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AUTOMORPHISMS AND ISOMORPHISMS OF
REAL HENSELIAN FIELDS

RON BROWN

ABSTRACT. Let K and L be ordered algebraic extensions of an ordered field

F. Suppose K and L are Henselian with Archimedean real closed residue

class fields. Then K and L are shown to be F-isomorphic as ordered fields if

they have the same value group. Analogues to this result are proved involving

orderings of higher level, unordered extensions, and, when K and L are max-

imal valued fields, transcendental extensions. As a corollary, generalized real

closures at orderings of higher level are shown to be determined up to isomor-

phism by their value groups. The results on isomorphisms are applied to the

computation of automorphism groups of K and to the study of the fixed fields

of groups of automorphisms of K. If K is real closed and maximal with respect

to its canonical valuation, then these fixed fields are shown to be exactly those

real closed subfields of K which are topologically closed in K. Generalizations

of this fact are proved. An example is given to illustrate several aspects of the

problems considered here.

1. Introduction. Throughout this section K and L denote valued field ex-

tensions of a valued field F. Suppose K and L are Henselian with Archimedean

real closed residue class fields. Such field extensions arise in many contexts; ex-

amples are ultracompletions at real Harrison primes [HW], ultracompletions (or

Henselizations) at real extended absolute values [Br3, §§1 and 4], completions at

0-primes [V], real closures of fields [B, AS], generalized real closures at orderings

of higher level [B , §5], and minimal ordered field extensions satisfying Rolle's The-

orem for polynomials [BCP]. We study here the question of when K and L are

F-isomorphic, and apply our results to the study of automorphisms of K.

We begin with an instructive example.

1.1 EXAMPLE. Let F = R((x)), the field of Laurent series over the field of

real numbers, R. Set K = F[x1/2] and L = F[(-x)1/2]. Then K and L are not

F-isomorphic because x E F fl K2 but x £ L2. If we identify the value group of

F for the z-adic valuation with Z, then both K and L have value group ^Z. All

three fields have residue class field isomorphic to R.

The above example shows that K and L need not be F-isomorphic even though

they induce isomorphic residue class field extensions of the residue class field of F

and isomorphic value group extensions of the value group of F. For ordered field

extensions, however, the situation is simpler.

Let vK, vL and vF denote the value groups of K, L and F.
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1.2 THEOREM. Suppose K and L are algebraic extensions of F with vK = vL.

Suppose S and T are orderings of K and L, respectively, with SC\F = TC\F. Then

there exists a unique F-isomorphism A: K —► L with A(S) = T.

In the statement of the above theorem we are implicitly assuming that the value

groups of K and L have been canonically identified with subgroups of a divisible

hull of the value group of F. (Recall that K and L are algebraic valued field

extensions of F, so vK/vF and vL/vF are torsion.)

Note that Theorem 1.2 includes the classical Artin-Schreier theorem that there

is a unique F-isomorphism between any two real closures of F inducing the same

ordering on F. (For such real closures K and L, the value groups of K and L

are both equal to the divisible hull of the value group of F.) Theorem 1.2 will be

proved in §3 as a consequence of a more general embedding theorem. Applications

of Theorem 1.2 given in §3 include necessary and sufficient conditions for the F-

isomorphism of (unordered) algebraic field extensions K and L of F (e.g., that

vK = vL and K2 C\F = L2 C\F), computations of the automorphism group of an

algebraic extension K/F (it is isomorphic to Hom(vK/vF, Z/2Z)), and criteria for

the existence of extensions of homomorphisms F —> K to automorphisms of K.

In §4 we prove analogues of the main results of §3 for field extensions K/F

and L/F which are not necessarily algebraic, under the hypothesis that K and L

are maximal valued fields with Archimedean real closed residue class fields. For

example, here is an isomorphism theorem for unordered fields.

1.3 THEOREM. Suppose K and L are maximal valued fields with isomorphic

Archimedean real closed residue class fields. Suppose K2 n F = L2 D F and that

there is an isomorphism of ordered groups $: vK —> vL fixing vF. Let vk and vl

denote the valuations on the valued fields K andL. Then there is an F-isomorphism

A: K —> L with vLA = $wK.

In §5 we generalize Theorem 1.2 and its analogue in §4 for maximal valued

extensions by allowing orderings of higher level [B] as well as the classical orderings

of the Artin-Schreier theory. Example 1.1 illustrates that some restriction will be

needed on the exact levels of the orderings of higher level (as Becker has observed

for these fields, every ordering of two power level of F extends to K and to L).

In that section we will review and develop some of the basic theory of orderings

of higher level, with special focus on the "2-primary component" of an ordering of

higher level. As a corollary we obtain the following.

1.4 THEOREM. Suppose P is an ordering of higher level of F and that (K,T)

and (L,S) are generalized real closures of (F,P). If vK = vL, then there is a

unique F-isomorphism from K to L.

The isomorphism theorems of §3 and §4 are applied in §§6 and 7 to study the

automorphisms of K. We have the usual bijective Galois correspondence between

the set of fixed fields of K with respect to groups of automorphisms of K and the set

of groups of automorphisms of K of the form knt(K/E) where E is a subfield of K.

Our main effort here is directed toward characterizing intrinsically the fixed fields

of K with respect to sets of automorphisms of K (abbreviated, "fixed subfields of

Kn). It is easy to check (Proposition 6.1) that such a fixed subfield is topologically

closed in K (with respect to the interval topology for any ordering on K—all these
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topologies coincide) and that its relative algebraic closure in K is a multiquadratic

extension. The converse is false, but not if K is a maximal valued field.

1.5 THEOREM. Suppose K is a maximal valued field with Archimedean real

closed residue class field. Then a subfield F of K is a fixed subfield if and only

if F is topologically closed in K and the relative algebraic closure of F in K is a

multiquadratic extension of F.

For example the field of real algebraic numbers is a fixed subfield of any nonar-

chimedean real closed field which is a maximal valued field for its Archimedean

class valuation. Theorem 1.5 takes a simpler form if K is real closed; any fixed

subfield in this case is actually algebraically closed in K.

In §7 we show that if the extension K/F has transcendence degree one and F is

topologically and algebraically closed in K, then F is a fixed subfield of K. This fact

is proved as a corollary of a computation of the group of valued field automorphisms

of K which fix F. We have no counterexamples to the assertion that the above fact

is valid without the restriction on transcendence degree. However, we do give in §7

an example to show that the hypothesis that K is a maximal valued field cannot

be dropped from Theorem 1.5.

In §8 we consider a more elaborate example of a maximal valued field K with

Archimedean real closed residue class field and with infinite transcendence degree

over a subfield F. This work is partly motivated by a feeling that the detailed

consideration of nontrivial examples may be necessary for progress on the more

intractable problems in this area. We compute the full automorphism group of

K/F, and show that the subgroups of Aut(K/F) of the form Aut(KfS) where

K D S D F are exactly the closed subgroups of Aut(K/F) with respect to a

natural topology (not the Krull topology). We show the algebraic closure in K of a

fixed subfield of K need not be fixed. A second example is constructed showing that

Theorem 1.5 fails if K is not required to be a maximal valued field. A key feature

of this example and of that in §7 is the construction of subsets of K algebraically

independent over F.

Some concepts and notation are introduced in §2 which are used throughout the

paper (cf., 2.1 and 2.3). In particular we introduce the notions of "real Henselian

fields" and "real Henselizations". These concepts can be set into a general theory of

Henselizations with respect to extended absolute values [Br3, §4; Br7]. We develop

in §2, however, only the results which are needed in later sections. The main result

is a universal property for real Henselizations. This material closely parallels the

theory of Henselian valued fields, and none of it is surprising or difficult.

We end this introduction with a few comments on format and notation. First,

at the beginning of each section we give covering hypotheses for that section. The

reader is reminded that these hypotheses are not repeated in the statements of

theorems in the section. Next, we regard a field extension K/F as a field homo-

morphism F —> K and we need this point of view in the proofs of a few theorems.

In the statements of theorems and in most proofs, however, we implicitly assume

that our field extensions are given by inclusion maps.

We use standard notations. N, Z, Q, and R denote the sets of positive integers,

integers, rational numbers, and real numbers, respectively. R' denotes the group

of multiplicative units of a unitary ring R (so Z' = {1,-1}).   "A\S" denotes the
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complement of the set B in the set A, and "/ | A" denotes the restriction of a map /

to a subset A of its domain. Less standard is our notation "E((tr))" for the field of

generalized power series (perhaps more correctly called generalized Laurent series)

with coefficient field E and valued group T (and trivial factor set). This field is

variously denoted elsewhere by S(E,T,1) [S, p. 23], E((t))r [R, p. 103], S(T,E)

[Bo, p. 174] and E(tr) [K, p. 314]. The definition of E((tT)) is reviewed in §8,

where such a field is studied in detail.

2. Real Henselian fields. Throughout this section K/F denotes a field ex-

tension. We further assume that K is "real Henselian" in the sense of the following

definition.

2.1 DEFINITION. K is real Henselian if it admits a Henselian valuation with

Archimedean real closed residue class field. K is a real Henselization of F if it

admits a Henselian valuation, say v, with Archimedean real closed residue class

field, K/F is algebraic, and v(K') = v(F').

Examples of real Henselian fields were listed in the first paragraph of §1.

The above definitions of "real Henselian" and "real Henselization" are strictly

of the quick-and-dirty variety. A much more general and conceptual treatment is

possible, closely mimicing the corresponding theory for valuations. See [Br3, §4]

and [Br7] for work in this direction. We develop in this section only facts that will

be needed later in the paper.

2.2 PROPOSITION. K admits a unique place into R, say a, and the associ-

ated valuation, call it v, is the unique (up to equivalence) valuation on K with

Archimedean real closed residue class field. Every ordering on K induces a and v,

and ar = a and vr is equivalent to v for any automorphism r of K.

Recall that an ordering P of K "induces" a place a: K —► R U {oo} if and only

if o(P) > 0 [Brl]; an equivalent condition is that

<j-1(R')nP = <7-1(R'2).

The valuation "induced" by P is the Archimedean class valuation .

PROOF OF 2.2. Let v be the Henselian valuation on K with Archimedean real

closed residue class field. Since any Archimedean ordered field has an embedding

into R, v is induced by a place, say <r, from K into R. If p is any place from K

into R with p / rr, then there exists a E K with p(a) < 0 and oo > a(a) > 0 [Br2,

Theorem 2.1A]. Then our hypotheses imply that a E K2. This contradicts that

p(a) < 0. Thus a is the unique place from K into R. The other assertions of 2.2

follow easily from this one.    □

2.3 NOTATION. Say E is a real Henselian field. We let cte denote the unique

place from E into R, and let vB (or just v) denote the associated valuation. For

any A C E, we let vA (or v(A)) denote v(A n E'). Finally we let E denote the

residue class field of v and e denote the residue class of any e E E with v(e) > 0.

We include the next proposition for completeness; it is well known.

2.4 LEMMA. Say F is algebraically closed in K and K is real closed. Then F

is real closed.

PROOF. Say a + bi E K[i] (where i2 = -1 and a,b E K) is algebraic over F.

