L: Rk\k —7 R1'1.

We shall proceed as in §1 by noting, first of all, that L is uniquely determined

by the superalgebra morphism (cf. [Kostant] or [Leites])

(3.11) L* : C°°(R) ® /\(R*) -> C°°(Rk) ® f\((Rk)*).

This is in turn completely determined by the pair of sections

(3.12) L#tE{C°°(Rk)®/\((Rk)*)}o    and    L*c E {C°°(Rk) ® /\((Rk)*)}y

whenever {t,c} is a coordinate system on R1'1 (cf. [Leites]). Moreover, the defini-

tion of Rk\k as the product R1'1 x R1'1 x • • • x R1'1 implies that, for any coordinate

system {t,c} on R1'1, {pft,pfc;l < i < k} is a coordinate system on Rfclfc (cf.

[Leites]). This means that we can write pft in the form

(3.13) p*t = U + z%,        l<i<k,

with ti E C°°(Rfc), (ty,t2, ...,tk) a coordinate system on Rfc, and Zi E Jr2(Rk^k)

which, by definition, is the square of the ideal ^{Rk\k) generated by the odd

subspace {C°°(Rk)®r\((Rk)*)}i. Evidently, zt is nilpotent and, in fact, z\k/2]+1 =

0.
In a similar fashion, we shall write the even coordinates {r*t; 1 < j < 2k} and

{pft; 0 < i < k} of R2fcl2/c and Rfc+1lfc+1 respectively in the form

(314)       Tft = T^^        TJEC°°(R2k), n3Ef\R^2k), l<j<2k,

pft = ei+nl,        6lEC'x(Rk+l), KlG^2(Rfc+1|fe+1), 0<i<k,

so that (Ty,T2,..., T2k) and (90, Oy,..., 9k) are coordinate systems on R2k and

R +1, respectively.

We shall now state the following partial results.

3.1  LEMMA.   Let the notation be as above.   Then, for any C°° function f on

Rk, we have

(i)     a*f = fo~o-k + 53[nt + nk+l - o-fzt](dJ) o ~ok Mod^4(R2fcl2*),
i=i

(ii)    pff = fopk + 53[0o><t + K00i + pttpfc - pfzi](dif) o pk
i=l

Mod^4(Rfc+1|/c+1),

(iii)   (ry x r2 x ■ ■ ■ x rk)*f = f o Hy + 53 Vi(dif) o jf, Mod^4(R2fcl2/c),
i=l

(iv)   (rk+y x rk+2 x • • • x r2k)*f = f o -jf2 + 53 Vk+i(dif) o 7r2
t=i

Mod^4(R2fc|2A:),

(v)    (Pl x P2 x ■ ■ ■ x pk)*f = / o tto + 53 ^(dj) o n0 Mod^4(Rfc+11*+1),

i=l
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where we have put

&k(Ty,T2,.. .,T2k) = (Ty +Tk+y,T2 + Tfc+2, • ■ • , Tfc + T2k),

Ky(Ty,T2,.. .,T2k) = (Ty,T2,... ,Tk),

K2(Ty,T2, .. .,T2k) = (Tk+y,Tk+2,... ,T2k),

Pk(9o,9y,. ..,9k) = (0o0y,6O02, . . .,0oOk),

^o(#0,#l, •••,#*)= (#1,#2, • • • ,#*:)•

PROOF. It has already been explained in [Kostant] and [Leites] how to prove

statements like these. The idea consists of writing / E C°°(Rk) as its formal Taylor

expansion,

v€Mk

where Mk = {v = (vy,v2,... ,vk)\vi E NU {0}}, and for any sequence v =

(vy,v2, ...,vk)E Mfc, v\ = vx\v2\ ■ ■ ■ vk\, V = t\HvJ ■ ■ ■ tukk, and

dv f QVi+V2-\-\-Vk f

~dt? = dtyf'dtf-dtl"'

The effect of any superalgebra morphism, $# say, on the C°° function / can be

computed via

v€Mk

which makes sense because $#t can be written in the form <&t + N, where A

is nilpotent, and hence <£#/ is expressed as / o $ plus a finite number of terms

involving all the nilpotency and the partial derivatives of / (composed with $).

Thus, for example, in proving (i), we note that

4U = °fpft - °t*i = rft + r*+lt - a*Zl

= Ti + Tk+l + (m + nk+l -a*z,) = Tl+ Tk+l    Mod^2(R2fcl2fc).

