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REMARKS ON GRASSMANNIAN SUPERMANIFOLDS

OSCAR ADOLFO SANCHEZ VALENZUELA

ABSTRACT. This paper studies some aspects of a particular class of exam-

ples of supermanifolds; the supergrassmannians, introduced in [Manin]. Their

definition, in terms of local data and glueing isomorphisms, is reviewed. Ex-

plicit formulas in local coordinates are given for the Lie group action they

come equipped with. It is proved that, for those supergrassmannians whose

underlying manifold is an ordinary grassmannian, their structural sheaf can

be realized as the sheaf of sections of the exterior algebra bundle of some

canonical vector bundle. This realization holds true equivariantly for the Lie

group action in question, thus making natural in these cases the identification

given in [Batchelor]. The proof depends on the computation of the transition

functions of the supercotangent bundle as defined in a previous work [OASV

2]. Finally, it is shown that there is a natural supergroup action involved (in the

sense of [OASV 3]) and hence, the supergrassmannians may be regarded as

examples of superhomogeneous spaces—a notion first introduced in [Kostant].

The corresponding Lie superalgebra action can be realized as superderivations

of the structural sheaf; explicit formulas are included for those supergrass-

mannians identifiable with exterior algebra vector bundles.

Introduction. There are various definitions of supermanifolds in use. Math-

ematicians define a C°° (resp., holomorphic) supermanifold as a pair, (M,£/m),

consisting of an ordinary C°° (resp., holomorphic) manifold M, together with a

sheaf s/m of supercommutative superalgebras over R (resp., C) satisfying certain

conditions. The various definitions in the literature correspond to the various con-

ditions imposed on the structural sheaf. There seem to be at least two streams of

approach, which one may vaguely refer to as algebraic and differential, respectively

(see, for example, [Kostant], [Leites] and [Manin] for the first and [Rogers],

[Boyer and Gitler] and [Jadczyk and Pilch] for the second; for a unified view

and a generalization that uses a nontrivial underlying super ring, see [Rothstein

2])-

CONVENTION. For the purposes of this paper, we shall be concrete and shall

understand the definition of supermanifold as in [Manin].

As far as the first approach is concerned, it is a theorem of Batchelor [Batch-

elor] that, in the C°° case, the sheaf s/\f can be realized as the sheaf of sections,

r(-, f\ E), of the exterior algebra bundle, f\ E, of some vector bundle E —» M over

M. This identification is not categorical, however: it depends on choices; besides,

supermanifold morphisms are more general than vector bundle maps, a fact pointed

out in [Leites], and it is known that in the holomorphic case there are obstructions

to such an identification (see, for example, [Manin] and [Rothstein 1]).
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In the physics literature, on the other hand, one frequently finds supermanifolds

defined by the specification that the odd variables are spinors. What this means,

presumably, is the following: Let G be some group acting on the manifold M and as

bundle automorphisms of a vector bundle E —7 M. Then G has an induced action

on T(-,/\E) and hence acts as a group of automorphisms of the corresponding

supermanifold. If M is a spin manifold and E —> M is the spin bundle, this then

specifies the supermanifold structure as a G-space.

The case of the conformally compactified and complexified Minkowski space, M,

provides us with an important example (see [Guillemin and Sternberg] for de-

tails): M itself can be regarded as the space G2(C4) of two-dimensional (complex)

subspaces of C4. The spin bundle then becomes identified with the tautological

bundle E —» G2(C4) whose fiber at u E G2(C4) is just the two-dimensional space

Eu represented by u. The group G = GL(4, C) acts as bundle automorphisms, and

the picture is now the one of the preceding paragraph. This obviously generalizes

to M = Gk(Vm), the Grassmannian manifold of fc-planes of some m-dimensional

vector space Vm, and G = GL(m) acting as bundle automorphisms of the rank fc

tautological bundle E -» Gk(Vm).

In the supermanifold setting we may consider the class of supergrassmannians

introduced in [Manin]: the supergrassmannian Gk\h(Vm\n) arises as the super-

manifold associated to the set of (fc, /i)-dimensional supervector subspaces, u, of a

given (m, n)-dimensional supervector space Vm'" (= V0m 0 V"); that is,

(1) u C Vm|";        dim(w n V0m) = fc    and    dim(u n V?) = h.

It turns out that the underlying manifold of Gk\h(Vm\n) is just Gfc(V0m) x Gh(Vyn),

and its odd dimension is h(m — fc) + k(n — h). Furthermore, since the Lie group

GL(V0m) x GL(V7l) clearly operates on the set of (fc,/i)-dimensional supervector

subspaces of Vmln, one obtains a group homomorphism

(2) GL(V0m) x GL(ViB) - Ants/Gk]h{vmin).

On suitable open superdomains ^ C Gfc|/,(Vm'n), this action is nothing but the

generalization of

(3) z^(Az + B)(Cz + D)-1; (J,   ^\ E GL(VQm),

i.e., the action of GL(V0m) on (suitable open sets of) the ordinary grassmannian

Gk(V0m)-

Just as in ordinary differential geometry, the supergrassmannians come equipped

with two canonical supervector bundles, constructed via transition functions as

in [OASV 2]:   Ek{h = (E,sfE) of type (fc|n) and Fm_fc|n_,, = (F,S/F) of type

(m — fc|n — h). As a pleasant result, there is a canonical identification between the

supercotangent bundle ST*Gk\h(Vm\n) and the supermanifold of all the supervector

bundle morphisms Fm_fc|„_h —> Efc|/,; i.e.,

(4) ST*Gfc|ft(Vm|n) ^^w(Fm_fc|„_ft,Efc|h).