Then a — bi is clearly algebraic over F, and so o and b are algebraic over F.  We
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can conclude that F[i] is algebraically closed in K[i).  Hence F[i] is algebraically

closed—so F is real closed ([AS, Satz 4] or [L, Theorem 2.5]).    □

2.5 PROPOSITION.   For any integer n > 0, v(KnnF) = v(Kn)C\v(F).

PROOF. Let a E K have v(an) E vF. Then nv(a) = v(b) for some b E F. We

may assume aK(an/b) > 0 (if necessary replace b by —b). Then an/b = dn for

some unit d E K (recall that K is real Henselian, cf. 2.1). Then (a/d)n = b, so

nv(a) = v((a/d)n) E v(Kn n F). Thus v(Kn n F) D v(Kn) n v(F). The reverse

inclusion is obvious.    □

2.6 PROPOSITION. Suppose F has no proper algebraic extension in K. Then

F is real Henselian. Further, vK/vF is torsion-free and F has no proper algebraic

extension in K.

PROOF. Let a be in the valuation ring oKl(TV); suppose a is algebraic over F.

Then there exist 6, E <r^1(R) !~l F with Y^ha* = 0 and with ^Zhx1 an irreducible

polynomial over F. Since K is a Henselian valued field, there exists c E K with

c = a and Yl °ict = 0- Then by hypothesis, c 6 F, so a E F. Thus F is algebraically

closed in K. Hence by Lemma 2.4, F is real closed. F is a Henselian valued field

since it is algebraically closed in the Henselian field K (after all, it has a Henselian

algebraic extension in K by [E, 17.10b]). Thus F is real Henselian (Definition

2.1). That vK/vF is torsion-free follows from the previous proposition and the

observation that by hypothesis we have Kn fl F = Fn for any integer n > 0.    D

2.7 PROPOSITION. Let a be a place from F into R. Then there exists a real

Henselization E of F such that o~e extends a.

PROOF. Let E0 be a Henselization of the valued field F (where the valuation

is that induced by a). Let L be a real closure of E0 at the ordering induced by a.

Now take E to be an unramified algebraic extension of Eo with residue class field

L [R, p. 164, Proposition 3 (Mac Lane)].    □

We now show that real Henselizations satisfy a universal property which, in a

more systematic treatment, might be used to define them.

2.8 PROPOSITION. K contains a unique real Henselization of F. More gener-

ally, if E is a real Henselization of F such that ax andaB have the same restriction

to F, then there exists a unique F-homomorphism 6: E —> K.

PROOF. Let Kq denote the unique Henselization of F in K with respect to

vk I F [E, p. 131]. An algebraic extension Ky of F in K is a real Henselization of

F if and only if vKy = vF, Ky D K0 (equivalently, Ky is Henselian with respect

to vk[K{), and Ky is the algebraic closure of F in K (equivalently, Ky is real

closed, cf. Proposition 2.4). The existence and uniqueness of such an extension Ky

are easy consequences of Hensel's Lemma, together with [R, p. 236, Theorem 2].

The remaining assertions of 2.8 follow from the uniqueness properties of ordinary

Henselizations [E] and from [S, p. 219, Lemma 20].    D

2.9 PROPOSITION. Say H is a set of automorphisms of K. Then the fixed field

KH is real Henselian.

PROOF. Let v — vr. By Proposition 2.6 we may assume K/KH is algebraic

(otherwise replace K by the algebraic closure of KH in K and H by the set of
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restrictions of elements of H to this relative algebraic closure). KH is the fixed

field of K under the set of automorphisms of K induced by elements of H [E,

Theorems 19.6 and 19.12]. But these induced automorphisms are all trivial since

K is an Archimedean real closed field. Thus KH = K is Archimedean real closed.

It remains to show that KH is Henselian with respect to v\KH. Let K' be an

algebraic closure of K. Let v' and w be extensions to K' of v and v \ KH, respec-

tively. It suffices to show that v' = w. Since K is Henselian, it suffices to show

that v = w\K. There exists r E Ant(K'/KH) with w = v'r. Since K/KH is

normal, t[K E Aut(K/KH). Thus w\K = vt\K. Hence by Proposition 2.2,

v = vr | K = w I K, as required.    D

Our last proposition is a corollary of a theorem of Ostrowski [R, p. 236, Theorem

2]; we include it here for the convenience of the reader since we will use it several

times.

2.10 PROPOSITION.   K has no immediate proper algebraic extensions.

In 2.10 we of course mean immediate extensions with respect to the valuation

vk-

3. Isomorphisms of algebraic extensions. Throughout this section K and

L will denote real Henselian algebraic extensions of a field F such that vk and vr,

have the same restriction to F. Thus, we can and do canonically identify vK and

vL with subgroups of some divisible hull of vF. (For notation and terminology see

2.1 and 2.3.)

3.1 THEOREM. Let Pk and Pr, be orderings of K and L, respectively, which

induce the same ordering on F. Suppose vK C vL. Then there is a unique F-

homomorphism A: K —+ L with A(Pk) C Pt,. If vK = vL, then A is an isomor-

phism.

PROOF. Let K' and L' denote real closures of K and L with respect to the

orderings Pk and Pr,, respectively. Then K' and V are real closures of F with

respect to Pk fl F, so there exists an F-isomorphism 6: K' —> L'. Now suppose

a E vK, say with na E vF for some integer n > 0. Then by Proposition 2.5 (and

our hypothesis) there exists a E Pk and b E Pl with v(a) = v(b) = ct and an E F

and bn E F. Then

(9(a)fb)n = an/bn E PL na^fR") C ^(R"2) C Ln.

Hence 9(a)/b E L (all roots of unity in L' are also in L since L' is formally real).

Thus 9(a) E L. Thus 9 maps a subfield K0 of K with K0 D F and vK0 = vK

into L. K0 has a real Henselization Ky in K and 9(Ky) C L (Proposition 2.8).

Clearly, K/Ky is an immediate extension (K is an algebraic extension of the real

closed field Ky). Thus K = Ky (Proposition 2.10). Hence 9(K) C L. Now simply

take A = 9[K. That A(PK) C PL follows from the fact that 9(K12) C L'2. The

uniqueness of A follows immediately from the uniqueness of the F-isomorphism

between real closures of an ordered field. Finally, if vK = vL, then L/6(K) is

immediate, so A is an isomorphism (Proposition 2.10).    □

3.2 THEOREM.   The following statements are equivalent.

(1) K and L are F-isomorphic as fields.
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(2) K and L are F-isomorphic as valued fields.

(3) Kn n F = Ln n F for all integers n > 0.

(4) K2 n F = L2 n F and vK = vL.

(5) Some ordering of F extends to an ordering of K and to an ordering of L,

and vK = vL.

PROOF. It suffices to establish the chain of implications (2) •=> (1) => (3) =>

(4) => (5) => (2). The first two implications are obvious and the last follows from

the previous theorem. Now suppose (3) holds; we prove (4). We need only show

vK = vL.

Let a E vK. Then na E vF for some n > 0. Thus a = v(a) for some a E K

with an E F (Proposition 2.5). Hence an E Ln fl F by hypothesis. Say b E L has

bn = an. Then a = v(b) E vL. Then vK C vL. Equality follows by symmetry.

Now suppose (4) holds. Let T be any ordering of K. We claim that TdF extends

to L. Just suppose -1 E (T n F)L2. Then -1 = ab2 for some a E T n F,b E L.

Thus

-a"1 = b2 E (-T) n (F D L2) = (-T) C\(F DK2) ET n (-T) = {0}.

This contradiction shows that -1 ^ (TDF)L2. But L is superpythagorean [Br4,

Corollary 8] and so (T f) F)L2 is contained in an ordering of L. This shows (5)

holds. The theorem is proved.    □

3.3 REMARK. The covering hypothesis for this section, that vk and vl have

the same restriction to F, is not necessary and is included only in order to make

Theorems 3.1 and 3.2 easy to formulate. After all, vk and Vl will have equivalent

restrictions to F if o~k | F = ol [ F, and this equality follows from any of the

following conditions (cf., Theorems 3.1 and 3.2):

(A) some ordering of F extends to an ordering of K and to an ordering of L

(note by Proposition 2.2 that the extended orderings must induce ck and err,);

(B) K2 n F = L2 n F (note that iioK\F£oL\F then there exists a E F with

0 > ok(o) and oo > aL(a) > 0 [Br2, Theorem 2.1A], so that a £ K2 but a E L2);

(C) K and L are F-isomorphic (cf., Proposition 2.2).

Much effort has gone into developing for formally p-adic fields a theory analogous

to that of formally real fields (e.g., see [PR, p. 1]). The next result reverses this

pattern: it is an analogue for formally real fields of a result of Prestel and Roquette

on formally p-adic fields [PR, Theorem 3.12]. In [Br7] we give a framework for a

unified development of both theories. Theorem 3.2 generalizes fully (all five parts)

to this broader context. The generalization includes the "isomorphism theorem for

algebraic extensions" of p-valued fields [PR, Theorem 3.11].

3.4 THEOREM. Two real Henselian intermediate fields E and E' of the exten-

sion K/F are equal if and only if vE = vE'.

PROOF. Say vE = vE'. Let T be any ordering of K. By Theorem 3.1 there is a

unique F-isomorphism 9: E — E' with 0(75DT) = E'C\T. Again by 3.1, 0 extends

to an automorphism 0' of K with 9'(T) — T. By 3.1, 0' is the only F-automorphism

of K with 0'(T) = T. But then 0' is the identity map on K and so E' = 9'(E) = E.

The converse is trivial.    □

We now apply Theorem 3.1 to study Ant(K/F), the group of F-automorphisms

oi K.
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3.5 THEOREM. (A) There is a well-defined group isomorphism $: Aut(K/F)

—> Uom(vK/vF, Z') such that for each r E Aut(K/F) and a E K' we have

$(r)(v(a) + vF) = sign(aK(a/r-1(a)))

(where sign: R' —> Z' is the homomorphism with kernelH'2).

(B) Let T be an ordering of K. The correspondence $: r >-^> t(T) carries

Ant(K/F) bijectively onto the set of orderings of K containing TTl F'.

PROOF.   Let XT be the set of orderings of K containing T D F.   That #:

Aut(K/F) —> XT is a bijection follows directly from Theorem 3.1. Let

<pT: XT -► Uom(vK/vF, Z')

be the bijection with

<pT(S)(v(a) + vF) = sgnT(a)sgns(o)

for all S E Xt, a E K' (where sgnT: K' —► Z' is the signature homomorphism; the

kernel of sgnT is T') [Brl, last paragraph, p. 635].

For all r E Aut(K/F) and a E K' we have

Pr(*W)(«(o) + vF) = sgnT(a)sgn*(T)(a)

= sgnT(a)sgnT(T)(a) = sgnT(a) sgnT(T_1(a))

= sgnT(a/r_1(a)) = sign(tTK(a/T_1(o)))

= $(r)(v(a) + vF)

(since a/r~l(a) is a unit and T induces ctk)- Thus $ = ipr^ is a bijection. That $

is a homomorphism is easily verified; for all r, p E Aut(K/F) and a E K' we have

$(rp)(u(a) + vF) = sign aK (a/(rp)~l (a))

= signaK((a/r-1(a))(r-1(a)/p-1r-1(a)))

= sign<Tic(a/r"1(a))signo-K(r_1(a)/p"1r"1(o))

= *(r)(w(a) + vFWpWt-1 (a)) + vF)

= <$>(r)(v(a) + vF)$(p)(v(a) + vF)

= ($(r)$(p))(»(a) + uF).    D

The next corollary of Theorem 3.2 will be applied in §7 to the construction of

automorphisms.