Since for any i and j we have

(Vi + Vk+i - a*Zi)(nj + nk+J - afZj) E Mod^r4(R2*:|2fc)

it is easy to see that (i) holds. The other statements are proved similarly.    □

Having these results in mind, we can start our characterization of the superlinear

supermanifold morphisms L: Rfc'fc —► R1'1 by writing L*t and L*c in the form

L*t = LQ+     53    LljPfcpfc+f*(Rk\k),

(3.15) ^^
L#c=   53  LlPfc+      53      Lhl]p*cpfcp*c + f*(Rk\k)

l<i<k l<h<i<j<k

respectively, with L0, Li, Lij, and Lntj in C°°(Rk).   Then, we note that L is

superlinear if and only if for any coordinate system {t,c} on R1'1, the following

equations are satisfied (cf. [OASV2]):

(a)

C7*(L*t) = (Ty  X T2  X ■ ■ ■ X Tk)*(L*t) + (Tk+y  X Tk + 2 X ■ ■ ■ X T2k)*(L*t),
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(b)

of(L*c) = (n x r2 x ■ ■ ■ x rk)*(L*c) + (rjfc+i x rk+2 x ■ ■ ■ x r2k)*(L*c),

(c)

p* (L*t) = (p*t)(Py X • • • X Pk)*(L*t) + (P*c)(py X • • • X Pk)*(L*c),

(d)

P*(L*C) = (p#t)(Py  X • • • X Pk)*(L*c) + (P*c)(py  X • • • X Pk)*(L*t).

Thus, our second partial result reads as follows.

3.2 LEMMA.   Let the notation be as above. As a consequence of (a), we have

L*t = L0    where L0(ty,t2,...,tk) =   53  Aitt, Al ER.
l<i<k

Furthermore, as a consequence of the actual proof of this lemma one is led to the

following.

3.3 COROLLARY.   Let Rfc|A: be the supermanifold RJ|1 x R1!1 x • • • x R1!1 and

let

pJ:Rfc|fc^R1!1        (l<i<k)

be the projection morphism onto the ith factor. Then, for any C°° function f on

R, we have pff = f °Pi, where p,: Rk —► R denotes the ith projection morphism

in the C°° category.

Therefore, if we combine this with the results of Lemma 3.1, we get

3.4 PROPOSITION.   For any C°° function f onRk, we have

(i)a*f = fodk,

(ii) pff = f°Pk + J2y<t<k(dif) o p.k p^cpfc,
(iii)   (Ti  X T2 X ■ ■ ■ X Tk)*f = / O 7Ti,

(iv) (rfc+i x rfc+2 x ••■ x r2k)*f = /o7r2,

(v) (py x p2 x ■ ■ ■ x pk)*f = fojio,

where ak, pk, 7To, ̂ i, and 7T2 are as in Lemma 3.1.

PROOFS OF 3.2 AND 3.3. This is a straightforward computation based on the

results of Lemma 3.1; first of all, using (3.15), the left-hand side of (a) gives

o-t(L#t)=cr*\Lo+     53    L%]pfcp*c+f\Rk\k)\
V l<i<j<k J

= L0oak+   53 fa +Vk-ri -o-fzi](diLo)oak
l<i<k

+    53    LijO^(r*c + r*^)(r*c + T*+jc)+^(R^k).
l<i<j<k
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On the other hand, the right-hand side of (a) yields

(n X r2 X ■ ■ ■ X rk)*(L*t) + (rk+y x rk+2 x • ■ • x r2k)*(L*t)

= (TyXr2x---XTk)#(LQ+    53    Lijptspf$+SA(Rk\k)\

\ l<i<j<k J

+ (Tk+yXTk+2X---XT2k)*\Lo+       J2       L*Pf ? Pf ? + f* (*■"")]
\ l<i<j<k J

= L0 O Wy +    53    11i(diLo) O fry +       53       Ll3 ° **■ Tt$ Tf f
l<i<k l<i<j<k

+ L0of2+   53  Vk+i(diLo)°n2
l<i<k

+     E    U3o^2rt%cr*^+f\R^k).
l<i<]<k

Equality of these two implies, for the zeroth-order terms, that

(*)        L0(Ty +Tk+1,...,Tk+ T2k) = L0(Ty,..., Tfc) + L0(Tk+1,..., T2k).

Since Lo is C°° we can differentiate both sides of this equation with respect to Ti

and Tk+i (1 < i < k) and get

(8iLo)(Ty,. ..,Tk) = (dlL0)(Ty +Tk + 1,...,Tk+ T2k) = (dtLo)(Tk + y,. .., T2k).