In particular, the transition functions of this supervector bundle can be used to

prove that, with respect to the GL(y0m) x GL(V1")-action on Gfc|ft(Vm|n) above

and within the spirit of the theorem of Batchelor, the following is true.
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THEOREM, (a) Gfc|0(Vm|") = (Gk(V0m),s#Gk(v™)) is a supermanifold of di-

mension (k(m — k),nk) for which an equivariant identification

&Gh(v0">)^&H-*Gk{vr))*r(-,/\(Vi®Ei))

exists. (Here Eo —► Gfc(V0m) denotes the rank-k tautological vector bundle over the

grassmannian Gfc(V0m); V" —» Gk(V0m) is the rank-n trivial bundle, andVyn®E0 —>

Gk(V0m) is the tensor product bundle.)

REMARK. A similar result holds for the (k(m - fc),nfc)-dimensional super-

manifold G0|fc(V"lm) = (Gk(Vym),SsfGkiy;n)), in which case we have s/Gk(v^) -^

&'(^Gk(vr)) - r(-' A(Vo ® Ey)), equivariantly.

(b) Gfe|n(Vml") = (Gk(V0m),s/Gk(vm)) zs a supermanifold of dimension

(k(m — k),n(m — fc)) for which an equivariant identification

^Gk{V™)  ^ &'(j*GkW)) * T(;/\(Vy®F0*))

exists. (Here Fq —► Gk(V0m) denotes the rank-(m — fc) tautological vector bundle

over the grassmannian Gk(V0m).)

REMARK. Similarly, for Gn\k(Vn\m) = (Gk(Vym),$fGk(v™)), we have sfGk(vr)

-^ &s(sfGk(vr)) ~ T(-, A(V0 ® Fy*)), equivariantly.

In particular, these results already cover the following special cases:

(i) All the supergrassmannians whose odd dimension is 1.

(ii) All the superprojective spaces (i.e., those supergrassmannians whose under-

lying manifold is a projective space), regardless of their odd dimension.

However, as soon as one considers supergrassmannians Gk\h(Vm^n) with non-

trivial underlying factors (i.e., for which neither Gfc(V0m), nor Gh(Vyn) reduce to a

single point) there is no way of identifying 'aJGfc,h(V"i") with ^•s^Gk,h(vmin) m a

GL(V0m) x GL(Vi")-equivariant manner. An explicit counterexample is provided by

the supergrassmannian Gi|i(V2'2). This can be proved by means of a pedestrian

use of the formulas developed in this paper. We remark, however, that there is a

more satisfactory approach to this point due to M. Rothstein via the computation

of certain Lie algebra cohomology classes [Rothstein 3]. At any rate, this result

shows that under a Lie group action, Batchelor's Theorem does not reduce the

theory of supermanifolds to that of vector bundles, even in the C°° category.

Finally, let us note that (2) is just an ordinary Lie group action. It would be

desirable, however, to prove that the supergrassmannians are very natural exam-

ples of superhomogeneous supermanifolds (a notion already defined in [Kostant]).

Based on some of our considerations in [OASV 3] on the one hand, and on the

work of Kostant on the other, we may prove that the infinitesimal version of this

action is what it should be; more precisely,

PROPOSITION. There is a graded Lie algebra homomorphism g[(V0m|V") —>

Derj/Gt|/i(Vmin) whose restriction to $(V0m) ®gl(Vyn) = (0t(Vom|Vi"))o coincides

with the (classical) infinitesimal action obtained from (2) above.

The Lie supergroup that acts on the supergrassmannian Gk\h(Vm\n) is

{5(EndVm|")}*,
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the subsupermanifold of 5(End Vm'n) described in local coordinates by the condi-

tion of having a nonzero Berezinian. The underlying Lie group is just GL(V0m) x

GL(V") and its odd dimension is 2 dim V0m dimV™, as pointed out in [OASV

3]. The computations in this work suggest there is indeed a notion of maximal

parabolic subsupergroup, 3°k\h(Vm]in), satisfying the correct dimensionality rela-

tions; namely,

even-dimGfc,h(Vm|n) =even-dim{5(EndVm|")}* -even-dim ^klh(Vmln)

and

odd-dimGklh(Vm|n) =odd-dim{S(EndVm|")}* -odd-dim &>k\h(Vmln).
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1. Supergrassmannians. Let yml" = V"0mffiVin be a given (m, n)-dimensional

supervector space over R (or C), to be kept fixed throughout this section. Let us

assume that we are given some (m — fc, n — /i)-dimensional supervector subspace,

say W = Wo © Wy, of Vml". This means that W^ = W n VM C VM (p = 0,1) and

the ordinary vector space exact sequence

(1.1) 0 -► W — Km|n -> vm\n/w -► 0

takes the form

(1.2) 0 - Wq © rVi - V0m © Vjn -+ (V0m/W0) © (Vyn/Wy) -» 0
j "■

where both the injection j and the projection ir are even homomorphisms (cf. [Cor-

win et al.] and [OASV 1]).