3.6 THEOREM. Let 9: F —> K be a homomorphism such that K/9(F) is alge-

braic, aK9 = o-K\F, vK9 = vK\F, and 9(K2 n F) = K2 n 0(F). Then 9 extends

to an automorphism 9' of K with vk9' = vk-

PROOF. Let us adopt the formal point of view that a field extension K/E is a

homomorphism E —► K. Let K/F be the extension given by the inclusion map and

L/F be the extension given by 0. The covering hypotheses of this section are then

satisfied by K/F and L/F. Moreover condition 3.2(4) is satisfied (since 0 induces

the identity map vF —> v(9(F)) and 9~l(K2) = K2 C\ F). Our conclusion follows

from Theorem 3.2.    D

A similar argument yields an analogous theorem for ordered fields.
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3.7 THEOREM. Suppose S and T are orderings of K. Let 9: F -* K be a

homomorphism with K/9(F) algebraic, 9(F C\S) E T and vk9 = vk\F. Then 9

extends to an automorphism 9' of K with 9'(S) = T.

4. Maximal valued fields. Throughout this section K and L will denote

field extensions of a field F which are maximal valued fields with Archimedean

real closed residue class fields. Examples of such field extensions include Valente's

"completions" at 0—primes [V], and "ultracompletions" of fields either at real

Harrison primes [HW] or at real prime values [Br3, §1]. Note that K and L

are real Henselian, and are maximal valued fields with respect to vk and vr, (cf.,

Proposition 2.2).

4.1 THEOREM. Suppose E is a real Henselian extension of F. Suppose S andT

are orderings of E and L, respectively, with FdS = FC\T. Suppose oB(E) C &l(L)

and that there is an injective ordered group homomorphism $: vE —► vL with

Wve \F = vr, \F. Then there is an F-homomorphism A: E —► L with A(S) C T

and with ^/vB = vr,A.

We will prove 4.1 at the end of this section after considering some of its corol-

laries.

4.2 THEOREM. Suppose that S andT are orderings of K and L, respectively,

with S fl F = T n F, that &k(K) = or,(L), and that there exists an isomorphism

of ordered groups Vf": vK —* vL with ^Vk \F = Vr,[F. Then there exists an F-

isomorphism A: K —> L with A(S) = T and vlA = Vvk.

PROOF. Apply Theorem 4.1 with E = K. Then the field extension L/A(K) is

an immediate extension of a maximal valued field, so/ = A(K). That is, A is an

isomorphism.      D

We now apply Theorem 4.2 to obtain an analogue of Theorem 3.2, i.e., an iso-

morphism theorem for unordered maximal valued fields.

4.3 THEOREM. Suppose that oK(K) =aL(L), that K2 C\F = L2 C\F, and that

there is an isomorphism of ordered groups $: vK —► vL with 9vk \F = vr, \ F.

Then there exists an F-isomorphism A: K —* L with Vr,A = Wvk-

Note that any F-isomorphism A: K —> L induces a map ^n: vK —> vL with

vlA = ^qVk (Proposition 2.2). In this sense, all the hypotheses of 4.3 for the

F-isomorphism of K and L are clearly necessary.

PROOF. Let Ek and El denote the (relative) algebraic closures of F in K and

L, respectively. Then Ek and El are real Henselian algebraic extensions of F

(Proposition 2.6). The value group of Ek is the set of elements of the value group

of K which have some nonzero multiple in the value group of F, and similarly for

El (Proposition 2.6). Thus * maps vEk onto vEl- Also

E2K n F = K2 n F = L2 n F = E2L n F

Thus there is an F-isomorphism Ao: Ek —* El with vl Aq = ^vk [ Ek (Theorem

3.2 and Remark 3.3.). Hence there are orderings S and T of Ek and Er,, respec-

tively, with S n F = T n F. By Theorem 4.2 it suffices to show that S extends to

an ordering of K, and similarly for T. We indicate the proof for S; the proof for

T is identical. K is superpythagorean, so it suffices to show that -1 £ SK2 [Br4,
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Corollary 8]. But if -1 = ab2 where a E S and b E K, then b E EK, so -1 E S, a

contradiction.    □

The next result is a refinement for real Henselian field extensions of Kaplansky's

theorem that a maximal valued field with characteristic zero residue class field is a

generalized power series field [K, Theorem 6]. It will be applied in Remark 4.6 to

the study of the group of automorphisms of K/F. Note that the generalized power

series field K((tvK)) (cf., the last paragraph of §1) has a canonical ordering, call it

Pk, consisting of zero together with all nonzero elements whose term of minimal

value has positive coefficient. (Recall that K is real closed.)

4.4 THEOREM. Let P be any ordering of K. There exists an isomorphism of

valued fields A: K -» K((t^K))jwith A(P) = PK and A(F) C E((tvF)), where E

is the algebraic closure of F in K.

PROOF Let U denote the real Henselization of F in K (cf., Proposition 2.8).

There exists a homomorphism of valued fields A0: U —► E((tvF)) with A0(PC\U) C

PK (apply Theorem 4.1 with Q, U, E((tvF)), Pf)U, PKDE((tvF)) and the identity

map on vF in place of F, E, L, S, T, and *). A similar application of Theorem 4.2

says that Ao can be lifted to the required isomorphism A. (This application of 4.2

requires that we adopt the formal point of view that a field extension K/F is a

homomorphism F —> K. In applying 4.2 we let the extension K/F be given by the

inclusion map U —> K and the extension L/F be the composition of Ao with the

natural map E((tvF)) — K((tvK)).)    D

The next result will be applied in §6 to the study of fixed fields of K under sets

of automorphisms.

4.5 THEOREM. Suppose S and T are orderings of K and 9: F —* K is a

homomorphism with 9(F n S) E T and vk9 = vk \ F. Then 0 extends to an

automorphism A of K with A(S) = T and vk9 = vk-

PROOF. As in the proof of Theorem 3.6 we will regard the field extensions

K/F and L/F as being given by the inclusion map F —» K and by 0. Now apply

Theorem 4.2 with \I> the identity map on vK.    D

4.6 REMARK. Let Autv(K/F) denote the set of r E Aut(KfF) with vKr = vK
and let Autvp(vK) denote the set of ordered group automorphisms of vK which

fix vF. We then have an exact sequence

1 — Autv(K/F) -» Aut(K/F) -» AntvF(vK) -» 1.

The exactness at AntvpvK can be deduced from either Theorem 4.2 (let S be any

ordering of K and T = S) or Theorem 4.4 (treat A as an identification). Note

that if K/F is algebraic, then Autv f(vK) = 1. Arguing as in the proof of The-

orem 3.5 (but using 4.5 in place of 3.1), we obtain a surjective homomorphism

$: Autv(K/F) — Hom(vK/vF,Z'). When K/F is not algebraic, then $ is not

necessarily injective, basically because the homomorphisms "A" of Theorem 4.1

are not necessarily unique. It is easy to verify that the kernel of $ is exactly the set

of those elements of Autv(K/F) which are order automorphisms for some (equiv-

alently, for every) ordering of K. That there can be many such automorphisms is

illustrated by Proposition 7.1 below (consider, for example, the case when K is real

closed).
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The remainder of this section will be devoted to the proof of Theorem 4.1.

Let 0o: E0 —» L0 be a maximal extension of the identity map on F to an

isomorphism of subfields E0 of E and L0 of L such that 0O(5 n Fo) C T and

vl9o = ^vB I Fo- Let Fi and Ly denote the maximal algebraic extensions of Fo

and L0 in E and L, respectively. By Proposition 2.6, Ey is real Henselian and, fur-

ther, vEy/vEo is exactly the torsion part oivE/vEo- Similarly, Ly is real Henselian

and vLy/vLo is the torsion part of vL/vL0. Then * carries vEy into vLy. Hence

by Theorem 3.1, 0o extends to a homomorphism 0i: Ey —► Ly with 9y(Ey nS) C T.

Now VL9y and 9ve \ Ey are equivalent extensions of the valuation vl9q = ^vB [ Eo

on F0 to the algebraic extension Ey (Proposition 2.2). Thus they are equal. Hence

by the choice of 0o, Eo = Ey. Thus F0 is algebraically closed in F, and so it is real

Henselian.

We next claim that F0 = E. Just suppose there exists a E E with a E E\E0.

Then a is transcendental over F0 (Proposition 2.6), so a is transcendental over F0.

We may suppose a E S. By hypothesis there exists b E L with 0l(6) = oe(o) > 0.

Then bET. Let 0i: Fo(a) —► Lo(&) be the unique extension of 0o to an isomorphism

with 0i(a) = b. Then vL9y = ^vE\E0(a) (e.g., see [Bo, p. 161, Proposition 2]).

Now let c E Eo(a) fl S. There exists d E E0 n S with v(c) = v(d). By the choice of

b we have o~e [ E0(a) = <7l0i (note that aB | F0 = ctz,0o by Proposition 2.2). Hence

<7L(0i(C/d))=tT£(c/d)>O.

Thus

9y(c) = 90(d)9y(c/d) E Tal'(R-2) C T.

Thus 0i(Fo(a) n S) E T.  Thus by the choice of 0O we must have F0 = E0(a), a

contradiction. Hence E = Eq.

We next argue that vE = vEo- Just suppose there exists a E E' with v(a) #. vEo-

We may assume a E S. Then v(a) + vEo is not torsion in vE/vEq (Proposition

2.6), so a is transcendental over Fo- We can pick b E T with VL(b) = ^(vB(a)).

Let 0i: Fo(a) —► Lo(b) be the unique extension of 0o with 0i(a) = b. One easily

verifies that i>z,0i = ^tvE | E0(a) [Bo, p. 161, Proposition 1]. Now let c E E0(a)nS.

There exists a positive integer n and d E E0 D S with u(c) = v(and); further, there

exists e E Eq with aB(e) = UE(c/and) E R'2(Fo(a)/Eq is totally ramified with

vEo(a) = vE0 + Zv(a)). Thus e E S. Note that

i>l(0i(1 - (c/ande))) = VvE(l - (c/ande)) > 0

so aL(9y(c/ande)) = 1. Thus

0i(c) = 01(c/o"de)6"0o(de) e^^ljTcT.

Thus 0i(Fo(a) fl 5) C T. Once again we can conclude that F0 = Fo(a), so v(a) E

vEo- This contradiction shows that vE = vEo-

It remains to show that E = Eo- Just suppose that there exists a E E\Eo-

By the previous paragraphs F/Fo is an immediate extension. Thus a is the limit

of a pseudoconvergent set A contained in Fo which has no limit in Fo [K, Theo-

rem 1]. This set is of transcendental type, since otherwise the real Henselian field

Fo would have a proper algebraic immediate extension [K, Theorem 3], contra-

dicting Proposition 2.10. Since L is a maximal valued field, there is a limit b to

the pseudoconvergent set 9o(A) and hence an extension of 0q to an isomorphism
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0i: F0(a) -► L0(b) with 9y(a) = b and vL9y = $vE\E0(a) [K, Theorem 4 and

Theorem 2]. Now let d E E0(a) n S. It suffices to show that 9y(d) E T. Since

Eo(a)/E0 is an immediate extension, there exists c E E0 with v(c/d — 1) > 0.

