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INFINITELY MANY PERIODIC SOLUTIONS
FOR THE EQUATION:

Utt - Uxx ± |w|P_1M = f(x, t).  II

KAZUNAGA TANAKA

ABSTRACT. Existence of forced vibrations of nonlinear wave equation:

utt - uxx ± \u\"~lu = f(x, t), (x, t) € (0, 7l) X R,

u(0, t) = u(tt, t) = 0, teR,

u(x, t + 2n) = u(x,t), (x, t) € (0,7r) x R,

is considered. For all p € (1, oo) and f(x, t) £ z/p+1'/p, existence of infinitely

many periodic solutions is proved. This improves the results of the author [29,

30].

We use variational methods to show the existence result. Minimax argu-

ments and energy estimates for the corresponding functional play an essential

role in the proof.

0. Introduction and statement of result. The main purpose of this paper is

to show the existence of infinitely many periodic solutions of the following nonlinear

vibrating string equation:

(0.1)± utt-uxx±[u[p-1u = f(x,t),        (x,t) E (0,tt) x R,

(0.2) u(0, t) = u(tt, 0=0, (GR,

(0.3) u(x,t + 2n)=u(x,t), (x, t) E (0, rr) x R.

Here, p > 1 is a constant and f(x, t) is a 27r-periodic function of t.

In case / is a function of x alone, the existence of nontrivial solutions of (0.1)±-

(0.3) has been established by Brezis-Coron-Nirenberg [11], Coron [13] and Rabi-

nowitz [20, 23]. See also Benci-Fortunato [7] and Sattinger [24]. But in case /

depends on t, it seems that the existence of at least one solution of (0.1)±-(0.3) is

not obtained for all p E (1, oo) and the existence of infinitely many solutions for all

/ has been obtained merely in the case:

(0.4) 1< p < 1 + v/2.

See Tanaka [29, 30] and Ollivry [17]. This paper is a continuation of [29, 30]

and we will show the existence of infinitely many periodic solutions for all f(x,t)

without restriction (0.4). More precisely our main result is the following.
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THEOREM 0.1. Assume that p E (l,oo) and f(x,t) E L^c+1)/p([0,7r] x R)

is 2-K-periodic in t. Then (0.1)±-(0.3) possesses an unbounded sequence of weak

solutions in Lf^QO, ir] x R).

REMARK, (a) By a weak solution of (0.1)±-(0.3) we mean a function u(x,t)

satisfying

/      /   [u(4>tt-(j)xx)±[u[p-1u(p- f(j>]dxdt = 0
Jo    Jo

for all smooth <j> which satisfy (0.2) and (0.3).

(b) If p = 2n + 1 (n E N) and / is smooth, it is known that any corresponding

solution is smooth (cf. Brezis-Nirenberg [12]).

In case / = 0, the problem (0.1)±-(0.3) possesses a natural symmetry, that is,

the equation is equivariant under the Z2 symmetry u —► —u. We shall treat the case

/ 7^ 0 as a perturbation from a symmetric equation. A question for (0.1)±-(0.3) is

the effect of destroying the symmetry by adding an inhomogeneous term f(x, t) to

the right-hand side of (0.1)±.

In several recent papers, similar questions have been studied for the problems of

elliptic type and of Hamiltonian systems of ordinary differential equations. Bahri-

Berestycki [3], Struwe [28] and Rabinowitz [21] considered the following problem

of elliptic type:

(0.5) -Au = [u\p-1u + f(x),        xED,

(0.6) u = 0,        x E dD,

where D C R^ (N > 2) is a bounded domain with a smooth boundary dD and

f(x) E L2(D). For all f(x) E L2(D), they showed the existence of infinitely many

solutions of (0.5)-(0.6) under the condition

N + 2 + y/9N2 -4N + 41<p<-W^T)-•

They considered the functional

F(u) = \ f |Vu|2 dx-— I |w|p+1 dx- j fu dx
2JD P+ijD JD

on Hq (D) and sought for critical points of this functional. Restricted Lusternik

Schnirelman theory and energy estimates for F(u) played an essential role in their

arguments.

Very recently, Bahri-Lions [6] has improved the results of [3, 21, 28] and showed

the existence of infinitely many solutions under the condition 1 < p < N/(N — 2).

To get this existence result, they used a general result giving a lower bound of the

Morse index at critical points obtained through dual minimal variational principles

together with a suitable estimate for the eigenvalues of the Dirichlet problem on a

bounded domain D. See also Bahri [2].

The existence of periodic solutions of the following forced Hamiltonian systems

of O.D.E. is considered by Bahri-Berestycki [4].

(0.7) dz/dt = JH'(z) + f(t),        2(0) = z(T).
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Here,

[0     -IN
Un       0

is the standard skewsymmetric matrix, z = z(t) = (p, q): R —► R2Ar, H: R2N —7 R

is a given Hamiltonian and /: R —7 K2N is a given T-periodic function. Under

some growth condition on H (in particular H is of superquadratic growth), they

show that (0.7) has infinitely many periodic solutions for all f(t). See also Bahri-

Berestycki [5] and Pisani-Tucci [18].

Theorem 0.1 will be proved in §§1-6 via variational methods. An outline of

this paper is as follows: In §1, we introduce new variational formulation of the

problem (0.1)±-(0.3). That is, we introduce a functional I(u+ +u~), whose critical

points and weak solutions of (0.1)±-(0.3) possess one-to-one correspondence. Our

functional I(u+ + u~) takes a form

(0.8)       I(u+ +u~) = |||w+||| - J||«-||| - Q(u+ +u~)E C1(E+ ® E~,R),

where E± are Hilbert spaces and Q(u+ + u~) is a convex functional such that

Q'(u+ + u~) is compact. In §2, we apply the methods of Rabinowitz [21, 22, 23] to

I(u+ +u~) and obtain the existence of infinitely many periodic solutions of (0.1)±-

(0.3) under some assumption on the growth of minimax values:

bn =  inf   sup I(q(u))    as n —7 00.
-y€r„ u€Dn

In the second part of §2, we introduce a comparison functional K(u+) on E+

(0.9) K(u+) = \\\u+\\2E-^-1\\u+\\lX\,

which satisfies K(u+) < I(u+) + C on E+ for some constant C > 0. We deal with

K(u+) to get an estimate of bn. In §3, critical points of K(u+) are constructed in

a similar way to Bahri-Berestycki [5]; max-min value /?„, which is a critical value

of K, is defined as in [5]. Using the ideas from Ambrosetti-Rabinowitz [1], we find

that Pn < bn + C. In §§4-6, we use the ideas from Bahri-Lions [6] and get an

estimate of the growth of the values f3n as n —7 00; first we establish a lower bound

of the Morse index at a critical point corresponding to /?„ (§4). Next we develop an

estimate of eigenvalues of K"(u+). Here, the notion of trace ideals plays an essential

role (§5). Lastly in §6, combining the results in §§4-5, we obtain estimates from

below of the values f3n and we complete the proof of Theorem 0.1.

Thus this paper is organized as follows:

0. Introduction and statement of result

1. Variational formulation and functional frame work

2. Minimax methods and existence theorem

3. Critical value /?n of K E C2(E+,R) and its relation to bn

4. Morse index and 0n

5. Estimate for eigenvalues of K"(u+)

6. Proof of Theorem 0.1

1. Variational formulation and functional frame work.

(a) A new variational formulation. We deal with the problem (0.1)+-(0.3). The

problem (0.1)_-(0.3) is treated similarly. Let Q = (0,?r) x (0,2tt) and \U[ = 2tt2.



618 KAZUNAGA TANAKA

For q E [l,oo) we denote by Lq the space of 27r-periodic functions of t whose qtn

powers are integrable, that is,

\\u\\q = ( /  \u(x,t)\qdxdt\      < 00.

We also use the notation

(u, v) = j  uvdxdt.
Jn

Solutions of (0.1)+-(0.3) are obtained as critical points of

*"(«)= f \hu2t-ul)-^r7W\P+1+fu\ dxdt.
Jn [2 p + 1

The quadratic wave form and the term |u|p+1 suggest a natural space in which

to treat F(u). Any smooth function u satisfying (0.2) and (0.3) has a Fourier

expansion of the form

CO CO

u = ^2   ^2   ajksinjxelkt,        aj-k = ajk.