That is, diLo = constant = Ai and, in view of (*), it follows that

Lo(ti,t2,.. .,tk) =   2_^  MU,        AiER.
l<i<k

Using this fact, we can now compare the second-order terms of the equality (a) and

find that

53    Lij°ek(T?S + T#+i<;)(T?c + T*+jc)-   53   Aha*zh
y<i<j<k l<h<k

=     53    {(Lijo^r? erf f + (Io-o*3)r*+<fr*if)}    Mod^4(R2fcl2fc).
l<i<j<k

If we now assume that

^=53    ^pfcpfc + ̂ 4(Rfclfc),        Z*EC°°(Rk),
l<i<j<k

then

a*zh=     53    Z*ocrk(T*c + T*+6)(rfc + T*+Jc)    Mod^4(R2fcl2*).
l<i<j<k

Therefore, we conclude that

Lij(Ti +Tk+l,...,Tk + T2k) - 53 AhZ§(Ti + Tk+1,..., Tk + T2k)
h

= Llj(Ty,.. .,Tk),
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Lij(Ty +Tk + 1,...,Tk + T2k)-Y^ AhZ%(Ty +Tk+y,...,Tk+ T2k) = 0,
h

Lij(Ty + Tk+i, ■ ■ ■, Tk + T2k) - 2__, AhZi3(Ty + Tk+1,. ..,Tk + T2k)
h

= Lij(Tk+y,.. -,T2k).

It is clear from the right-hand sides of this set of equations that

Lij(Ty,.. .,Tk) = 0 = Lij(Tk+1,... ,T2k)

and hence, using this information on the left-hand sides, it follows that

Y,AhZ*(Ty,...,Tk)=0.
h

Since the /1/,'s are arbitrary, we get

Z^(Ty,...,Tk)=0.

In particular, zh Ejr4(Rk^k).

The rest of the proof can be handled by induction on s, where it is assumed that

ZhEj"23^1*) and that

L*t = Lo+ 53 Llll2...l2spfxcp*c---p*aC + f2^)(Rk\k).
l<i\ <t2<-<i2s<fc

One then proves that Lili2...l2a = 0 and that zh belongs to ^r2(»+1)(R*:l*:). Since

this process has to stop as soon as 2s > fc, the proof is complete.    □

The second step towards our characterization of superlinearity consists of looking

at the equation

(b)    af(L*c) = (ry x r2 x ■ ■ ■ x rk)*(L*c) + (rfc+1 x rk+2 x • • • x r2k)*(L*c)

with L#c written as in (3.15) and conclude the following.

3.5 LEMMA.   Let the notation be as above. As a consequence of (b), we have

L*c=   53   Btpfc;        B%ER.
l<i<k

PROOF. The idea is the same as before. We write

L*c=   53 LiP*c+      53      Lnt]P#cPfcPfc+fHRkn
l<i<k l<h<i<j<k
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Then, the left-hand side of (b) gives

°t(L*<) = 4 { E  L*tt +      E      Lhl3P*cPfcPfc +fHRklk))
^l<i<TC l<h<i<j<k J

=   53 (LiOcrk)a*Pfc
l<i<k

+       53      (LhtJoak)a*P*ca*PfcatPfc+^(R2k\2k)
l<h<i<j<k

=   53 (Lioak)(r?c + T#+ic)
l<i<k

+ 53 (LHijOa^C + T^C^rfc + T^C^Tfc + Tf^c)
l<h<i<j<k

+ jr5rR2k\2kj

where use has been made of 3.3 and 3.4. On the other hand, the right-hand side of

(b) yields

(Ty X T2 X ■ ■ ■ x rk)*(L*c) + (Tk+y X Tk + 2 X ■ • ■ x T2k)*(L*c)

= (Ty X ■ ■■ X Tfc)# J2    LiPt^      + (Tfc+1  X ' ' ' X T2fc)# E    LiP*$

\l<i<k J V1-*-* /

+ (rix---xrfc)#(       53       LhijP#cpfcPfc+jr5(Rk\k)\
yi<h<Kj<k J

+ (rk+i x • • • x r2k)# I        53       Lhl} P*CPf CPf C + f(Rk\k) I
\l<h<i<]<k J

=   53 (LiO*y)r#c +   E (Li°^)rf+tc
l<i<fc l<i<fc

+       E      ^L^3 ° *i)r?< rfcrfc + (Lhij o rr2)T*+hcr*+ict*+jc}
l<h<i<j<k

+ ^5(R2fc|2fc)_

Equality of these two implies, for the first-order terms, that

Li OTTy  = Li O fjfc = Li O TT2.

