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TANGENT CONES TO DISCRIMINANT LOCI
FOR FAMILIES OF HYPERSURFACES

ROY SMITH AND ROBERT VARLEY

ABSTRACT. A deformation of a variety with (nonisolated) hypersurface sin-

gularities, such as a projective hypersurface or a theta divisor of an abelian

variety, determines a rational map of the singular locus to projective space

and the resulting projective geometry of the singular locus describes how the

singularities propagate in the deformation. The basic principle is that the

projective model of the singular locus is dual to the tangent cone to the

discriminant of the deformation. A detailed study of the method, which

emerged from interpreting Andreotti-Mayer's work on theta divisors in terms of

Schlessinger's deformation theory of singularities, is given along with examples,

applications, and multiplicity formulas.

Introduction. This paper is about the geometry associated to deformations of

nonisolated hypersurface singularities. The basic principle is that a deformation of

a "hypersurface" determines a projective model of the singular locus whose dual

variety is the projectivized tangent cone to the discriminant. This includes an

infinitesimal form of Bertini's theorem for a linear system of divisors and a converse

to Andreotti-Mayer's condition for double points of theta divisors.

Now we describe the main results more precisely, working in the category of

complex analytic spaces. Let X be a space which can locally be written as a

hypersurface of a nonsingular space and let X —► S be a deformation of X =

7r_1(0). Then T^, the sheaf of first order deformations of X, is a line bundle on

sg.X, the singular locus of X, and ■k determines a Kodaira-Spencer linear map

To(S) —7 /^(T^), i.e. a linear system on the singular locus. If X and S are

nonsingular this linear system has no base locus and the corresponding morphism

</> : sg.X -» PTq(S) satisfies <p(p) = [7r,iP(TpX)] for p 6 sg.X, hence is called the
Gauss map of 7r. For a projective hypersurface of degree d, <p is the d-fold Veronese

map restricted to the singular locus, and for the theta divisor of an abelian variety,

<p is the rational map assigning to a double point its quadric tangent cone.

Assuming the restriction of rr to the critical locus C C X is proper, consider the

discriminant locus D = 7r(C) with its reduced analytic structure. In addition to

the above, suppose finally that C is nonsingular of the expected codimension in X.

DUALITY THEOREM. There is a finite collection of subvarieties {Za} of sg.X,

which is intrinsic to the analytic space sg.X and includes the irreducible components,
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such that, as sets,

pc0(D) = \J<p(zay,
a

i.e. the projectivized tangent cone at 0 to the discriminant D c S is set-theoretically

the union of the dual varieties of <j>(Za) C PTq (S).

For the versal deformation of a (semilocal) hypersurface with isolated singulari-

ties this reduces to the well-known result [TI] that, as set, the tangent cone to the

discriminant is a union of distinct hyperplanes, one for each singular point. Fur-

ther, each hyperplane is known to occur in the scheme-theoretic tangent cone with

multiplicity equal to the Milnor number of the corresponding isolated hypersurface

singularity; a multiplicity formula can be given in the general case also.

When sg.X is smooth (the case of an "ordinary double locus" of X), the proofs of

the duality theorem and multiplicity formula can be based directly on the Frechet

derivative of the map C —► D along the fibre sg.X over 0 and we have included

a discussion of this method. Applications of the duality theorem to projective

hypersurfaces and theta divisors are given in the last section.

In the rest of the introduction, we would like to indicate the method of proof

of the duality theorem and the relation to other work. As we were working out

the general formulation of the principle for tangent cones to discriminant loci we

learned of the local projective duality theorem of Le and Teissier, announced in

[T4, §1]. Their result expresses, for any reduced, equidimensional subspace of

a smooth analytic space, a duality between the projectivized tangent cone at a

point and the fibre of the conormal variety over the point. Assuming this, our

result can be viewed as describing the conormal variety of the discriminant locus

for deformations of hypersurface singularities. Namely, the conormal variety is the

image of the critical locus under the Gauss map. This was known for the versal

deformation of isolated hypersurface singularities [T3, 5.5.1; L, 4.C] and similar

constructions are used in symplectic geometry [Wei, pp. 25-26; A2, p. 31]. Now

our proof of the duality theorem runs as follows: since C maps to a "Legendre"

subvariety [AI, Appendix 4K] of PT*(S), the same should be true on exceptional

divisors after blowing up over 0 E S. More precisely, let % be the exceptional

divisor in the blowup of C along sg.X and note that the exceptional divisor in the

blowup of PT*(S) along PT0*(5) is PT0*(S) xPT0(S). We relate the natural contact

structures on PT*(5) and the incidence variety / C PT0*(S) x PT0(5). Then we

conclude, by a specialization argument analogous to Kleiman's [Kll, 3.8], the image

of ^ed. is Legendre in /, i.e. a union of dual correspondences. The method is similar

to the second proof given in [L-T, Theoreme 2.1.1 and Corollaire 2.1.3] and to the

proof (C. Sabbah) indicated in [K12, p. 220].

Recently, it was suggested that the duality theorem we have given seems to

be a special case of theorems (cf. Sabbah [S]) about direct images of Lagrangian

cycles. It is certainly interesting to relate deformation theory of singularities to

constructions in the theory of D-modules and we hope to discuss this, together

with further applications of our methods, in the future.
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1. The basic setup. Let 7r : X —► S be a family of varieties with only hyper-

surface singularities; i.e. X and S are analytic spaces, rr is an analytic map, and

for all x E X, if s = n(x) E S, there are open sets U and V, with s E V C S,

and x E U E 7r-1(V) C X, such that, on U, ir is isomorphic to the projection

V x Cn —» V restricted to the zero locus of one analytic equation F in an open

subset of V x Cn:
U = {F = 0} C V x C"

-I
V

The locus UF = 0" in an open subset W C V x Cn means the analytic space

which is the zero set of F in W endowed with the structure that Ow/(F). We

require for each to E V, that F(to;xy,...,xn) not be the zero germ at any point

of W n ({i0} x Cn). In particular, rr is flat [Mul, Example P, pp. 431-432; D,

Chapter I, pp. 47-62] and so, by definition, is a deformation of each of its fibers.

We will call a single fiber 7r_1(s) = Xs of rr (locally) a hypersurface. Conversely,

if 7r: X —> (5,0) is a (small) deformation of a "hypersurface", then it is a family of

varieties with only hypersurface singularities; cf. [Schl2, 1.1].

We define the critical locus C C X of the family by the vanishing of the "vertical"

partials of the local equation; i.e., after embedding U in V x C" as above, C fl U

has equations {F = dF/dxy = ■ ■ ■ = dF/dxn =0}. It can be immediately checked

that C is a well-defined analytic subspace of X which can also be given an intrinsic

definition using a Fitting ideal of n^,s [T3, §2.5]. We define the discriminant

D C S, as a set, to be the image 7r(C) of the critical locus. We denote the restriction

of 7r to C by n: C —7 5. Assuming n is proper, D is an analytic subspace of S

[Wh, Chapter 5, §4] which we consider with its reduced induced structure.

For each s E S we denote the scheme-theoretic fiber of n by n~l (s) = sg.Xs, the

"singular locus" or "singular scheme" of the hypersurface Xs. These constructions

are displayed in the following diagram:

xs   c    x    d    c    o   sg.xs = xs n c

I i I i
s       E       S      2      D      9      s

REMARK (1.1). If n: C —> Z? is a finite map, then D can be given a natu-

ral structure of (possibly nonreduced) analytic space [T3, §2.6], but since we are

particularly interested in the case of nonisolated singularities, we will not assume

that C is finite over D, but only proper. Thus the singular schemes sg.Xs that

we consider will be complete, but not necessarily finite. Generally, we expect the

discriminant to have pure codimension one in S, and this is true provided, say,

X and S are smooth, D / 0, and the generic hypersurface over D has isolated

singularities. A standard exception is provided [Mu4] by a nonsingular subvariety

V C PN, in projective space, whose dual variety is not a hypersurface. In that

case the family of hyperplane sections of V has discriminant locus V* C (P^)* of

codimension higher than one.

Our main object in this paper is the following: given a base point 0 E D, to

describe geometrically the projectivized tangent cone PCo(D) to D at 0, and relate
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the description to the deformations of the singular points of Xo- In particular we

will try to answer these questions:

1. Along which directions in PCo(D) do all singular points of X0 deform?

2. Given p E sg.Xo, along which directions does p deform?

3. What are the smoothing directions for Xo?

There are two classical examples of particular interest to us.

EXAMPLE (i). The universal projective hypersurface: let P^ be projective

n-space, let P(n, d) = P(Z7°(P"; O(d))) be the projective space parametrizing

(scheme-theoretic) hypersurfaces of degree d in Pn, and let

F(x,a) = 2_. aixI

\i\=d

be the general homogeneous polynomial of degree d on P". Then

X-{F = 0}CP" xP(n,d)
*I
P(n,d)

is the corresponding universal family. In this situation the discriminant locus D C

P(n,d) is defined by the classical discriminant of a polynomial in several variables.

EXAMPLE (ii). The universal theta divisor over the Siegel upper half-space %?g.

To be precise, if

^g = {QE G9Xg : *fi = fi and Imfi » 0}

is the Siegel upper half-space, let

6(z, fi) = ^2 exp[i'7r('nfin + 2tnz)]

be the Riemann theta function, and let

0 = {0 = 0} C (&g x C»)/{(n, z) ~ (fi,z + m + 'nfl)}

1
JCg

be the corresponding family of theta divisors. In this example, the discriminant

locus was introduced, as "No", in the very influential paper [A-M], and has sub-

sequently played an important role in the study of the moduli spaces of principally

polarized abelian varieties.