J = l fc= —CO

We define

(u,v) = -|n|^|/c2 -j2\a3kb3k,        \\u[[2E = (u,u),

j,k

for u = Yl a-jk sin jx exkt and v = Y bjk sinjx elkt. We observe that || • \\e is a norm

on the set {u; a3k = 0 if j = [k]}. Set

E+ = spSii{smjxelht; j < \k\},

E~ = span{sinia;elfct; j > \k[},

E = E+ ®E~

where the closures are taken under the norm || • [[e- Note that (E, (■, •)) is a Hilbert

space. Further set

N = L(x + t)- c(t -x); ce LV+^S1),^ \ = o}

= Lp+1-closure of span{sinyxe±l:,t; j E N}

with Lp+1-norm || • ||p+1.

Then E+,E~,N are complementary subspaces of the space of functions sat-

isfying (0.2)-(0.3). Moreover the wave form is positive definite, negative defi-

nite and null on E+, E~ and N respectively. We will treat F(u) in the space

E+®E~®N = E®N. The space E has the following property (cf. [11, 24]):

(1.1) ||u||« < c«||«IU    for all u E E and qE [l,oo),

(1.2) the embedding E —► Lq is compact for all q E [1, oo).

Note that

(1.3) F(u + v) = ±||ti+||| - i||«-||| - ^ri[[u++u-+v[[lX\

+ (f, u+ + u~ +v)E C2(E+ ®E~ ®N, R)

for u = u+ + u~ E E = E+ ® E~~ and v E N.
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Observe that for fixed u+, u~, the functional F(u+ + u~ + v) is a strictly concave

function of v E N. So there is a one-to-one correspondence between critical points

of F and those of I. Here, /: E —► R is a functional defined by

I(u) = max F(u + v)
v€N

(1A) 1 1
= 2"U+Hi: - 2^U~^E ~ Q{u)    f0r u = u+ + u~ e E'

where

(1.5) Q(u) = min   -^—\[u + v\\pvl11-(f,u + v)      ioruEE.
v€N \_p + 1 y

Hence, in what follows we will seek critical points of I(u). Remark that Q(u) can

be also defined for all u E Lp+1 by (1.5). So we treat Q(u) as a function from Lp+1

toR.

LEMMA 1.1.   (i) For all u E Lp+1, there exists a unique v(u) E N such that

(1.6) Q(u) = -~||« + v(u)\\ll\ -(/,« + «(«)).
p+1 y

(ii) v(u): Lp+1 —► N is continuous.

(iii) Q(u) is of class C1 on E and

(1.7) (Q'(u),h) = (\u + v(u)[p-1(u + v(u))-f,h)    forallu,hEE.

In particular, Q'(u): E —► E* is compact and there are Cy = Cy([\f[[(p+y)/p) > 0

and C2 = C2(||/||(p+i)/p) > 0 constants such that for all u E E,

(1.8) \\Q'(u)[[E- <Cy([Q(u)[p^+V+l),

(1.9) [(Q'(u),u)-(p+ l)Q(u)\ < C2(\Q(u)[l/(p+V + i).

From now on we denote by C various constants which depend on ||/||(p+i)/p but

are independent of u E E.

PROOF, (i) We can easily deduce assertion (i) from the fact that

(1.10) u^_!_l|u + t;||p+j_(/,u + u)
p + i        y

is a strictly convex, coercive functional on N.

(ii) Suppose that u3 —7 u in Lp+1. We will show that v(u3) —* v(u) strongly in

N. By the definition of v(u3), we have

-L_\\u3+v(u)[[lX\-(f,u3+v(u))

(1.11) p+1   1

- pTl"^ +^Uj)Hp+i ~ (f,u3+v(u3)).

We find that {v(u3)}?Ly is bounded in N (i.e., in Lp+1). We extract a subse-

quence—still denoted by u3—such that v(u3) converges weakly to v in TV. Letting



620 KAZUNAGA TANAKA

j —* oo in (1.11), we get

-Li\\u + v(u)\\lX1y-(f,U + v(u))

- J™ (rrTllui + t,(uj)llp+i-(/.«>+«(«>)))
J —CO   \P+   1 ^ J

>^ll« + o||#i-(/>« + «)■

By the uniqueness of v(u),  we observe v  =  v(u) and lim||u + u(uj)||p+1   =

||u + r;(u)||p+1. Thus we obtain v(u3) —► v(u) strongly in TV.

(iii) By the convexity of (1.10), we find that for w E N,

(1.12) w = v(u)    iff    (|u + iu|p_1(u-|-«;)-/,c) = 0    for all c E TV.

By the convexity of the function |£|p+1/(p + 1) - /£, we have for all u,hE E and

r >0,

Q(u + rh) - Q(u) = ^i-j (||u + rh + v(u + rn)||p+l - ||u + ^(u)||p+})

+ (/, rh + v(u + rh) - v(u))

> (\u + v(u)[p~l(u + v(u)) - f,rh + v(u + rh) - v(u)).

Since v(u + rh) — v(u) E N, we get by (1.12)

(1.13) Q(u + rh) - Q(u) > r(\u + v^)!"-1^ + v(u)) - f, h).

Similarly we have,

(114) Q{u + rh)-Q(u)

<r([u + rh + v(u + Th)[p~1(u + rh + v(u + rh))-f,h).

Letting r -+ 0 in (1.13) and (1.14), we obtain (1.7). Thus Q(u) E C1(E,R).
Moreover from (1.2) and the continuity of v(u): Lp+1 —► TV, we deduce Q'(u): E —>

E* is compact. Using (1.7), we have

||Q»||B. =    sup   (lu + vfu)!*-1^+ «(«))-/,/»)

< sup   |||« + w(u)|',-1(« + i;(u))-/||(p+i)/P||%+i

< Cp+i|| |U + VW'^U + V(U)) - /||(p+l)/p.

By the Holder inequality and (1.6),

\\Q'(u)[[E. < C (^7ll« + «(«)ll?+i + l) < C'(IQ(«)r/(p+1) + !)•

Inequality (1.9) can be easily obtained from (1.6), (1.7) and Holder's inequality.

Thus we have obtained the desired results.    D

Now we can verify the Palais-Smale compactness condition (P.S.) for I(u). This

condition is required when we apply minimax methods to I(u).
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PROPOSITION 1.1. I(u) E C1(E,R) satisfies the following Palais-Smale com-

pactness condition (P.S.):

(P.S.) Whenever a sequence (u^^y in E satisfies for some M > 0,

(1.15) I(uj)<M   for all j,

(1.16) I'(u3) -► 0    in E* as j -> oo,

there is a subsequence of (u3) which converges in E.

PROOF. We have for it,- = uf + u~ E E+ ® E~ = E,
J J J

(I'(u3),h) = (uj - uj, h) - (Q1 (Uj),h)    iorhEE.

Setting h = u3 or h = uj — uj, we get

(1.17) | ||«+||i - ||«-||| - (Q'M.t^l < m[[u3\[E,

(1.18) | Huylll. - (Q'(u3),uj - u-)[ < m[\u3\[E,

where m = sup ||/'(uj)||e«.

By assumption (1.15),

(i.i9) i-h+wl-±]\u-\\E-Q(u3)<M.

It follows from (1.17) and (1.19) that

\(Q'(uj),uj) -Q(u3) < M + m[\u3[[E.

By (1.19), we get

(CT ~ l) Q{U]) ~ C2(I^K)|1/(P+1) + !) < ^ + ™\\uj[\e.

Hence we have

(1.20) Q(u3) < C(\\u3\\e + 1)   for all;,

where C > 0 is independent of j.

On the other hand by (1.8), (1.20)

[(Q'(u3),u+ -u-)[<[[Q'(u3)[\E.hj\\E

<C7(|Q(«,)|^+1) + 1)|K||£

<c(|K-||pe/(p+1) + i)IK||£.

By (1.18), we have

[[u3\\2e < m\[u3\\E + (Q'(u3),u+ - u~)

Km^U + C^u^^ + l)[[u3[[E.

Thus we find that (u3) is bounded in E.

Observe that I'(u3) = uj—u~ —Q'(u3) where Q': E —> E* is a compact operator

and I'(u3) —7 0 as j —► oo. Hence u+ — uj is precompact in E, that is, u3 = uj +u~

is precompact in E. Thus the proof is completed.    □

REMARK. We can verify that F E C2(E ® TV,R) satisfies (P.S.) in a similar

way to the proof of Proposition 1.1. The reason for introducing I(u) is as follows:
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Since Q'(u) is compact, the situation of the problem is analogous to the problem

of periodic solutions of Hamiltonian systems of O.D.E. (cf. [4, 13, 22]) and the

methods, which are used to find solutions of Hamiltonian systems, are applicable

to I(u) after a simple modification.

(b) Modified functional. Next, as in [18, 21, 29, 30], we replace I(u) by a

modified functional J(u) E C1(E,R).