In other words, for all (Ty,T2,... ,T2k) E R2k

Li(Ty,...,Tk) = Li(Ty +Tk+y,..., Tk +T2k) = Li(Tk+y,. ..,T2k)

which immediately implies that

Li = constant = B,.

Now, comparison of the third-order terms shows that

Lhij 0*1= Lhij °Ok = L^j O 7T2 = 0
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and proceeding inductively one easily proves that, in fact, there will be no higher-

order terms in the coordinate expression of L#c.    D

The third and last step consists of making sure that (c) and (d) independently

imply that the constants Ai and Bt of 3.2 and 3.5 have to be equal for L to be

superlinear. That is,

3.6 PROPOSITION. A supermanifold morphism L: Rk\k —7 R1'1 is superlinear

if and only if its coordinate expression is of the form

L*t=   53  AiPft    and   L*c=   53  AiPfc,        AtER
l<i<k l<i<k

where {t,c} is any coordinate system ofR1'1.

PROOF. Let us write L*t = J2y<i<k At pft and L*c = J2y<z<k Bi pf$ and iet
us see what the equality

(C) p*(L*t) = (P*t)(Py  X • • • X Pk)*(L*t) + (p*c)(py  X • • • X Pk)#(L#^)

implies. Using 3.4(ii) we get, for the left-hand side of (c),

pt(L#t) = p* f 53 AtPft) = 53 Mpfpft
\^l<i<fc J l<i<k

= 53 Al{(p*t)(pft) + (p*g)(pfc)},
l<i<k

while, using 3.4(v), the right-hand of (c) gives

(p*t)(Py X • • • X Pk)*(L*t) + (p*c)(Py X • • • X Pk)* (L* c)

= (p#t)(pyX---XPk)# 53    AlPft\
\l<i<k J

+ (ptc)(pyX---Xpk)# 53    BiPfc\
\l<i<k J

= (p*t) (  53  AiP*t\+(p*<) [   53  Btpfc\ .
\l<i<k J \l<i<k J

Therefore, (c) implies Ai = Bi. It is equally easy to see that (d) leads to the same

conclusion.    □

More generally, in order to consider superlinear morphisms from Rfc'fc into Rmlm

we use the fact that any supermanifold morphism $: (Rk,3?k\k) -> (Rm,^mlm)

is completely determined by the m-tuple of morphisms ($1, <£2,..., $m), where

fy :=7r7o$: (R*,,#*l*) -7 (R,^1'1)

and
■k,: (Rm,^mlm)^(R,^111)

is the projection onto the jth factor (1 < j < m). Then it is only natural to say that

such a $ is superlinear if and only if $., is superlinear for each j. As an immediate

consequence we obtain the following.
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3.7 COROLLARY. $: (Rk,3ik\k) -» (Rm,3?m\m) is superlinear if and only if

its coordinate expression is of the form

4>#(Trft)=J2Ajwft    and    $*(** c) = ̂  A]lPfc,

where the Aji 's are real numbers and {t,c} is any coordinate system on R1'1.    □

To close this section, let us point out that if $: (Rk ,3lk\k) -> (Rm,^mlm) is

superlinear, then we can use this result and proceed as in 3.1 to prove that, for any

/eC°°(Rm),

(3.16) d>#/ = /o$

where $: Rfc —► Rm is the linear map whose matrix with respect to the coordinates

{pft} in R* and {rrft} in Rm is just (Aji) as it appears in the corollary above. In

particular, superlinear maps come from vector bundle maps; i.e., 3># maps the odd

coordinates of Rmlm into the odd coordinates of Rfelfe in a linear fashion and (3.16)

says that $# is in fact a C°°(Rm)-module morphism. This is to be contrasted with

the morphism pk: R1'1 x Rk\k —7 Rk\k defined in (3.4) which, according to 3.4(h),

will never be a C°°(Rfc)-module map.

4. Superbilinearity. In this section we shall show that the notion of bilin-

earity within the category of supermanifolds gives rise to nontrivial supermanifold

morphisms in the sense that they are not just maps of vector bundles. The super-

manifolds we shall be dealing with are the same as before; namely, supermanifold-

ifications of real supervector spaces.