It is well known that if %/w denotes the set of all vector subspaces of Vm\n

complementary to W and a choice u E %w is made, a bijection

(1.3) tity, -7 Hom(Vm|"/W, W)

exists under which u corresponds to the zero map. Even though we can always

choose u to be a (fc,/i)-dimensional supervector subspace of Vm'n, it is clear that

not every element of %/ has a direct sum decomposition u0 © Uy with u0 C V0m

and ui C V". However, we can detect precisely what the complementary super-

vector subspaces to W are, by just looking at the supervector space structure of

Hom(Vm'n/W, IV). More precisely, we have the following rather obvious fact:

1.1 PROPOSITION. If it is chosen to be a (k,h)-dimensional supervector

subspace o/Vml", then (1.3) yields a one-to-one correspondence between the set

of all (fc, h)-dimensional supervector subspaces of Vm\n and the even subspace

(Hom(Vmln/iV,7V))o.    D

Now, according to the theory developed in [Kostant] and [Leites], one can

associate to the supervector space

(1.4) Hom(Vm|n/IV, W) = (Hom(Vm|n jW, W))0 © (Hom(Vm|n/W, W))y
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a (super-)affine supermanifold, ((Hom(Vm'"/lV,IV))o,^'), by letting the sheaf sf

be given by

(1.5) ^ =Woo\{Hom{vmln/WtW)}0® /\([(Bom(Vm^/W,W))y]*).

Note that

(Uom(Vm\n/W,W))0 * Hom(Vom/W0,-Vo) © Hom(Vin/Wi, Wi)

— ̂ W0 x ^Wi

where %?w0 (resp., %?Wi) is the open subset of Gk(V0m) (resp., Gh(Vyn)) consisting

of those fc (resp., h) dimensional subspaces complementary to IVo (resp., IVi). That

is, ^Wo x ^Wi C Gk(V0m) x Gh(Vy) and this observation suggests to try to cover

Gk(V0m) x Gh(Vyn) by open sets of the form ^/0 x ^ over each of which we will

have a sheaf s/^j0j,) of supercommutative superalgebras given by (1.5) and then

provide appropriate glueing isomorphisms :P(i0jl)(j0tj,) so as *° eno UP with a

supermanifold (Gk(V0m) x Gh(V"),j/) whose underlying C°° (resp., holomorphic)

manifold is precisely the space of (fc, /i)-dimensional supervector subspaces of Vm'n,

namely, the product Gfc(V0m) x Gh(Vyn).

We are thus led to Manin's prescription [Manin]: The indexing set for the basic

superdomains %fj will now consist of pairs of disjoint ordered sequences

I = IoOly        (0 := disjoint union)

of length m — fc and n — h, respectively. (Note. The interpretation of such an

indexing can be given in terms of some definite choice of homogeneous (ordered)

basis {e,} of V0m © V" by letting Wj be the (m — k,n — n)-dimensional supervector

subspace Span{e,: i E I = Io^Iy}-) Then we put

(1.7) Wj := %„ x WIx

and let

(1.8) Jjf7 := W°°\%0 x Wh ®/\((Kom(Vom/WIo,WIl)®Hom(Vyn/WIl,WIo))*).

Following [Manin] we shall arrange the coordinate functions of the superdomain

(%,s/i) into a [(m - fc) + (n - h)] x[m + n] matrix, p7 = (pf), where, if Ic = /gulf

denotes the complementary ordered sequence of length (fc, h),

(1 a) nia _ f^ia;        *'€/, a El,
lL9J Pl  -\zf;        iEl, aElc,

and additionally,

' xf;        i'e J0, o6/0c,

(y ml J*- J »/*!        *6/i« aeIl
(L10) /_U}a;       t-€/i,o€iS,

ke}°;      *'g/o, ae/f,

where the Zja (resp., yf) are the standard coordinate functions on Wj0 (resp., ^/J

and the cj° (resp., f}a) are the generators of A((Hom(V0m/lV/0,lV/1))*) [resp.,

A((Hom(V1"/lV/1,IV/0))*)]. We shall also write the matrix (pf) in the symbolic
form

/id   xj    0    £,\ }/0

(1.11) PI       \0     Cj    id    yj) }Iy

io ic0 h n
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If J = JoOJy is some other sequence, we define gjj as the submatrix of pj obtained

after deleting the columns indexed by Jc = JfiO«/f. This yields an (m — k) + (n — h)

square even matrix

a,T =  ( 9l°J°    9l°Jl \ }Iq

(1.12) \9hJo    9hjJ }h

J0 Jy

As we know from [Kostant] and [Leites], this matrix is invertible if and only if

gi0j0 and gi,j1 are, and this fact guarantees that the glueing of sheaves below takes

place precisely over ^/0 n Wj0 x %jx n %j, =%iC\'2/j. So define

(1.13) tpij-.sfiWin&j^+sfjl&jn&j

by letting

(1-14) <Pijzf = ((gjI)-1-pj)ia.