Clearly c = d(l + c/d -1)eS. Then

0i(d) = 90(c)9y(d/c - 1 + 1) E Tall(l) C T,

as required.    □

5. Orderings of higher exact level. Throughout this section K and L denote

real Henselian extensions of a field F and Pk , Pl and P denote "orderings of higher

level" (see below) of K, L and F, respectively, with

(1) PKnF = P = pLnF.

In this section we will generalize Theorems 1.2 and 4.2 so as to allow orderings of

higher exact level in addition to the classical orderings of the Artin-Schreier theory.

As an application we show that generalized real closures at orderings of higher level

are determined up to isomorphism by their value groups.

We recall some basic concepts. An ordering of higher level of F [B, p. 866] is a set

of the form H U {0} where H is an additively closed subgroup of the multiplicative

group F° such that F'/H is finite cyclic; the exact level of such an ordering of

higher level H U {0} is the order of the group F' /Z'H. Since orderings of higher

level appear only in this section, we will refer to them as "Becker orderings" and

continue to refer to the classical ordering (i.e., the Becker orderings of exact level

one) simply as "orderings."

Each Becker ordering canonically induces a place into R [B, Theorem 2.2]. By

Proposition 2.2, the places induced by Pk and Pr, are o~k and ol (cf., 2.3). Con-

dition (1) guarantees that o~k and o~l have the same restriction to F, namely, the

place F —► R U {oo} induced by P. We denote this place by a and its associated

valuation by vf (or just v). Since the restrictions of vk and vl to F are equivalent

to v, we can and do assume without loss of generality that vk and vl restrict to v

on F.

We begin with a remark describing the "2-primary component" of a Becker

ordering, and a technical lemma which will allow us to apply our earlier results on

orderings to Becker orderings.

For any Becker ordering S, we let S' = S\{0}.

5.1 REMARK (SEE [BHR, DEFINITION 1.4]). Let H denote the set of elements

of F with some odd power in P; we call H the 2-primary component of P. If P

has exact level 2mt where t is odd, then H is a Becker ordering of exact level 2m,

P = H (lv~1(v(P)), and H induces o.

H can be characterized as the unique Harrison prime of F containing P [HW];

the correspondence AH/Yfl v_1(A) gives a bijection from the set of subgroups

A of T with T/A cyclic of order t to the set of Becker orderings of F of exact level

2mt with 2-primary component H.

We will use below only the facts in the first paragraph of 5.1; for the convenience

of the reader we give now a proof of these facts avoiding the signature-theoretic

language of [BHR]. The proof of the assertions in the second paragraph are left to

the interested reader.



AUTOMORPHISMS OF REAL HENSELIAN FIELDS 687

By the basic properties of cyclic groups, F"///' is cyclic of order 2m+1. o(H) > 0

since if o(a) < 0 for some a E H, then we would have a* E P and hence 0 >

(o-(a)Y = a(af) > 0, a contradiction. Thus -1 £ H. Suppose a,b E H with

v(a) > v(b). Then

a + b = b(l + ab-1)EHa~1(R'2) E H.

This shows H is a Becker ordering of exact level 2m inducing a.   Also if a E

H fl v~1(v(P)), then there exists c E P with w(a) = v(c), so that

a = c(o/c)6P<T"1(R'2) CP.

It follows that 7/ n v-1 (v(P)) = P.    D

For the remainder of this section we let Hk,Hl and 7/ denote the 2-primary

components of Pk, Pl and P, respectively (in the sense of Remark 5.1).

5.2 LEMMA. Suppose V: vK —► uL is an isomorphism of ordered groups fixing

vF such that ^(vkPk) = vlPl- Further suppose that either Hk is a faithful

extension of H (i.e., K = FHk) or that H is an ordering. Then there exist

orderings Sk, Sl and S of K, L, and F, respectively, with Sk nF = S = Sl fl F

and *J>(v(Sk l~l Hk)) = v(Sl n Hl). If 9: K —> L is an F-isomorphism with

9(SK) = SL and vL9 = ^vK, then 9(PK) = Pl-

PROOF. We first prove the existence of Sk,Sl and S. Let 2mt, where t is

odd, denote the exact level of Pk- First note that Hk n F = H = Hl fl F.

Further, ^(vHk) = vHl since vHk/vPk is exactly the set of elements oivK/vPK

of odd order, and similarly for L. (After all, suppose a E K has nv(a) = v(b)

for some odd integer n and b E Pk- Then possibly replacing a by —a, we have

an = b(an/b) E Pko-J(1(R'2) C Pk, so a E Hk-) We may assume without loss of

generality that Hk is not an ordering, since otherwise so are Hl and H (because

then vHL = V(vHk) = *f!(vK) = vL), and so we could just set Sk = Hk, Sl = Hl

and S = H.

Now assume 7/ is an ordering. Then let Sk be any ordering of K. v(Sk D Hk)

has index 2m+1 in vK (apply [Br5, Theorem 2.1], noting that the exact level of

Hk in the sense of [Br5] is m + 1, not 2m). Since ^(vHk) — vHl, then HL has

exact level 2m and vHL 3 ^>(v(Sk f~l HK))- Thus there exists an ordering Sl of L

with v(SL n HL) = *(u(5K n HK)) [Br5, Lemma 6.3A]. Then

v(H n (F n SL)) = v(HL n SL) D uF

= t;(5K n /7/c) n «F = «(H n (F n S*)).

Hence F n SL = F n SK [Br5, Theorem 1.1]. We can then set S = F n 5L.

Next suppose that 7/ is not an ordering and Hk/H is a faithful extension of

//. Then Hl is also faithful over H (since V(vHk) = vHl). There exist dis-

tinct orderings TK and 5/f of 7T with v(Sk (~l ///<-) = i>(S/c nTKn //k) and with

vK/v(SK n #K) cyclic of order 2m+1 [Br5, Theorem 2.1 and formula (2) of §5].

Since 9(vK) = vL and ^(v(SK n //«■)) C $(vHK) = vHL, there exist distinct

orderings Tl and Sl of L with

(2) w(TLnsLn/7L) = *(i;(TKn5jfnHif))
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[Br5, Lemma 6.3A]. Then

v(SLnTLr\H) = v(F)r\v(SLnTLnHL)

= v(F) n v(sK r\TKn hk) = v(SK nTKn //).

Therefore the natural map

(4) vF/v(SL n tl n h) - vL/v(SL n Tl n HL)

is injective. Hence vF/v(Sl fl Tl fl //) is cyclic. Since vH and v(Sl fl Tl f~l F)

both contain u(Sl n TL fl //), they must be comparable. But v(Sl D Tj, fl F)

has index at most 2 in vF, and // is not an ordering, so v(Sl fl Tl fl F) D vH.

Thus vF/v(SL H TL n //) has order exactly 2m+1 [Br5, Theorem 2.1 and §5,

formula (2)]. Thus the map (4) is surjective. This implies that the natural map

vF/v(SL r\TLr\F) -» vL/v(SL nTL) is surjective. Hence

uF^u(SLnTLnF).

Therefore Sl n F ^TLC\F. A similar argument shows SKCiF ^TKC\F. Con-

sequently SK r\TK n F = Sl n Xl n F (use (3) to apply [Br5, Lemma 6.3A]).

Thus the ordering Sk n F of F equals either SL n F or Tl n F. Without loss of

generality it equals Sl n F. If we let S = SL fl F, we have Sk H S, Sl D S

and, by (2) *(u(Sx n //k)) = ^(Sl n HL). This completes the proof of the exis-

tence of orderings Sk, Sl and S of K,L and F with S/t-nF = S = SLnF and

^(v(Sk H //;<:)) = v(Sl n //l). Now suppose Sk, Sl and S are such orderings and

0: /C —► L is an F-isomorphism with 9(Sk) = Sl and i>l0 = *kk- We first claim

that 9(Hk) = Hl- This is clear if v(Sk f~l 7/^) = w/f since then S«- = Hk (and,

similarly, Sl = HL) [Br5, Theorem 2.1]. Now suppose v(SK fl 7//f) ^ u/C Then

7/K = (SKn^-1(A))u((-SK)nv-1(A'\A))u{0}

where A = v(SK n //*) and A' = 2mt;/s: + A [Br5, Remark 2.3A]. We have a

similar formula for Hl- Since 0 induces * (which maps A to v(Sl fl //z,) and

similarly for A'), we deduce that 9(Hk) = Hl in all cases. Hence by Remark 5.1,

9(PK) = 9(HK 0 v-x(vPK)) = HL n v-^uPl) = FL. Lemma 5.2 is proved.    □

We now generalize part of Theorem 1.2; uniqueness will be handled in Theorem

5.5 below.

5.3 THEOREM. Suppose K and L are algebraic extensions ofF. Suppose vK =

vL and vPk — vPl- Further suppose that either P has odd level or that Pk is a

faithful extension of P. Then there exists an F-isomorphism $: K —+ L with

*(Pk) = Pl-

As in §1, we are implicitly assuming in the statement of 5.3 that vK and vL

have been canonically identified with subgroups of a divisible hull of vF.

PROOF. Take * in Lemma 5.2 to be the identity map. Now apply Theorem 1.2

and Lemma 5.2. Note that P has odd exact level if and only if H is an ordering,

and that if Pk is a faithful extension of P (i.e., K = FPK), then surely Hk is a

faithful extension of H (i.e., K — FHk).    □
The conditions in Theorem 5.3 that vK = vL and vPk = vPl are clearly

necessary. We return to Example 1.1 in order to illustrate that we cannot drop

from Theorem 5.3 the hypothesis that either P have odd exact level or FPk = K.

(Of course, we can replace FPk = K by FHk — K-)
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5.4 EXAMPLE (SEE [BHR, EXAMPLE 3.17]). Let K,L and F be as in

Example 1.1. Then K and L are not F-isomorphic even though K and L are

F-isomorphic, vK = vL, and every Becker ordering P of F extends to a Becker

ordering PK of K and a Becker ordering Pl of L. Indeed if P is a Becker ordering

of F of even exact level, then vPk = vPl but Pk is not a faithful extension of

P (i.e., K ^ FPk). Also if P is a Becker ordering of F of odd exact level, then

vPk i1 vPl- (These assertions are easily checked using Remark 5.1 and the analysis

of Becker orderings of 2-power level in [Br5, Br6].)

5.5 THEOREM. Suppose K andL are algebraic extensions of F and there exists

an F-isomorphism from K to L mapping Pk onto Pl- If Hk is a faithful extension

of H, there is exactly one such isomorphism; otherwise, there are exactly two.

To say that Hk extends H faithfully is just to say that any power of two dividing

the exact level of Pk also divides the exact level of P.

PROOF. First suppose Hk is an ordering. Then Hk is a faithful extension of

//. Moreover an F-isomorphism from K to L mapping Pk to Pl clearly maps Hk

to HL and hence is uniquely determined (Theorem 3.1). Next suppose Hk is not

an ordering. Then there exists a chain of orderings (7/a)i>o of K with Hm = Hk

for some m > 2 [H, Br6]. Let A = v(H0 0 Hy n Hm); A is a subgroup of vHK

such that vK/A is cyclic of order 2m [Br6, §2, Claim 1; Br5, §5, formula (2)]. Our

hypotheses guarantee that vK = vL, vPk = vPl, and so vHk — vHl- Hence there

exists a unique set {//0, H[} of two distinct orderings of L with v(H0r\H'y F\Hl) = A

[Br5, Lemma 6.3A]. Thus there exist Becker orderings H[,i > 2, such that (Z/t')j>o

is a chain of orderings of L with H'm = Hl [Br5, Corollary 6.5].

