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THE DIFFERENTIAL OPERATOR RING
OF AN AFFINE CURVE

JERRY L. MUHASKY

ABSTRACT. The purpose of this paper is to investigate the structure of the

ring D(R) of all linear differential operators on the coordinate ring of an

affine algebraic variety X (possibly reducible) over a field k (not necessar-

ily algebraically closed) of characteristic zero, concentrating on the case that

dimX < 1. In this case, it is proved that D(R) is a (left and right) noetherian

ring with (left and right) Krull dimension equal to dim X, that the endomor-

phism ring of any simple (left or right) D(iJ)-module is finite dimensional over

fc, that D(R) has a unique smallest ideal L essential as a left or right ideal,

and that D(R)/L is finite dimensional over fc. The following ring-theoretic

tool is developed for use in deriving the above results. Let D be a subalgebra

of a left noetherian fc-algebra E such that E is finitely generated as a left D-

module and all simple left E-modules have finite dimensional endomorphism

rings (over fc), and assume that D contains a left ideal I of E such that E/I

has finite length. Then it is proved that D is left noetherian and that the

endomorphism ring of any simple left D-module is finite dimensional over fc.

Introduction. In this paper, we will study the ring D(R) of fc-linear differential

operators on a commutative fc-algebra R, where fc is a field of characteristic zero.

Of special interest is the case where 7? is the coordinate ring of an affine algebraic

variety X. When X is nonsingular, the ring D(R) has been extensively studied

and enjoys many nice properties; for example, D(R) is noetherian. (We will use

the term "noetherian" to indicate that a ring is both left and right noetherian.)

When X is singular, D(R) need not be noetherian, as shown by J. N. Bernstein,

I. M. Gelfand and S. I. Gelfand [3]: if X is the normal cubic cone, i.e., the surface

in complex 3-space given by x3 + y3 + z3 = 0, then D(R) is neither left nor right

noetherian. Thus a major goal is to discover for which varieties X the ring D(R) is

noetherian. The main contribution of this paper is to prove that D(R) is noetherian

when dimX < 1, and to develop some of the structure of D(R) in this case.

The paper is organized as follows. §1 contains a number of basic results about

the differential operators on commutative rings. In §2, the algebraic tool used in

proving D(R) is noetherian is developed. This result overlaps with the independent

work of J. C. Robson and L. W. Small [11]. §§3 and 4 contain the main results

on the structure of D(R) when dimX < 1. This work was motivated by the

calculations of I. M. Musson [10]. These results were independently obtained by

S. P. Smith and J. T. Stafford [12] in the case that X is an irreducible curve over

an algebraically closed field of characteristic zero. §5 contains an example of a

nonreduced fc-algebra R with Krull dimension one, such that D(R) is right but not

left noetherian.
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1. Basic properties of differential operator rings. This section contains

the basic properties of differential operator rings which we will need in §3. Most

of the results are standard and stated here without proof. The reader is referred

to [8]. Throughout this section fc will be a field of characteristic zero and R will

be a commutative fc-algebra. Define [ , ] on End/c(/2) by [/, g] = fg — gf. It will

be useful to identify Endfl(7?) with R. In order to avoid confusion, the evaluation

of an element / E Endfc(7?) at an element r E R will be denoted f((r)). This

allows the composition of / with "scalar multiplication" by ry + r2 E Endfl(F) to

be denoted as f(ry +r2).

DEFINITION. Set D^(R) = R, which we have identified with Endfi(7?) C

Endk(R). Forp>0, define

Dpk(R) = {fE Endk(R): [f,r] E D'-^R) for all r E R}

and set
oo

Dk(R) = |J Dpk.
p=0

Elements of Dk(R) are called k-linear differential operators on R. When there is

no confusion about the base field fc, we will use the notations DP(R) and D(R).

The order of an operator d 6 D(R) is the least nonnegative integer m such that

d € Dm(R), and we will write ord(d) = m. An easy induction on order shows

that Di(R)DJ(R) C Di+3(R) for all i,j. Hence, D(R) is a filtered fc-subalgebra
of End*:(72); it is called the ring of k-linear differential operators on R. Another

induction on order will show that [f,g] E Di+j~1(R) for all / E D*(R) and g E

D3(R). Hence, the associated graded ring gr(D(R)) of D(R) is commutative.

An important property of differential operators is the following reduction for-

mula, which may be proved by induction on m.

PROPOSITION (1.1).   LetdE Dm(R) andn> m.  Then for all r,,...,r„ E R,

*>-r«=±(-ir»(::l:'m)
s=0 v '

x       ^2      ri ■••fi(1) •••fi(s) •••r„drj(i) •••ri(s).

i(l)<-<i(s)

In particular, evaluating at 1 E R yields

<K(ri-rn)) = jr(-ir+° (;:/:;)
s=0 v '

x        Yl       rr--r,(i)---r,(s)---rn(/((ri(ir--r,(s))).        □

x(l)<"-<t(s)
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REMARK. The case n = m + 1 of the bottom formula

d((ry ■■■rm+i))
m

= X!(_1)m+S       2       ri---ri(i)---ri(s)---rm+id((rl{yyrl{s)))

s=0 i(l)<--<t(s)

is sometimes taken as the definition for a differential operator of order at most m.