It is not difficult to check that the <pu's are sheaf isomorphisms with (pjj)^1 =

fjii fn — id and p>jkVu = Pik on WjOWjH%:, so that there exists a unique

sheaf s/ of supercommutative superalgebras on Gfc(V0m) x G/l(V1n), such that

(1.15) G„ft(Vml") = (Gk(VQm) x Gh(Vyn),sf)

becomes a (k(m — k) + h(n - h),h(m — k) + k(n — ft))-dimensional C°° (resp.,

holomorphic) supermanifold. Furthermore, it is clear from this construction that

(1.16) ^/-V = sflf = ^°°|Gfc(V0m) x Gh(Vyn)

where ^ denotes the ideal generated by the odd elements. On the other hand, it

has been proved in [Manin] that

(1.17) ZrS* ~ T(-, f\([(Fy)* ® Eo] © [(Fo)* ® Ey]))

where Eo (resp., £1) denotes the total space of the rank fc (resp., h) tautologi-

cal bundle over Gfc(V0m) (resp., Gh(Vyn)), while (F0)* (resp., (Fy)*) denotes that

of the dual of the rank m — fc (resp., n — h) tautological bundle over Gfc(V0m)

(resp., Gh(V")). The proof consists of using the local data in terms of which the

supergrassmannians have been defined in conjunction with the identifications

(Rom(V0m/WIo,Wj,))* ~ (Wj,)* ® (V0m/WIo),

( •    ' (Hom(Vyn/W,,, WIo))* a (WIo)* ® (V?/Wh),

although the details will be omitted here (see §3, however).

2. Homogeneous space structure. From the geometric interpretation given

in §1, it is clear that the group GL(m) x GL(n), acting on yml™ fo the usual

way, will transform (fc, h)-dimensional supervector subspaces into (fc, n)-dimensional

supervector subspaces, so that it is only natural to try to obtain a representation

(2.1) p: GL(m) xGL(n) — AutJ/

for which

(2.2) Gr(p): GL(m) x GL(n) -7 Aut^J/)
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reduces to the usual action. The prescription for this effect goes as follows (cf.

[Manin]): given g E GL(m) x GL(n) we consider pig"1 and look for the invertible

submatrix ipjj obtained from the columns of pig~l indexed by / = foU/i (one may

regard this as the definition of /). Then we set

(2.3) p^gy.sfW^s/W

where T?j and 3^ are the open subsets of f/j and %j determined by the condition

of ijjjj being invertible (see below). Explicitly, if we write pi as in (11) and for

g E GL(m) x GL(n) we put

fU    W    0     0 .   }/0

(2 4) Q-l=\V    Z    °     °      K°C[ZA) 9 0      0     E    F      }Iy

VO     0     G   HJ  }I{

h ico  h  icy

Then

(2 5) mo-1-(U + XlV    W + XlZ       tiG frH    \
(2'5) PIQ     -\     ?/V clZ        E + yjG    F + yjH)

Io io h iy

TPi and *Vj are now determined by the conditions det(I/ + xjV) ^ 0 and

det(£ + yjG) # 0, so that

1     ' XP'1      \     &V        E + yjG)

is invertible. Now, writing (ipjj)~x in the form

(2.7) (V,.^)"1 = (*{<•'<>    J{o/x)>J°
VA/,/,,     X/,/, /   )ly

Io h

and using Gauss's decomposition on iprf (cf. [Leites] and §5 below), one explicitly

finds

X!oIo = [id+(U + xIVy1(;jG(E + yiG)-1CjV]-1(U + X1V)-1,

X-Ioi,=-(U + xjVrliiG[id+(E + yIG)-1c,V(U + xiV)-1^iG]-1

(2 8) x(E + ylG)-1,

X/l/o = -(E + yjG)-1cjV[id+(U + xjV)-^iG(E + yjG)-lCjV]-1

x(U + xjV)-\

X/,/, - [id+(£ + yiG)-lcjV(U + xjV)-l^jG]-l(E + yjG)'1;
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and therefore p(g) is given in local coordinates by

xj ~ [id+(U + xjV)-^jG(E + yjGyUjV]-1^ + xjV)-\W + xjZ)

+ (U + xIV)-1£IG[id+(E + yjGy^ViU + xjVy^jG]-1

x(E + yIG)~1cIZ,

ct h» - (E + yrG)-1cIV[id+(U + xIV)~1^IG(E + ^G^c/V]"1

x (U + xjV)-l(W + xiZ)

+ [id+(E + 2//G)-1c/V(f/ + xtVTHiG)-1^ + yjGr'cjZ,

0^[id+(U + xIV)-1^IG(E + yIG)-1cIV]--1(U + xIV)-1^H

-(U + x/V)"16G[id +(E + yiG)-lC!V(U + xiV)-xtiG\-x

x(E + zIG)-\F + yIH),

yi _ [id+(E + yiG)-lCjV(U + XlV)-HiG\-\E + yjG)-l(F + yjH)

+ (E + y/G)-1c/V[id +(U + XjV)~HiG(E + yjGT'cjV]-1

x(U + xjVy^jH,

from which we deduce that Qr p(g) is given by

xii->(U + xjV)~l(W + xiZ) = -(Axi - B)(Cxi - £>)_1,

$j» -(E + 2//G)-1c/[V(t/ + X!V)-\W + XiZ) - Z]

f210) =-(E + yIG)-\j(CxI-D)-\

fc~ -(U + xIV)-1^I[G(E + yIG)-1(F + yIH)-H]

= -(U + xIV)-1£I(NyI-P)-1,

y,^(E + yiG)~l(F + yiH) = -(Lyj - M)(NVl - P)~\

where

(c  d)   and   (n   p)

are the inverses of

(v  Wz)   and   (g  h)

respectively.

These formulas show explicitly that Gr p(g) gives indeed the usual action on the

base Gk(V0m) x G/j(V") and on the odd coordinates when regarded as sections of

the corresponding tautological bundles. (We shall come back to the group action

in §5.)