2. Deformation theory. Next we introduce the machinery [Schll] for mea-

suring to first order how the individual fibers of a family vary as we deform a

hypersurface X. Let ir: X —► S be a family as in §1, and X = Xs a particular

fiber. Then define Tx= the sheaf of first order deformations of X, to be the sheaf

associated to the presheaf:

(U C X) h-7 {the vector space (and r(Ofy)-module)

of isomorphism classes of first order deformations of U}

[Schll, 2.2.3, pp. 26-33; Schl2, 1.1-1.2; Schu, §§1-2]. This is a sheaf of Ox-
modules and we intend particularly to exploit the module structure of the sheaf

T1

Next we give the "global" calculation of Tx in terms of the normal bundle to

the hypersurface in a smooth ambient space:
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LEMMA (2.1).   If Xn~l C Mn is a hypersurface in a nonsingular space, then

Tx - (Nx/M)|sg.(x)

is the restriction, to the singular scheme of X, of the normal line bundle to X

in M.

PROOF. We start from the fundamental exact sequence for T1 [Schl2, p. 149;

Schu, p. 268]:

(*) 0-Tx^(T°J|X^Nx/M^Tx-0.

Claim. Tx has the presentation

0 - J • Nx/M -♦ Nx/M - Tx - 0,

where J C Ox is the jacobian ideal defining the subscheme sg.X C X.

PROOF OF CLAIM. Recall that Nx/M = Hom0x(/X//x,Ox) where Ix is the

locally principal ideal sheaf of X in M, and the map in (*) is given by

(T°J|X-7NX/M,        D~(f^D(f))

where D is a derivation and / is a local equation for X in M. Consequently, the

image of this map is generated by the partials of / multiplied by (/ 1—7 1), a local

basis element of Nx/M. Thus the image of this map, which by exactness of (*) is

the kernel of Nx/M —► Tx, equals (J • Nx/m)- That proves the Claim, and since

J defines sg.X, we have

Tx = (NX/M)/(J ■ NN/M) a (Nx/M) ®Qx (Ox/j) = (Nx/M)|sg.x.    Q.E.D.

COROLLARY (2.2).   Tx is a line bundle on sg.X.

Since Tx is a line bundle on sg.X, it is locally isomorphic to Osg.x, which has

the local expression

(Oss.X)\U = Ov/(df/dXy,. . . , df/dXn) = 0W / (f, df/dxy, ..., df/dxn),

where W C Cn is open, and X is isomorphic, in the open subset U C X, to the

hypersurface defined by / in W:

(7 = {/ = 0}CiVCCn.

Since we will make local calculations we first spell out the local isomorphisms

explicitly: in terms of the normal bundle expression we have

(Nx/M)|sg.X -+ Ow/(f, df/dxy,..., df/dx^

(f^>9)i-*g

and in terms of first order deformations we have

Ow/(f, df/dXy, ..., df/dXn) -* Tx

g*-+(f + g-e)

More precisely, a first order deformation of X is a commutative diagram

XDX
-I      I

spec(C[e]) 3 0
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where n is a flat map; and if

X = {/ = 0} C W C Cn    where f,geOw,

then (f + g ■ e) in Ow[e] defines a family inlVx spec(C[e]) which is a first order

deformation:
X = {f + ge = 0}EWx spec(C[e])

i
spec(C[fc"]).

Then two such deformations are isomorphic if and only if the two g's differ by an

element of the jacobian ideal.

Now that we have exhibited an intrinsic line bundle Tx on sg.X, we will examine

the sections of this bundle arising from the first order deformations induced by

7r : X —» 5. These come from the following version of the Kodaira-Spencer map:

LEMMA (2.3). (i) The family tv: X —► 5 induces, for each point 0 E S and

X = 7r-1(0), a linear map

p:T0(S)-+//0(sg.X;Tx)

/        „•(*) -7 X      \

(v. spec(C[e])-»(S,0))i-> U

Vspec(C[£]) —v—+ (5,0)7

which is just restriction of the family it to each first order tangent vector to S at 0.

(ii) The local coordinate expression for p is as follows: ifv = J2ajd/dt3 E To(S),

and X = {F(x,t) = 0} = {f(x) + J29j(x)tj + •• • =0}, where {d/dt3} is the basis

of (m/m2)* dual to the basis {dt3} of m/m2 defined by a minimal generating set

{t3} for the maximal ideal m of the point 0 E S, then

p(v) = 2^0^(1) = v ■ ~fo(x,Q)-

PROOF. Let v be the morphism representing the vector v = J2 aj d/dtj, so that

v corresponds to the local homomorphism sending t3 to (a3 -e). Then pulling back

the equation

F(x,t) = f(x) + J29j(x)t3+---

by this morphism gives

v*(F) = f(x) + (22ajgj(xj) ■ e,

so the first order deformation is J2aj9j(x) as claimed. This is evidently linear in

a.    Q.E.D.

COROLLARY (2.4). (i) The family ir: X -♦ (5,0) with X = 7r~'(0) gives
rise to a natural linear system |Tj.| on sg.X, namely the subsystem of |TX| —

P(//°(sg.X, Tx)) defined by the image of the Kodaira-Spencer map, i.e.

\TlJ = P(p(T0(S))).



TANGENT CONES TO DISCRIMINANT LOCI 653

(ii) IfTx is the vector space of (global) first order deformations of X, then there

is a map Tx —► 7/°(sg.X, Tx) defining an intrinsic subsystem [Tx\ C |TX| which

contains all the systems [T^] induced by families n as above.

PROOF, (i) is clear.

(ii) \TX\ is given by the image of the map defined by restricting global first order

deformations to local ones, and the definition of p for any family n shows that p

factors through the image of this restriction map, i.e. v*(n) E Tx, by construc-

tion.    Q.E.D.
REMARK (2.5). \TX\ need not be all of |TX|, so (ii) gives a possibly nontrivial

upper bound on |T* |. For example, consider a theta divisor 8 = 9(fi), fi E %?g.

The involution —id acts on 6 and hence on its first order deformation theory.

The action on Te is trivial since [S-V5] Tq(^) -+ Te for g > 2, so the image

of Tq —7 //°(Tq) is contained in the subspace of sections fixed by the involution.

But the action on Z/°(Te) may be nontrivial: for the theta divisor of a generic

genus 4 curve, Te is a skyscraper sheaf at 2 points which are interchanged by the

involution.

Next we give the (generalized) criterion of Andreotti-Mayer for persistence of

singularities.

DEFINITION (2.6). Given n: X -> (5,0) a family of hypersurfaces, and p E

C C X a critical point on X = 7r-1(0), we say that the singularity p deforms, or

persists, in the direction [v] E PTb(5), in the family ir, if there exists a local curve

a: (A,0) —7 (C,p) such that the composition a = (iroa): (A,0) —► (D,0) has

tangent direction [v] at 0. Here A is a small disc in C1 centered at the origin.

Recall that the tangent line to a (local) curve at a point (which may be singular)

is the unique line in the Zariski tangent space such that any hyperplane containing

it has higher order of contact with the curve at that point than does a general

hyperplane through the point. In local coordinates, the parametrized curve given

by a(t) = (ctytr + •••,..., amtr + ••■), where some a* ^ 0, has tangent vector

(ay,...,am) at ct(0).

PROPOSITION (2.7). If -k: X ->• 5 is a family of hypersurfaces, X = 7r_1(0),
p E sg.X, v E To(S), and if p persists in the direction [v], then p(v)(p) = 0, where

P(v)EH°(sg.X,Tx).

PROOF. Let X = {F(x,t) = 0} locally, where F = f(x) + Yl9j(x)tj+higher
terms in the t3's. Let a: (A,0) —» (D,0) be the curve such that p persists over it,

and pull back the family a. This gives us

a*(rr) = {F*(x, t) = 0} C Cm x A

I
A

where F*(x,t) = f(x) + (^2ajgj(x))tr + h(x,t)-tr+1. Now introduce the lift a and

differentiate F*(a(t)) with respect to t:

° = (!) '•«<»=t .(£) wo) - m * (£) wm ■ i.
N-v-'

II
0
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where a(t) = (&y(t),... ,am(t),t). Thus

0 = r • I 2ja3g3(di(t)) J • tr~x + higher terms in t.

Since this expression vanishes identically in t, the lowest order coefficient vanishes

too, so we have in particular,

m / PIP\

J2 <*i93i*iW) =v ■ y -qi J (p) = p(«)(p) = o,

by our earlier computation of the Kodaira-Spencer map.    Q.E.D.

3. The Gauss map.  Next we study the projective rational map of sg.X defined

by the family ir: X —► 5.

DEFINITION (3.1). The Kodaira-Spencer map p: T0(S) -» 7/0(sg.X0,TXo) from

§2 defines a subspace p(To(5)) of global sections of the line bundle TXo, hence a

rational map <f> to PT0*(5),

0 : sg.Xo --» Pp(T0(5))* £ PT0*(5)

defined on the complement of the base locus of the space of sections p(To(5)).

qb = 0,r is called the Gauss map of the deformation -k of Xo. As a map on points,

<p(p) = (dF/dt)(p), which represents the hyperplane {v E T0(5): p(v)(p) = 0}.