Now let $: K —> L be any F-isomorphism with $(Pk) = Pl- Then <&(Hk) =

HL, so

v($(H0) n $(7/i) n HL) = v($(H0 nHyf\ HK))

= v(H0 n Hy n HK) = v(H'0 n H'y n HL).

Thus $({Z/0,//i}) = {H0,H[} [Br5, Lemma 6.3A]. Hence $(/Z0) is either H0 or

H'y. Thus by Theorem 3.1, there are at most two F-isomorphisms from K to L

mapping Pk onto Pl-

Next observe that {H0 n F, Hy n F} = {H0 n F, H'y n F}. Suppose that HK is
a faithful extension of H. Then so is Hl (the equality vHk = vHl says Hk and

Hl have the same exact level). Hence (//,' D F)j>0 is a chain of orderings [Br6,

Lemma 3.2]. Thus H0 n F ^ H'y n F. Hence 7/0 n F must be either H0C\F or

H[ DF but not both. If 7Z0nF = H0 nF, then /Z0nF ^ //{ nF, so $(Z/0) # //J,
so ^>(//o) must be //0. By Theorem 3.1, this uniquely determines $. Similarly, if

HqC\F = H'yC\F, then $ is uniquely determined by the condition that <J>(Z/o) must

be H[. In either case, there is only one such isomorphism $.

Finally suppose Hk is not a faithful extension of //. Then HL is not a faithful

extension of H and (//,; nF)j>0 is not a chain of orderings of F. Thus [Br6, Lemma

3.2]

Ho n F = //i n F = z/0 n f = h[ n f

Then 7/0 and //( are extensions of H0 D F to orderings of L. Hence there exist

F-isomorphisms $,: K —> L with $j(//o) = //,, i = 0,1. Then by Lemma 5.2

(with * the identity map and Sk = H0 and Sl = 7/j') we have $i(Pk) — Pl for
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i = 0,1. (To show that v(H0 ("I HK) = v(H[ n 7/l) use the choice of H0, Hy,H0

and //j and [Br5, §5, formula (2)].) Thus there are at least two (and hence exactly

two) F-isomorphisms from K to L mapping PK to Pl-

A real closure of (F, P) is a pair (F, T) where F is a maximal algebraic extension

of F admitting a faithful extension of P and T is just such an extension of P to F

[B, §4].

5.6 THEOREM. Suppose (K,PK) and (L,PL) are real closures of (F,P). There

exists an F-isomorphism from K onto L if and only if vK = vL. If such an

isomorphism exists, it is unique and maps Pk onto Pl-

We should note that the hypotheses of Theorem 5.6 imply the covering hypothe-

ses for this section [B, Theorem 5.1]. We are implicitly assuming, moreover, that

as earlier we have identified the restrictions of vk and vl to F and identified vK

and vL with subgroups of the divisible hull of vF.

PROOF OF 5.6. The necessity of the condition vK = vL is obvious. Now

suppose vK = vL. By Theorems 5.3 and 5.5 it suffices to show that vPk = vPl-

Let n denote the exact level of P. Then vK/vPk is cyclic of order n, so vPk D nvK

(consider the exact sequence

1 -» R'/R'2 — K'fPK -* vK/vPk -» 0

induced by the inclusion map aK1(R') —* K' and the valuation vk). Let p be any

prime dividing n, say with n = ptm where p\m. The p-primary components of

vK/nvK and vK/vPk are both cyclic of order pl [B, Theorem 4.1(h)] and hence

correspond bijectively under the natural surjection

(5) vK/nvK -* vK/vPK.

Since this is true for all p, the map (5) is a bijection. Thus nvK = vPk- Similarly,

vPl = nvL. Thus

vPk = nvK = nvL = vPl

as required.    D

Theorem 4.2 can be generalized in the same way that Theorem 1.2 was.

5.7 THEOREM. Suppose K and L are maximal valued fields with Archimedean

real closed residue class fields. Suppose cjk(K) = &l(L) and that there exists an

isomorphism of ordered groups \P: vK —► vL with ^Vk\F = vl[F and $>(vPk) =

vPl- Suppose further that either Pk is a faithful extension of P or P has odd exact

level.  Then there exists an F-isomorphism A: K —> L with A(Pk) = Pl-

PROOF. Apply Lemma 5.2 and Theorem 4.2 (with Sk and Sl in place of S and

T).    □

6. Fixed subfields of real Henselian fields. Throughout this section K will

denote a real Henselian field and K/F a field extension. We study here the fixed

subfields of K, i.e., the fixed fields KH of groups H of automorphisms of K. We

regard K as having the interval topology for any of its orderings. (These topologies

all coincide. If K has more than one ordering, then vk is nontrivial and all these

topologies equal its valuation topology.)
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6.1 PROPOSITION. Suppose F is a fixed subfield of K. Then F is topologically
closed in K and the algebraic closure of F in K is a multiquadratic extension of F.

Recall that an extension E/F is multiquadratic if Aut(F/F) has fixed field F

and exponent 2. The proposition implies the well-known fact that any Archimedean

real closed field (e.g., R) has no nontrivial automorphisms. (Any such field has no

closed proper subfields.)

PROOF OF 6.1. Let F denote the algebraic closure of F in K. If r E Ant(K/F),

then t(E) = F, so that

F c EKut(E/F)  c KAut(K/F) _ f

Thus F = EknX^E/F\ i.e., E/F is Galois. F is real Henselian by Proposition

2.6. Aut(F/F) has exponent two by Theorem 3.5A. Thus E/F is a multiquadratic

extension. That F is topologically closed in K follows from the fact that all auto-

morphisms of K are continuous (Proposition 2.2).    D

6.2 COROLLARY. If K is a real closed field and F is a fixed subfield, then F
is algebraically and topologically closed in K. In particular, F is real closed.

The above corollary implies, for example, the well-known fact that if K is a real

closure of a subfield F, then K has no nontrivial F-automorphisms (the fixed field

of any such automorphism must be algebraically closed in K, i.e., be all of K).

PROOF OF 6.2. Let F be the algebraic closure of F in K. By 6.1, F is

topologically closed in K and E/F is multiquadratic. But E is real closed (Lemma

2.4) and so is not quadratic over any subfield. Thus F = F, as required.    D

The Laurent series field R((x)) is clearly a fixed subfield of its quadratic extension

R((x))[x1/2]. This illustrates that we cannot drop the hypothesis that K is real

closed in Corollary 6.2. In fact in §8 we will give an example of a fixed subfield of

a real Henselian field F which is not algebraically closed in E and whose algebraic

closure in F is not itself a fixed subfield of F. Also, in both §7 and in §8 we will

construct examples which show that the converse of Proposition 6.1 does not hold

in general. Our next theorem describes a situation in which this converse does hold.

6.3 THEOREM. Suppose that K is a maximal valued field with Archimedean

real closed residue class field. Let F be a subfield of K which is topologically closed

in K and whose algebraic closure in K is a multiquadratic extension of F. Then F

is a fixed subfield of K.

6.4 EXAMPLES. (A) Let F be a real closed subfield of a real closed field

K. Then F and F((x)) are fixed subfields of the field of Laurent series K((x)).

(Actually it is easy to check directly that F is a fixed subfield of F((x)) for any

field F of characteristic zero.)

(B) Let R be the field of real algebraic numbers (i.e., the algebraic closure of

Q in R). Some of the fixed subfields of R((x)) are R, R((x2)), R, R((x)) and

R((x2)). (Note that the canonical topology on R((x)) is the z-adic topology, and

R and R are discrete in this topology).

(C) Any field which is a maximal field with respect to a nontrivial valuation

having Archimedean real closed residue class field has a fixed subfield isomorphic

to R.

Before proving 6.3 we combine it with Proposition 6.2 to obtain the following.
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6.5 COROLLARY. Suppose K is a real closed field and (K,vk) is a maximal

valued field. The fixed subfields of K are exactly the subfields of K which are

algebraically and topologically closed in K.

We devote the remainder of this section to the proof of Theorem 6.3.

Let a E K\F. We must show a is moved (i.e., is not mapped to itself) by some

F-automorphism of K. Clearly, it suffices to show that some element of F(a) is

moved by such an automorphism. Let us fix an ordering P of K. By Theorem 4.5

it suffices to prove the following.

CLAIM. There exists an ordering T of K. a subfield L of K containing F, and

an F-homomorphism 0: L —► K such that 9(P fl L) C T and v9 = v\L and such

that 0 moves some element of F(a) n L.

The proof of this claim will require the consideration of a number of cases. We

let F denote the algebraic closure of F in K. Note that E and F are real Henselian

(Propositions 2.6 and 2.9, respectively).

First suppose a E E. Since E/F is multiquadratic, there exists an F-automor-

phism 0 of E moving a. Since F is a Henselian valued field and E/F is algebraic,

then v9 = v\E. To prove the Claim in this case (with L = E) it suffices to show

that the ordering 9(PC\E) of F extends to an ordering of K. Since F is algebraically

closed in K, this can be proved by the argument (showing that S extends to K) at

the end of the proof of Theorem 4.3.

Henceforth we may assume a £ E, i.e., a is transcendental over F.

Next suppose F(a)/F is an immediate extension (i.e., that v(F(a)) = vF and

F(a) = F). Then a is the limit of a pseudoconvergent set A in F which has no

limit in F [K, Theorem 1]. This pseudoconvergent set cannot be of algebraic type

since otherwise the real Henselian field F would have an immediate proper algebraic

extension [K, Theorem 3], contradicting Proposition 2.10. Also note that A has a

nontrivial breadth [K, p. 304]; otherwise a is in F since F is topologically closed

in K. Pick b E K' in the breadth of A. Then there exists an F-isomorphism of

valued fields 0: F(a) —* F(a + b) with 0(a) = a + b [K, Lemma 3 and Theorem

2]. It remains to show that 9(P D F(a)) C P (take L = F(a) and T = P in the

Claim). Suppose a E PCiF(a). Since F(a)/F is immediate there exists c E F with

v(a/c - 1) > 0, so v(9(a)/c - 1) > 0. Thus 0(a) = a(c/a)(9(a)/c) E Po~l(l) C F,

as required. Thus the Claim holds when F(a)/F is immediate.

We will therefore assume for the remainder of the proof that F(a)/F is not

immediate.

Suppose now that F / F(a). Then we can find a unit /? E F(a) with 0 & F;

without loss of generality, o~k(0) > 0. /? is transcendental over F since F is real

closed. Note that vK ^ 0 (otherwise K is Archimedean real closed, so F = K,

contradicting that a & F). Pick b E K' with v(b) > 0. There exists an F-

isomorphism of valued fields 0: FQ3) ->_F(/3 + b) with 0(0) = /3 + b (note j3 + b

is transcendental over F since (3 + b = /? is transcendental over F) [Bo, p. 161,

Proposition 2]. It remains in this case to show that 9(F(/3)<lP) E P. If a € PnF(/3),

then since F((3)/F is unramified, there exists c E FC\P with v(c) = v(a). But then

0(a) = c9(a/c) E c0(er^1(R'2)) which is contained in P since 9 induces the identity

map on fjf) = 70) = F(p + b).
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We can henceforth assume that the field extension F(a)/F is totally rami-

fied (i.e., F = F(a)) as well as being transcendental and not immediate. Thus

v(F(a))/vF must be nontrivial; let us suppose for the moment that it is not torsion.