Just as in the case of superlinearity, the notion of superbilinearity is defined in

terms of an abstract supermanifold morphism, B: Rfc'fc x Rfcl* —► R1'1 say, having

the property of making some appropriate diagrams commute (see (4.9) and (4.10),

which are the analogues of equations (3.10)). In order to state the results of this

section we must introduce, in addition to the notation in (3.4)-(3.7),

(4.1) xy:!*4*14*-!*111,

which denotes the projection of the product of the 4fc copies of R1'1 onto the jth

factor (1 < j < 4k). We shall also introduce the morphisms

(4.2) n:R4fcl4fc^R2fcl2fc    and    A: R4*l4fc -> R2fcl2fc,

which are completely determined by the conditions

(4.3) n°V = Xi, r%o\ = X2k+i, 0<itj<km
rk+j on = Xfc+i,        Tk+j o A = X3fc+i,

Therefore, we may consider the morphism

(4.4) o-konxoko\:Rik\4k ^R2k\2k

so that

,. _x Tto(o-konXcrko\) = So(xiXXk+i), n_     . ^.
I4-5) , ,s , x        0<t, j < k.

Tk+] o (ak O n x o-k O X) = S O (X2k+j X X3fc+y))

On the other hand, we define the morphisms

Q.R4fc|4/C^R2fc|2^ p.R4k\4k^R2k\2k^

R4Jfc|4A: _^ R2k\2k g. R4fc|4A: _^ p2A:|2fc
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by means of the conditions

noa = Xi, TiOp = Xi, n o 7 = xk+i, Tio6 = Xk+i,

Tk+jOOt = X2k+j,      Tk+jO0 = X3k+j,      Tk+j°l = X2k+j,      Tk+jo6 = X3k+j,

0 < i, j < fc.

Now, the condition for a supermanifold morphism

(4.8) B^^xR'I^R'l1

to be (super-) biadditive is expressed by means of the equation

(4.9) B o (ak o n x ok ° A) = s o {s o (B o a x B o 0) x s o (B o 7 x B o 8)}

and we have the following.

4.1 PROPOSITION. If B: R*1* x Rk\k -> R1'1 is a biadditive supermanifold

morphism, then its coordinate expression in terms of an arbitrary coordinate system

{t,c} on R1'1 is given by

i      j i      j

B*< = E E D« 4^t+]t + 53 53 Ey r*t r*+]c,
i      3 i

where Bij, Cij, Dij, and Eij are real constants and the summations take place over

1 < i < k and 1 < j < fc.

PROOF. We proceed in several steps. First, we write B*t and B*c in the form

B*t = bo + 53 b„vT*CT#C +f\R2k\2k),

^#f = EV,#f+   E   ^r*cr*cr?c+f\R2k\2k),
ti \<n<v

where 60, 6M, fy^, bx^,... are C°° functions on R2fc.

CONVENTION. Throughout this proof, greek indices run from 1 to 2fc, while

latin indices run from 1 to fc. In passing from one type of indexation to the other

we let

U = Span{r*c: 1 < p < fc}    and    IV = Span{r#c: fc + 1 < p < fc}

and we use the decomposition

/\P(U © IV) ~ f\P(U) ® R © f\P~\u) ® f\(W)

© • ■ • e f\\u) ® /\P_1(iv) ®r® /\p(w).

Thus, for example, the second-order terms 2ZM<„ b^r^crfc will be written in the

form

E ^' T*S Tf< + E E b^+3 rf ? T*+j( + 53 bk+i,k+} T*+%C T*+JC.
i<3 i       3 i<3
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Let us now look at the left-hand side of (4.9) when we take the pull-back of the

even coordinate t. According to our previous results in 3.4 and (4.1)-(4.5), we have

[B o (o-k o rj x exk o X)]#t = (ak o n x ak o X)*B*t

= (akonx akoX)* (b0 + 53 b^r#cr*c + f\R2k\2k) )

= (okon xakoX)*(b0)

+ (CTfc o n x fjfc o A)#    5Z bH T*f *fs

+ (ak o n x ak o X)*    53 E bi<k+3 T*< T*+jS

+ (akonxakoX)*(j2 bk+i,k+] r*+ic r*+jc    + f\R^k)

= (akon xakoX)*(bo)

+ 53(o-fc o n x crfc o X)*(bij)[Xfc + x*+it]\xf ? + xf+ji]
i<3

+ EE(fffc ° « x o-fc o X)*(biik+j)[xfc + xt+idixtk+S + X*fc+yf]
«   y

+ E^ ° " X (Tfc O A)#(&A:-H,fc+y)
«<y

x [X&+<* + xt^t** + xfk+jt] +^4(R4*14*).