Let x E C°°(R,R) such that x(0 = 1 for t < 1, x(r) = 0 for r > 2 and
-2 < x'(t) < 0, 0 < x(t) < 1 for r € R. For u = u+ + u~ E E+ ® E~ = E we set

*(«) - a(I(u)2 + l)1'2,    ip(u) = x(S>(u)-lQo(u)),

J(M) = 5llu+Hl - §««'lll - Oo(«) - tf(«)(Q(«) - Qo(u)),

where o = max{l, 12/(p - 1)} and Qo(u) E C1(E,R) is a functional defined by

(1.21) Q0(u) = min-^1[[u + v[\ppX1y    ioruEE.

We remark that as in Lemma 1.1 there is a unique Vo(u) E TV such that

Qo(n) = ^h + v0(u)[[iXl

The reason for introducing J(u) is that the first assertion of the following proposi-

tion holds for J(u) but not for I(u).

PROPOSITION 1.2.   The functional J(u) E C1 (E, R) satisfies

(i) there is a constant a = a(||/||(p+i)/p) > 0 such that for u E E,

(1.22) | J(u) - J(-u)[ < a(\J(u)[1/{p+V + l).

(ii) There is a constant Mq = TVfo(||/||(p+i)/p) > 0 such that J(u) > M0 and

\\J'(u)[\e- < 1 imply that J(u) = /(it).

The proof of Proposition 1.2 is rather technical and independent of further ar-

guments, so we prove it in Appendix A. As immediate corollaries to Propositions

1.1, 1.2, we have

COROLLARY 1.1. Whenever u E E satisfy J'(u) = 0 and J(u) > M0, then

I(u) = J(u) and I'(u) = 0.

COROLLARY 1.2. ./(it) satisfies the Palais-Smale compactness condition (P.S.)

on AMo ={uEE; J(u) > M0}.

By Corollary 1.1, we see that large critical values of J (it) are also critical values

of I(u). Hence we seek large critical values of J (it) in the following sections.

2. Minimax methods and existence theorem.

(a) Construction of critical points. In this section we construct critical points of

J(u) via minimax methods.

We observe that the eigenvalues of the wave operator d2 - d2 under periodic-

Dirichlet conditions (0.2)-(0.3) are {j2 - k2;j E N, fc € Z} and corresponding

eigenfunctions are sinjxcosfc< and sin jx sin kt. We rearrange the negative eigen-

values in the following order, denoted by 0 > -pi > -p2 > —P3 > ■ ■ ■ with

repetitions according to the multiplicity of each eigenvalue and denote by e3 the
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eigenfunctions which correspond to — p3. We assume (ei,e3) = 8i3 for i,j E N. We

find that
E+ =spSn{e3;j G N}.

We define

75+ = span{e.,; 1 < j < n}.

Note that

(2.1) \\u\\E <py2||u||2    for it € 75+.

For all u = u+ + u~ E 75+ ® E~, we have by Lemma 1.1, (A.2) (in Appendix A)

and (2.1)

'(«) = |ll«+lli - ill«~ll£ ~ QoN ~ 1>M(Q(«) ~ Qo(u))
< §ll«+lll ~ III""III - Qo(u) + C(Qr»1/(p+1) + 1)

<h\\"+\\l-hQo(u)-k\\u-\\E+c
= |ll«+lll - 2(p + l)-1!^ + v0(u)[[lX\ ~ |||«-||| + C

<\[]U+[[2E-C\[U++U-+V0(U)[[P+1-\[[U-[[2E+C

<hWU+\\2E-CWU+\\2+1-hh~fE + C

<\\\U+[[1-CP-^>[[U+[[PE+1 ~ \\\U-[?E + C

Hence there is a constant Rn > 0 such that

(2.2) J(u)<0    for all it € 75+© 75_ with \\u\\E > Rn.

We may assume that Rn < Rn+i i°r an n-

Let

BR = {u E E; [\u\[E < R}    for R > 0,

Dn = BRn<l(E+®E-),

Tn = {1E C(Dn,E); 7 satisfies (7l) - (73)},

where

(71) 7 is odd, i.e., ir(—it) = — *)(u) for all it E Dn,

(72) l(u) = u for all it E dDn,

(73) for u = u+ + u~ E Dn, l(u) = a(u)u + k(u) where a E C(Dn, [1, a]) is an

even functional (a > 1 depends on 7) and k is a compact operator such

that a(it) = 1 and k(u) = 0 on dDn-

Moreover, set

Un = Dn+y n {it € 75; (it, en+y) > 0},

An = {A E C(Un,E); A satisfies (Ai)-(A3)},

where

(Ai) A|D„ern,

(A2) A(it) = uon dUn\Dn,

(A3)  for it = it+ +u~ E Un, X(u) — a(u)u + k(u) where a E C(Un, [l,a]) (a > 1

depends on A) and tc is a compact operator such that a(u) is even on Dn,

a(u) = 1, k(u) = 0 on dUn\Dn-
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Define for n E N,

(2.3) bn =  inf   sup J(7(it)),    cn =  inf   sup J(X(u)).
iern „££>„ *€A„ ueUn

The above definitions are analogous to those of Rabinowitz [21, 23] and Pisani-

Tucci [18], which are used to prove the existence of multiple critical points of

perturbed symmetric functionals. By the definitions it is clear that cn > bn- In

case c„ > bn we have the following existence result for critical points of /(it).

PROPOSITION 2.1 (cf. Lemma 1.57 of Rabinowitz [21]). Suppose that cn >

bn > Afo- Let d E (0,cn — bn) and

An(d) = {XE An; J(X) <bn + d on Dn}.

Define

(2.4) cn(d) =    inf     sup J(A(u))    (> cn).
A€A„(d) ueU„

Then cn(d) is a critical value of /(it).

SKETCH OF THE PROOF. Since Corollary 1.1 holds, we shall show that cn(d) is

a critical value of J(it). Remark that J(u) satisfies (P.S.) condition (Corollary 1.2)

and J' (u) is an operator of the form:

J'(u) = (1 + Ty(u))(u+ - u~) + (compact)

where |Ti(u)| < \ on {u E E;J(u) > Mo} (see Lemma A.3). Hence we can use

the following Lemma 2.1.  Using this lemma, we can prove Proposition 2.1 as in

[21].    D

LEMMA 2.1 (cf. Lemma 1.36 of [22], Proposition 2.33 of [23]). Sup-
pose that c > Mo is a regular value of J(u), that is, J'(u) ^ 0 when J (it) = c.

Then for any e > 0 there exist an s E (0,e] and n E C([0,1] x E, 75) such that

1°  r)(t, ■) is odd for all t E [0,1] if f(x, t) = 0.
2°  r](t, ■) is a homeomorphism of E onto E for all t.

3°  n(0,u) = u for alluEE.

4°  n(t,u) = u if J(u) $. [c — £,c + e].

5°  J(n(l,u))<c-eifJ(u)<c + e.
6°  Foru = u+ + u~ E E+ ® E~ = E, n(l,u) = a+(it)it+ -|-a~(u)ii~ + k(u)

where a+ E C(E, [0,1]), a~ E C(E, [l,a]) (a > 1 is a constant) and k is

a compact operator.    □

Therefore, the existence of subsequence of cn's which satisfy cn > bn > M0 guar-

antees the existence of critical values. In what follows, we will show the existence

of subsequence (n3) such that

(2.5) cnj > bnj > M0   for j E N,

(2.6) 6n   —7 oo    as j —7 oo.

Arguing indirectly, we have the following proposition.
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PROPOSITION 2.2. If cn = bn for all n > n0, then there is a constant C > 0

such that

(2.7) bn < Cn(p+1)/p    for all n E N.

PROOF. Using (i) of Proposition 1.2, the proof is as in Lemma 1.64 of [21].    □

To show the existence of subsequence (n3) satisfying (2.5), (2.6), we will prove

the existence of a sequence (n3) such that for any e > 0 there is a Ce > 0 satisfying

(2.8) bn,■> C£njp+1)/(p"1)-£    forallieN,

which contradicts (2.7).

(b) Comparison functional. To verify (2.8) we need some comparison functional.

By (A.2) and the definition of Q0(u), we have for it = it+ + u~ E E = 75+ ©75~,

■/(«) = ^ll«+lli; - |||«-||i - Qo(u) - rP(u)(Q(u) - Q0(u))

>\h+\\E-\\\u-\\E-2Qo(u)-ay

(2.9) = -Jllu+Hl; - dMI2; - —— min ||ti+ +u~+ v\\ppX\ - ay
I L P+1 v€N y

^^[[l-lh-fE-^-^+u-^Xl-ay
•^   1||   +n2        1 n   — ii 2 a0    ii   -t-iip+1 a0    ii   -iip+1
>5ll«+Ui-j1l«   Bl-_|,.+ |H:1-_n:||tt   [[ppXy~ay,

where ao > 0, ay > 0 are constants independent of it. We set

(2.10) *(«+) = i||«+||i - ^jllti+llSi e C2(75+,R).