Then there exists 0 E F(a) with no nonzero multiple of v(0) in vF. Without loss

of generality, 0 E P and v(0) < 0. There exists an F-isomorphism of valued fields

0: F(0) -^ F(0+1) with0(/?) = 0+1. Once again we have 0(Fn F(0)) E P. To
show this it suffices to show that 0(Pf)F[0]) C P. Suppose a = Y.aihl E PC\F[0]

(where the coefficients a2 are in F). Let aj03 be the term of a of smallest value;

then aj E P. The term of

0(a) = X>(/3-rir

of smallest value is a3(0 + l)3. Since this term is obviously in P, so is 0(a). After

all,
9(a) = a)(0+iy(0(a)/aJ(0+iy) E P<JKl(l) C P.

Hence we may assume that v(F(a))/vF is torsion.

Recall that by our previous work we are now assuming without loss of gener-

ality that F(a)/F is transcendental and totally ramified and that v(F(a))/vF is

nontrivial and torsion. First note E(a)/F(a)) is algebraic, so that E(a)/F(a)

is algebraic and v(E(a))/v(F(a)) is torsion. From the first fact we deduce that

E(a) = E (both equal the real closed field F = F(a)). From the second we deduce

that v(E(a))/vF, and hence v(E(a))/vE, are torsion. However, vK/vE is torsion-

free (Proposition 2.6). Hence v(E(a)) = vE. That is, E(a)/E is an immediate

extension.

Since E/F is multiquadratic, vE/vF is a group of exponent 2. Hence v(F(a))/vF

is a nontrivial group of exponent two (since v(F(a)) C v(E(a)) c vE). Thus

there exists 0 E F(a) with v(0) £ vF but 2v(0) E vF. Note that 0 £ E since

E fl F(a) = F. Hence there exists a E F with v(02a) = 0; we may even assume

gk(02o) = 1 (since F = F(a)). By Hensel's Lemma we conclude that a = c2 for

some cEK; note that c E E by the choice of E. Since

0 < v(02c2 - 1) = v(0c - 1) + v(0c + 1),

we may assume v(0c — 1) > 0 (otherwise replace c by —c). Note that c & F

since — v(c) = v(0) & vF. Thus F[c]/F is a quadratic extension. Thus there

exists an F-isomorphism 0 of F with 0(c) = -c. Since E(a)/E is immediate, 0

is the limit of some pseudo convergent set (b\)\eA m F which has no limit in F.

Since E is real Henselian, v9 = v\E (i.e., 0 is an isomorphism of valued fields,

cf., Proposition 2.2). Thus (0(6a))asa must be a pseudoconvergent set; since K

is a maximal valued field it must have a limit, say 0', in K [K, Theorem 4]. The

pseudo convergent sets (bx)\eA and (9(b\))xeA must be of transcendental type,

since if (bx)x^A were of algebraic type, then the Henselian valued field (E,v\E)

would admit a proper immediate algebraic extension [K, Theorem 3], contradicting

Proposition 2.10. Hence there exists an extension of 0 to an isomorphism of valued

fields 0': E(0) -- E(0') with 9'(0) = 0' [K, Theorem 2]. Now v(0 - c"1) > v(0),
so (applying 0') v(0' + c-v) > v(0). Also v(c~l -0'(c"1)) = v(2c~l) =v(0). Thus

v(0 - 0') = v(0 - c,-1 + c"1 - 0(c-1) - (c-1 + 0')) = v(0).

Thus 0 7^ 0', i.e., 0' moves 0. In order to prove the Claim (with L = E(0))

it remains only to show that 9'(P n E(0))  C T for some ordering T of K.    If
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0'(P n E(0)) c P we are done. Otherwise v(9'(P n E(0)) n F) has index

2 in v(E(0')) = vE [Brl, Proposition]. But vK/vE is torsion-free. Thus

v(9'(P fl F(/3)) fl F) is contained in a subgroup A of v(K) of index two not con-

taining vE. There exists an ordering T of K with u(TnP) = A [Brl]. Then since

vE = vE(0) = vE(0'),

vEnADv(Pn9'(PnE(0)));

equality follows from this inclusion since both groups have index two in vE. Thus

we have

v(T n P n E(0')) = v(E(0')) n v(T n F)

= vE n A = «(0'(F n E(0)) n (F n f(/?')))-

Thus

TDTnF(/9') = ^'(PnF(/3))

[Brl, Proposition]. This completes the proof of the Claim, and hence of Theorem

6.3.    □

7. Extensions of transcendence degree one. In this section we will present

an example of a real Henselian transcendence degree one extension K of a field

F such that F is not a fixed subfield of K even though F is topologically closed

in K and the algebraic closure of F in K is a multiquadratic extension of F (cf.,

Proposition 6.1). A second example of this type appears in §8. In neither of the

two examples is F algebraically closed in K, and we know of no such examples. If

there were such examples, however, they would have to have transcendence degree

at least two, by Theorem 7.2 below. Theorem 7.2 is a corollary of the following

computation of the group of F-automorphisms r of K with vkt = vk', we denote

this group by Autv(K/F).

7.1 PROPOSITION. Suppose K/F is afield extension of transcendence degree

one. Suppose K is real Henselian and F is algebraically and topologically closed in

K. If we choose y E K' and A E K as indicated below, then there is a bijection

T: Antv(K/F) -► A with T(r) = r(y)/y for all r E Autv(K/F). The set A and

element y are chosen as follows:

(1) if vK ^ vF and vK ^ v(K2F), then let A = aK1(R') and pick y EK with

v(y)£v(K2F);

(2) ifvK ■£ vF and vK = v(K2F), then let A = rj^R'2) and pick yEK with

v(y) <£ vF;

(3) if vK = vF and K ^ F, then let A = crKl(l) and pick y E aK1(R'2) with

y£7; _     _
(4) ifvK = vF andK = F, then picky E cr/f1(R'2) with y & F and let A = 1+1

where I = {x E K: v(x) > v(b - y) for all b E F}.

In the situation of (4) above, y is the limit of a pseudoconvergent set in F having

no limit in F, and / is simply the breadth ideal of this pseudoconvergent set [K,

Theorem 1, and p. 304, Definitions]. The four cases in Proposition 7.1 are clearly

exclusive and exhaustive.

PROOF. We first show T is injective; we only use here that y 0 F and that

v(y) & v(K2F) iivK ^ v(K2F). Suppose T(o) = T(r) for 6, r E Antv(K/F). Let
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p = r~l8. Then y is in the fixed field Kp of p. It suffices to show Kp = K, for then

p = 1, i.e., 6 = r. Just suppose Kp ^ K. Since K/F has transcendence degree

one, K/Kp is algebraic, and hence multiquadratic (Proposition 6.1). Hence K is a

quadratic extension of a subfield L containing Kp. Clearly K = L (since K is real

closed) and L is real Henselian (Proposition 2.9), so (vK: vL) = [K: L] = 2 [R,

p. 236, Theorem 2 (Ostrowski)]. Since vK/vF is a torsion-free group of rational

rank at most one (Proposition 2.6 and [Bo, p. 166, Corollary 1]), vK/v(FK2)

has at most two elements. By the choice of y then, vK = v(F(y)K2). Thus

vK = v(LK2). But this contradicts the assertion that (vK: vL) = 2. We conclude

that T is injective. It remains to compute its image.

We now verify that in each of our four cases, T maps surjectively onto A.

Throughout the discussion below r will denote an arbitrary element of Autv(K/F),

a will denote an arbitrary element of A, and 0: F[y] —► F[ay] will denote the ring

homomorphism fixing F and mapping y to dy. We must show that T(r) E A and

that 0 extends to an automorphism of K. By Theorem 3.5 it suffices to show ay is

transcendental over F (since then 0 extends to an isomorphism 9y: F(y) —► F(ay)

and K/F(ay) is algebraic) and that

(6) vK9 = vK[F[y]    (sovK9y=vK\F(y)),

(7) o-K9y=o-K\F(y),

and

(8) 9(K2nF[y]) = K2nF[ay]

(so that 9y(K2 n F(y)) = K2 n F(ay)).

CASE 1. vK ^ v(K2F). Since r is an automorphism of valued fields, T(r) =

T(y)/y G o'k1^-')- Since v(ay) = v(y) is not in the divisible hull of vF (Proposition

2.6), ay is transcendental over F. Now let b = X^y1 E F[y] (with the obvious

notation). Let 6tj/' be the (unique) term of minimal value of 6. Then [Bo, p. 161,

Proposition 1]

v(b)=v(btyt) = v(bt(ay)t)=v(0(b)),

proving (6). If c = X)ci2/J nas v(c) = v(b) (so that b/c is a typical unit of F(y)),

then

aK(b/c) = o-^bty'/cty1) = a^btiay)* fct{ay)*) = oK(0(b/c))

proving (7). Also b E K2 if and only if btyl E K2, and hence if and only if t is even

and bt E K2 (using here that y & v(K2F)). Similarly 0(6) G K2 if and only if t is

even and bt E K2. This proves (8) in this case.

Case 2. vF ^ vK = v(K2F). Then v(y) = v(b2c) for some bE K,c E F and so

y = b2ceu2 where e E Z' and uE K (since K is real Henselian). Thus

o-k(T(t)) = aK((T(bu)/bu)2) ER-2,

so T(r) E A. That ay is transcendental over F and that equations (6) and (7)

hold is proved just as in Case 1. Note that a E K'2. Suppose bty* is the term of

b = Yl^iV1 £ F[y] of minimal value. Then b E K2 if and only if btyl E K2, and
hence if and only if bt(ay)1 E K2, and thus if and only if

0(b)=J2bi(ayyEK2,

proving (8).
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Case 3. K ^ F. Since K is Archimedean real closed, r induces the identity

map on K. Thus r(y) = uy where ok(u) = 1. Hence T(r) € (7^1(1). Since

i/ = ay is transcendental over F (Proposition 2.6), then ay is transcendental over

F. The valuation on F[y] assigns to each J20iyl £ ^M the minimum of the values

of the bi (e.g., see [Bo, p. 161, Proposition 2]). Thus Vk9 = VK\F[y]. That

o~k9i = ck I F(y) follows from the fact that 0i induces the identity map on

F(y) = F(y) = F(ay) = 9y(F(y))

(identifying these rings with their canonical images in K). Now suppose / E K2 n

F[y]. Since vK = vF, there exists b E F with v(f) = v(b2). Thus crK(f/b2) > 0,

so that aK(0(f)/b2) > 0. Thus 0(f) = b2(0(f)/b2) E K2. Hence 0(K2 n F[y]) C
K2 fl F[ay]. The reverse inclusion follows by a similar argument.

Case 4. K/F is an immediate extension of valued fields. Since vr = v, then

v(T(r) -1) = v(r(y - b) - (y - b)) > v(y - b)

for all b E F. Thus T(r) — 1 E I, so T(r) E A. Next, y is the limit of a pseudo-

convergent set Y in F with no limit in F; / is the breadth ideal of Y [K, Theorem

1 and Definition, p. 304]. By [K, Lemma 3], 0(y) = ay is also a limit of Y, and

hence [K, Theorem 2] 0 extends to a homomorphism 0': F(y) —► F(ay) satisfying

(6). (Note that Y must be of transcendental type since otherwise by [K, Theorem

3], F has an immediate proper algebraic extension, contradicting Proposition 2.10.)