COROLLARY (1.2). If{r\}\eA generate R as a k-algebra, then any operator in

Dm(R) is determined by its values on 1 and the products {»\\(i) ■ ■ ■ rx(s) '■ -Ml)i • • • >

X(s) E A and 1 < s < m}.    □

EXAMPLE (1.3). Let {xa}a€A be a collection of independent indeterminates

and A = k[X/y] the polynomial ring over fc in these indeterminates. A multi-index

/ is a function / from A to the nonnegative integers such that /(A) = 0 except

for a finite number of A € A. Define the degree of / by deg(Z) = ^ 7(A) and set

xI = FI xx • The derivations d/dx\ are easily seen to be commuting first order

operators on A. Set d1 = YKd/dx^)1^ E D(A). Fix a nonnegative integer m and

consider the collection of formal sums

Fm = \ 2_] fid1: / is a multi-index with deg(Z) < m and each fi E A\.

Even though such a sum may have an infinite number of nonzero terms, it gives a

well-defined differential operator of order at most m on A because all but finitely

many terms vanish on any given element of A. By first evaluating at 1 € A, then at

monomials of degree one, then degree two, etc., one can see that two sums Yl fid1,

JZgid1 E Fm will induce the same operator on A if and only if gj = fi for all /

with deg(Z) < m.

Now take any collection {/i/}deg(/)<m of elements of A. We claim that there is

EZ/d7 E Fm such that hj = Y^fid1^)) for all J with deg(J) < m. Solving for
fj results in the equation

fj = Ti\hj-    £    fid'a^)))
\ deg(/)<deg(J) J

where J! = n^W- By inductively defining the //'s in this way, we are able to

construct a formal sum ^2 fid1 E Fm. It is easy to check that hj = J2fidI((xJ))

for all J with deg( J) < m.

In particular, for each d E Dm(A), we can find ^ fid1 E Fm so that d((xJ)) =

Hfid1^)) for all J with deg(J) < m. From (1.2), it follows that d = JZIid1,
and hence Dm(A) = Fm. Products of elements in D(A) can be written in "standard

form" (as in the description of Fm) by repeated use of the formulas

(d/dxx)f = f(d/dxx) + (d/dxx)((f)).

In the special case where A = {1,..., n}, we have that

D(k[xy,...,xn]) = An(k),

the nth Weyl algebra.    □
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LEMMA (1.4). Let A = k[X\\ be a polynomial ring in independent indeter-

minates {xa}a6Aj and let R = A/B where B is an ideal of A. Then there is a

k-algebra isomorphism

{d E D(A): d((B)) C B}/{d E D(A): d((A)) C B} 2 D(R)

under which the coset of an operator d E D(A) satisfying d((B)) E B corresponds

to an operator in D(R) mapping r + B to d((r)) + B. In particular, any operator

in Dm(R) lifts to an operator d E Dm(A) such that d((B)) CB.    D

We will now consider the differential operators on a localization S~1R of R,

following [6] where the case that S consists of non-zero-divisors is handled.

LEMMA (1.5). Let S be a multiplicatively closed set in R. Let d E Dm(R) and

suppose that a,b E R and s,t E S satisfy at = bs.  Then in S~lR, we have

oo oo

]r(-lHd,S]p((a))/V+1 = X)(-l)P[d,*]p((6))/tp+1
p=0 p=0

where [d,s]p denotes p successive brackets of d with s, and is defined inductively by

[d, s]o = d and [d, s]p = [[d, s]p-y, s]. (Notice that [d, s]p = 0 when p > m.)    □

Lemma (1.5) allows us to "extend" operators from R to S_1R. If d E D(R),

define a function 4>(d): S^R -+ S^R by

OO

Hd)((a/s)) = £(-l)"[d,S]p((a))/V+1.

p=0

It is easy to see that $(d) is fc-linear and to verify that

[*(d),r/l]=*([d,r]).

Using induction on the order of d, it follows that if d E Dm(R), then 5>(d) €

Dm(S~1R). Notice that $(d) extends d in the sense that

$(d)((r/l)) = d((r))/l

for all r E R. Extending operators gives a map $: D(R) —► D(S_1R), which is

easily seen to be fc-linear. In fact, viewing D(R) and D(S~1R) as (R, 7?)-bimodules,

we find that <$ is an (R, 7?)-bimodule homomorphism. Also note that the restriction

of 3> to R gives the canonical map R —* S~1R. That $ is a ring homomorphism

follows easily from the next lemma.

LEMMA (1.6). Let 8 E D(S~1R) and suppose 8((r/l)) = 0 for all r E R.

Then 6 = 0.    □

LEMMA (1.7). Let R be a finitely generated k-algebra and S a multiplicatively

closed subset of R.

(a) If d E Dm(R) and $(d) denotes the extension of d to S~1R, then $(d) = 0

if and only if sd = 0 for some s E S.
(b) If6EDm(S-1R), then 6 = $(s)"1$(d) for some s E S anddEDm(R).    □

Recall the definition of localization for noncommutative rings. Let A be any ring

with identity and S a multiplicatively closed subset of A. A left ring of fractions of A
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with respect to S (if it exists) is a ring [S_1]A together with a ring homomorphism

$: A —► [S-1]A satisfying:

(1) $(s) is invertible for every s E S;

(2) every element of [5-1]A is of the form $(s)_1$(a) with s E S and a E A;

(3) $(a) = 0 if and only if sa = 0 for some s E S.