Then we have

Lemma 2.2.
(i) J(u+) > K(u+) - ay for all u+ E E+.

(ii) K(u+) satisfies the Palais-Smale condition on E+.

PROOF, (i) By (2.9), the first assertion is obvious.

(ii) Since the embedding 75+ —► Lp+1 is compact, the proof is done in the

standard way (cf. Proposition 1.1).    □

In the next section, critical values /?„ of K(u+) satisfying /3n < bn + ay will be

constructed and we will prove (2.8) for (3n instead of bn in §§4-6.

3. Critical value /?„ of K E C2(75+,R) and its relation to bn.

(a) Bahri-Berestycki's max-min value /?„. In this section, we are concerned with

the functional K(u+) E C2(E+,R). We define family of mappings and max-min

values Pn as follows. These definitions are analogous to those of Bahri-Berestycki

[4,5], which are used to prove the existence of forced oscillations for superquadratic

Hamiltonian systems. In the later sections, we state index property of these max-

min values, which play an important role in verifying (2.8).

For rn > n, n, m E N, set

(3.1) A™ = {a E C(Sm-n, 75+); a(-x) = -<r(x) for all x},

(3.2) ffi =  sup     min   K(a(x)).
<reA" xesm~n
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Some properties of these numbers PZ are listed in the following proposition.

PROPOSITION 3.1.

(i) 0 < PZ < p™+l < oo for all m, n;

(ii) for all n E N, there exist u(n) and v(n) such that

(3.3) 0 < u(n) < PZ < D(n) < oo    for all m > n + 1;

(iii) moreover, v(n) —> oo as n —* oo.

PROOF. Note that for any 9 E (0, l/(p + 1)) there exists Ce > 0 such that

(3.4) ||u||p+1 < Cep-6[\u\\E    for all u E (E+)x.

Using (3.4), the proof is essentially as in Proposition 3.1 of [5].   We prove it in

Appendix B.    □

As in Proposition 1.1, we can verify the following compactness conditions (P.S.)»,

(P.S.)TO (meN) for K(u+).

(Pg ) H(um) C 75+ satisfies itm E 75+, K(um) < C and ||(#|E+ )'(um)\\(E+y

—> 0 as m —> oo, then (um) is relatively compact in 75+;

.       . If (u3) C 75+ satisfies K(u3) < C and (K[E+ )'(u3) —> 0 as j —► oo,

then (uj) is relatively compact in 75+.

We have the following result via standard argument.  (Remark that K is an even

functional.)

PROPOSITION 3.2. Suppose that v(n) > 0. Then /3™ is a critical value of the

restriction of K to 75+. Furthermore, the limit of any convergent subsequence of

PZ as m —* oo is a critical value of K.    □

By (3.3), we can choose a sequence (m3) such that m3 —► oo as j —* oo,

(3.5) pn = hm Pn' exists for all n E N.
J—*oo

We find by Proposition 3.1 that

1° pn is a critical value oi K E C2(E+, R) for each n;

2° Pn < Pn+i for all n;

3° Pn —' oo as n —► oo.

Next we state the relation between bn and pn.

(b) The relation between bn and Pn- The main result in this section is as follows:

Proposition 3.3. ForallnEN,

(3.6) bn>pn-ay,

where ay is the number which appeared in (2.9).

To prove the above proposition, we need several lemmas. First we state a version

of the Borsuk-Ulam theorem.
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LEMMA 3.1. Leta,bEN. Suppose that hEC(Sa,Ra+b) and gEC(Rb,Ra+b)

are continuous mappings such that

(3.7) h(-x) = - h(x)    forallxESa,

(3.8) g(-y) = - g(y)    for all y E Rb,

(3.9) there is a ro > 0 such that g(y) = y for \y\ > ro.

Thenh(Sa)C)g(Rb)^0.

PROOF. We choose R>ro such that R > maxx€sa \h(x)\- Write

Da+1 = {txERa+1; tE[0,l], xESa},

Db = {yERb; \y\<R}.

Define F E C(d(Da+1 x Db),Ra+b) by

F(tx,y) = th(x)-g(y).

This is well defined and odd on d(Da+1 x Db). Remark that d(£>a+1 x Db) ~ Sa+b

(odd homeomorphic). Thus by the Borsuk-Ulam theorem, there is a (toXo,yo) E

d(Da+x x Db) such that

F(toXo,yo) = 0,    i.e.,    t0h(x0) = g(yo).

Since d(Da+l x Db) = Sa x Db U Da+1 x dDb, the following two cases should be

considered:

1° t0 = 1, xo € 5a and y0 E Db;

2° t0 E [0,1), x0 E Sa and y0 E dDb.

Case 1. We have h(x0) = g(y0). So we have h(Sa) n g(Rb) ^ 0. This is the

desired result.

Case 2. Since g(y) = y on dDb, we have |o(i/o)| = [yo\ = 7?. On the other

hand, by the choice of R, we get ItoM^o)! < 7?. These are incompatible with

toh(xo) = g(yo)- So this case cannot take place.    D

From the above lemma, we can deduce the following

LEMMA 3.2.   For all^ETn and a E AZ,

((Pml)(Dn) U{uEE+®E~; Hulls > Rn}) n a(Sm~n) jt 0,

where Pm: E = 75+ © 75~ —► 75+ © 75~ is the orthogonal projection.

PROOF. We extend 7 to 7 E C(E+ ®E~,E) by

7(u) = 7(w)    if Hi/He < Rn,

7(u) = u    if ||u||£ > Rn.

Obviously, 7(u) is well defined and odd in 75+ © 75_ and

Fm7(75+ ®E~) = Pml(Dn) U {u E 75+ © E~; \[u[\E > Rn}.

Therefore, it suffices to prove Pm7(75+ © 75") n cr(5m_n) ^ 0.   We rearrange

{sin jx cos kt, sin jx sin kt; j > |fc|} as follows, denoted by fy,f2,h,_We set for

lEN

E{~ = span{/,; 1 < j < 1}
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and let Pm,t: E = 75+ © 75~ —* 75+ © 75,_ be the orthogonal projection. Consider

the operators

a, Sm-n ^E+EE+® E-,    Pmtf. E+ 8 E- ->E+® Ef.

Applying Lemma 3.1 for h = a and g = Pm,il (obviously (3.7)-(3.9) are satisfied),

we get for some x\ E sm~™ and u; E 75+ © 75,_,

(3-10) a(xi) = Pm,n(ui).

Since gm_n is compact, there is a subsequence nj such that

(3.11) xh^x   in5m-",

(3.12) a(xh)-+<T(x)    in 75+.

On the other hand, by (73)

Pm,a(ui) = Pm,t[a(ui)ui + K.(ui)\ = a(ui)ui + Pm,;/c(u/),

where a(ui) > 1 on 75+ © 75~ and k(75+ ©75~) = k(Du) is compact.  Hence we

have

Ul = —7—:Pm,i[l(ui) - k(ui)] = —r^kPmti[a(xi) - k(ui)}.
a(ui) ot(ui)

By (3.12), (u() has a convergent subsequence (uj.), that is,

(3.13) u._,-7U   in75+©75_.

Passing to the limit in (3.10), we obtain from (3.11), (3.13)

Pmi(u) = a(x),    i.e.,    Pm7(75+ffi75-)ncr(Sm-")^0.

Thus the proof is completed.    □

PROOF OF PROPOSITION 3.3. Since J(u) <0on {uEE+®E~; Hulls > Rn},
we have from Lemma 3.2

min    J(a(x)) <  sup J(Pmq(u))

for all 7 E Tn and a E AZ-

By (i) of Lemma 2.2,

min   K(a(x)) — ay<  sup <7(Pm7(u)).
x€Sm-" uED„

Hence we obtain

sup     min   K(a(x)) — ay <   inf   sup J(Pm7(u)),
aeAmx€Srn-n Ter„u€Cn

i.e.,

(3.14) PZ - ay < bZ =  inf   sup J(Pml(u)).
7Gr„u€Dn

Letting m = m3 —► 00, we get

(3.15) Pn-ay < lim sup 6™.
m—700

Thus, to get (3.6), it suffices to show the following lemma.    □
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LEMMA 3.3.   For n E N, bn = limm_oo bZ ■

PROOF. Since PmTn = {Pm7; 7 E Tn} C Tn, it is clear that bn < bZ for m>n.