PROPOSITION (3.2). Assume the base space S of the family rr is smooth. Then

(p has the following properties:

(1) <p is defined at p <=> X ia smooth at p, and in that case, <p(p) = image(7r*,p) C

To(5), where 7T«iP: TpX —7 T7r(p)(5) is the derivative of ir at p.

(2) Assuming <p is defined at p, d> is unramified atp&C is smooth at p, and of

the expected codimension in X, i.e. of codimension 1 + dimp(X) — dimo(5).

(3) // (p is defined at p, and if v E To (5) is any direction vector such that p

deforms along v, then v lies in the hyperplane <p(p).

PROOF OF (1). In local coordinates, p is in the base locus of p(To(s)) o

(dF/dt)(p) = 0 e T0*(5), and since p E sg.X0, we have (dF/dx)(p) = 0. Thus <p is

defined at p <» (8F/dt)(p) ^0o dF(p) /OoXis smooth at p.

PROOF OF (2). Locally, C has equations {F = dF/dxy = ■■■ = dF/dxn = 0},
so C is smooth at p of the expected codimension n in X <=>

rankf    W^Kp) ^Ffdx)(p)  \_
ranK ^ (d2F/dt dx)(p)    (d2F/dx2)(p) )-n + i>

and, since (dF/dx)(p) = 0, if and only if the system of linear equations in (a, w) E

C xC":
fa- (dF/dt)(p) + lw ■ (d2F/dt dx)(p) = 0\
\ tw-(d2F/dx2)(p)=0     )

has only the trivial solution (a, fw) = (0,0). Now consider the second of these

equations. Since sg.X0 : {F\t=o = 0 = (dF/dx)\t=o} Q Cn, we have

w E Tp(sg.Xo) o (d2F/dx2)(p) -i« = 0»'r (d2F/dx2)(p) = 0.



TANGENT CONES TO DISCRIMINANT LOCI 655

Thus we must show tp is unramified at p o the only solution of the first equation

with w E Tp(sg.Xo) is (a, tw) = (0,0). So consider, in a neighborhood of p, the

diagram of maps:

T0*(5)-{0}

(dF/dt)y/

sg.Xo —±-+   PT0*(5)

and their derivatives:

Tq(TS(S))

(d2F/dxdt)(p) ^^ [L

Tp(sg.Xo) -^ T^(P)(PT0*(5))

where q = (dF/dt)(p). Since <p is defined at p, (dF/dt)(p) ^ 0, and the kernel

of L is the line {s ■ (dF/dt)(p)}. Hence tp is unramified at p <=> 0*iP is injective

<=> the only w E Tp(sg.Xo) such that (d2F/dxdt)(p) ■ w is in the kernel of L, is

w = 0. This, finally, is equivalent to saying the only solution of a ■ (dF/dt)(p) +

tw-(d2F/dtdx)(p)=0vfithwETp(sg.X0) is (a,lw) = (0,0).    Q.E.D.

PROOF OF (3). This is simply a restatement of the criterion of Andreotti-Mayer

proved above.

COROLLARY (3.3). Let ir: X —> 5 be as in Proposition (3.2), with ir proper

on C, or at least on sg.Xo.

(1) 7/Tx   is ample on sg.Xo and dim5 < dimsg.Xo, then X is singular.

(2) Assuming X zs smooth, if C is smooth of the expected codimension in X,

then TXo is ample on sg.Xo-

PROOF. For (1), if m = dim5 < dimsg.Xo, any m sections of an ample line

bundle on sg.Xo have a nonempty base locus [Hal, p. 2] so, by (3.2(1)), X is

singular. For (2), since tp: sg.X0 —► PT0*(5) is proper and, by (3.2(2)), unramified, it

is a finite map so TXo = cp* (0(1)) is ample [Gra, §3.4; Hal, Chapter I, Proposition

4.4].

Next we compute the map tp in our two classical examples.

EXAMPLE (i). If X C Pn is a projective hypersurface of degree d, then

Tx = (Nx/P")|sg.x = (Opn(d))|sg.X,

and the map cp: sg.X —> PTx(P(n,d)) is the restriction of the degree d Veronese

map P" —+ PN(d\ with image in the hyperplane defined in X. To see this, recall

that the linear system defining the Veronese map is given by the image of the restric-

tion H0(Pn;O(d)) - 7Z°(sg.Xo;0(d)), and that H0(P;O(d)) -» H°(X0;O(d)) is

surjective. Hence it suffices to check the commutativity of the diagram:

H°(X0;O(d)) ^^ H°(sg.Xo;0(d))

T0(P(n,d))     —^   7Z°(sg.Xo;TXo)
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Now

T0(P(n, d)) = Hom(C ■ /„, H0(Pn;O(d))/C ■ f0)

= Hom(C • fo, H°(X0; O(d))) = H°(X0; 0(d)).

So let g E H0(Xo;0(d)) be represented by the local functions {ga} in terms of

some affine open cover of Xo- Then tracing around the diagram in either direction

yields the section of //°(sg.X0,TXo) represented by {fa + £ ■ ga}, where {/Q} is

the family of local representatives of the equation /o for Xo.

EXAMPLE (ii). In the case of the universal theta divisor we have, at the point

fi E %fg corresponding to the p.p.a.v. (An, On),

<P : sg.6n — PT^(^) = PSym2 T^(An)

p » (p(P) = (de/dn)(p) .- (d2e/dz2)(P)

using the heat equation. Here, cp is defined at p •«■ p is a double point of 0, and then

cp(p) = the quadric tangent cone to 9 at p. In this setting, the original Andreotti-

Mayer (incidence) criterion says that a double point p E Q can only persist along

directions v E Tq^9 which belong to the hyperplane whose equation corresponds to

the quadric tangent cone to O at p. Dually, each direction v determines a hyperplane

section of <p(sg.Q) whose inverse image on sg.O contains all those double points

which could possibly deform in the direction v. As we will see in the next section

however, in fact only those points lying over points of tangency of the hyperplane

section will actually deform along v.

Now consider the theta divisor of a nonhyperelliptic genus g curve C. We want

to relate our viewpoint to M. Green's solution of the "rank four quadrics prob-

lem"  [Gre].    We see from the remarks above, that if we define p: Tq(^) —►

//°((sg.e)red.; (1e)|(8g.e)red.)tnen Tn(c)(J<?) = ker(p)> where J9 = %g is tne locus

of jacobian matrices. Therefore we get a map

p : h(Cy = N{3l/rg)MC) - H°((Bg.G)ieA.;T^e)nJ

\~(p~ X(QP))

where h(C) denotes the vector space of quadratic polynomials vanishing on the

canonical model of the curve C, and Qp is the quadratic term of the Taylor series

for 6 at p. Now, Ker(p) = (^(sg.e))1- C h(C)*, so

4>(sg.O) spans /2(C) o p is injective

o im.(p) has dimension f J

as sections of T^e)^ ,

= dim. span{d20/dz2}    as functions on the zero set of {6,d6/dz}.

M. Green computed the dimension by using the resolution of 6(C) provided by the

Abel-Jacobi map a: C'9_1) —► 6(C), and G. Kempf's theorem that deformations

of C^9-1' come from deformations of C [Ke2].
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It is not difficult to give a proof of the injectivity of p from the point of view

of deformation theory of the theta divisor, again using Kempf's result. In fact, it

follows from Welter's work [Wei] that p has the same interpretation in character-

istic p so we are able to prove [S-V5]: for any nonhyperelliptic curve C over an

algebraically closed field of arbitrary characteristic, /2(C) is spanned by tangent

cones to double points of 6(C).

Finally, consider a product p.p.a.v. A x B. Then Qaxb = (Sa x 73) U (A x 6b)

so sg.(8>ixB) = (sg.(6A) x 73) U (9a x 6b) U (A x sg.(8B)). The Gauss map of

Example (ii) <j>axb'- sg.(9Axs) —► P^Axs^+fc) breaks into 3 parts:

sg.(9A) x 73    9a x 9B     Ax sg.(9B)

4>A 1aX~Ib (j>B

PTl(^g)   P(T0M®T0*/3)   PTB(J?h)

where 7a x 1b is the Segre product of the usual Gauss maps on the theta divisors

6a, 6B• To see this simply compute

d2     ,0  o  s     d2(9A)       ,M9A)d(9B) d^0B}

a(z,wy azz dz     aw aw*

in coordinates (z,w), on C9 x Ch and use the decomposition

TlxB&g+h) = Sym2 T0*(A x 73) - Sym2 T0*(A) © (T0*(A) ® T0*(73)) © Sym2 T0*(73)

- TX(2Z) © (T0*(A) ® T0*(73)) © TB(^h).

In particular, if A is an abelian variety with nonsingular theta divisor 6a and E

is any elliptic curve, then sg.(6Axs) — 6a and the Gauss map <Paxe is the usual

Gauss map:

6^PT0*(A)    followed by inclusion:     PT0*(A) — PT^xB(^+1).

z^[Tx(6a)] [h]»[h®TS{E)\

REMARK (3.4). Let ^,1 C JPg+y be the locus of products A x E where A E %?g,

E E %[. It is obvious that J^i C 0nuii) the locus of abelian varieties with a

"vanishing theta null". From part (2) of Proposition (3.2), it can be deduced that

also ^1 C Nq, the components of Nq in fifg+y residual to 6nu\\. Then, from

Theorem (4.1) it follows that the projectivized normal cone to J^i in Nq at Ax E

contains the dual of the branch locus of the Gauss map 7a on 6a- Details will be

published elsewhere.