On the other hand, when we take the pull-back of t, the right-hand side of (4.9)
yields

[so{so(Boo:x5o/?)xso(Bo7xSo 6)}]*t

= o*B*t + (3*B*t + n#B#t + 6*B*t

= a*b0 + 0*bo + i#b0 + S*b0

+ a* I 53 bl3 r*c rfc + 53 53 bitk+j r*cr*+Jc
\i<3 »      3

+ E bk+i,k+j T*+iC T*+JC

i<3 J

+/?* (E^f^ + EEw^r*^
\*<J i      3

+ E6*+».*+iT*+.fTiH-yf
i<3 J

(continues)
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(continued)

+1*   E bv Ttf r/f + E E 6*.*+i r*<r*+y*
\«<y «   y

+ E6fe+^+yrAf+«fr7f+yn
»<y y

\«<y t    y

+ J2bk+^+iTk%i<;Tk*+j<\
i<3 J

+ Jr4(R4k\4k)

= a*bo + 0*bo + i*b0 + S*bQ

+ E*a#(M+/3#(M}xf?xf<:
«<y

»<y

+ E{a#(6fc+8-fc+^ + 7#('Jit+t,fc+y)}xffe+Jf Xa*+j?
«y

+ E{/5#(6*+^+j)+,5#(6fc+'.fc+j)^^+J?xffc+Jf

+ E E a*(hk+J)xf f x?fc+yf + E E 0#(fc.*+y )xf ? x&+i?
«   y «   y

+ E E 7#(^,fc+J)x*+l? Xafc+yf

+EE«5#^^)xf+^xrfc+J?+^4(R4*14*)
«   y

where we have used (4.6) and (4.7). Now, comparison of the two expressions gives,

for the zeroth-order terms,

(akonxoko X)*(b0) = a*b0 + /3*b0 + 7#&o + b~*b0.

That is, &o is biadditive in the usual sense.    With respect to the coordinates

{r*t,rjf+lt} of Rk x Rk this means that

bo = E E B^*trf+3t,        Bij E R,
i       j

where b0 in the left-hand side really stands for the pull-back of t under 60 in the

sense of the C°° category.
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Similarly, upon comparison of the second-order terms, we obtain

xftxft term: (okonxo-ko X)*(btJ) = a*(bij) + P#(bij),

xf$Xk+>? term: (ak o n x ak o X)*(bl3) = 0,

xt+iSxt+jt term: (akonxcrko X)*(bij) = l*(bl}) + S*(btj),

xf$xtk+j$ term: (ak °V x CTfc o X)*(biik+:i) = a*(bitk+j),

X*Sxfk+jc term: (ak o n x ak o A)#(^,fc+,,) = 0*(bitk+j),

xt-ri$xfk+j$ term: (erfc o n x <rfc o A)#(&i,fc+J) = 7#(&lifc+J),

xf+tf xffc+jf term: (<rfc o n x rj* o A)#(6iiA:+i) = 6#(bz,k+j),

xfk+it xfk+jt term:    (fjfc o n x ak o A)#(&fc+i,k+J-)

= a#(6/fc+t,fc+J) + -)#(bk+ltk+J),

X2fc+i? X3fc+j? term:    (<rfc o n x ok o A)#(6fc+,,fc+i) = 0,

X3fc+if xffc+jf term:    (akon xoko X)*(bk+t}k+j)

= /3*(bk+itk+j) + 6*(bk+itk+:j),

from which we conclude, by an argument similar to the one used in the proof of

3.4, that

bij = 0;        bi<k+j = constant = CV,;        bk+i,k+j = 0-

All together, this means that

B#t = E E ^ rft r*+]t+Y: E di T*ST*+jC+f\R?k*k),        Bl}, C7t, E R.
i      j i      j

The rest of the argument proceeds inductively so as to prove that B*t can have no

component along ^^(R,2*!2*1) for s > 2. In fact, application of (ak o n x ak o A)*

to B*t will result in 22s different components in

C°°(R2k x R2k) © /\2"(U © IV x U © IV)

out of each of its original C°°(R2fc) ® f\2s(U © IV) components. On the other

hand, when we apply a*, /?#, 7# and <5# successively to B#t and add the re-

sulting expressions up we find that only four different components are obtained in

C°°(R2k x R2k)®/\2s(U®W x C/ffilV) out of each of the original ones. Therefore,

after demanding the equality of the 2sth-order terms, we find that as soon as s > 1,

the pull-back under the smooth map (ak on x ako X)~ of each original coefficient

vanishes. Hence, the coefficients themselves must vanish.