Let us prove

bn > lim sup bZ    for n E N.
m—* 00

From the definition of bn, for any e > 0 there is a 7 E Tn such that

(3.16) sup J(i(u)) <bn + e.
u€Dn

By (73), 7(u) takes a form: 7(u) = a(u)u + k(u), where a(u) E C(Dn, [1,5]) and

k(Du) is compact. Since

Pm/c(u) —7 k(u)    as m —7 00 uniformly in Dn,

we have

Pml(u) = a(u)u + Pmn(u) —> a(u)u + k(u) = 7(u)    uniformly in Dn-

Hence

(3.17) sup J(Pm~i(u)) —7  sup y(7(u))    a^m-too.
u€D„ u£Dn

By (3.16), (3.17), we obtain

lim sup bZ < limsup sup J(Pm^(u))
m—7CO m—700   u£Z?„

=  sup J(7(u)) < bn + £■
ueDn

Since the above inequality holds for any e > 0, we get the desired result.    □

Thus, combining (3.15) and Lemma 3.3, the proof of Proposition 3.3 is com-

pleted.

REMARK. In this section the idea from Ambrosetti-Rabinowitz [1] is used to get

Proposition 3.3. More precisely, let us consider

AZ = {a E C(Sm~n, E+ ® E~); a(-x) = -a(x) for all x E Sm-n},

PZ =  sup     min    J(a(x)).
^eim a:€S»-»

This is a dual version (in the sense of [1]) of minimax value:

bZ = p   inf        sup J(Pml(u)).

(Compare with Theorem 2.8 and Theorem 2.13 of [1].) Moreover we have bZ > PZ-

Since AZ C AZ, we deduce (3.14) from (i) of Lemma 2.2.

4. Morse index and /?„. In this section, some index property of max-min value

pn is discussed. Combining the estimates of eigenvalues, which will be studied in §5,

we will get the growth estimate PUj > C£n^p ,/lP~ >~£ for a suitable subsequence

(Pn,)- By Proposition 3.3, we obtain (2.8).

For u E 75+, we define a index of K"(u) by

index K"(u) = the number of eigenvalues of K"(u)

which are nonpositive.
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That is,

index K"(u) = max{dim//; H C 75+ subspace such that

(K"(u)h,h) <0ior hEH}.

This is a generalization of a Morse index (cf. Bahri-Lions [6]).

The main result in this section is the following

PROPOSITION 4.1. Suppose that Pn < Pn+i- Then there exists a un E 75+

such that

(4.1) K(Un) < Pn,

(4.2) K'(un) = 0,

(4.3) index K"(un) > n.

Since pn is a critical value of K(u), the result without assertion (4.3) is obvious.

To get (4.3), we first consider finite dimensional case.

PROPOSITION 4.2. Suppose that PZ < PZ+y, m> n+1. Then there exists a

uZ E 75+ such that

(4-4) K(uZ) < PZ,

(4.5) (K\EJ(uZ) = 0,

(4.6) index(K\E+)"(uZ) > n.

To prove the above proposition, we adapt a classical theorem from Morse theory,

i.e., a result concerning the relationship between certain homotopy groups of level

sets of a functional and its critical points. Since we must treat the case where

critical points may be degenerate, we use the following approximation result due to

Marino-Prodi [16].

PROPOSITION 4.3 (Marino-Prodi [16], cf. Proposition 2.3 of Bahri-

Berestycki [5]). Let IJ be a C2 open subset of some Hilbert space H and let

4> E C2(U,R). Assume that <f>" is a Fredholm operator (of null index) on the critical

set Z(<j>) = {x E U; 4>'(x) = 0}. Lastly, suppose that tp satisfies the condition (P.S.)

and that Z(<p) is compact. Then, for any e > 0, there exists ip E C2(U, R) satisfying

(P.S.) with the following properties:

(i) ip(x) = 4>(x) if distance {x,Z(tf>)} > e;

(ii) \rp(x) - <p(x)\, W(x) - 4>'(x)[[, [W(x) - <t>"(x)[[ < e for all xEU;
(iii) the critical points of ip are finite in number and nondegenerate.    D

We remark that K[E+ E C2(75+,R) satisfies (P.S.) and that all critical values

of K\E+ are nonnegative, in fact, suppose that u E 75+ is a critical point of K\E+,

then we have

K(u) = K(u) - \((K\E±)'(u),u) = Q - ^j aoMlXl > 0.
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On the other hand, there is a constant Rm > 0 such that Ti'(u) < 0 for u 6 75+ with

\\u\\e > Rm- Therefore Z(K[E+) is compact. Applying Proposition 4.3 to K[E+,

for all e > 0 there exists a <j>£ E C2(75+,R) satisfying (P.S.) with the following

properties:

(4.7) \<p£(u) ~ K(u)\, U'£(u) - (K\EJ(u)\\, ||^'(u) - (K\E+)"(u)\\ < e

for all u E 75+;

(4.8) the critical points of <fi£ are finite in number and nondegenerate.

We set for m > n and e > 0

PZ(e) =  sup     min   <j>£(o(x)).
o-eAm x&s™-"

By (4.7)
PZ-e<PZ(e)<PZ + e.

Moreover, we have

LEMMA 4.1.   Suppose that a£ E R satisfies

PZ(e)<a£-2e<a£<PZ+y(e).

Then

(4.9) Trm-n-i([^e > a.£]m,p) ^0   for some pE[(p£>a£]m,

where

[4>e > a£]m = {uE E+;4>£(u) > a£}.

PROOF. We argue by contradiction and suppose that

Tm-n-i([<Ae > a£]m,p) = 0   for all pE[<p£> a£]m.

By the definition of PZ+y(e), there is a tr £ AZ+1 such that cr(5m_n_1) C

[<t>e > a£]m. Since 7rm_„_1([<pe > a£]m,p) = 0, there is a homotopy

(4.10) H: [0,1] x r-""1 -» [<t>£ > a£]m

such that

H(0,x)=o-(x),    H(l,x)=p   forallxeS"1-"-1.

Write
gm-n = ^ %yt % g Rm-^ f g R   ^2 + f2 = ^

Defines: Sm~n ^75+ by

p for t = 1, z = 0,

(4.11) *fc,)=J *<'•*« **<><< <1,
; -H(-t,-x/[x[)    ior -Kt<0,

— p for t = —1, x = 0.

By (4.10), we get £(5™"") C [4>£ > ae]m, where we denote Sf£~n = {(t,x) E
Sm~n;t^0}.

On the other hand, we obtain from (4.7) and evenness of K(u) that

[<j>£(-u)-<j)£(u)\<2e   ioruEE+.
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So we have a(SZ~n) C [<p£ > as - 2e]m. Thus we get a(Sm~n) C [4>£ > a£ - 2e]m.

From the definition of 0Z(e),

PZ(e)>    min    cf>£(cr(x)) > a£ - 2s.
xesm_n

But this contradicts with the assumption. Thus the proof is completed.    □

By the property (4.8) we can apply a classical theorem from Morse theory to qb£.

Applying it, we obtain

LEMMA 4.2 (Proposition 2.2 of Bahri-Berestycki [5]). For a regular value

a E R of 4>£, set

L(e;a) = max{index (p£(x); <p£(x) < a,<p'£(x) = 0}.

Then

(4.12) ni([<f>£ > a]rmP) = 0   for all pE[(f>£ > a]m and I <m —L(e;a)— 2.

PROOF. Let b E R, b < a be such that <j>£ has no critical values in (—00,6]. By

the "noncritical neck principle" (cf. Theorem 4.67 of Schwartz [25]), [(j>£ > b]m is a

deformation retract of /5+. Hence

nt([4>£ > b]m,p) = 0   for all I E N and for all p.

Using Theorem 7.3 in Schwartz [25], we obtain

ni([(j>£ > b]m,[(p£ > a]m) = 0   for / < m- L(e;a) - 1.

Using the homotopy exact sequence:

-7 7r>+i([</>£ > b]m, [<t>£ > a]m) -+ 7r.([(/)£ > a]m,p) -7 iri([(p£ > b]m,p)

-> *l([<Pe ^ b\m, [4>e > «]m) ~* ' • ■

we obtain (4.12).    □
PROOF OF PROPOSITION 4.2. Since PZ < PZ+i and (4-8) holds, there is a

sequence a£ E R (0 < e < eo) such that

(4.13) a£ is a regular value of <f>£,

(4.14) PZ(e)<a£-2e<a£<PZ+1(e),

(4.15) a£ -^ PZ    ase-> 0.