A right ring of fractions is defined similarly.

PROPOSITION (1.8). Let R be a finitely generated k-algebra and S a multi-

plicatively closed subset of R. Then D(S~1R), via the map defined above, is both

a left and right ring of fractions for D(R) with respect to S.

PROOF. Condition (1) is symmetric and immediate from S~1R C D(S~1R).

Conditions (2) and (3) for a left ring of fractions are in (1.7). For the right-handed

version of (2), let 6 E Dm(S~1R) and write 6 = $(s)_1$(d) for some s E S and

dEDm(R). Write

*(a)_1$(d) = $(d)$(srx - [$(d),$(s)_1]

and use induction on order to find t E S and d' E Dm~l(R) with [$(d),$(s)_1] =

$(d')$(0-1. Thus

6 = $(<0*(*)_1 - ^(d')^(ty1 = *(dt - d's)^(st)-1

and the right-handed version of (2) holds. Finally, for the right-handed version of

(3), let d E D(R) with $(d) = 0. From (1.7), there is an s E S with sd = 0.

Observe that

*([(*,«]) = [*(rf),*(«)] = 0.

Using induction on order, there is at E S with [d, s]t = 0. Thus

0 = sdt = dst - [d, s]t = dst

and the right-handed version of (3) holds.    □

The next proposition is simply a restatement of (1.8) in the version that most

often appears in the literature.

PROPOSITION (1.9). Let R be a finitely generated k-algebra and S a multiplica-

tively closed set in R. Extending operators gives an isomorphism S~1R®r D(R) =

D(S~lR) of lefts'1 R-modules.    O

In the special case that 5 consists of non-zero-divisors, we have the following

proposition.

PROPOSITION (l.lO). Let S be a multiplicatively closed subset of non-zero-

divisors of R. Identify R with its image under the embedding R <—► S~1R. Then

extending operators gives an isomorphism

D(R) =^{6E Z>(S_1fl): 6((R)) C R}.    □

PROPOSITION (l.ll). Let R be a finitely generated k-algebra and L be an

extension field of fc.  Then L ®k Dk(R) = Dl(L <g>fc R) as L-algebras.

PROOF. The isomorphism is simply the restriction to L®k Dk(R) of the canon-

ical L-algebra embedding ip: L ®k End*(72) «-> EndL(// <8>k R).  Identify R with
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1 <g> R in L ®k R; then L®k R = LR. Let r E R, a E L, and d € !>*(/?). As tp(d)
is the L-linear extension of d, we have

[tp(d),ar] = a[tp(d),r] = atp([d,r]).

Using additivity and induction on the order of d, it follows that ip(L ®k Dk(R)) C

Dl(LR).
Now let d E DL(LR) and choose a basis {oJasa for L over fc. For each A € A,

let -Kx : LR —» /? denote the usual Ath coordinate projection. Set 3a = ^\d[R. Let

r E R, then

[dA,r] = [7rAd|fl,r] = 7rA[5,r]|R.

It follows from induction on p, that d\ E D^(R). Let xy,...,xn generate R as

a fc-algebra. The reduction formula (1.1) shows d((R)) C E-^d^z7)), where the

sum is taken over all multi-indices / of deg < p. Thus all but a finite number of

the d\ are zero and E ft ® #a € // <8> Dk(R). Using d|/j = E ftc>A and L-linearity,

it follows that V(E ft ® #a) = 5. Therefore ^(L <g)fc Dk(R)) = DL(L ®k R).    D

PROPOSITION (1.12). Let Ry and R2 be commutative k-algebras, then there

is a k-algebra isomorphism D(Ry x R2) = D(Ry) x D(R2).

PROOF. Define 0: D(Ry) x £>(/?2) -► EndA:(Fi x R2) by

V'(di,d2)((r1,r2)) = (d1((r1)),d2((r2))).

It is clear that tp is a fc-algebra embedding. From the formula

[tp(dy,d2), (ry,r2)] = tP([dy,ry], [d2,r2]),

it follows by induction on order that Im(iZ') E D(Ry x R2).

Now let S E D(Ry) x D(R2) and consider irySiy: Ry —> Ry, where i"i and 7ri

denote the standard injection and projection maps. Notice that

[■7Ty6iy,ry] = TTySiyry - TyTTySiy = TTy [6, (ry, 0)]iy

for all ri E Ry. It follows by induction on order that 7Ti<5ii E D(Ry), and similarly

that -K2bi2 E D(R2). Using the formula

iyirySi2Tf2 = iyTTy8i2T[2i2Tt2 = iy-Ky(i2'K2b + [S,i2TT2])i27r2 = iyTTy [6, i2W2]i2Tr2

and induction on order, it follows that iy7Ty6i2Tr2 = 0, and similarly i2n26iyiry = 0.

From the equation

S = (iyTTy + i2TT2)6(iy1Ty + i2TT2) = iyTTySiyTTy + i2TT26i27r2 = tp(7Ty Siy, TT26i2),

we conclude that Im(V0 = D(Ry x R2).    D
Let F be a field extension of fc having finite transcendence degree over fc. Let

{xy,x2,... ,xn} be a transcendence basis for F over fc and let di be the extension

of d/dxt to F. It is well known (see [8]) that 7^(F) is just the usual Ore extension

of the field F by the n commuting derivations {d/dxi}. Such Ore extensions have

been extensively studied and are known to be noetherian and of Krull dimension n.