3. Tautological supervector bundles. It is well known from classical dif-

ferential geometry that the ordinary grassmannian manifold of fc-planes in V0m,

Gjt(V0m), can be coordinatized by means of the matrices (cf. (1.9) and assume for

the moment that Iy = 0; hence, / = Io)

(3.1) pj = (Sia  | Xf),      i E I,

with a E I in the first column and a E Ic in the second. The geometrical interpre-

tation goes as follows: pj is the matrix (with respect to some fixed basis {ea} of

V0m) of the projection map

(3.2) Pi:V0m^Wj
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onto the (m - fc)-dimensional subspace Wj := Spanje^: i E 1} (see the note in §1).

The coordinates (xf) appearing in (3.1) correspond to the fc-dimensional subspace

Ker pj. A basis for this subspace can be taken as

(3.3) o-^ = ^4ae,-ea,        a E Ic,

i€l

and it is understood that Ker pj belongs to the coordinate chart

Wj ~Hom(V0mIWj,Wj).

It is then clear that the rank-fc tautological vector bundle Ek over the grassman-

nian Gfc(V0m) corresponds to the locally free sheaf of ^°°|Gfc(Vom)-modules defined

by letting T(Wj,Ek) be the W°° (Wi)-module freely generated by the fc linearly

independent sections (3.3).

The transition functions of this bundle are easy to obtain: if Ker pj = u E

WjV\Wj, we can use the versions / and J of (3.3) to find a fc x fc invertible matrix,

lu = (lhicj), such that

(3.4) oJc(u)=Y,lu(uWb(u),        cEJc,
beic

and in fact,

.„_. {-x»f    -xbf\ }bElcnJ

^■V i"={  o      6bl')}bel°nJ<

with c E Jc fl / in the first column and c E Jc fl Ic in the second, and

(3 6) ^-(-X'C   -^/cU^Jcn/
(i-b) llJ.~\  o      6bc J }bEJcnic-

with c E Jc fl / in the first column and c E Jc C\ Ic in the second. We can

similarly describe the other tautological bundle; namely, the rank-(m — fc) bundle,

Fm-k —7 Gk(Vm), whose fiber at the point u E Gk(Vm) is given by

(3.7) Fu = (Vm/u)* = Hom(Vm/w, R).

In this case the map pj: Vm —7 Wj yields an injection (pi)*: (Wi)* —> (Vm)*

whose image we identify with Fu (u = Kerp/). Explicitly, let {0a} be the dual

basis of {ea} above. Then

(3.8) \) := (Pl)*9l = 9i + ^2 r3;/a,        » e /,
a€lc

gives m-fc linearly independent sections of Fm-k over Wj. The transition functions

for this bundle are also easy to obtain: this time we let B(u) = (Bji(u)) be the

matrix such that, for u eWj C\Wj,

(3.9) XjJ(u) = ^2x\(u)B3i(u).
iei

Again, using (3.8) for / and J, one is led to the conclusion that B must satisfy the

matrix equation

(3.10) Pj = Bpj.
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In other words,

(3.H) B = (gjj)~1

where gjj is as in (1.12) (under the assumptions Iy = Jy = 0; hence, / = Iq and

J = Jo).
Let us now go back to the grassmannian supermanifolds

Gfci^V™!") = (Gk(V0m) x Gh(Vyn),tf).

According to the observations above, it is natural to define the tautological su-

pervector bundle Efc|^ (resp., ^m-k\n-h) by means of the locally free sheaf of

j/-modules, ^k\h (resp., &m-k\n-h)i obtained upon the specification that £?k\hC^i)

(resp., &m-k\n-hC^i)) is the free s/(Wj)-bnndle generated by the fc even sections

(3.12) t^ = £>}aet-ea,        a E /0C,

and the h odd sections

(3.13) tf = 5I*N-e.,        aElcy
iei

(resp., the m - k even sections

(3.14) A} = 0'+X>a4a,    iEh,
aeic

and the n — h odd sections

(3.15) pj = r + £ eaz}a,     i Eh).
aelc

It is a straightforward matter now to verify that the transition functions for these

bundles are given by exactly the same expressions as their classical counterparts,

namely,

(3..6) ™=(7    -£)]™j.    and   tf

Jcni   Jcnic

respectively, where zj has the meaning of (1.10) and gu that of (1.12).

On the other hand, proceeding as in [OASV 2], one can compute the transi-

tion functions of the supercotangent bundle sheaf, S^T*srf, of Gk\h(Vm'n). The

computation is tedious but straightforward and we obtain, for j E J = Jo^Jy and

i'€/ = /0U/i,

,317) ( - zf,        aElcC\J, bElcr\Jc,

-f_y)(n + \b\)(\a\+\3\)(a-iy. J   ~ zf,        a E Ic D J, b E I D Jc,
~[   lj [gijhl\6ab, aElcHJc, bElcnJc,

.0, aElcnJc, bElnJc.