In particular ay is transcendental over F. Formula (7) follows from the fact that

K/F is immediate. Finally, (8) can be proved just as in Case 3. This completes

the proof of 7.1.    □

7.2 THEOREM. Suppose K is a real Henselian field, and K/F is a field exten-

sion of transcendence degree one. Then F is a fixed subfield of K if F is algebraically

and topologically closed in K.

PROOF. Let w E K\F. We must show that some F-automorphism of K moves

w. It suffices to show that F(w) is not fixed by Autv(K/F). We apply the case-

by-case analysis of automorphisms in Proposition 7.1.

Case 1: vK ^ v(K2F). Let y E K have v(y) <£ v(K2F). Then there exists

t E Autv(K/F) with r(y) = 2y. Since K/F(w) is algebraic, then vK/v(F(w)) is

torsion. Thus v(yn) = v(g) for some integer n > 0 and some g E F(w). Thus

yn = ug for some unit u E K; we may assume o~k(u) > 0 (otherwise replace u and

g by — u and —g). Since K is real Henselian, u = cn for some c E K. Hence we

may assume u = 1 (replace y by y/c). Thus r(g) = 2ng ^ g, as required.

Case 2. v(K) = v(K2 n F) ^ vF. Pick y E K with v(y) & vF. Now proceed

just as in Case 1.

Case 3. K ^ F. Since K/F(w) is algebraic, then K/F(w) is algebraic. But F

is algebraically closed in K (Proposition 2.6). Hence there exists a unit y E F(w)

with y transcendental over F. But then by Proposition 7.1(3), y is moved by some

F-automorphism of K. (Note that 0^(1) is not trivial since otherwise F = F is

dense and topologically closed in K = K, contradicting that F ^ K.)

Case 4. K/F is immediate. There exists a E F with o-k(w/o) = 1. By 7.1(4),

there is an F-automorphism of K moving w/a. (Note that if we set y = w/a, then

/ is nontrivial, since F is closed in K and w/a & F.)    □
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7.3 EXAMPLE. All the fields in this example will be subfields of the real

Henselian field

U:=R((xy))((x2))((x3))((x4)).

We let F = Fo((z4)) where Fo is the Henselization of R(x2, x2, x3) in U (Proposition

2.8). Set y = b + xyc where b = Enxi^x2)"1 and c = £n>o(x2X3)n!■ Now let

K denote the Henselization of F(xy,y) in U. We will show below that K is a real

Henselian extension of F of transcendence degree one. We will also show that the

algebraic closure of F in K is a quadratic extension of F, namely F[xi], and that

both F and F[xi] are topologically closed in K. It follows from Theorem 7.2 that

F[xi] is a fixed subfield of K. We will prove, however, that F is not a fixed subfield

oiK.

Let Uo = R((xi))((x2))((x3)), so that U = Uo((x4)). Let v4 denote the X4-adic

valuation on U; then the canonical topology on U is the valuation topology of V4.

Thus if the Laurent series Yl aix\ E U is in the closure of F, we then have for all

n > 0 an element J2°ix\ E F = Fo((x4)) with v4(Y^aiX4 — J2bix\) > n. Then
ai = bi for all i < n. Since this is true for all n > 0, a^ E Fo for all i. Thus

Y^aix\ E F. Thus F is topologically closed in U, and hence it is topologically

closed in K. A similar argument shows that F[xy] = Fo[xy]((x,y)) is topologically

closed in K.

Since U/F[xy] is an immediate extension of valued fields and F[xy] is real

Henselian, then F[xi] has no proper algebraic extension in U (Proposition 2.10).

Thus F[xy] is the algebraic closure of F in K.

To show K has transcendence degree one over F, it suffices to show that y is

not algebraic over Fo- Suppose the contrary. There is an R((x2))((x2))((x3))-

automorphism 0 of [70 with 0(xi) = —Xy. Then b = (y + 0(y))/2 is algebraic

over F0, and hence over R(x2,X3)(x2X2), contradicting [Bo, p. 173, Exercise la].

Hence the field extension K/F has transcendence degree one. (This fact is also an

immediate corollary of the Claim below.)

It remains to show that F is not a fixed subfield of K. Some notation will be

helpful. We let t>: U —> (ZxZxZxZ)U {00} denote the canonical valuation on U;

v(xi) is the 4-tuple with all zeros except for a 1 in the ith position from the right (for

i < 4). We let vq be the canonical valuation on Uo- Let Ko denote the Henselization

of F0(xy,y) in U. By Proposition 2.8, T^o C K (since Fo(xx,y) C F(xy,y)) and

K c K0((x4)) (since F(xy,y) = F0((x4))(xy,y) c K0((x4))).

Just suppose F is a fixed subfield of K. Then there exists t E Aut(K/F) with

r(xi) = —Xy. For each positive integer n, let

Vn=   Yl  xi(x^3)li + (x2x§)i!.
l<i<n

Note that

v(y-yn) = v(xy(x2x3)n- +(x2x§)n!) = (0,n!,n!,l) = v(yn+y -yn).

Thus {yn}n>i is a pseudoconvergent set with limit y. Thus r(y) must be a limit of

the pseudoconvergent set

{r(yn)}n>l =  I     ̂ 2   (X2X^)'! -Xy(x2X3y' \

U^<" Jn>l
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(vr = v since r induces an automorphism of vK which fixes vF, and hence is the

identity map.) Let z = r(y) + y. Then for all n > 1,

v(z - 2b) = v(r(y) - r(yn) + y - yn - 2^(x2x2)l!) > (0,n!,n!,l).

n<i

Since v(y) > 0, then v(r(y)) > 0 and so v4(y) > 0 and v4(r(y)) > 0, so 114(2:) > 0.

Hence we can write z = Yli>o °ix\ where bi E K0 for all i > 0. Then for all n > 1,

v(b0 - 2b) =v(z-2b~Y2 bix\) > (0,n!, 0,0).
i>0

Thus v0(bo - 26) = 00, and so 6 = 60/2 E K0. Hence both 6 and c are in Kq, which

is an extension of R(xi, X2, X3) of transcendence degree at most 1. This contradicts

the next Claim (take E = R(xi), x = X2, y = X3), whose proof will therefore

complete this example.

CLAIM. Let F be a field. Then the elements 6 = ^2n>0(xy2)nl and c =

Y2n>o(xv)n °f the iterated Laurent series field E((x))((y)) are algebraically in-

dependent over the rational function field E(x,y).

PROOF OF CLAIM. Let v. E((x))((y)) -+ Z x Z U {00} be the canonical val-

uation. Suppose 6 and c are not algebraically independent over E(x,y). Then

there exists a nonempty finite set / of 4-tuples of nonnegative integers and el-

ements ai E E' for each i E I, such that 0 = J2iei o,ix'1yl2bt3cu (where for

i E I vte write i = (iy,i2,i3,i4)). Let Dt = max;e/it, for t = 1,2,3,4. Pick

n > 2(Dy + D2+ D3 + D4). Also write bn = £o<t<n(x2/2)t! and b'n = b - bn, and

cn = Eo<t<n(^)'!  and C'n = C ~ Cn-  Then

0 = £>txlV2(&« +b'n)l3(cn +c'ny* =J2alxHyt2bin3cl?+A

iei iei

where A is a formal sum of monomials of the form axmyt (a E E) of value at least

(n + 1)!(1,1). On the other hand Ysieiaix%iyl2bn c%n is finite sum of monomials

ax"1!/* of value at most

v(xD>yD>(xy2)nWs(xy)niD*) = (D2 + n\(2D3 + D4), Dy + n\(D3 + D4))

which is strictly less than (n + 1)!(1,1) by choice of n. Thus

(9) £>x'V'6^=0.
iei

For each i E I, aiXllyt2blfc^ is a sum of monomials axmyt and exactly one of the

monomials has maximal value, namely ajXJli/I2(xi/2)n!t3(xi/)n!84, which has value

(10) (i2 + n\(2i3 + i4), iy + n\(i3 + i4)).

Now pick i E I with the expression (10) as large as possible. Because of (9), there

must also exist j E I, j ^ i, with (j2 + n\(2j3 + j4),jy + n\(j3 + j4)) equal to the

quantity in (10). Thus

z2 + n!(2i3 +i4)= j2 + n\(2j3 + j4)

so n! divides i2 - j2. Thus i2 = j2 (note |i2 - j2\ < n). Hence 2j3 + j4 = 2i3 + i4.

Similarly iy = jy and 13 +14 = j3 +j4. Thus i = j, a contradiction. This completes

the proof of the above Claim.    □
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8. An example. Let G denote the direct sum • ■ • Z © Z © Z; give G the

lexicographic order. G is an ordered abelian group. Formally we regard G as the set

of all maps /: - N —► Z with finite support, where -N denotes the set of negative

integers. If f,g E G, then f + g is defined pointwise (i.e., (f + g)(m) = f(m) + g(m)

for all m E -N) and we write / < g if f(m) < g(m) where m is the minimum

of {i E -N: f(i) ^ 0 or g(i) ^ 0}. For each i E N we let et E G be the map

with Si(k) = 1 if k = —i and el(k) = 0 if k ^ — i. Thus Ei can be regarded as the

"(-N)-tuple" (...,03,02,01) consisting of all zeros except for Oj, which has the

value 1.

Now let K = R((tG)) and F = R((t2G)). Formally, the generalized Laurent

series field K consists of all maps G-»R with well-ordered support. We think of

elements / of K as formal series XXgG /(TO*""- Addition is pointwise (Y^o^t1 +

J2b1t1 = J2iai + b^t1) and multiplication is by Cauchy product:

(E<v7)(£m\)=e( E «aU
1     \P+S=i J

K is a maximal valued field with residue class field R; the valuation vk assigns to

each element /: G —» R in K' the minimum of its support. (See the references at

the end of §1.) We regard F as a subfield of K in the obvious way.

Let E denote the algebraic closure of F in K. For each t'eN let ti = t£i, so

v(ti) = £;. (Formally, ti is the map G —► R which is zero on G except at e%, where

it takes the value 1.) Since the Si form a basis for G we can regard each / E K as

a formal sum

00

(ii) E/«IK"°
e€G i=l

where each of the products in (11) has only finitely many nontrivial (i.e., ^ 1)

factors and the terms of the sum are zero except on a well-ordered subset of G.

8.1 PROPOSITION.   E = F[ty,t2,t3,...].

PROOF. Let E' = F[ty,t2,t3,...]. Then E' E E since t2 = t2e< E F for all 1.

Since F is a Henselian valued field, then so is E'. Further, vE' = G = vE (the Si

generate G) and E' = R = E. Thus E is an immediate algebraic extension of the

real Henselian field E'. Thus E = E' (Proposition 2.10).    □

8.2 Proposition. E is dense in K.

PROOF. Let a E K; we prove that a is in the closure of E. Let neN. Without

loss of generality, a is a unit (since if t~vi^a'>a is in the closure of E, then so is a).