(It is easy to see that the associated graded ring gr(D(F)) is a polynomial ring over

F in n indeterminates. In particular, gr(D(F)) is noetherian of Krull dimension n,

and it follows that D(F) is noetherian with left and right Krull dimension at most

n. The interested reader is referred to [5] for a result on the Krull dimension of

Ore extensions.)
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PROPOSITION (1.13). Let F be a field extension of k having finite transcen-

dence degree over fc.  Then the following hold.

(a) D(F) is a simple domain.

(b) D(F) is noetherian.

(c) l.K.dim D(F) = r.K.dim D(F) = tr.deg(F/fc).    □

Recall that a commutative ring is reduced if it does not contain any nonzero

nilpotent elements.

PROPOSITION (1.14).   Let R be a finitely generated reduced k-algebra.

(a) D(R) is a domain if and only if R is a domain.

(b) Ifr.K.dim(D(R)) exists, then r.K.dimD(R) > K.dim 72. If l.K.dim(D(R))
exists, then l.K.dim D(R) > K.dim 72.

PROOF, (a) If D(R) is a domain, then so is its subring R. Assume that R is a

domain. Let F be the quotient field of R. From (1.10), D(R) is isomorphic to a

subring of the domain D(F).

(b) Let K be the total quotient ring of R, i.e., the quotient ring with respect to

the set S of regular elements. Then K is a product of fields Ky x • • • x Kn and

K.dim 72 = max{tr.deg(/i'i): i — 1,..., n}.

From (1.8), D(K) is a right ring of fractions for D(R) with respect to S. Thus if

r.K.dim D(R) exists, then r.K.dim D(K) exists and r.K.dim D(R) > r.K.dim D(K).

It follows from (1.12) and (1.13) that r.K.dim D(K) = K.dim R. Thus the inequality

for right Krull dimension holds. As D(K) is also a left ring of fractions for D(R)

with respect to S, the same argument works for left Krull dimension.    □

Finally, we consider the case of differential operators on a nonsingular variety.

The differential operators on a regular finitely generated fc-algebra R are well un-

derstood. Using (1.8), many questions can be reduced to the case of differential

operators on the localization Rm of 72 at a maximal ideal M. It can be shown that

the differential operators on Rm are an Ore extension of Rm by n = K.dim 72m

commuting derivations.

THEOREM (1.15). Let R be a regular finitely generated k-algebra. Then the

following hold:

(a) Dm(R) is equal to the left [right] R-submodule of D(R) generated by all

products of m or less k-derivations of R.

(b) gr(/2) is a finitely generated commutative k-algebra.

(c) 79(72) is (left and right) noetherian.

(d) l.K.dim D(R) = r.K.dim D(R) = gl.dim D(R) = K.dim 72.

(e) If R is a domain, then D(R) is a simple domain.

(i) If M is any simple D(R)-module, then dirrifc Honi£>(/{)(M, M) < oo.

REMARK. If a ring D satisfies property (f), we will say that D has the finite

dimensional property for simple modules.

PROOF OF (1.15). Statements (a)-(e) can be found in [8] in the case that 72

is a domain. The general statement follows from (1.12). Statement (f) follows from
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a theorem of L. W. Small (see [11]) that says:

THEOREM (L. W. SMALL). IfT is a k-algebra such that L <g>fc T is right

noetherian for any extension field L of k and Endr(TV) is algebraic over k for any

right T-module TV of finite length, then Endr(M) is finite dimensional over k for

all simple right T-modules M.

Any extension field L of fc is separable over fc and so L <8>k R is a regular finitely

generated commutative L-algebra (see [9, p. 208]). Using (3) and (1.11), we have

that L ®k Dk(R) = DL(L ®fe 72) is a noetherian ring. That £>(72) has the finite

dimensional property for simple modules is a result of

QUILLEN'S LEMMA [7]. If N is a module of finite length over a nonnegatively

filtered k-algebra T and the associated graded ring gr(T) is a commutative finitely

generated k-algebra, then Homr(TV, TV) is algebraic over fc.

That T = D(R) satisfies the conditions of Quillen's lemma is the result of (b).    □

2. A few algebraic preliminaries. The results of this section overlap with

the independent work of J. C. Robson and L. W. Small. Their results, which include

an improved version of Theorem (2.2), will appear in [11].

In this section the field fc need not be of characteristic zero.

PROPOSITION (2.1). Let D be a subalgebra of a left noetherian k-algebra E.

Suppose that D contains a left ideal I of E and that E is finitely generated as a left

D-module. If Hom£(F/I, E/ J) is finite dimensional over k for all left ideals J of

E, then D is left noetherian.

PROOF. Let B be a left ideal of D and consider the left F-module IB. Since

IB is a left ideal of F, it is finitely generated over F and hence over D. Using the

canonical inclusion B/IB •—► E/IB, we see that as fc-modules

B/IB ^ {xE E/IB\Ix = 0} = rlomE(E/I,E/IB).

Since dim^ Honi£(F/7, E/IB) < oo, it follows that B/IB is finitely generated as

a fc-vector space and hence also as a D-module. As both ends of the sequence

0 —► IB —+ B —* B/IB —> 0 are finitely generated 79-modules, we conclude that B

is a finitely generated left ideal of D.    □

THEOREM (2.2). Let D be a subalgebra of a left noetherian k-algebra E such

that D contains a left ideal I of E. Suppose the following hold.