Before going on, observe that the Gauss maps cps: sg.(Xs) —+ PT*(S), s E 5, fit

together. That is, if ir: X —» 5 is a family of hypersurfaces with 5 smooth, then

there is a rational map 3>: C —► PT*(5) which is defined where X is smooth and,

over s E S, induces (ps. Indeed, as before, if t denotes local coordinates on 5 and

F is a local equation for X, then $ is given locally by (dF/dt) dt. (This can be

expressed intrinsically as follows [Schl2, §3d; TI, pp. 14-15]: Since 5 is smooth we

have an exact sequence 7r*T^ —► T^/S —► T-^ —> 0. Here, since rr is a flat family of

hypersurfaces, the relative T1-sheaf on X, T^- ,s, is a line bundle on C and, over

s E 5, induces Tx . Then, around a point of C which is smooth on X, T^ = 0,

so $ is determined by the universal mapping property [Ha2, Proposition 7.12, p.

162] of the projectivization of a vector bundle.)
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4. Tangent cones. Now we state and prove our main theorem.

THEOREM (4.1). Let w: X —» 5 be a family of varieties with only hypersurface

singularities, let C C X be the critical locus and assume the restriction n of ir to

C is proper. Let D E S be the discriminant locus, 0 E D a base point, and let

X = 7r (0). Assume that X and S are nonsingular. Let the map <p: sg.X —7

PTq(5) be the Gauss map associated to the linear system |T4|, and defined by

<p(p) = image(7r*iP) and let the cycle sg.X be defined as follows: let a: C —► C

be the blowup of the closed subscheme sg.X C C, and let if = a--1 (sg.X) (the

projectivized normal cone to sg.X in C). Then sg.X = J2a Za, where \}a^a. =

sired., i.e. ^a are the irreducible components of the reduced set underlying if, and

Za = rj(ifQ). Assume moreover, that tp is generically finite on each Za (a condition

which is automatically satisfied whenever C is nonsingular and purely of the expected

codimension in X by part (2) of Proposition (3.2)). Then, as sets,

PCo(D) = 0(sg.X)*

i.e., PC0(D) = \Ja<p(Za)*, as subsets ofPT0(S). (Here V* denotes the projective

variety dual to V.)

PROOF. Consider the blowup diagram

?CC       —^—7 C D sg.X

PCo(D) ED -7     D30

in which D is the blowup of D at 0, with exceptional divisor PCo(D), and C is

the blowup of C along the scheme sg.X, with exceptional divisor <£'. Since n is

proper and surjective, so is 17, and since the components of £? map via f) onto the

set underlying PCo(D), we have only to prove that, for each component WQ of ifred.,

the two images 4>(o((oa)) and i)(^a) are mutually dual projective varieties. To put

it more conveniently, consider the map

0x1: (sg.X) x (PT0(5)) - (PT0*(5)) x (PT0(5))

(p,v) 7-7 (<p(p),v)

and recall that by definition of blowing up C along sg.X = n_1(0), that if C
(sg.X) x (PT0(5)). Recall too, that a subvariety ^r~x C (Pr)* x (Pr) of dimension

r — 1, is a "conormal variety" (or dual correspondence) if and only if, for all (//, v) E

.9r, the conditions: (1) v E H, and (2) 7/ is tangent to ^(J?") at v hold, where 7T2

is the projection of &~ onto Pr and 7/ being tangent to F at v means TV(F) E H

when v is a nonsingular point of F, and, otherwise, that (H, v) is a limit of such

pairs. These conditions are referred to as the "incidence condition" and the "contact

condition" respectively. Then the statement we want to prove becomes precisely

that, for every component Wa of Fred., (<P x l)(%a) C (PT0*(5)) x (PT0(5)) is a
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conormal variety. All the relevant data is contained in the following diagram:

z=(p,v)E^EC    -£.     FF(5) 2(PT0*(5))x(PT0(5))D/

sg.XCC     £     PT*(5) 2PT0*(5)

OeD     ^     590

Here, n is the restriction of the original family tr: X —> 5, /^ is the projection of the

cotangent bundle over 5, cr is the blowup of C along sg.X = n-1 (0), r is the blowup

of PT*(5) along P0(S) = v~1(0), $ is the global Gauss map $(p) = image(7r,)P),

and $ is the map induced by the universal property of blowing up, (i.e. since the

lower square commutes, $ exists uniquely making the upper square commute too),

f and (PT0*(5)) x (PTb(S)) are the exceptional divisors of the two blowups, and

/ is the "incidence subvariety" consisting of pairs (H, v) such that v E H. If (£, t)

are coordinates on (PTq(5)) x (PT0(5)) let wj denote the "contact form" defined

as £ • dt. Now we must check three assertions:

Claim (4.2). (i) For each point z = (p, v) E if, $(z) = (<p(p), v); i.e. $|g> = 0x1.

(ii) $(ifred.) C / (incidence condition).

(iii) $*(u>i) = 0, on the nonsingular points of S'reA. (contact condition).

PROOF OF (i) AND (ii). Since 5 is smooth we may consider it, locally near 0, as

an open set in Cm, and the map ir as defining a rational map from a neighborhood of

sg.X in C, to PXb(5), by taking p E C-sg.X to the line joining 7r(p) to 0. Then C is

defined set-theoretically as the closure of the graph of this map in (sg.X) x (PT0(5)).

Now let z = (p, v) E if c C be any point on the exceptional divisor of this

blowup, and let de: (A,0) —► (C,z) be a local curve, with d(A — 0) C C — if,

and a(0) = z. It follows that v is the tangent direction of the curve (tr o a o a)

in D, and that via the curve (a o a) the singular point p deforms in the direction

v. Conversely if p E sg.X does deform in some direction v E PCo(D), there is

a curve a: (A,0) —* (C,p) such that v is the tangent direction of (7r o a), and

consequently the unique lift of a into C, a: (A,0) —> C, has a(0) = (p,v). Thus,

as a set, £? = {those pairs (p, v) E (sg.X) x (PCo(D)) such that p deforms in the

direction v}. Applying the same discussion to the blowup r, and noting that the

diagram is commutative, we see that $(p, v) = (<p(p),v). That is, to evaluate the

"Grothendieck derivative" $ on a point (p, v) = z of the projectivized normal cone

W, just represent z by an arc a: (A,0) —► (C,p), compose the arc with $, and

then $(z) is the point (of the projectivized normal cone to PTq(S) in PT*(5))

represented by the composite arc ($oq): (A,0) —> (PT*(5),0). This is the exact

generalization of one definition of the Frechet derivation common in differential

geometry. Now by using the Andreotti-Mayer criterion, we have for all (p, v) E £',

that v E <p(p), and hence $(§red.) Q I-

PROOF OF (iii). First we prove that, as sets, $(C) C D ^closure of the set of

tangent hyperplanes at smooth points of D = the "Nash blowup" of D in PT*(5).

(Here each irreducible component of C, even if it maps to a proper subvariety of

an irreducible component of D, defines an irreducible component of D.) That is,

by Sard's theorem there is a dense open subset of points p E C for which 7r(p) is
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smooth on D and

Tn(v)(D) = image(n»iP) C image(7r„,p) = $(p).

Therefore, by continuity, $(C) C D. (Let us remark that it is convenient to consider

the reduced cycle C defined by the irreducible components of C, omitting any that

are contained in n_1(0) = sg.X or that miss n_1(0). Then with the corresponding

cycle D = 77(C), we have $(C) = D. Indeed, since <p is generically finite on each Za,

$ is generically finite on C so each irreducible component of $(C) has dimension

> dim(5) — 1, which is the dimension of each irreducible component of D. Hence

the containment $(C) C D is an equality. We note also that, whenever C is

nonsingular and purely of the expected codimension in X, $ is finite on all of C so

$(C) = D.) Now we want to use the fact that conormal varieties are characterized

by the vanishing of the "contact form" [AI, Appendix 4, p. 367, Kll, pp. 164-165].

So let w be the contact form on PT*(5) and w = r*(w) the pull-back to PT*(5).

Since JD is a conormal variety, we have that (T*($*(w)) = $*(w) = 0, on C, i.e. at

nonsingular points of Cred.- Let %>a be any component of §red.- Normalizing C if

necessary, choose a point z E <£a such that z is smooth both on C and on <§red..

LEMMA (4.3).   Ifuij is the contact form on I, and if {f = 0} is a local equation

for (PT0*(5)) x (PT0(5)) in PT*(S), near $(z), then locally dw = wi Adf + f/3, for
some two-form (3.

PROOF. Choose local coordinates (ty,... ,tm) on 5 and homogeneous fiber co-

ordinates (£1,..., £m) on PT*(5), and blow up along the scheme PT0*(5) defined

by the ideal (ty,. ..,tm). In nonhomogeneous coordinates, where say £1 ^ 0, the

blowing down map r is given by

T(ty,U2,-. .Um; £2l. ..,£m) = (ty,tyU2,.. ■ ,tyUm; £2, •• • ,fm)

where ti = tyUi, i = 2,...,m. Now in these local (nonhomogeneous) coordinates

the contact form on PT*(5) is given by w = dty + J2™ €j dtj, and thus

m

T*(w) = L0 = dty + Y^ £jd(tyUj).

2

Therefore,

(m \ m

^ £jd(tyUj) J = ^2, d£,j A d(tyUj)

m m

= ^2 ti d£j A du3 + 2J u3 d£3 A d*i
2 2

= ty ■ \^2 d£j A du3 I + I ̂ 2 u3 d£j    A dty

V=2 J \3 = * J
= f-P + uthdf,

since ty = 0 is the local equation of the exceptional divisor of r.     Q.E.D. Lemma.