Apply Lemmas 4.1 and 4.2, compare (4.9) and (4.12), then we observe

L(e; a£) > n   for 0 < e < £o-

Therefore there is a u£ E /5+ such that

(4.16) <t>£(u£) < a£,

(4.17) 4>'£(u£)=0,

(4.18) index <p"(u£) > n.

It follows from (4.7) that (u£) satisfies

K(u£) is bounded    as e —7 0,

(K[E+)'(u£) -.0     ase^O.
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Since K\E+ satisfies (P.S.) on 75+, we can choose a convergent subsequence u£j —►

un  (£j -"0). Obviously (4.4)-(4.6) follow from (4.7), (4.15)-(4.18).    □
Proof of Proposition 4.1. Since pn < pn+i, we have Pn' < /C+i for

sufficiently large j. Hence there is a u™j E 75+ satisfying (4.4)-(4.6) by Proposition

4.2.  Since K E C2(75+,R) satisfies (P.S.)*, (u™3) has a convergent subsequence

(u™j). Let un = limu™j'■ Then (4.1), (4.2) follow from (4.4), (4.5) easily. Let us

prove (4.3). First of all, we have

(4.19) index K"(v£) > index(rr|E+)"(Un)    for all m E N.

On the other hand, we observe that K"(un) is an operator of type: K"(un) =

id + (compact). Hence there exists an e > 0 such that for h E 75+

(K"(un)h, h)<0   if and only if   (K"(un)h, h) < e[[h[[2E,

i.e.,

(4.20) index K"(un) = index(K"(un) - e).

Since K E C2(E+,R), we have for some jb,

[\K"(unj')-K"(un)[[<e   for j'> j0.

Thus for j' > j0 and A € 75+,

(K"(un)h,h) -e[[h[[2E < (K"(un'')h,h).

That is,

(4.21) index(K"(un) - e) > index K"(unj').

Therefore (4.3) follows from (4.6), (4.19)-(4.21). Thus the proof is completed.    □

5. Estimate for eigenvalues of K"(u+). The aim of this section is to get the

following estimate (5.1). Combining (5.1), (4.1)-(4.3) and (3.6), we will obtain the

desired estimate (2.8) in the next section.

PROPOSITION 5.1. For any e > 0 there is a constant C£ > 0 such that for
uEE+,

(5.1) index K''(u)<C£[[u[\\ppZ\]\\Xe£].

Note that for u, h E 75+,

(5.2) (K"(u)h, h) = \[h[\2E - paodur1/*, h).

From the definition of index K"(u), it is clear that

(5.3) index K"(u) = max {dim//;// c 75+ subspace such that

pao([u\p-lh,h)>[[h\\2EiorhEH}.

We define an operator D: L2 —* E+ by

(5.4) (Dv)(x,t) = £ (k2-j2)-^ajksinjxeikt,

j<\k\

for v(x,t) =     2^    Ojk sm jxetkt.

j€N,/ceZ
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It is easily seen that D is an isometry from L\ = L2-closure of span {sin jxeikt;j <

\k[} to 75+ and D = 0on L2-closure of span{sinyxetfct;j > |fc|}. Setting h = Dv

in (5.3), we get

index K"(u) = max {dim//; 7/ c L2 subspace such that

pao([u\p~lDv, Dv) > [\v[[\ for v E H}
(5.5)

= the number of the eigenvalues of D*(pao|u|p    )D

which are greater than or equal to 1.

For the above reason, we are concerned with an operator Ty,e: L2 —> L2 defined by

(5.6) Tv,ev = V(x, t) ^^ Qjka3k sinjx elkt    for v = ^ a3k sinjx elkt,

j,k j,k

where V(x, t) is a function on fi and 6 = (93k) is a sequence on N x Z. If we set

(5.7) V'(x,0 = v/^oH(P"1)/2'

(5.8) ^, = {f-«-'/J    «><«.
10 ifj>|fc|,

then

(5-9) D*(paQ\u\^)D = T^fyiS.

To analyze the operator Ty,e, we need notion of trace ideals (cf. Simon [26, 27]).

DEFINITION. Let A: L2 —► L2 be a compact operator. The singular values of A,

sn(A) are the eigenvalues of |j4| = \/A*A listed according to sy(A) > S2(A) > •■ .

For 1 < q < cc, A is said to lie in trace ideal Iq if and only if

/ oo X 1/9

Plk=(I>nW)       <0°    forl<<?<oo.

For q = oo, we set /<» =the set of bounded linear operators: L2 —► L2 and

WMioo =sup{||Au||2;||u||2<l}<oo.

The following properties of trace ideals are known (cf. [26, 27]):

1° I^ is the Hilbert-Schmidt class on L2;

2° Let B denote the family of orthogonal sequences in L2, then

(5.10) 11,41,,= SUp [J2\(4>n,AiPn)A .
W,W€B V n J

When q = 2, for any complete orthogonal sequence {ip} in L2;

(5-11) U[[l2=\y^\[AlPn\\l\        ■

3° For q > 2, A E Iq if and only if A* A E Iq/2 and

(5.12) 11-411?, = ll^lk/2-
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We denote by lq = /*(N x Z) the space of sequences 6 = (6jk) which satisfy

ll*lli« = (Ey,fc IM9)1 * < °°       fOT 9 € [l,oo),

||0||;oo = supJifc |tfjfc| < oo for q = oo.

The following estimate for Tv,e is a consequence from the interpolation theory.

PROPOSITION 5.2. Suppose that V E Lq and 9 = (Ojk) E lq for q E [2,oo].

Then Ty,o E Iq and there exists a constant Cq > 0, which is independent of V and

6, such that

(5.13) Pvfih, < C,||V||, ||0||i,    for all V and 6.

PROOF. First we deal with the case q = 2. Setting {ip} = {(1/n) sinjxelkt} in

(5.11), we get

3,k

(5.14) = 52^\\V(x,t)8jkSinjxeikt\\l
j,k

j,k

Next we deal with the case q = oo. For v = J2ajk sinjx elkt,

[\Tv,evh =   V(x,t)^2e3ka3ksinjxeikt

^ II^IU \\J203kajk sinjxeikt

<||V||oo||*||i-|M|a.

That is,

(5.15) l|rv,«||/00= sup ||rv,9«||2<||v||oo||fl||ic..
Il«lla=l

Lastly, we prove (5.13) for general 2 < q < oo. Fix {cp}, {ip} E B and consider the

operator: L" x lq - lq defined by (V,9) -» {(0„,Ty,B^„)}neN. By (5.14), (5.15)
we get

||(0n,Tv,^»)||«>  < \\TvM\h  < T_1H^I|2 ||*||l»,

[\(<Pn,Tv,eipn)\\i°° < \\Tv,eh~ < Halloo ||0||i~-

By the complex interpolation (cf. [8]), we get for q E (2, oo)

||(0n,2V,^n)||/«  <C,||V|U|0||„,

where Cq is a constant independent of {<p}, {ip} E B. By (5.10), we get the desired

result.    □

Now we can prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. Since Tv6TVfi is a positive selfadjoint operator,

\\ThTvAiq/2=(/ZK/2) iorq>2,
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where An are the eigenvalues of TveTv,e- Hence we have from the definition of /,

and (5.12)

the number of the eigenvalues of TveTv,g which are

greater than or equal to 1

<\\Tv,eTvAi2/2 = \\Tv,e\\%    for <? > 2.

Set V and 0 as in (5.7) and (5.8). Then we have from (5.5), (5.9)

(5.16) index K"(u) < [\Ty ̂     for q E (2,oo].

Note that for any q E (2, oo]

ue, = E (fc2 - ;2)"*/2 =2 E (0'+oa - j2rq/2
j<\k\ j,i€N

= 2 J2 rq/2W + i)~q/2 < E rql2j'q'2 < oo.
3,1 j,i

That is 0 E lq for any q E (2, oo]. We deduce from (5.13) that

index K'\u)<[[Tv0g<Cq[\e[\U\V\[qq

<^iiM(p-1)/2ii2<c;ii«iig:i]g.

Since q > 2 is arbitrary, we obtain the desired result.    D

REMARK. The result developed in this section is a modification of the result

concerning the elliptic eigenvalue problem:

j  - XAu = V(x)u    in fi,

1 u = 0 on dfi,

where fi C RN is a bounded smooth domain and V(x) E LNf2.   The following

estimate is obtained by Birman-Solomjak [9]:

the number of eigenvalues (> 1) < CW,n||I/||jv/2-

Roughly speaking, under the condition (5.8) Proposition 5.2 deals with the eigen-

value problem for the equation:

-XUu = P+(V(x,t)2u)    for uEL\,

where P+: L2 —> L\ is the orthogonal projection.