(1) E/I is a left E-module of finite length.

(2) dim/t Hom£;(5, S) < oo for all simple left E-modules S.

(3) E is finitely generated as a left D-module.

Then D is left noetherian and dimjt Homo(M,M) < oo for all simple left D-

modules M.

REMARK. In [11], it is shown that hypotheses (1) and (2) are sufficient to show

E/I is also of finite length as a F-module. From this it follows that E is finitely

generated as a left F-module. Thus (3) is superfluous.

PROOF OF (2.2). It follows from (2) and induction on length that if M

is a left F-module of finite length and TV is a noetherian left F-module, then

dimfc Homs(M, TV) < oo. It then follows from (2.1) that D is left noetherian.
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As fc-vector spaces

D/ID ^(i£ E/ID\Ix = 0} S rlomE(E/I, E/ID)

and so D/ID is finite dimensional. Let M be a simple left F-module. Then either

IM = 0 or IM = M.
Case 1: /M = 0. There is a F-module isomorphism M = D/J where J is a

maximal left ideal of D. From IM = 0, it follows that ID C J and so M is iso-

morphic to a factor of D/ID. Hence M is finite dimensional, and so Hom£>(M, M)

is finite dimensional.

Case 2: IM = M. Consider the left F-module ID ®D M. Let

tp: ID ®D M -» IDM = IM = M

denote the surjective left F-module homomorphism given by multiplication. Every

/ E Hom£>(M, M) gives rise to the commutative diagram

1 <g> /: ID ®D D -► ID ®D M

1 I
/: M -► M

It follows that rlomo(M, M) <—► Hom£;(/F®rj M, ID®D M) is an injective fc-linear

map.

To conclude that Hom/j(M, M) is finite dimensional, it will be sufficient to show

that ID ®d M has finite length as a left F-module. Notice that ID ®d M is

a noetherian left F-module and hence a noetherian left F-module. Consider the

exact sequence of F-modules

0->Keri/>-> ID®D M -» M -» 0.

Let E Vi ® mi E Ker rp where yi E ID and m,i E M. If x E ID, then

x (X]yi ® mV = ̂ 2 xyi ® m' = x ® (XI 2/im,j = °-

Thus /F(Ken/>) = 0 and so Ker ^ is a noetherian left F//F-module. Since D/ID

is finite dimensional over fc, so is Ker rp. Both ends of the exact sequence above are

F-modules of finite length and so ID ®d M is of finite length as a F-module and

hence necessarily as an F-module.    □

3. The differential operator rings of curves. The results of this and the

following section were independently obtained by S. P. Smith and J. T. Stafford

[12] under the additional hypotheses that 72 is a domain and that fc is algebraically

closed.

The goal of this section is to prove the following theorem.

THEOREM (3.1). Let R be a reduced finitely generated commutative k-algebra

of Krull dimension < 1, where k is afield of characteristic zero. Then the following

hold.
(a) F(72) is a noetherian ring.

(b) dimfc HomD(fi)(M, M) < oo for all simple D(R)-modules M.

(c) l.K.dim D(R) = r.K.dim F(72) = K.dim R.

Let R be as in (3.1) and write R = A/B where A is a polynomial ring in

finitely many independent indeterminates and B is a radical ideal of A.  Letting
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Qy,Q2, ■ ■ ■, Qn denote the primes minimal over B, we have B = Qy D • • • f~l Qn.

Identify 72 with its image under the ring embedding 72 <-> Ry x • • ■ x 72„ where

Ri = A/Qi. Let Ki denote the quotient field of 72; and 72* the integral closure of

Ri in Ki. Since 72, is a finitely generated F,-module, it is also a finitely generated

fc-algebra. We also have a chain of inclusions

R E Ry x ■ ■ ■ x Rn ERy x ■ ■ ■ xRn E Ky x ■ ■ ■ x Kn.

Set R = Ry x ■ ■ ■ x Rn and K = KyX ■ ■ ■ x Kn. Consider the diagram of inclusions

J>{K)

E |

I 1
F F

1'

where

D = {dE D(K)[d((R)) C 72},    D = {dE D(K)\d((R)) C 72},

I = {dE D(K)\d((R)) C 72},    E = {dE D(K)[dI C /}.

Notice that / is a left ideal of D and F, and a right ideal of F. The idea of using

/ in this context resulted from a study of the examples calculated by I. M. Musson

[10].
We now present a series of lemmas showing that the hypotheses of (2.2) are

satisfied.

LEMMA (3.2).   The following hold.

(a) K is the total quotient ring of R and R, i.e., the quotient ring with respect

to the set of regular elements.

(b) D = D(R) and D S D(R).
(c) D(K) is a finite product of simple noetherian domains, and as such has a

(right = left) ring of fractions with respect to the set of all of its regular elements.

Denote this classical ring of quotients by Q. Then Q is also the classical quotient

ring of D, D, and E.

PROOF, (a) An element of R is regular if and only if its coordinates are all

nonzero if and only if it is invertible in K. We must show that every element of

K is of the form s~1r where s,r E R and s is regular. Let (fy/sy,.. .,rn/sn) E

K = Ky x ■ ■ ■ x Kn where ri,Si E A with s; £ Qi and ft,Si denote the images of

ri, Si in Ri. For each i, choose fiE A such that fi &Qi, but fi E Qj for all j ^ i.