Consequently, we have the following equations holding on C locally near z:

0 = d(**(w)) = $*(dw) = $*(//? + wj A df) = gn ■ 0 + $*(w/) A dgn,
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where {g = 0} is a local equation for ^d. £ C near z. Factoring out 0™_1 leaves

0 = g ■ /? + $*(u>j) A ndg   on C near z.

Now let w E Tz<§red. be any tangent vector, and v E TZC be any vector such that

i; ^ Tjiired., and evaluate the previous two-form on the pair (v,w). Since g(z) = 0,

and dg vanishes precisely on T^J^d.), we get 0 = ($*(u)i)(w)) ■ (dg(v)), and since

v £ T^ifred), dg(v) ^ 0 implies $(w/)(w) = 0. Hence $*(wj) = 0 on §Jed. as

claimed, and so, in fact, wj = 0 on $(ifred.)- Note that, even if normalization of C

is necessary, this same conclusion is valid since the restriction of the normalization

map to any irreducible component of the reduced preimage of ifre(j. is, at a generic

point, unramified to a nonsingular point of ^ed.- Last of all we remark that since

cp is generically finite on each Za, $ is generically finite on each Wa, so $(^ed.) has

pure dimension= dim.(PT0(5)) - 1. It therefore follows that $(^red.) is indeed a

union of conormal varieties.    Q.E.D. Claim and Theorem.

Explicitly, here are the answers provided by Theorem (4.1) and proof to the

questions posed in §1:

2. A given point p E sg.X0 deforms in those directions at 0 6 5, i.e. points

of PT0(5), for which the corresponding hyperplane of PTr*(5) is tangent at p to

some Za. (This means p is nonsingular on Za, (p is unramified on Za at p, <p(p) is

nonsingular on (p(Za), and the hyperplane contains the tangent space to <p(Za) at

<p(p), or, is a limit, for points of Za near p, of such hyperplanes.)

3. The smoothing directions, i.e. the directions in which no singularity deforms,

are those for which the corresponding hyperplane of PTq(S) is transversal, i.e.

nowhere tangent, to each (p(Za).

1. If any irreducible component of sg.X0 is an irreducible component of C, there

are no directions in which all singular points of X0 deform. Otherwise, all singular

points of X0 deform along those directions for which the corresponding hyperplane

of PT0*(5) contains </>(sg.Xo). This is because all the irreducible components of

sg.Xo will occur among {Za} (see §5) and a hyperplane is tangent at every point of

<p(Za) <=> it contains <p(Za). Thus, the set of directions in which all singularities de-

form is P(kerp) where p: Tq(S) —> 7/°(TXo|(gg Xo)red ), and no tangency condition

is required to state answer (1)!

Now that we have seen that the set of all tangent directions to D, at the point

corresponding to X, is dual to a reduced space underlying the scheme sg.X via <p,

it is natural to ask for the geometric meaning of the directions dual to the actual

scheme sg.X; i.e., which tangent directions to D correspond to hyperplanes which

contain (via <p) the Zariski tangent spaces at points of the scheme sg.X? Our

result is that, if C is nonsingular along sg.X, these correspond to the "immersive

directions" in Cx(D), i.e. those which can be represented as tangents to smoothly

immersed arcs in D. To prove it, reconsider the map n: C —♦ D, and let £ E C

be a nonsingular point and 0 = n(£) E D. Then it is readily seen that the set

of immersive tangent directions to D at 0 in which £ persists as a singular point,

is precisely n«(T^C), the image of the tangent space to C at £ under the Frechet

derivative. Thus we will prove the following:

PROPOSITION (4.4). Given ir: X —► 5 as above, with X and S smooth, let

£ e C be any point, 0 = 7r(£) E D, and X = 7r_1(0).   If we denote by n: C —+ D
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the restriction of ir to C, then we have

imaged) = (T^(0(sg.X)))*    in PT0(S).

Here, T^((p(sg.X)) denotes dcp(T^(sg.X)), realized as a linear subspace o/PT0*(5).

(// C is nonsingular of the expected codimension in X, cp is unramified so

T^(cp(sg.X)) may be thought of as the Zariski tangent space to cp(sg.X) along the

"branch" determined by £.)

PROOF. In local coordinates, if £ = (x,v) then ir(x, v) = v, so

imaged) = {v E T0(S): (3x)((x, v) E TeC)}

and if X = {F = 0} locally, then

[   [0>        [^(«]   1T^C-ker    rgar     j    ' [_3_ /3F\1     '

Hence,

( T \dF     1     1 ^

[0]        iu®     r*i   roi
image(^)= tv.(3x)    r^, t    L J [,J = [0j   >

= {« (l)(t; J. <A(£)), and (2)(3a!) [x • 0(£) + v ■ j^ = o) }

= {<;: (1) holds, and (2)(3x) (|^(0 ■ a: = -'(d0)(v)) }

= {« (1) holds, and (2) '(d0)(») E image (|^(o) }

(where the matrix d F(£)/dx   is thought of as a linear transformation)

= L: (1) holds, and (2) \d(P)(v) ± ker (|^(e)) }

= {v: (1) holds, and (2) *(d</>)H 1 T?(sg.X)}

= {v: (1) holds, and (2)(d</>)(T?)(sg.X)) J. v}. Q.E.D.

When £ E C is a singular point, this proposition is little help with the tangent

cone to the discriminant, for, im(n,]f) in PTo(5) need not be contained in PCo(-D)

and, since cp ramifies at £, T^(<p(sg.X)) may be smaller than expected. If C is

nonsingular along sg.X and, in addition, sg.X is nonsingular, then all directions in

Cx(D) are immersive so we recover the duality theorem.

COROLLARY (4.5). Given ir: X —> 5 as above, with X and S smooth, assume

C is smooth of the expected codimension in X. Let 0 E D be a base point, X =

7T_1(0), and assume sg.X is smooth. Then, as sets,

PC0(D) = <f>(sg.X)*.

PROOF. As sets,

PC0(D)=    (J    im(n^) = UW(sg.X))*=<Hsg.Xr.
Cesg.x e
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The first equality holds since n: C —► D is proper and surjective, and C and

n_1(0) = sg.X are assumed smooth (cf. §6). The second equality holds by the

proposition and the third since sg.X is smooth and (p is unramified by part (2) of

(3.2).     Q.E.D.
REMARK (4.6) (NORMAL CONES). While Theorem (4.1) describes the tangent

cones to the discriminant, we may want to know instead the normal cone to the

discriminant along some given subvariety E, e.g. (i) "locally trivial" deformations

or (ii) deformations with the same dimensional singular locus. Without going back

to the proof, we get the result at a generic point s of E from the comparison:

PCE(D)]S = P(Ca(D)/Ts(E)), or equivalent.lv, PCS(Z>) is a cone over PCE(D)[S

with vertex PTS(E). It is elementary to check this when D has pure codimension

1 in (smooth) 5. Namely, take any smooth point of E and use coordinates u, v

on 5 so that v = 0 is E.   Expand out the equation for D, 8(u,v) = ak(u)v- +

Ofc+i (u)w^ii H-where ar(u)v- is homogeneous of degree r in v and a^(u) is not

identically 0 on E. Then, at points of E where a^ is not 0, the stated comparison

holds. In general the comparison of tangent and normal cones is valid where D is

normally flat along E [Hi, Chapter II, Proposition 1].

REMARK (4.7) (SINGULAR TOTAL SPACE). The same methods are applicable

when the total space X is singular. Namely assuming 5 is nonsingular and no

irreducible component of C is contained in sg.(X), first blow up C along the base

locus of $ to get a morphism C —> PT*(5) and replace sg.X by its total transform.

Then the formulation and proof of Theorem (4.1) can be copied.

5. Distinguished subvarieties. We keep the notation from Theorem (4.1)

and the assumption that X and 5 are nonsingular.

DEFINITION (5.1). The varieties {Za} are called the distinguished subvarieties

[Fu, p. 95] or generalized components of sg.X. They are defined in terms of the

inclusion of sg.X in C.

If Z C sg.X is a distinguished subvariety and cp is generically finite on Z, <p(Z)*

may only be a "distinguished subvariety" of PCq(D) rather than an irreducible

component. However, if <p(Z)* is a hypersurface of PTo(5), it must be an irreducible

component of PCo(D).

LEMMA (5.2). If Z E sg.Xo is a distinguished subvariety and <p is generically

finite on Z then there is a unique irreducible component of if over Z.

PROOF. Suppose if' and W are irreducible components of the exceptional

divisor which map onto Z. Then If' and §"' are contained in PTo(5) x Z and

^(g") = 4>(%") in PT0(5) x PT0*(5) is the dual correspondence 9~ of <p(Z). Since

<p is generically finite on Z, there exists a complex ball U, nonempty and open, in

Z such that <p induces an isomorphism from U to a smooth, nonempty open subset

<p(U) of cp(Z). But now g" n (PT0(5) x U) and £"' n (PT0(5) x U) both map

isomorphically to & D (PT0(5) x </>({/)) by 4>, hence coincide. Since if' and if"

have a nonempty open subset in common, they are equal.

Now consider the problem of determining the distinguished subvarieties.