In particular, one obtains the following analog of the well-known classical result

(for another proof of this fact without using explicitly the transition functions of

the supercotangent bundle sheaf, see [Manin]).
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PROPOSITION.   There is a natural identification S^* sZ ~ &m-k\n-h®%k\h-   □

4. Equivariant trivialization theorem. We shall now prove that some su-

pergrassmannians admit the type of global trivialization that makes their struc-

tural sheaf look as the sheaf of sections of the exterior algebra bundle of some

canonical vector bundle attached to the base manifold. Furthermore, it turns out

that for this particular source of examples, such a trivialization is equivariant for

the GL(V0m) x GL(V!n)-action on Gfc|ft(Vm|n) (given as in §2) and the induced

GL(V0m) x GL(V")-action on the space of sections of the bundle in question. Thus,

Batchelor's theorem becomes natural for certain examples of supermanifolds (see

[Batchelor]), namely, at least those described in the statement of the following

4.1 THEOREM, (a) Gfc|0(Vm|n) = (Gk(VQm),s/Gk{y™)) is a supermanifold of

dimension (k(m — k),nk) for which an equivariant identification

.«fc*(v0«) -^S^cv-)) ^T(;/\(Vi ®Ei))

exists. (Here, Eo —► Gfc(V0m) denotes the rank-k tautological vector bundle over the

grassmannian Gfc(V0m); V" —» G(V0m) is the rank-n trivial bundle and Vy ® E0 —>

Gk(V0m) is the tensor product bundle.)

REMARK. A similar result holds true for the (k(m - fc), nfc)-dimensional super-

manifold G0|fc(Vnlm) = (Gfc(Vim),J^5lt(v"n)), in which case we have ^Gk(y,m) —*

^(■^Gk(v^)) - r(-, A(Vo ® Ey)), equivariantly.

(b) Gfc|n(Vml") = (Gfc(V0m),J#Gt(v'")) is a supermanifold of dimension

(k(m — k),n(m — fc)) for which an equivariant identification

*Gk(V0">)  — &H^Gk(V-)) * r(-, f\(Vy ® F0*))

exists. (Here, Fq —► Gk(V0m) denotes the rank-(m — fc) tautological vector bundle

over the grassmannian G*:(V0m).)

REMARK. Similarly, for Gn,fc(Vnlm) = (Gk(Vym),sfGk(vr))> we have s*Gk(vr)

■Z* &s(sfGk{yr)) ~ r(-, A(V0 ® Fy*)), equivariantly.

PROOF. We shall prove (a) and (b) simultaneously. The proof itself is divided

into two steps; the first consists of convincing ourselves that the sheaves Sf and

•S/-J/ of the supergrassmannians in question can be identified indeed. To this end,

we first use the following lemma.

4.2 LEMMA.   For any supermanifold (M,$Z), we have

5^~r(-,/\((ST*M)i)),

where (ST*M)i is the odd (Whitney) summand of the underlying manifold of the

supercotangent bundle (cf. [OASV 2]).

PROOF OF THE LEMMA. This follows essentially from the definition of a super-

manifold (cf. [Manin] for details).    D

We now use the transition functions (3.17) that define the supercotangent bundle

sheaf of the supergrassmannians and note that, for Gfc|0(Vm'n) (resp., Gfc|„(Vm'n)),

the indexing sequences / = foU/i of the covering {jttj} have the following special

property:

(4.1a) (VI, J)        Iy = {l,2,...,n} = Jy    and    I{ = 0 = J{
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(4.1b) [resp., (V/, J)        I1 = 0 = J1    and    if = {l,2,...,n} = Jf].

Therefore, the corresponding matrices pj in (1.11) respectively reduce to

fo   /§    A

and

(4.2b) P/ = (id    xj    £i)}I0

Io  ic0  n

Hence, the matrices gjj in (1.12) will take the form

(4.3a) „,-(»**    «)}*

Jo       Jy

and

(4.3b) 9u = (gi0j0)

respectively. In particular,

(4.4a) tf«('&    ») >J

io     ii

and

(4.4b) gjj = (gjX)-

Now, we can use these expressions in conjunction with (1.10) and (3.17) to conclude

that

dz°b      dxib
(4-5a) g^^^^a&Io^EJo,iEly,jEJ0

and

p,  jb o   jb

(4.5b) -^ = —£ oaElo, bE J0, i E I0, j E J0
OZj OC,j

respectively. Note right away that (3.17) and (4.4a) immediately imply that

Qxfb
(4-6a) -^~ia- — 0   because (gjj)3i = 0   for all i E Iy, j E Jo-

On the other hand, for case (b), the only nonvacuous condition on Lemma 4.2 is

a E Iy n Jy and b E Iq n Jq, in which case 6ab = 0. Therefore,

dxjb
(4.6b) ^=0.
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Similarly, one notes that

QzJb        q jb

(4-7a) gfi = -^^a^^bEJo,iEly,JEJy

and

dzjb      <9£jf>
(4-7b) -^ = ^OaEly,bEJy,iElo, JEJo-

For case (a) one sees from (4.4a) that

(9jj)ji = Sij     for * € lu  j EJy.

Therefore, (3.17) implies that

dcjb
(4.8a)  -^ = 6ij x {Transition functions of the rank-fc bundle, Eq -* Gfc(V0m)}.

dc}a

On the other hand, for case (b), the only nonvacuous condition in Lemma 4.2 is

a E Iy n Jy and b E Iy C\ Jy, in which case,

(4.8b)
&c3b
—-^- — f)ab x {Transition functions of the rank-(m - fc) bundle, Fq —<• Gfc(V0m)}.