Denote by r and s the elements of R induced by the polynomials ryfy H-\-rnfn

and syfy + • ■ ■ + snfn. As both Si and fi are not elements of Qi, it follows that

s = (syfy,..., snfn) ls a regular element of R. Finally,

s-xr = (l/si7i,-..,l/s„7rl)(iFi7i,---,':n7„) = (ry/sy,...,rn/sn)

as required. Notice that the regular elements of R are invertible in K and contain

the regular elements of R, so K is also the total quotient ring of R.

(b) Follows from (1.10).
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(c) From (1.12), it follows that D(K) = D(Ky) x • • • x D(Kn). Each D(Ki) is

a simple noetherian domain by (1.13). Since D(K) is a finite product of simple

noetherian domains, it has a classical (right = left) ring of quotients. From (1.8),

we know that D(K) is the ring of fractions of F with respect to the set T of regular

elements of R. It is easy to check that the regular elements of D are also regular

in D(K), and so invertible in Q. Let d E Q and write d = ab~l where a, b E D(K)

and b is regular. Because D(K) is a right ring of fractions for D with respect to T,

we may write a = xs-1 where x ED and s ET. Then writing bs = yt_1, where

y E D and t E T, yields

d = zs-1&-1 = z(6s)-1 = x(yr1)~1 = (xt)y~\

with xt,y E D and y regular in F. Thus Q is a classical right quotient ring of F.

Similarly, Q is also a classical left quotient ring for F.

We know that D(K) is the ring of fractions of D with respect to the set S of

regular elements of R. It is easy to see that D(K) is also the ring of fractions of

F with respect to S. The same argument as above shows that Q is the classical

quotient ring for both F and F.    □

LEMMA (3.3).   The following hold.

(a) D is a finite product of simple noetherian domains and

l.K.dim F = r.K.dim F = K.dim 72.

(b) dimfc Hornp(M,M) < cc for all simple D-modules M.

(c) / contains an element f E R which is regular in 72. (Notice that f is invertible

in D(K) and hence regular in D, D, and E.)

(d) DI = D. _
(e) The right D-module I is a finitely generated projective generator.

PROOF. We must make use of the fact that the normalization of an algebraic

variety of dim < 1 is smooth. The corresponding algebraic fact is that for a

normal (integrally closed in its quotient field) commutative noetherian domain, the

localizations at height one primes are regular local rings (see [1, Corollary (3.12),

p. 135]). Since K.dim Ri = K.dim 72, < 1, it follows that Ri is regular.

(a) From (1.12) and (3.2), we have that F 3 D(R) = D(Ry) x ■■■ x D(Rn).

From (1.15), each F(F,) is a simple noetherian domain having

K.dimD(Ri) = K.dim 72"; = K.dim Rt.

It follows that

l.K.dim F = r.K.dim D = K.dim R.

(b) From (1.15), we see that each D(Rt) satisfies the finite dimensional property

for simple modules. Hence D does also.

(c) Since Ri is a finitely generated /Vmodule, there is a nonzero ~§i E Ri such

that SiRi E Ri. As in the proof of (3.2), select fi E A such that fi £ Qi, but

fi E Qj for all j ^ i. The polynomial Syfy + ■ ■ ■ + snfn induces an element / of

R. It is easy to see that / = (syfy,...,snfn) is a regular element of R and that

/72" C R. Thus f El.
(d) As D is a product of simple rings, it follows that DI = D.
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(e) From (1.15), we have that gl.dim D(Ri) = 1. Thus F is a hereditary noethe-

rian ring and hence_/ is a projective finitely generated right ideal of F. It follows

from the equation DI = D that Ip is a generator.    □

LEMMA (3.4).   The following hold.

(a) E^EndD(I).

(b) F is a noetherian ring and (left = rt) K.dim(F) = K.dim(F).

(c) dim*; Horns(M,M) < oo for all simple E-modules M.

(d) E is a finite product of simple rings. Furthermore IE = E and E/I is a left

E-module of finite length.

(e) E is a finitely generated left D-module.

PROOF, (a) From (3.2), we know that Q is the classical ring of quotients for

D and so Q is an injective right F-module (see [13, p. 58]). It follows that if

(p E End/)(/), tnen there exists a q E Q with <p(x) = qx for every x E I. The

fact that / E I is invertible in Q allows us to conclude that q = (p(f)f~l (so that

q is uniquely determined by <p). It follows that End^Z) = {q E Q: qi C /}.

However, if q E Q and qi C /, then qf E I. Again, / is invertible in D(K), and so

qElf-lED(K).

(b) Because Ip is a finitely generated projective generator, we have that Endp(I)

is Morita equivalent to F. It follows that End^I), and hence F, is noetherian and

of the same Krull dimension as D.

(c) We need to explore the functors giving the equivalence between the module

categories of F and F. Using an argument as above, we find that EndE(I) = {d E

D(K): Id C /}. The set on the right contains F as / is a right ideal of D. Observe

that Hid QI, then Did C DL Using the fact that DI = D yields dE~Dd = Did C
DI = D. Thus End£;(/) = D. This tells us that the bimodule eIq is balanced,

and so (-) <g>£ I and Homs(/, F) ®e (—) give equivalences between the categories

of right and left F-modules with the right and left F-modules respectively (see [2,

p. 264]). Thus, if M is a simple right F-module, then M ®e / is a simple right

F-module, and the bijection Hom£(M, M) —► Homr)(M ®E I,M ®£ /) is easily

seen to be fc-linear. As the vector space on the right is finite dimensional, so is

the left. Thus E has the finite dimensional property for simple right modules and

similarly also for simple left modules.