LEMMA (5.3). An irreducible component of sg.X is a distinguished subvariety

if and only if it is not an irreducible component of C.
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PROOF. First, note that an irreducible component Z of sg.X is a distinguished

subvariety ttZC <r(C), where a: C —> C is the blowing-up of C with center sg.X.

If Z is an irreducible component of C then at a generic point of Z the ideal of

sg.X in C is nilpotent so the blowup is empty there and Z ^ c(C). If Z is not an

irreducible component of C, then Z is contained in an irreducible component of C

which is not contained in the center of the blowing-up, and cr(C) contains any such

irreducible component [Fu, B.6.5; H-R, §1], so Z C <r(C).

REMARKS (5.4). (1) When the critical locus C is known to have the expected

dimension, it is obvious whether an irreducible component of sg.X is an irreducible

component of C, namely, if and only if it has dimension = dim(5) - 1.

(2) If Tx is ample on sg.X then C has the expected dimension (in a neigh-

borhood of sg.X). Indeed, the Gauss map $: C —► PT*(5) will be finite (over a

neighborhood of 0 E 5) and send an irreducible component of C onto the conormal

variety of its image under ir in 5 (see the proof of Theorem (4.1)). But a conormal

variety in PT*(5) has dimension = dim(5) — 1.

(3) If Z is an irreducible component of sg.X and <p(Z) = PTJ*(5), then Z is an

irreducible component of C. This is because if Z were an irreducible component

of sg.X but not of C, there would be an irreducible component If of C mapping

onto Z (by Lemma (5.3)) so consider 0(f) C PT0*(5) x PT0(5). The projection

to PT0(5) is, in any case, contained in <p(Z)* (by the proof of Theorem (4.1)) so

<f>(Z)^PT0*(S).
EXAMPLES (5.5). (1) A given family ir: X —> 5 determines two others as follows:

7Ti: X x P1 —7 5, iry(x,z) = ir(x) (product of the hypersurfaces {Xs} with P1).

The Gauss map is <pWl:sg.(X) x P1 — X ^ PT0*(5).

7r2: X x A —► 5 x A, ir2(x,z) = (ir(x),z), A =unit disc in C (base change

of ir by 5 x A — 5, (t,z) i-> t). The Gauss map is <pn2: sg.X ^ PT0*(5) <->■

PTq(5 x A). Suppose the critical locus of ir has the expected dimension and has

an irreducible component over 0. Then the critical locus of ny does not have the

expected dimension and has an irreducible component over 0 while the critical locus

of 7T2 has the expected dimension and does not have an irreducible component over

(0,0). In particular, starting with ir: X = C2 —7 C = 5, (x,y) >—> xy = t, illustrates

the various phenomena.

(2) Here is an example to show the converse is false in Remarks (5.4) (2) and

(3). Let Yo be a curve in P2 with a node at a point p and consider a generic net

n (2-parameter linear family of curves) through Yo- Then, blowing up P2 at p and

taking the total transform of the net gives a family ir: X —> n (cf. Example (7.1))

in which Xo is the proper transform of Fo plus twice the exceptional line. The

reader may check that C has the expected dimension but <pn maps (sg.Xo)red. to a

point. (C has two irreducible components and is nonreduced everywhere along the

exceptional line; sg.Xo is equal to the exceptional line except at two points where

it is nonreduced. All the hypotheses of Theorem (4.1) are satisfied.)

PROPOSITION (5.6). IfCis nonsingular and has no component in sg.X, then

the distinguished subvarieties of sg.X are intrinsic to the analytic space sg.X.

PROOF. We will check that for any closed (nowhere dense) analytic subspace

Y of a smooth analytic space V, the distinguished subvarieties of Y (with respect
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to Y C V, i.e. the images in Y of the irreducible components of the exceptional

divisor of the blowup of V along Y) are intrinsic to Y. First, whether a subvariety

Zcyis distinguished can be checked on any open neighborhood in V of any point

of Z (if U is such a neighborhood, check whether there is an irreducible component

of the inverse image of U D Z of the required dimension (= dim(V) — 1) mapping

onto an irreducible component of UflZ). Now, given p E Y, there is an embedding

(Y,p) E (Vo,p) in a smooth germ (i.e. "embed(Y, p) in its Zariski tangent space at

p") s.t. every (closed) embedding (Y,p) —7 (V',p) in a smooth germ is obtained as

a composition (Y,p) C (V0,p) -> (V',p). Then (V,p) = (V0,p) x (Afc,0) where Ak

is a fc-dimensional polydisc (fc > 0). Therefore, it suffices to compare Y C Vb with

Y x {0} E Vo x Afc and since A*, = Afc it suffices by induction to consider fc = 1.

Then it is elementary to check that PCyx{0}(Vb x A) = P(Cy(V0) © 1) [Fu, p.

87, 2nd paragraph], i.e. the irreducible components in the exceptional divisor over

Y x {0}, are cones over the irreducible components in the exceptional divisor over

Y, and have the same images in Y x {0} = Y.

At this point, note that the Duality Theorem stated in the introduction follows

immediately from Theorem (4.1), combined with (3.2)(2), (5.3), and (5.6). (There

is one technicality in case dim 5 = dim (sg.X)+ 1. Then, each irreducible component

of sg.X which does not occur as distinguished subvariety in (4.1) maps, by (3.2)(2),

(isomorphically) onto PTj* (5) so the statement is still correct.)

For plane curves and normal crossing varieties we can identify the distinguished

subvarieties of the singular locus, in the sense of Proposition (5.6).

PROPOSITION (5.7). Let X C P2 be a plane curve. Then the set of distin-

guished subvarieties of sg.X consists precisely of (a) those irreducible components

0/Xred. which are not reduced in X and (b) the singular points o/Xred..

PROOF. The subvarieties (a), which are the 1-dimensional irreducible com-

ponents of sg.X, are obviously distinguished. Any other distinguished subvari-

ety of sg.X must be a point so it remains to show that the distinguished points

of sg.X are precisely (b). For this, consider a point p of an affine plane curve

X defined by a polynomial f(x,y). It suffices to show that the Jacobian ideal

J — (fi fx, fy) is locally principal at p •<=> p is a nonsingular point of Xred.. (Then,

by Zariski's Main Theorem and the universal property of blowing-up, the blowup

of J will have a divisor over p E A2 o J is not locally principal at p.) If p is

nonsingular on Xred., f = gn where, locally at p, (g,gx,9y) is the unit ideal so

J = (gn,ngn_1 gx,ngn~1 gy) = (gn~1). For the converse, assume p is singular on

Xred. and write / = /"' • • • /™r where fy, ■ ■ ■, fr are the distinct irreducible factors.

Since 7 = f"l~ ■ • • /™r_1 divides /, fx, and fy, we consider / = J/7 and claim

p is an isolated point of V(I), hence / is not locally principal at p. Obviously

//7 = fi ■ ■ ■ fr vanishes at p and, since either r > 2 or r = 1 and dfy/dx, dfy/dy

both vanish at p,

7      i—' ox'       ]=i

and

k = zZnjh-d-^-fr
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both vanish at p; thus p E V(I). Since V(I) C V(fy) U ■ • • U V(fr), to show p is

isolated in V(I) it will suffice to show that none of the irreducible curves V(/,) is

contained in V(I). If V(fl) C V(I) then / C (/,-) since (fi) is prime. Then

and /j | each term for j ^ i in the sum

»/,!/. -g-A* /.if
since fy,. ■ ■ ,fr are distinct irreducibles. This implies, by taking degree in x, that

fi is a polynomial in y alone. Likewise, since fi\ J2njfi''' afj/°y '"In fi is a

polynomial in x alone so / is constant, contradiction.

REMARK (5.8). Proposition (5.7) can be deduced from Iverson [I, §6], which con-

tains a similar argument. It completes the description of the set-theoretic tangent

cone to the discriminant for curves of degree d in P2 at an arbitrary point (es-

tablishing the "Proposed Generalization" on p. 3 of [S-V4]). Further discussion,

including the multiplicities of the irreducible components, i.e., the scheme-theoretic

tangent cone, will be published elsewhere.

Normal crossing varieties are an important type of variety with hypersurface

singularities. These have local equation Xy ■ • • xk = 0 in Cn where the value of fc,

1 < fc < n, depends on the point and defines a stratification of the variety. The

deformation theory of normal crossings has been studied by R. Friedman [Fr].

PROPOSITION (5.9). Let X be a normal crossing variety. Then the distin-

guished subvarieties of sg.X are precisely the irreducible components of the closures

of the standard strata.

PROOF. Locally, let T,k be the stratum: xy = ■ ■ ■ = xk = 0 in X: xy ■ ■ ■ Xk = 0,

fc > 2, in (Cn,0). We must show that, in the blow-up of Cn along the ideal

(x2 ■ ■ ■ Xk, ■ ■ ■, Xy ■ ■ ■ Xk-y) of sg.X, an irreducible component of the exceptional di-

visor maps onto E^. Since the variables Xk+y,- ■ -,xn are missing, it evidently

suffices to show that the blowup of C* along this same ideal has an irreducible

component of the exceptional divisor over 0. To construct the blowup, use the gen-

erators of the ideal to define a rational map from Cfc to pfc_1 and take the closure

of the graph in Ck x Pk~l. We have to check that all of {0} x pfc_1 is in the closure.

But, since the rational map (xy,... ,xk) >-» (1/zi,- ■ •, i/xk) from PT0(Cfc) to Pfc_1

is dominant, this is obvious.