But now we are in the situation of having a covering {%j} for a supermanifold

(M,sf) with sheaf isomorphisms stf [%j -» S?/-s/\%fi satisfying the additional prop-

erty that the transition functions

\ /

are already of the form Gr(<pu) for all / and J. (This is precisely the content of

equations (4.7) and (4.8) above, as no higher-order terms appear in the transition

functions for x3j and £j which, in principle, should be polynomials in the odd

variables £}6.) As the sheaf sf used in the construction of the supergrassmannians

was uniquely determined by the transition functions <pu, the conclusion is then

that we have a global identification srf -^* &*■$# for both cases (a) and (b). In

other words, equations (4.8), together with Lemma 1, imply that

(4.9a) tf ^Y(;j\(Vyn®E))

and

(4.9b) st S^r(;/\(Vyn®F*))

hold true globally for the sheaves sf that define the supergrassmannians Gfc|o(Vm'ra)

and G/fc|„(Vmln) respectively.

The second and last part of the proof consists of looking at the action of the

group G = GL(m) x GL(n) according to the representation p: G —* Autsf of (2.9).
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But in view of the properties (4.1) of the indexing sequences / and J, the action

by p(g) with

[A    B    0\ (U    W      0   \
(4.10) g=\C   D    0 \,        g-1=\V    Z       0

\o   o   £/ \o   o   r1]

is reduced in each case to simply

.„, xj*(U + XlV)~l(W + xjZ) = -(An - B)(Cxi - D)~\
(4.11a)

cj *-Eej(Cxj - D)-1

and

,,„.. xj^(U + xjVr^W + xjZ) = -(Axj - B)(Cxj - D)~\
(4.11b)

^^(U + xiVrHiE-1

respectively, which is precisely the action under Gr(p(g)).    D

5. Supergroup action; infinitesimal version. We note that the group ac-

tion discussed so far is just an ordinary Lie group action. It would be desirable,

however, to prove that the supergrassmannians are natural examples of superhomo-

geneous supermanifolds (in the sense already defined in [Kostant]); that is, that

there is a supergroup action defined on them. Theorems regarding superhomoge-

neous supermanifolds in general shall be postponed for a future work. Here, we

shall restrict ourselves to the infinitesimal action for the examples at hand (the

supergrassmannians) and get some insight into what to expect in the general case.

Along these lines, we should be able to prove the following:

5.1 PROPOSITION.   There is a graded Lie algebra homomorphism

~p: 9l(V0m]Vyn) ^DersZGkih{vmfn]

whose restriction to 0i(Vom) ©jjl(V") = (0l(Vom|V1™))o coincides with the (classical)

infinitesimal action obtained from §2.

The idea of the proof and the actual realization of the action p as supervector

fields (i.e., superderivations of the structural sheaf sZ) on the supergrassmannian

Gk\h(Vm\n) are based entirely on classical-like arguments. The reason why such

classical arguments work on the superhomogeneous setting follows, on the one hand,

from Kostant's results [Kostant, §§3.9, 3.10] and, on the other, from our work in

[OASV 3] which allows classical interpretations while computing with matrices

(see, in particular, §5.3 below). We shall indicate how an explicit representation of

at (V0m| V") may be obtained within a coordinate chart and shall give some formulas

for the supergrassmannians G,|o(V2(?l"). A first step in this direction is given by

the following rather trivial

5.2 OBSERVATION. Let p: fll(V0 © Vy) —> End(M0 © Mi) be a representation

of the ordinary Lie algebra gl(Vo © Vi) ~ gl(m + n) into a supervector space

M = Mo® My. Suppose that

p((0((Vo©Vi))o) C (End(M0©Mi))0

and

p((0l(Vo © Vi))i) c (End(M0 © Mi))!
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where

(0.(VoffiVi))o= |(q     °)  AESl(Vo), DEgl(Vy)}

and

(0l(Vo©Vi))i = j(°    B)  SeHom(Vi,V0), G€Hom(Vb,Vi)J.

Then, p gives rise to a representation p: gl (Vo|Vi) —► End(Mo © Mi) of the graded

Lie algebra al(Vo|Vi) into the same supervector space M = Mo ® My.

PROOF OF 5.2. All that is involved in this assertion is the one-to-one correspon-

dence between the representations p of gl (Vo © Vi) and the representations p of its

universal enveloping algebra il(g[(Vo © Vi)). In fact, taking into account the vector

space isomorphisms

(0[(Vo©Vi))o-0l(Vo)©fl[(Vi)^(0[(Vo|Vi))o,

(0l(Vo © V))i ~ Hom(Vi, Vo) ©Hom(Vo, Vi) ~ (ffi(V0\Vi))i

and the fact that under the ordinary matrix multiplication (i.e., composition of

linear maps)

(0[(VO © Vi))M • (0[(VO © Vi))„ C (0[(VO © Vi)){lt+V) mod (2),

we can define a degree-zero linear mapping p: 0t(Vo|Vi) —► End(M0 © Mi) by

letting

(Va: E 0((Vo|Vi), homogeneous)        p(x) := p(x)    (= p(x))

and extending it linearly. We now claim that for homogeneous x,y E 0l(Vo|Vi) we

have

p(x ■ y- (-1)1*1 My ■ x) = p(x)~P(y) - (-1)1^1 ̂ ~p(y)p(x).