(d) From (3.3), F is a finite product of simple rings. This is a Morita invariant

property, so F is also a finite product of simple rings. Since IE is an ideal of F

containing a regular element, it must equal F. Because K.dim(F) < 1, it follows

that E/I is of finite length.

(e) Since IE = E, there is a finite sum E^iS/i = 1 where Xi E I and yi E E.

Observing that

E = E(j2^yi) =^2Exiyi C^Iyi cY,Dyi C E,

we conclude that F is finitely generated as a left F-module.    □

PROOF OF THEOREM (3.1). Applying (2.2), we have that D(R) is a left

noetherian ring with the finite dimensional property for simple left modules. To

obtain the right-handed version, consider P = {d E D(K): d((R)) C 72}.  Using
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the regular element / E I, we get a diagram of inclusions

MK)
X     I

F* |

I I
F D*

I*

where /* = fP, D* = fDf-1 and E* = {d E D(K): I*d C /*}. Notice that P is

a right ideal of both F and F* and a left ideal of F . As 1 E P, we have that / E

fP = /*, and so /* contains a regular element of R. The ring F is isomorphic as a

fc-algebra to F, so it is a finite product of simple noetherian rings of Krull dimension

< 1 which satisfy the finite dimensional property for simple modules. As before, the

left F -module /* is a finitely generated projective generator and F* = Endp. (/*).

Thus E* will be Morita equivalent to F . Applying the symmetric version of (2.2)

gives us that F is a right noetherian ring with the finite dimensional property for

simple right modules. Thus parts (a) and (b) of (3.1) have been proved. For (c),

observe that D/ID ■—► Horns (F/7, E/I) is an embedding of fc-vector spaces, and

so D/ID is finite dimensional. It follows from [14, Corollary (2.4)], that

r.K.dim(D(R)) = r.K.dim(F) = r.K.dim(F) = K.dim R.

Similarly, D/DI* is finite dimensional and

l.K.dim(D(R)) = l.K.dim(F*) = l.K.dim(F*) = l.K.dim(F) = K.dim R.   □

4. The ideal structure of F of a curve. Throughout this section, R will be

a reduced finitely generated commutative fc-algebra of Krull dimension < 1, where

fc is a field of characteristic zero. We will continue to use the notation K, D, E, I

and Q from §3.

PROPOSITION (4.1).   Let M = I((R)).  Then the following hold.

(a) M is an ideal of R and contains a regular element of R.

(b) E = {dE D(K): d((M)) C M}.
(c) Set L = {dE D(K): d((R)) C M}. Then L is the smallest ideal of D which

is essential as a left or right ideal of D.

PROOF, (a) From the definition of /, we have that Af C 72. It follows from

RM = RI((R)) = I((R)) = M

that M is an ideal of R. From (3.3), / contains an element f E R which is regular

in R. As / = f((l)), we see that / E M.

(b) If d E E, then d((M)) = dI((R)) C I((R)) = M. Conversely, if d E D(K)
and d((M)) C M, then dI((R)) = d((M)) C Af. Thus di C / by virtue of the
definition of / and so d E E.

(c) Using that d((M)) E M for all d E D, it is easy to see that L is an ideal of

F and a left ideal of F. Notice that I EL. From (3.3), /, and hence L, contains an

element f E R which is regular as an element of F. Thus L is essential as both a

left and right ideal. From (3.2), we know that Q is the classical quotient ring of F
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and so Goldie's theorem asserts that a left or right ideal is essential if and only if it

contains a regular element. Thus an ideal J of F is essential as a left or right ideal

if and only if it contains a regular element. Recall that an element of F is regular

if and only if it is invertible in Q and hence also regular as an element of F. Let

J be an ideal of F containing a regular element of F. Then L J contains a regular

element of F, and so LJE is nonzero ideal of F containing a regular element of F.

From (3.4), E is a finite product of simple rings and so LJE = E. Thus

J D LJL = LJ(EL) = (LJE)L = EL = L.    □

PROPOSITION  (4.2).   The following are equivalent.

(a) D(R) is a product of simple rings.

(b) M = R.
(c) D(R) is Morita equivalent to D(R).

PROOF. From (3.2), F(72) = D and D(R) = D, so we may substitute F and

F into the statement of the proposition. If F is a product of simple rings, then

L = D. In particular 1 E L, and so 1((1)) = 1 E M. Thus (a) implies (b). If

M = R, it follows from (4.1) that D = E and so (b) implies (c). Being a finite

product of simple rings is a Morita invariant property, hence (c) implies (a), and

the proof is complete.    □

The isomorphism D(R) = D is given by extending operators as in (1.10), so we

see that d((Af)) C M for all d E D(R). Thus there is a fc-algebra homomorphism

rp: D(R) — Eomk(R/M,R/M) where tp(d)((r + M)) = d((r)) + M. It is easy

to check that lm(tp) C D(R/M) and that Ker(t/>) = {d E D(R): d((R)) C M}
corresponds to L under the isomorphism D(R) = F.