REMARK (5.10). If X is a normal crossing variety then it is elementary to check

that sg.X is reduced, hence the only "associated subvarieties" of sg.X (in the sense

of primary decomposition) are its irreducible components. On the other hand,

whenever there are more than double crossings, sg.X has distinguished subvarieties

besides its irreducible components.

In this paper we have concentrated on the set-theoretic description of PCo(D).

When D has pure codimension 1 in 5, PC0(D) is determined as subscheme of

PT0(5), by its set-theoretic irreducible components together with their multiplici-

ties. Let us indicate how to compute the multiplicities.

PROPOSITION (5.11). Keep the notation and all the hypotheses of Theorem

(4.1) and assume, further, that C is irreducible and generically finite over D. Let
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ra be the "geometric multiplicity" of the irreducible components Wa ofg, i.e. [if] =

~YliaraWo\ in the notation from Fulton [Fu, 1.5]. Let <pa = <p[za and Va = (p(Za).

Then

5>adeg(0a)[VQ'] = deg(C/D)[PC0 (£>)],
a

where the sum is over those a for which V* C PT0(5) is a hypersurface. In partic-

ular,

mult0(/J>) = deg(c/jD)Z'r" deS^«) des(VZ)-

PROOF. The formula is obtained by applying the projection formula [Fu, Propo-

sition 2.3(c), p. 34] to the map C -^ 79, i.e. since g = f*(PC0(D)), g,([g]) =

deg(C/D)[PC0(I>)] where g = /|g>. On the other hand,

9*(W\) = J2r-9*(K]) = ^'radeg(<Pa)[V;]
a a

since

<<& *,.•>      I deg(<pa)    if V* is a hypersurface, by (4.2)(i),

deg(g;/vj = |o        othemise

Now we recover the well-known description of the tangent cone to the discrimi-

nant for deformations of isolated hypersurface singularities.

COROLLARY (5.12) (MlLNOR, BRIESKORN-PHAM, TEISSIER [TI, §5;

Chapter III, §4]). Let(X, £) be the germ of a space X at a finite set £ = (sg.X)red.

of isolated hypersurface singularities and consider a versal deformation ir: (X, E) —»

(5,0) of (X, £), i.e., assume the Kodaira-Spencer map p: Td(5) —► Z/°(sg.X, Tx)

is surjective, where S is smooth. Then, as schemes, PCo(D) = \Jpe^PpHp, the

union of distinct hyperplanes indexed by the singular points of X, each counted with

multiplicity equal to the Milnor number of the corresponding isolated hypersurface

singularity.

PROOF. Since E = (sg.X)red. is finite, the restriction of it to the critical locus

(C, E) is proper [Mu3, (3.11), p. 44]. Since Tx is a line bundle on the finite, but not

necessarily reduced, space sg.X and p is surjective, it is elementary to see that the

Gauss map cp embeds sg.X in PTq(S). Therefore, X and C are smooth, by (3.2)(1)

and (2), and the points <p(p) E PTq(S), p E E, are distinct. Now set Hp = <p(p)*,

the dual hyperplane, which is simply ker{T0(5) -<• H°(TX\P)} in PT0(5), and the

set-theoretic statement follows from (4.1). To get the multiplicities, we apply, for

each p E E, (5.11) to the family (X,p) —> (5,0). The restriction of ir to (C,p)

has degree one over its image Dp since the Gauss map $ is an isomorphism to

the Nash blowup Dp, which then maps birationally to Dp. Thus, by the proof of

(5.6), we are reduced to showing: if X = {/ = 0} C Cn is a hypersurface having

at 0 an isolated singularity with Milnor number p, then the exceptional divisor

<f over 0 in the blowup of Cn along sg.X has one irreducible component and its

geometric multiplicity is p. To blow up the Jacobian ideal J = (/, fXl,... ,fXn),

we take the closure in C™ x P™ of the graph of the rational map: C" —■* Pn,

x 7-7 (f(x),fXl(x),...,fXn(x)). Now the integral dependence of / on the ideal

(xyfXl,...,xnfXn) [T2, Chapter 0, §0.5(1)] shows that when x —* 0 along any
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arc in Cn, (f(x),fXl(x),...,fXn(x)) -* (0,cxy,... ,an) E Pn for some cty,...,an.

Therefore E = gxeA. is {0} x {ao = 0}. Thus [If] = r[E] and it remains to prove

p = r.

p = dime C{xi,..., xn}/I,    where C{xj,..., xn} is the analytic local ring

ofCn at0and/=(/I1,...,/IJ

[Mi, Problem 3, p. 115; L, 5.11]

= mult /    since fx,,..., fXn is a regular sequence [T2, Chapter 0, §1.1]

= mult J   since / is integral over / [T2, Chapter 0, §1.1]

= degs0(sg.(X,0),Cn),    where so = zeroth relative Segre class

[Fu, Examples 4.3.4, 19.2.5]

= deg(c1(Or(-i'))n-1 n [g]),    where c, = first Chern class

[Fu, Corollary 4.2.2]

= rdeg(cy(Or(-g))n~1 n [E]) = r    since E == P""1

and 0E(-g) £ Op—i(1).    Q.E.D

6. Tangent cones to a parametrized space. In this section we drop the

hypothesis that the space in which we are computing the tangent cone is a discrim-

inant locus, and introduce instead the concept of a generic exceptional fiber of a

map, as follows:

Given a generically finite, proper, surjective map /: X —► Y, with X nonsingular

and Y reduced, let y E Y be a point for which: f_1(y) is a nonsingular scheme,

i.e.,

(1) f_1(y) is nonsingular as reduced space (possibly positive dimensional).

(2) The differential /» is injective on all fibers of the normal bundle N to /_1(y).

Then, if we blow up X along f~x(y) to get X, the composition X —► X —► Y

still satisfies (1), and (2), so that if we blow up Y at y, getting Y, we have a lift

of/:

X —^ Y

i        1
X —S—* Y

whose restriction to P(7V) = projective normal bundle of f~l(y) in X, is given by

the differential of the composition X —> X —► Y [D-S, Chapter I, Lemma 3.1].

We denote it also by /». This restriction of / to the exceptional fibers gives us a

surjective map:

/,:P(/V)^P(C') = P((Cyy)red.)

from the projective normal cone of f~1(y) in X onto the reduced projective tangent

cone of Y at y.

P(N)     -£*     P(C')
n       _      n

x    X    y
i i
X     -^     Y
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We want to relate the invariants of the two generically finite maps / and /*. For

simplicity, assume P(C') is irreducible.

Since / has injective differential on the normal line bundle to P(N) C X, and

/* : P(N) —7 P(C') preserves dimension, the kernel of the differential of / has been

eliminated generically along the exceptional fiber by the blowing up process, so that

/ has injective differential at a general point of every component of P(N) C X.

Therefore at a general point of P(C') C Y, Y has a smooth branch, and thus either

Y is smooth at a generic point of P(C') and such a point is a regular value of /,

or else Y is locally reducible generically along P(C'). By factoring / through the

normalization of Y if necessary, we can conclude:

deg(/.) > deg(/)

and equality holds <=>• Y smooth at a generic

point of P(C')

«=> Y normal at a generic

point of P(C').

This formula can be refined as follows: Since P(C') is a projective variety in the

projective Zariski tangent space of Y at y, it has a tautological line bundle 0(—1),

and by the definition of /*,

(/.)*(0(-l)) = E= the normal line bundle to P(7V) in X.

Thus cy(E) = (/»)*ci(0(-l)), and if we raise both sides of this equation to the

power n = dim .P(C) = dim .P(7V), and evaluate on the fundamental class of P(7V),

we have

deg.{(-l)»Cl(£)"[P(7V)]} = deg{(/»)*(Cl(0(l))")[P(7V))]}

= deg(/.) • deg(P(C')).

(If P(C') is reducible, the last product is a dot product, summed over the compo-

nents of P(C').)

On the other hand, if we apply Fulton's and MacPherson's formula [Fu, p. 74]

involving the Segre class of E to the composition X —► X —7 Y, since X —► X is

birational it gives us

deg{s(E)n[P(N)]} = deg(f) ■ deg(C).

Since

c(E) = l + cy(E),

and

s(E) = c(E)-1 = l-Cl(E) + --- + (-l)ncny(E),

we have s(E)n = (—l)nCy(E), so that the left sides of the two formulas agree, and

we get

DEGREE FORMULA (6.1). deg(/)-deg(C) = deg(/„)-deg(C) and thus deg(/) =
deg(/») if and only if the top dimensional cycle of C has multiplicity one.
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EXAMPLE (6.2). A simple example, the normalization of a tacnode, pointed out

by   Cornalba,   illustrates   clearly   the   relation   between   deg(/)   and   deg(/*):

C is a double line, deg(/) = deg(C') = 1, and deg(/„) = deg(C) = 2.

EXAMPLE (6.3). One application of the degree formula is to refine the geometric

argument given in Griffiths-Harris [G-H] for Riemann's singularities theorem. Con-

sider the Abel-Jacobi map C^9-1' -»0C J(C) parametrizing the theta divisor. If

L E 6 is any point, then a~x(L) = \L[ = Pr, where r = h°(L) - 1, by Abel's the-

orem and its converse so the reduced fibers of a are smooth. By Mattuck-Mayer's

version of the Riemann-Roch theorem [M-M, p. 230], at each point of a_1(L),

the derivative a» has an r-dimensional kernel, so the fibers are actually smooth as

schemes and the hypotheses of this section are verified. It follows that the image

under a» of the normal bundle in C^9-1' to a~l(L) is the tangent cone to 6 at L,

at least as a set.