6. Proof of Theorem 0.1. Using results in previous sections, we complete the

proof of Theorem 0.1.
PROOF OF THEOREM 0.1. By Propositions 2.1 and 2.2, we see that (2.8)

ensures the existence of an unbounded sequence of critical values of I(u). That is,

there exists a sequence (un) C E of critical points of I(u) such that

(6.1) /(«„) = |||u+|li - jlKlli - —jK + ffaOlljE

~ (/i un + v(un)) -»oo    as n —7 oo.
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Since I'(un) = 0, we have

(l'(un),Un) = ||u+|||; - Hu^Hl

(6.2) -(|un + i;(un)|p_1(un-(-i;(un)) - f,un + v(un))

= 0.

By (6.1), (6.2), we obtain

(6.3) f--— J Hun + w^n)!!^1 --(/,un + i;(un))-too   as n-7 oo.

We remark that the weak solution of (0.1)+-(0.3), which corresponds to un, is

un + v(un). It follows from (6.3) that

||un +i;(un)||p+i —> oo    as n —► oo.

This is the desired result. So we shall show (2.8).

By Proposition 3.3, it suffices to show the existence of a sequence (nj) with the

following property: for any e > 0 there is a C£ > 0 such that

(6.4) ^ > <5enjp+1)/(p-1)-£    foryeN.

Since /?„ —► oo as n —> oo, there is a sequence (n3) such that Pn   < Pn +i- Applying

Proposition 4.1, there are u3 E 75+ such that

(6.5) K(u3)<pnj,

(6.6) K'(u3) = 0,

(6.7) index K"(u3) > n3    for ; E N.

Next applying Proposition 5.1, we get

G |U,  ||(P-l)(l+e) >r).
W||"j||(p_i)(i+£) d. n3.

Choosing e E (0,2/(p — 1)), we obtain

(6-8) ||u,||p+l > C|K||p+.!1)(1+£) > (7^+1><"-1)-l<1+e>-1    for j E N.

On the other hand, we have by (6.6)

(6.9) (K'(u3),u3) = ||u,HI - ao[[u3[[ppX\ = 0.

By (6.5), (6.9), we obtain

a      ^  vi     \        1 ll      ii2 a0    n      np+1
Pn,  > K(Uj) = -\[U3\[E ~ ^j-j-IKIIpIl

-(i-^l)«*''W-
Therefore by (6.8), we conclude

Pn,>Cen{p+1)/(p-1]-e    forallieN.

Thus the proof of Theorem 0.1 is completed.    □
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REMARK 6.1. After a slight modification, our method is applicable to more

general equation:

(6.10±) utt-uxx±g(x,t,u) = f(x,t),        (x, t) E (0,rr) x R,

(6.11) u(0,t)=u(n,t)=0, tER,

(6.12) u(x,t + 2rr) = u(x,t), (x,t) E (0,tt) x R,

where j£C([0,ir]xRxR)isa 27r-periodic function of t.

THEOREM 6.1.   Assume that g(x,t,£) satisfies

(ffi)       9(x, t, £) is a strictly increasing function o/(£R,

r   \       there exist p > 2 and r > 0 such that 0 < p f£ g(x,t,r)dr <

£g(x, t, £) for all (x, t) E fi and |£| > r,

,   ,        there exist p > 1, Cy,C2,C3,C4 > 0 such that Ci|£|p - Ci <

[93>       \g(x,t,£)\ < C3\Z\P + C4 for all(x,t)EQ and £ E R,

(94)       g(x, t, — £) = — g(x, t, £) for all (x, t) E fi and f E R.

Then, for all f(x,t) E /,(p+1)/p, (6.10)±-(6.12) possesses an unbounded sequence

of weak solutions in Lp+1.

REMARK 6.2. In Theorems 0.1 and 6.1, we treat the problem (6.10)±-(6.12) as

a perturbation from a Z2-equivariant equation: uu — uxx ± g(x,t,u) = 0. In "+"

case we may act on S1-symmetry. That is, we assume that

(04) g = g(x, £) is independent of t,

instead of (94) and we define 51-action on E by

(Teu)(x,t) = u(x,t + 0)    for ueE and 6 E [0,2tt) =■ S1.

Note that when / = 0 equation (6.10)+-(6.12) is S1 -equivariant. We treat the case

/^Oasa perturbation from S1 -symmetry and we obtain

THEOREM 6.2. Assume that g satisfies (gy), (g2), (93), (94)- Then, for all

f(x,t) E L(p+1)/p, (6.10)+-(6.12) possesses an unbounded sequence of weak solu-

tions in Lp+1.

The proof of the above theorem is done in a similar way to the previous sections

but we act on S ^symmetry. As to minimax arguments for a perturbation from S1-

symmetry, see Long [32] (cf. Rabinowitz [22, 23] and Pisani-Tucci [18]). Using S1-

version of Borsuk-Ulam theorem (Fadell-Husseini-Rabinowitz [14] and Nirenberg

[33]), analogous results to §3 can be obtained. As to S1-version of the result of §4,

see Bahri-Berestycki [5].
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Appendix A. The purpose of this appendix is to prove Proposition 1.2. To do

so, we need the following lemma.

LEMMA A.l.   There is a constant C = C(^f][(p+y)/p) > 0 such that for uE E,

(A.l) |Q(«)|<C(Qo(u) + l),

(A.2) |Q(u) - Q0(«)| < C(Q0(ii)1/(p+1) + 1).

PROOF. By the definition of Q(u),

(A.3)

Q(u) - Q0(u) = min [-J-||u + i,||£i - (/,u + v)] - --~r||t«+ «o(u)||£l
v€N    p+l P+1

< -(f,U + V0(u)) < ||/||(p+l)/p||u + fo(«)llp+l

<<5QoK)1/(p+1).

Similarly we have

(A.4) Q(u) - Qo(u) > -C(|Q(u)|1/(,,+1) + l).

Obviously (A.3) implies (A.l). By (A.l), (A.4) we have

Q(u) - Q0(u) > -C(QoH1/(p+1) + 1).

Thus we get (A.2) from the above inequality and (A.3).    □

Setting / = 0 in Lemma 1.1, we have for u,hE 75,

(A.5) <<%(«).'»> = (|u + t*(u)|J,-1(« + «b(ti)),/0,

(A.6) \\Q'o(u)\\e' < C(Qo«/(p+1) + 1),

(A.7) (Q0(u),u) = (p+l)Qo(«).

PROOF OF (i) OF PROPOSITION 1.2. From the definition of J(u), we have

(A.8) \J(-u) - J(u)\ < iP(u)\Q(u) - Q0(u)\ + ip(-u)[Q(-u) - Q0(-u)\.

Suppose that -u E suppV>, i.e., Qo(u) < 2$(-u) = 2a(/(-u)2 + l)1/2. From the

definition of J(u),

I(-u) = J(u) + (Q0(u) - Q(-u)) - iP(u)(Q(u) - Q0(u)).

By Lemma A.l, we get

|/(-u)|<|J(u)|+C(QoH1/(p+1) + l)

^IJWI + WM1^1'.

Using Young's inequality, we deduce that

|/(-u)|<2|j(u)| + a

Hence we get

(A 9) Qo(u) < 2*(-«) = 2a(/(-u)2 + l)1/2

<C[J(u)[+C   for -u Esnpptp.

Similarly we have

(A.10) Q0(u) < C\J(u)[ + C    for u E suppt/>.
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From (A.2), (A.8), (A.9), (A. 10) we obtain for u E E

\J(-u) - J(u)[ < C(iP(u) + ^(-u))(Q0(u)1/(p+1) + 1)

^(IJMI^+^+l).

This is the desired result.    □

To prove the second assertion of Proposition 1.2, we need the following

LEMMA A.2.   There is a constant My = Mi(||/||(p+1)/p) > 0 such that J(u) >

My and u E supp^ imply I(u) > ^J(u).

PROOF. From the definition of J(u),

J(u) = I(u) - (1 - iP(u))(Q(u) - Q0(u))

</(u) + t7(QoH1/(p+1)+ 1)-

By definition of ip, we get for u E suppi/)

J^KlM+CdlWlVb+V + l)
<I(U) + l\I(u)[ + Cy.