We can write a = a0 + oty where ao(e) = a(e) for all e E G with e(—i) = 0 for

all i > n and ao(e) = 0 otherwise. Less formally, Qo is the sum of all monomial

summands of a of the form at\l ■ ■ ■ t%> and ay is a sum of monomials of the form

a*? " ' tTm where m> n and (since v(a) = 0) also rm > 0. Thus

v(a-a0) = v(ay) > e„.

Also, a0 E R((*i)) • • • ((£„)) C E. Since the set {en}n>0 is cofinal in G, this shows

a is in the closure of E.    □
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8.3 Corollary. Ant(K/E) = i.

PROOF. Apply Propositions 6.1 and 8.2.    □

8.4 COROLLARY. There is a group isomorphism $: Aut(K/F) -» (Z')N with

*(r) = (T(ti)/ti)ieN for each r E Aut(K/F).

PROOF. We use Remark 4.6. AutvF(vK) = 1 since vK/vF = G/2G is torsion.

Hence Autv(K/F) = Ant(K/F). Now suppose r E Aut(K/F) is an order auto-

morphism, say for an ordering P of K. Then r | F = 1 (since r\E E Aut(F/F);

now apply the uniqueness part of Theorem 3.1). Hence r = 1 (Corollary 8.3). Thus

the map $: Ant(K/F) —> Hom(vK/vF,Z') is an isomorphism (Remark 4.6). The

map * is the composition of $ with the isomorphism $': Hom(G/2G, Z') —► (Z')N

associated with the basis (U + 2G)teN of G/2G (that is, $'(/) = (f(U + 2G))ieN

for any / E Hom(G/2G, Z')).    D

For any / E (Z')N we let oI = *_1(/). Then for any f E K

o,(f)(e) = f(e)Y[l(iy^

for all e E G. In terms of formal series,

°i ( e /« n «fM))=e /(£) n (/(»w(-°
\£GG t€N / £€G iGN

(cf., formula (11)).

To establish our counterexample to the converse of Proposition 6.1 (and to the

generalization of Theorem 6.3) we need some information about sets of elements of

K which are algebraically independent over E. In general little seems known about

algebraic independence of elements of the maximal immediate extension of a field

over the field. (The Claim of §7 was a result about this situation.)

8.5 PROPOSITION. Let {Np: 0 E B} be a set of pairwise disjoint nonempty

infinite subsets o/N. For each 0 E B, let rp = Yli£Ng '«• Then the set {rp: 0 E B}

is algebraically independent over F.

Thus, for example, ty + t3 + t5 + ■ • • and t2 + t4 + te + ■ ■ ■ are algebraically

independent over F.

PROOF. Pick 0 E B. Let H be the group of elements of Aut(K/F) fixing every

element of {U: i E N} except for a finite subset of {ti: i E N^}. Then for each

a E B, ra E KH if and only if a ^ 0. Let L denote the algebraic closure of KH in

K. L is an algebraic extension of EKH. Since KH is real Henselian (Proposition

2.9), so is its algebraic extension EKH. Also L/EKH is an immediate extension

(since K/E is immediate). Thus L = EKH by Proposition 2.10. Consider now

the field V = KH[tr^y),... ,tr(n)] where r(l),... ,r(n) is any finite sequence of

elements of Np. Elements of KH are formal linear combinations of monomials

fnXtm2 ... tms wncre inc integers m, are even if i E Np (cf., Proposition 8.4). The

set of square-free products of <r(i)i • • • i t-r(n) spans V as a K^-vector space. Hence

for all choices of the r(i), rp = ^2l€N tt is clearly not in L'. Hence rp £ L. Thus

rp is transcendental over KH, and hence over F({ra: a ^ /?}). Since 0 E B was

chosen arbitrarily, this shows {ra: a E B} is algebraically independent over F.    □
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8.6 REMARK. One consequence of 8.5 is that E ^ K. Thus E is not a

fixed subfield of K (cf., Corollary 8.3). However F is a fixed subfield of K. (Use

Proposition 8.1 to apply Theorem 6.3. F is closed in K since the valuation topology

on K induces that on F, and F is topologically complete.) Thus we have the perhaps

unexpected result that the algebraic closure in K of a fixed subfield of K is not

necessarily itself a fixed subfield of K.

We are now ready to construct a counterexample to the converse of Proposition

6.1.

8.7 EXAMPLE. Let e = t2 + t4 + t6 + ■ ■ ■ and n = t3 + t5 + t7 + ■ ■ ■. Let

a = (1 + ty)e + n. Let L be a real Henselization of E(a) contained in K. Then L

is real Henselian, F is topologically closed in L, and the algebraic closure of F in L

(namely, F) is a multiquadratic extension of F. However, F is not a fixed subfield

ofL.

PROOF. L is well defined by Proposition 2.8. Proposition 8.1 tells us that the

algebraic closure of F in L is a multiquadratic extension of F. That F is closed in

L follows from the same argument that was used in Remark 8.6 above to show F

is closed in K.

Now suppose F is a fixed subfield of L. Then some F-automorphism t of L moves

ty. By [K, Theorem 5], r extends to an automorphism of K. Thus there exists / E

(Z")N with T = Oi | L (Proposition 8.4). Let D = T1 (-1)\{1}; D = {i E~N: i> 1

and r(tt) = -ti}. Also set an = £j€l>\2N**> ae = EieDn2N^> ot'n = n - an

and a'e = e — ae. Thus a'n is the sum of the ti where i is odd, larger than 1,

and not in D and a'e is the sum of the ti where i is even and not in D. Then

a = (an + a'n) + (1 + ty)(ae + a'e), so that r(a) = -an + a'n + (1 - ty)(-ae + a'e).

Thus

(12) a'n + a'e + tyae = (a + r(a))/2EL

and

(13) an + ae+tya'e = (a-r(a))/2EL.

Let us call a formal series 0 E R((tG)) "finite" if it is a finite linear combination

of products of the tt. Thus either ae or a'e is not finite and similarly for either

an or a'n. If none of an,a'n,ae and a'e are finite then by Proposition 8.5 all four

are algebraically independent over F. But all four are in L(ae,a'e), which has

transcendence degree at most three over F. Thus at least one of an,a'n,ae,a'e is

finite. If an is finite and the rest are not, then all four are in L(ae). But this is

impossible since L(ae) has transcendence degree at most 2 over F but a'n, ae and

a'e are algebraically independent over F (Proposition 8.5). Similarly one argues

neither a'n, ae nor a'e can be the only finite element among the four. Thus we

conclude that exactly two of the elements an,a'n,ae,a'e are finite. But then all of

them lie in L (again apply formulas (12) and (13)), even though two are algebraically

independent over F. This is impossible. Thus F is not a fixed subfield of L.    D

We have the usual bijective Galois correspondence between the fixed subfields

of K containing F and the groups of automorphisms of K of the form Ant(K/S)

where K D S D F. The fixed subfields of K containing F can be intrinsically

characterized as the subfields of K containing F which are topologically closed in K

and which have relative algebraic closures in K which are multiquadratic extensions
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of themselves (Theorem 6.3). We next show that the groups of automorphisms

of the form Aut(K/S) where K D S D F are exactly the closed subgroups of

Aut(KfF) where we give Aut(K/F) the compact open topology (cf., the proof of

8.8 below), regarding Ant(K/F) as a set of continuous functions K —» K where K

has its usual topology (cf., the first paragraph of §6). This topology on Aut(K/F)

is not the Krull topology (see Example 8.9 below).

8.8 PROPOSITION. Let G be a subgroup of Aut(K/F). Then Aut(K/KG) is

the closure of G in the compact open topology (where K has the valuation topology).

PROOF. It is easy to show that Ant(K/KG) is closed in the compact open

topology on Ant(K/F) for any Hausdorff topological field K. We now show G is

dense in Aut(K/KG) for our particular field K. Let Cy,..., Cr be compact subsets

of K and Uy,..., Ur be open subsets of K. Let W denote the set of p E Aut(K/F)

with p(Ci) C Ui for i = 1,..., r. Then W is a typical basic open set in Aut(K/F).

Let r E W n Ant(K/KG). It suffices to show VK n G is nonempty.

For each n E N let Bn = {b E K: v(b) > en} and B'n = {b E K: v(b) > -£„}.

Since the B'n cover K, there exists TV with B'N D Ci for all i < r. Now let us fix

some i, 1 < i < r. For each n E N let Wi(n) denote the union of all sets of the

form r(a) + Bn where a E Ci and r(a) + Bn E Ui. The sets Wi(n), n E N, cover

the compact set r(Ci). Since Bn is an additive group, r(Ci) fl Wi(n) C Wi(n + 1)

for all n E N. (After all if 6 € Ct and r(6) E Wi(n), then for some a E Ci, r(b) E

r(a) + BnE Ui. Then

r(6) E r(b) + Bn+1 C r(6) + Bn= r(a) + Bn E Uu

whence t(6) G Wi(n + 1).) Hence r(Ci) C Wi(Ni) for some TV,. Thus we can pick

TV' with r(d) E W{(N') for all i<r. Let M = TV + TV'.
The elements of G induce F-automorphisms of E; let G' = {p\E: p E G}.

Clearly EG' = E n KG. Thus r | E fixes EG', so r[E is in the closure of G' in

Aut(F/F) in the Krull topology [S, Appendix I]. Hence there exists p E G such

that p and r agree on the subset {ty,..., t^} of F. Now let i < r. Pick d E Ci. It

suffices to show p(d) E Ui. (If this is true for all i, then p E W n G, so VK fl G is

nonempty, as required.)

Write d = £eeGd(e)££, where for each e E G, te = \~[%y tf~%) (cf., formula

(11)). Note p(t£) - r(te) = 0 if e(-i) = 0 for all i > M. Thus p(d) - r(d)

is a sum of monomials d(e)te where d(e) ^ 0 and e(-i) ^ 0 for some i > M.

Consider any such e = e*. Let j be maximal with £*(—j) i1 0. Just suppose

e*(-j) < 0. Then v(d(e*)t£') < -Bj-i < -eM. But since G; C B'M, -eM <

v(d) = min{e: d(e) ^ 0} < e* < —£m, a contradiction. Hence £*(—j) > 0. Thus

v(d(e*)te') > Sj-i > eM- Thus v(p(d) - r(d)) > eM- Hence p(d) E r(d) + BM.

Since r(d) C Wt(M),r(d) E r(a) + BM E U{ for some a E C%. Thus

p(d) E r(d) + BM = r(a) + BM E Ui,

as required.    □

8.9 EXAMPLE. Let A be the subgroup of Aut(K/F) consisting of all r E

Aut(K/F) which fix all but a finite subset of {ti: i E N}. Then KA = F (Proposi-

tion 8.4), so A is dense in Aut(K/F) where Aut(K/F) has the topology of Propo-

sition 8.8. Now give Aut(K/F) the Krull topology, i.e., the compact open topology
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where K is regarded as a discrete space. Then A is closed in Aut(F"/F), so that

Aut(K/KA) is not the closure of A. For suppose / E (Z')N. If <t/ €" A, then

<r71( — 1) is infinite, so that no element of A can agree with 07 on £i€N ti. Thus

a 1 is not in the closure of A. Hence A is closed in Aut(K/F), as claimed.

The above observations show that the topology on Aut(K/F) in Proposition 8.8

is not the Krull topology. (For the use of the Krull topology in the Galois theory

of infinite algebraic extensions see [S, Appendix I].)
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