This set, a hypersurface in P9_1, is computed in [G-H, pp. 343-345]. To see

that this is the tangent cone as a scheme as well, one only needs to compute that

the multiplicity of the fundamental cycle is one. But by the argument in [G-H,

pp. 345-346], a* has degree one on the normal bundle to a~l(L). Hence by our

formula (6.1), the tangent cone is reduced as a scheme. For related methods, see

[Kel; Fu, Example 4.3.2].

EXAMPLE (6.4). The tangent cone to o E S(W), where W3 C P4 is a smooth

cubic threefold, can be computed the same way. This time the parametrizing map

is, by Clemens-Griffiths [C-G, Theorem 13.4], the difference map F x F —> J(W)

from the Cartesian product of two copies of the Fano surface F of lines on W.

Now 6 collapses the diagonal A = F to the (unique) singular point o E S(W).

The projectivized normal bundle to A in F x F is isomorphic to the projectivized

tangent bundle of F, which is [C-G, Proposition 12.9] the tautological P1-bundle

over F C Gr(l,4). Moreover their argument shows [C-G, 12.4] that the Abel-

Jacobi map F —7 J(W) is an embedding whose derivative at L E F embeds the

projective line P(TLF) onto the line L in PT0(J(W)) £ P4.

Hence 6* is injective on the normal bundle N to A in F x F, and maps the

projectivized normal bundle PN onto the union of the lines parametrized by F in

PT0J(W) = P4, i.e. onto W3 C P4. Hence PC0S(W) is Wz at least as sets and to

see it as schemes, it suffices by (6.1) to check that deg6 = deg6*. But by [C-G, p.

348], deg<5 = 6, while deg<5,= the number of lines on W through a general point,

which is also 6. Similar arguments are given in [B; Fu, p. 80].

The possibility of using the normal bundle along the fibers to compute the tan-

gent cone to the image of a map was emphasized by A. Mayer in the 1960s. To

see the role of this method and to review and compare with §4, consider the map

n: C —> D C 5 from critical locus to discriminant, and a point 0 E D. The induced
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map on blowups rj: C -» D restricts to g: g = PCsgXo(C) -7 PCQ(D) C PT0(5)

on exceptional divisors. When C and r?_1(0) = sg.X0 are both smooth, then

g = PN, the projectivized normal bundle and g = n», the ordinary " Frechet deriva-

tive" . In general, even if C is smooth, it is insufficient to know r/*^: T^(C) —> To(5)

for £ E n_1(0): if p E g\$, g(p) is the limiting tangent along the (possibly singular)

image of any arc in C "through p". Still, g: g —> PTb(5) is defined by sections

of the line bundle Og(-g); on the other hand, there is the line bundle <r*(TXo)

on g and the composed map: g -^> sg.X0 —* PTq(S). Our main theorem is that,

on Ifred.i 9 and <p o a have projectively dual images; we have seen this when C

and sg.Xo are smooth from direct computation with n, and, in general, from the

contact structure on PT*(S).

7. Applications.

EXAMPLE (i). Consider the universal projective hypersurface of degree d in P":

XCP(n,d) xP"

I
P(n,d).

If X C Pn is a hypersurface of degree d, then Tx = (7VX|pn)|Sg.x = Opn(d)|sg.x,

so the Gauss map $: C —► PT*(P(n, d)) is the universal d-uple Veronese map,

hence an embedding. Consequently in this example, C = D; i.e. the critical locus

is isomorphic to the Nash blowup of the discriminant locus [S-V4], something

which was known to be true for the versal deformation of an isolated hypersurface

singularity. Now PCo(D) = \Ja (p(Za)* and since <p is the Veronese map, of degree

d > 1, cp(Za) contains no lines, hence the union is precisely the decomposition of

PCo(D) into distinct irreducible components.

Here is a generalization of the family of all projective hypersurfaces.

EXAMPLE (7.1). Linear system on a nonsingular variety.

Let V be a nonsingular variety, L a line bundle on V, and E C H°(V, L) a

vector subspace. The resulting linear system on V is the family of hypersurfaces

with base space 5 = P(E) and total space X = {(x, [a]) E V x P(E)\a(x) = 0},

ir(x, [a]) = [a]. Given [a] E P(E), and letting X denote the divisor X[CT] = 7t_1([(t])

of V defined by a, Tx S NX/v|sg.x = L|sgX, PT{*a](P(E)) is the hyperplane H of

P(E)* dual to [a], and <p is the rational map: sg.X —■+ 7/ induced by the rational

map: V —-» P(E)* defined by the linear system. If the linear system is base point

free, X is nonsingular and <p is everywhere defined. If, also, L is ample then <p is

finite so Theorem (4.1) describes the tangent cones to the discriminant of the linear

system.

EXAMPLE (ii). Next consider the universal family of theta divisors over Siegel

space

0

I
#rg

and the fiber 6 over a point fi. Let sg26 denote the double points of 6.

PROPOSITION (7.2). Let Z be an irreducible component o/sg26 on which tp

is generically finite. Let V = <p(Z) and assume that V* is a hypersurface. Then

V* is an irreducible component o/PCn(No).
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PROOF. Recall first, that, since Z C sg26, the total space 0 is nonsingular

along Z by the heat equations so <p is defined on Z. Now let Ci be an irreducible

component of C containing Z and p: C[ —► Ci be the blowing-up of Ci along the

base locus of $ so that </>': Cy -» PT*(JQ is everywhere defined. Let Z' = p^(Z)

and Z be its closure in Cj. Then cp' is generically finite on Z since cp was assumed

generically finite on Z and on Z', p, is an isomorphism to Z. Let Cj be the blowup

of Ci along p_1(sg.6) and g' be an irreducible component of the exceptional

divisor of Ci which maps onto Z . (Since sg26 is open in sg.6, Z is an irreducible

component of sg.6 so Z is an irreducible component of p_1(sg.6).) Then, by the

proof of (4.1), 4>'(g') is the dual correspondence of <p'(Z ) = <p(Z) = V. To make

sure that the image of g' in PTn(^), which is V*, is contained in PCn(N0) note

that C'i maps to Ci, the blowup of Ci along sg.6, and hence to N0 the blow up

of No at fi. Finally, since No has pure codimension 1 in ^ and V* is assumed to

be a hypersurface of PTn(^), V* is an irreducible component of PCn(N0).

Here is a case which was known, by Andreotti-Mayer [Mu2, p. 87], plus defor-

mations of isolated hypersurface singularities.

COROLLARY (7.3). Let H(. be the hyperplane of PTn(^g) defined by the
quadric tangent cone to 6 at an isolated double point £. Then the isolated dou-

ble point "disappears" in directions out of H^ and "persists" in directions in H$.

PROOF. Hi=<p({£)y.

COROLLARY (7.4). For generic fi(C) E ig, g > 5, ^(sg^6(C))* is an irre-

ducible component o/PCn(c)(No). (Jg Q ^ is the Jacobi locus.)

PROOF. For C generic, Z = sg26(C) is irreducible [F-L, Corollary 2.4] and

<p has degree 2 on Z so it remains to check that V* is a hypersurface, where

V = (p(sg2S(C)). For this consider a 1-parameter degeneration to a generic trigonal

curve Co- Now sg.6(Co) has two irreducible components each birational to Vb so>

since the abelian variety J(Co) contains no rational curves, Vb is not covered by

lines. It follows that Vj is not covered by lines for general t, thus Vt* must be a

hypersurface.

The situation simplifies for the generic curve of genus g < 8 since then all the

singularities of 6(C) are double points. We will treat the genus 5 case.

COROLLARY (7.5).   For generic fi(C) e J5,

PCj5(N0)|n(C) = F(C)*    as schemes,

where T(C) is the quintic discriminant curve in the net U of quadrics containing

the canonical curve C C P4 and T(C)* is the dual plane curve.

PROOF. By (7.4), cp(sg.S(C))* is an irreducible component of PCn(c)(N0).

To show it is the only component we need to check that C is nonsingular along

sg.6(C) and sg.6(C) is nonsingular. These are both proved in [S-V2, Theorem

(1.11) and proof, together with Proposition (0.21) (la) and proof]. Now recall that

T(C), after inclusion of n = PN^{c)(3g/^g) in PT*(C)(^) is (p(sg.B(C)). Then

the statement about the normal cone follows as sets.

To get the result as schemes, we only need to check that PCj5(No)|n(C) is

reduced. Since sg.6(C) is nonsingular, we may use the multiplicity formula from
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either §5 or §6. For example, from (5.11), nonsingularity of C and sg.O(C) implies

ra = 1, so

multo(No) deg(cp)

deg(r(C)*)      deg(C/D)'

deg(PC) deg(0)

deg((PC)red.)      deg(C/D)'

an integer which we claim equals one.   It suffices to check deg(C/D) > deg((p).

(Note, since sg.6(C) is connected and C is nonsingular along it, that No has only

one component containing Jg [S-V2], so deg(C/D) refers to the local degree near

fi(C).) Since we know the map <p: sg.6(C) —► T(C), we have from [A-M]

py^Qp

that deg(qf>) = 2. To see that deg(C/D) > 2, just note that a general jacobian of

genus five has an infinite number of singular points hence some which are not points

of order two in the group law. Hence the theta divisor over a general point of N0,

near fi(C), has some singularities which are not fixed by the involution, hence has

at least two singular points.    Q.E.D.
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