A similar argument may be applied to the odd section B#c to conclude that it

can have no ^23+1(^2*12*^ component for s > 1. Thus,

b*c = 53 brfc = 53 btT?c + 53 bk+jT*+jc.
M i 3



592 O. A. SANCHEZ VALENZUELA

Therefore, when we apply (ak o n x ak o X)* we get

(<Tkonxcrko X)*B*c = (okonx<jkoX)*    53 b^Tt ? + E bk+3Tk+jS

= E(CTfc °vxo-ko X)*(bi)[Xfc + Xf+ic]
i

+ E^fc ° *» X °k ° X)*(bk+3)\xtk+j< + Xsfc+jfl-
3

On the other hand,

a*B*c + 0*B*c + 7#B#c + 6*B*c

= «* (e^+Ew&^J +/?# (e^+Ew*v)

+ 7* (E^ + Ew&yf) +*# (e^+Ew*#+a)

= 53[a#(6t) + /?#(fc)]xf c + 53[7#(6.) + <5#(6t)]xf+^
t i

+ 53[a#(6fc+J-) + 7#(fc*+y)]x2#fc+J? + 5>#(&*+y) + S#(&*+,)]x?*+Jc.
y y

Therefore, we conclude that

a*(bx) + p#(bt) = (akonxako X)#(bt) = 7#(M + 6*(bt),

a*(bk+j) + i#(bk+j) = (crkonx(Tko X)*(bk+3) = 0*(bk+3) + 6#(bk+3).

Now, bi and bk+j are C°° functions on Rfc x Rk and we can apply the methods of

the proofs in §3: then the first set of equalities imply that bi must be independent

of its first fc arguments and must be additive as a function of the rf+t coordinates

(1 < j < fc). Similarly, the second set of equalities imply that bk+j is independent

of the (r^tys (1 < j < fc) and must be additive in the (rftys (1 < i < fc). Thus,

k = 53 Dn Tt+jt    and    bk+j = E EV T*t'        Dii* Eii e R'
y i

which completes the proof.    D

Just as in the superlinear case, the homogeneity property (i.e., commutativity of

the given morphism with superscalar multiplication) will impose further relations

among the real coefficients appearing in the statement of 4.1. More precisely, we

have the following.

4.2 PROPOSITION. Let B: Rfc|fc x Rfc|fc —7 R1!1 be a biadditive supermanifold

morphism which in addition satisfies the homogeneity condition

(4.10) Bo(pkx idR*n) = m o (idRm xB)
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(understood as morphisms from R1'1 x Rfclfc x Rfclfc into R1'1). Then its coordinate

expression in terms of an arbitrary coordinate system {t,<;} on R1'1 is given by

^ = EE^-f</+EE^f^
i      j if

i      3 •      3

where the Bij 's and the Ei3 's are real constants and the summations take place over

1 < i < fc and 1 < j < fc.

PROOF. The proof is a straightforward computation based on the result 4.1;

this time the details shall be left to the reader.    □

4.3 REMARK. Let us note that there are various ways of stating the homogene-

ity condition on the second entry, in fact, this depends on the various symmetry

requirements we demand from the given morphism B. The condition for B to be

super symmetric, however, cannot be stated in terms of the commutativity of any

diagram of supermanifold morphisms. The reason goes back to the fact that there is

no way of stating the supercommutativity property of the supermultiplication mor-

phism m: R1'1 x R1!1 —» R1'1; more precisely, there is no supermanifold morphism

tp: R1'1 —7 R1!1 for which the following diagram commutes:

Rl|lxRl|l   -J2-+   Rill

RiUxRH1 -7 R1!1
m

where r: R1'1 xR1'1 —7 R1!1 x R1'1 denotes the twist morphism, uniquely defined

via the pair of conditions py or = p2 and p2 or = py; pi: R1'1 x R1'1 —> R1'1 being

the projection of the product onto the ith factor (i = 1,2).

This result, which the reader can easily check for himself, is somewhat analogous

to the fact that complex conjugation is not a holomorphic map. (By the way,

this is the reason why we have said before that the morphisms (3.2) endow R1'1

with the structure of an abstract superalgebra; that is, we have omitted the word

supercommutative.) We can, nevertheless, try to guess what the supersymmetry

condition should translate into in terms of the B^s and the £y's appearing in 4.2:

following the rules of linear superalgebra and the results of §2, we would divide the

even coordinates rft, 1 < i < fc, into the first p (denoted rft, 1 < i < p) and the

last q (denoted rftt, p+1 < i < p + q), where p + q = k and it is assumed that R*^

was obtained as the result of the supermanifoldification of a supervector space of

dimension (p, q). A similar distinction is made among the odd coordinates; namely,

the first p (denoted r*c, 1 <i <p) and the last q (denoted t*c, p+ 1 < i < p + q).

Then the supersymmetry conditions are

(.4.11J "ij       "-Ki.Txji      t>rti,itj = —"iji      "ni,j = —"i,Trji      "i,rtj = "7ri,j.