Choosing My = 2Cy, we get the desired result.    □

LEMMA A.3.   For all u = u+ +u~ E E = E+ ® E~ and hEE,

(A 11) (J>),h) = (1 + Ty(u))(u+ -u-,h)-(l + T2(u))(Q'o(u), h)

-(iP(u) + Ty(u))(Q'(u)-Q'0(u),h),

where Ty(u), T2(u) E C(E,R) are functionals satisfying

(A.12) sup{\Ti(u)\;u EE, J(u) > M2, i = 1,2}-*0    as M2 -7 00.

PROOF. For all u = u+ + u~ E E and h E E, we have

(J'(u),h) = (u+-u-,h) - (Q'Q(u),h)

- (ip'(u), h)(Q(u) - Q0(u)) - iP(u)(Q'(u) - Q'0(u), h),

where

(ip'(u),h) = x,m^r1Qo(u)Mu)-3

x[-a2I(u)(T(u),h)Qo(u) + ^(u)2(Q'0(u),h}],

(I'(u), h) = (u+ -u~,h)- (Q'0(u), h) - (Q'(u) - Q'0(u), h).

By regrouping terms, we get (A. 11) for

Ty(u) = a2X'(Mur3I(u)Qo(u)(Q(u) - Q0(u)),

T2(u)=Ty(u)+X'(-Wu)-1(Q(u)-Qo(u)).

Let us prove (A.12). Suppose that u E E satisfies J(u) > M2. Using (A.2), we get

|Ti(u)| < C[x'(-)mu)-2Qo(u)(Qo(u)1/{p+1) + 1).

If u £ suppV', then Ti(u) = 0.   Otherwise, by the definition of ip(u), we have

Qo(u) < 2f>(u). On the other hand, we get from Lemma A.2

$(u) > I(u) > i J(u) > |M2.
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Hence we obtain

|Ti(u)| < (7$(u)-p/(p+1) < CM2pl[p+l) -+ 0   as M2 -* oo.

Similarly we have T2(u) —► 0 as M2 —► oo. Thus we get (A.12).    D

Proof of (ii) of Proposition 1.2. It suffices to show that ip(u) = l, that
is, by the definition of ip(u), to show that

(A.13) Q0(u) < *(u)

for u E E such that J(u) > M0 and || J'(u)||b7 < 1. For sufficiently large Mq > 0,

we can assume by (A.12) that J(u) > M0 implies |Ti(u)| < §, |T2(u)| < 1 and

(p+l)(l + T2(u)) p-l_
2(1 + Ti(«)) l>     4     -°-

From (A.11), we obtain

(A,4) ♦$»«'<■>-««-*

= (i) + (n) + (in).
By (A.2)

(A.15) |(II)| <C(Q0(")1/(P+1) + 1).

Using (1.9), (A.l), (A.2), (A.7), we get

\(Q'(u) - Q'o(u),u)\ < \(p+ l)Q(u) - (g'(u),u)| + (p+l)\Q(u) - Q0(u)\

<(7(Q0(«)1/(P+1) + 1),

i.e.,

(A.16) |(III)| <c(g0(«)1/(p+1) + i).

From (A. 14), (A.15), (A.16), we deduce

(A 17)       >- i^wWr1 -l) °°w - c^""+"+»
> 6Q0(w) - C.

On the other hand, letting n = u+ - u~ in (A.11), we get

(A 18)       {J,{U)'U+ ~ U~] = (1 + Tl W)UUII* - (X + T2(u))(Q0("),«+ - «")

- 0(«) + Ty(u))(Q'(u) - Q0(u),u+ - u-).
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By (A.6), we have

|(Q0(u),u+-u-)|<||g0(u)||£.||u||E

<C(Qo(w)p/(p+1) + l)IM|£.

Similarly by (1.8) and (A.l),

|(Q'(u),u+-u-)|<C(Qo(w)p/(p+1) + l)||«IU.

Therefore we get from (A.18), |Ti(u)| < \ and the assumption: || J'(u)||e- < 1,

\M% < WJ'MWe- \\u\\e + (5(Qo«/(p+1) + 1)||«||£

<C(Q0(u)p«p+V + l)\\u[[E,

that is,

(A.19) IMU<C(QoMp/(p+1) + l).

Using (A.17), (A.19), we get

I(u) > 2(1 +1Ti(u)) (J'(u), u) + bQo(u) - C

(A.20) > -C[\J'(u)\\e- [\u\\e + bQ0(u) - C

>bQo(u)-C(Qo(u)p/(p+V + l)

> bQo(u)/2 - C0.

We remark that

mf{<3o(w); ||-/'(w)IU* < 1 and J(u) > M} -+00    as M —7 00.

This follows from (A.19).  In fact, J(u) —7 00 implies ||u||.e —> 00.  By (A.19), we

get Qo(u) -7 00.

Now we may assume that J(u) > Mq implies bQo(u)/6 — Co > 0, i.e., I(u) >

bQ0(u)/3. Thus

Qo(u) < al(u) < $(u).

Thus the proof is completed.    □

Appendix B. The aim of this appendix is to give a proof of Proposition 3.1.

The proof is essentially as in Proposition 3.1 of [5] or as in Proposition 3.3 of [4].

But for the sake of completeness we explain this.

PROOF OF (i) OF PROPOSITION 3.1. For any a E AZ, it is clear that there
is a ci e AZ+y with o(Sm-n-1) C CT(Sm"n). Hence we have PZ < PZ+y    □

To prove (ii) and (iii) of Proposition 3.1, we need the following lemmas.

LEMMA B.l.   ForallaEAZ,

(B.l) CT(Sm-")n/5+^0.

PROOF. Apply Lemma 3.1 to h = a: Sm_n — 75+ and g = id: E+ — 75+.

Then we get (B.l).    □
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LEMMA B.2.   For alldE (0, l/(p+l)), there is a C$ > 0 independent ofn€N
such that

(B.2) ||u||p+1 < CePn~e\\u\\E    for u E (75+)\

where (/5+)1- = {v E 75+; (v,e%) =0 for i = l,2,...,n}.

PROOF. We have by the definition of || • ||je and p„

(B.3) IH|2<^1/2|H|b    ioruE(E+)±.

On the other hand, by (1.1)

(B.4) ||u||9 < C,||u||e    for all u E E and q E [l,oo).

Using Holder's inequality, we get for q E (p + 1, oo)

Hlp+i < NlaNlJ"*    for ue/5+,

where
2(g-p-l)       /    _J_\

(p+l)(q-2)^\ 'p+lj-

It follows from (B.3), (B.4) that

IMIp+i < Cl-Tp-Tl2\\u[[E    for u E (/5+)±.

Thus we get the desired result.    □

PROOF OF THE EXISTENCE OF u(n). By Lemma B.l we have for all a E AZ,

(B.5) min   K(o(xj) <  sup K(u).
«e«— u€E+

For u € /5+, we have

K(u) = \[[u[\2E - ^yNlptl < \\H\2e ~ C\\u\\l+l

<\\\u[\2E-Cp-^l2[]u][pE+\

Thus the right-hand side of (B.5) is finite and independent of a and m. Set

P(n) =  sup K(u) < oo,
u<=Ei

then we obtain

PZ -  sup     min   K(a(x)) < i>(n).    U
ffeA^xes*"-"

PROOF  OF  THE EXISTENCE OF  u(n).   We construct a special a E AZ as

follows: Write

gm-n =   f (Xnj...jXm) €RTO-n+1;f>? = ll

and set ct: Sm-n — /5+\0 by

(B.6) ct(x) = ao1/{p-1)[\w(x)\[;iP+1^p-1)w(x),
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where w(x) is defined by

m

(B.7) w(x) = Y^Xiei.
i=n

Obviously we have ct 6 AZ- Since ||u>(x)||,e = 1 on Sm~n, we have

(B.8) K(a(x)) = (I - -I_) a0-2/(p-1)||u,(x)||p-+2ri)/(p-1).

Since

u>(x) € (^+_1)-L,     |Ma,)||B = l    for all x € Sm~n.

We get from (B.2) that

(B.9) [\w(x)\\p+y<CePn-y     ior x E Sm~n,

where 6 E (0, l/(p + 1)) and C$ is a constant independent of n and x.

By (B.8) and (B.9)

(B.10) K(a(x)) > C'gp.nlpy+1)/ip~1]    for all x E Sm~n.

Remark that the right-hand side of (B.10) is independent of m. Set

-W = c^-(i+1)/(p-1)-

Then we have

PZ >    min   K(a(x)) > v(ri)    for m> n.

Since pn —+ oo as n —> oo, we obtain i/(n) —7 oo as n —> oo. Therefore, the proof of

(ii), (iii) of Proposition 3.1 is completed.    □
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