Obviously, it suffices to check this equation for any two odd elements x,y  E

0[(Vo|Vi)i (i.e., \x\ = [y[ = 1). But in this case we have

p(x ■ y + y ■ x) = p(x ■ y + y ■ x) = p(x ■ y) + p(y ■ x)

= P(y)p(x) + p([x, y]) + p(x)p(y) + p([y, x])

= p(y)p(x) + p(x)p(y) = p(x)p(y) + p(y)p(x).   □

5.3. Now, the classical-like argument by which we may arrive at the desired

representation p: 0[(Vo|Vi) —* DerStf is very simple: choose a local coordinate

chart on the supergrassmannian so that (cf. §1)

/id    x    0    i\

P     \0    c    id    yj'

Then we choose the supercoset representative

(id i 0 tj \
0 id 0 0   1

0 ? id y     ■
0 0 0 id/
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In order to see what the action of g[(V0|Vi) looks like in terms of these local coor-

dinates, we first look at the equation

fa    b    a   /?\   (1 x   0 £\
c    d    7    6     10 10 0
n    tp    e    f        0 e    1 y

\p    r    g    hJ   VO 0   0 1)

(1    gx   0 g-i\ fJF     0      A      0 \

=     0100            c     JE     7      A

0   y-f    1 gy        N     0     JH     0
VO      0      0 1   J \ p      T      g     JGJ

where
fa    b    a    0\

9'=     r]   I   ]    /     eGL^offiVO^GL^ + n)

\p    t    g    hJ
is assumed to be close to the identity and Je, Jf, Jg and Jh are elements of

GL(fc), GL(m - fc), GL(h) and GL(n - h), respectively. Thus, we find that

g ■ x = {[(ax + b) + ac] - [(ay + /?) + a^]J^T}(I - J^AJ^T^J^1,

gc = {[(nx + <p) + ec] - [(ey + f) + ^]JGlT}(I - J^AJ^T)-^^1,

gy = {-[(nx + tp) + ec]J~lA + [(ey + f) + n^]}(I - J^TJ^A)'1 JJ1,

g ■ e = {-[(ax + b) + ac]J-'A + [(ay + /?) + at;]}(I - J^TJ^A)'1 J^1,

where, furthermore,

JE = (ex + d) + 7c,        T= (px + r) + gc,

A = (iy + 6) + cC,        JG = (gy + h) + p£.

Note that these calculations are valid under the assumption that g E GL(V0 © Vi)

stays close to the identity, for then we can make sense of g ■ x, g ■ c, g ■ y and g ■ £

as coordinates within the same chart. This condition is certainly fulfilled by any

smooth curve ( h j( e GL(Vb © Vi) passing through the identity at t = 0. In

particular, if we set

(d/d*)(<?t)|t=o =: 9o €0l(VoffiVi)

we can differentiate the above formulas for gt ■ x, gt ■ c, gt ■ y and gt ■ £ to obtain

an expression in local coordinates for the action of the Lie algebra 0[ (Vo ® Vy) and

hence, for the action of the Lie superalgebra 0l (Vo \Vy), provided that the conditions

of 5.2 are satisfied.

Let us illustrate this construction on the supergrassmannians Gfc|o(Vm'"). In

this case the coordinates {y} and {£} are nonexistent and the above formulas for

g ■ x and g • c reduce to

g ■ x = {(ax + b)(cx + d)"1 + ac(cx + d)_1}{/ + 70(02: + d)-1}~\

gc = {(nx + tp)(cx + d)-1 + ec(cx + d)_1}{/ + ^c(cx + d)-1}-1

whenever
(a b a\

c d 7     eGL(Vo©Vi)~GL(m-|-n).
n <p e J
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Therefore, the corresponding action of 0l (V0 ® Vy) will be given by

X ■ x = ax — xd + b — xcx + ac — x-jc,

X-c = ec-cd + tp-c^c + r)c-ccx

whenever

(a b a\

c d 7     e0[(VoffiVi)~0[(m-rn).
f) tp e J

One can now read off from these equations the corresponding action in terms of

derivations (with respect to the local coordinates {xlJ} and {cw}).

To write down some explicit formulas, let us further restrict ourselves to the case

m = 2q and fc — m/2, so that the latin indices i, j,... will run through {1,2,..., q}

while the greek indices p, v,... will run through {1,2,..., n}. Thus,

feij    0   0\
0     0   0     ^^x3kdx,k,

V 0     0   0) k

(0     0     0\

0   el3    0 U-^^-^^-,
\o   o   oy k p.

I o   o o\
lea  o  o   7-7-^imVfca!Em*-2f'lvfca^t,

V 0       0     0/ fc,m k,,i

[0    Bij     0\
0     0     0     •-*»,«,

Vo    0    OJ
[0   0     0  \

0        0 0 r^^2^%uk,

\0    0   e»J k

fo  o  eiA
0    0     0       T^f"*^*,

\0    0     0/ fc

/0    0     0 \

0    0    e.A^-Y^^c^d^-Y.r^d^,
\0     0       0/ fc,m k,u

f 0 0 0\
0 0 0      r^^a;lfca?^,

Ve^t o oy        *
/0 0 0\

0 0 0     h-7 dc„,.

Vo eMi oy

Note that even (resp., odd) elements of 0l(Vb © Vi) are mapped into even (resp.,

odd) derivations of the sheaf of local coordinates. Therefore, our observation 5.2

applies and the same correspondences provide us with an explicit realization of the
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superalgebra g[ (Vo|Vi) as superderivations of the structural sheaf of the supergrass-

mannian G9|0(V2«I").
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