On the other hand, and for the sake of comparison, we may impose a symmetry

condition on B expressible in terms of the commutativity of a certain diagram.
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For example, one possibility—which is closely related to the supersymmetric one—

would be

(4.12) B o (idRk|k xpfc) o (r x idRt|t) = m o (idRiu xB)

where again, both sides are understood as morphisms from R1'1 x Rfclfc x Rfclfc into

R111 and r: R1|: x Rfc|'c -7 Rk\k xR'1' denotes the twist morphism that permutes

the factors. In this case, it is a straightforward matter to verify that the following

holds true:

4.4 PROPOSITION. Let B: Rfclfc x Rfclfc -> R1!1 be a supermanifold morphism

which, in addition to the hypotheses of 4.2, satisfies (4.12). Then its coordinate

expression in terms of an arbitrary coordinate system {t,c} on R1'1 is given by

B*t = EZ * rft r*+Jt + ̂ Y. Bij rfcr*+jc,
i      j i      j

5#f=EE^^rty*+EE^rff7-fcV
i       j i       j

where the Bij 's are real constants and the summations take place over 1 < i < fc

and 1 < j < k. In other words, B is completely determined by its underlying

(continuous) bilinear form B.    D

From now on, we shall refer to supermanifold morphisms B: Rfc'fc xRfclfc —► R1'1

satisfying the hypotheses of 4.2 as superbilinear. Let us note that superbilinear

morphisms are not vector bundle maps. In fact, even though B*c is given in 4.2 as

a C°°(R2fc)-linear combination of the odd coordinates in RfclfcxRfc'fc, the expression

for B*t shows that, for any / E C°°(R),

(4.13) B*f = f o B + 53 53(/' o B)BtJ t*ct#+]c,
i       3

where B is the underlying bilinear map Rfc x Rfc —7 R of B whose matrix, with

respect to the coordinate system {rf t; r]f+t}, is (Bij); the notation being as in

4.2.

To close this section, let us briefly indicate how our results have to be modified

in order to incorporate superbilinear morphisms of the form

(4.14) $: Rfc|fc xR"1!*" ^ R1'1

and more generally, those of the form

(4.15) *: Rklk xRm|m^R"l"

obtained as n-tuples (iffy, *2,..., ^n) of the type (4.14) with ^h = ^0^; irh being

the projection morphism R"l" —► R1!1 onto the nth factor (1 < h < n). We claim

that all that has to be done is to recognize that $ as in (4.14) will be superbilinear

if and only if it satisfies the pair of conditions

$o((TfcOnX(7fcOA) = So{so($OQX$Oj5)XSo($07X$0 6)},

$o(pkx idRk\k) = mo (idRm x$),

where now n, X, a, 0, 7 and 6 are the supermanifold morphisms

r>2*|2fc x p2m|2m _^ p2fc|2* \ . p2fc|2* x p2m|2m _> p2m|2m

a, 0,-i,6: R2fc|2fc x R2ml2"> _, Rfclfc x Rm|m
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defined as in (4.3) and (4.7) with the only difference that this time 1 < i < k and

1 < j < m. The natural generalization of 4.2 is then

4.5 PROPOSITION. Let *: Rfclfc x Rm|m -> R"l" be such that for each h

(1 < h < n), the supermanifold morphism Vh = 7rh o $: Rk\k x Rmlm -» R1!1

is superbilinear in the sense above. Then its coordinate expression in terms of an

arbitrary coordinate system {t,c} on R1'1 is given by

**4t = E E G"i rft r*+3t + 53 53 Dhij r*cr*+jc,
i      j i      j

*#4< = E E c^ ifs'l-i* + E E Dw *f * rk*+j<,
i      j 13

where the Chij 's and the Dhij 's are real constants and the summations take place

over 1 < i < k and 1 < j < m.    U

The example we are particularly interested in is the one that results when

(i) Rmlm is viewed as the supermanifoldification of the real (p, ^-dimensional

supervector space V = Vo © Vi, with m = p + q,

(ii) R™l" is viewed as the supermanifoldification of the real (r, s)-dimensional

supervector space IV = IV) © IVi, with n = r + s, and

(iii) Rk\k is then viewed as the supermanifoldification of Hom(Vr, IV).

What comes out from this example in the light of 4.5 are the various super-

bilinear pairings Wom(y, W)s x Vs —► IVg. This observation brings us back to the

problem stated in §2 of finding, among the bilinear morphisms (in the category of

supermanifolds), a suitable generalization of the action (or evaluation) map. What

we now see is that the heuristic approach followed in §2 yields precisely an example

of such a superbilinear morphism.
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