PROPOSITION (4.3). The homomorphism rp induces a k-algebra embedding

D(R)/Ker(rp) <—► D(R/M). The kernel of tp is the smallest ideal of D(R) which

is essential as a left or right ideal of D(R). The k-algebra D(R/M), and hence

D(R)/Ker (rp), is finite dimensional as a k-vector space.

PROOF. In view of the remarks above, we need only verify that D(R/M) is

finite dimensional. The ring R has Krull dimension < 1 and the ideal M contains

a regular element, so R/M is artinian. As R/M is a finitely generated fc-algebra, it

follows that R/M is finite dimensional. Therefore Komk(R/M,R/M), and hence

D(R/M), is finite dimensional.    □

Although /, and hence M, is often difficult to determine, we always have that

M contains the conductor C = {x E R: xRE R}. In fact C = I C\ D°(K), and so

^((1)) = C EM.lt follows that

dimkD(R)/Ker(rP) < (dimk R/M)2 < (dimk R/C)2.

In the case that R is a domain, K is the quotient field of R and D(K) is a

domain. Thus all nonzero ideals contain a regular element and D(R) has a unique

minimal nonzero ideal.

The following example shows that the embedding of (4.3) need not be an iso-

morphism.

EXAMPLE (4.4). Let k[x] be a polynomial ring in one indeterminate and let

R = k + kx(x- l)(x -2) + x2(x - l)2(x - 2) ■ k[x].
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Then D(R)/L is isomorphic to the ring of lower triangular matrices in M2(k).

PROOF. Using k(x) as the quotient field of R, it is easy to check that R = k[x].

The ring R is the coordinate ring of an affine curve which is unramified at its

singular point. It is shown in [8] that D(R) Q D(R). Thus using (1.10), we know

D(R) is isomorphic to

D = {d E D(k[x]): d((R)) C 72}.

Let d E D and use (1.3) to write

d = an(d/dx)n + an-y^/dx)"-1 + ■■■ + ay(d/dx) + a0

where ai E k[x] for all i. Notice that d((l)) = a0 E R.

Now assume n > 1. Observe that xn+2(x - l)n+2(x - 2)n E R and so

d((xn+2(x - l)n+2(x - 2)n)) = ann\xn+2(x - l)n+2 + (something in x2(x - 2)k[x])

is an element of x2k[x]f)R = x2(x-l)2(x-2)k[x]. It follows that an E (x-2)k[x].

If n > 1, the same argument using xn+2(x - l)n+2(x - 2)n~l shows that a„_i E

(x-2)fc[a;]. Continuing in this manner, we find that a; E (x — 2)k[x] for i = 1,... ,n.

For later use, note that

TV = (x - 2)k[x] n R = kx(x - l)(x -2)+x2(x- l)2(x - 2)k[x]

satisfies d((N)) C TV for all d E D.

Next we compute M. Let d E I = {d E D(k(x)): d((k[x])) C 72}. In particular,

d((R)) Q R- It follows from the claim above that

d = an(d/dx)n + an^y(d/dx)n-1 + ■■■ + ay(d/dx) + a0

where a, E k[x] for all i. Let C denote the conductor and observe that

C = x2(x-l)2(x-2)k[x].

From above, a^ E (x — 2)k[x] when i > 1. As d E I, we have that

d((x2(x - l)n+1)) = a0x2(x - l)n+1 + (something in (x - l)(x - 2)k[x])

is an element of R n (x - l)k[x] = TV. Thus a0 E 72 n (x - 2)k[x] = TV. Evaluating

d at x yields

d((x)) =ay+a0xERn(x- 2)k[x] = TV C x(x - l)(x - 2)k[x].

It follows that ay E x(x - l)(x - 2)fc[x]. Evaluating d at x2 now shows that a2 E

x(x-l)(x-2)k[x]. Continuing in this manner, we find that ai E x(x-l)(x-2)k[x]

for t = 0,1,...,n.

If n > 1, then

d((xn(x - l)n+1)) = ann\(x - l)n+1 + (something in x2(x - l)2k[x])

is an element of (x - l)2fc[i] C\ R = C. It follows that an E x2k[x]. Similarly,

a„ E (x - l)2fc[x]. Hence a„ E C, and so an(d/dx)n E I. Thus

d - an(d/dx)n = an^y(d/dx)n-1 + ■ ■ ■ + ay (d/dx) + a0

is also an element of /.   If n — 1 > 1, we may use the same argument to show
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that an-y E C. Continuing this process shows that a0 E I. From ao(x - 1) E

(x - l)2k[x] n R = C, we see that aQ E x2k[x] C\R = C. Thus a, 6 C for all i, and

hence M = C.

Next we consider the derivation

6 = (1 - 3x)x(x - l)(x - 2)(d/dx).

It is easy to see that 6((M)) C M. The equation

6((x(x - l)(x -2)))= 2x(x - l)(x - 2) + (12 - 9x)x2(x - l)2(x - 2)

shows that 6((x(x - l)(x - 2))) E 72. As 8((k)) = 0, we conclude that 6 E D.

Using 1 + Af and x(x - l)(x - 2) + M as a basis for the two dimensional vector

space R/M, we may identify Uomk(R/M,R/M) with Af2(fc) where

1 + M=(u    l)'    *(*-l)(*-2) + M=(j   °)     and   6 + M = (°Q   °).

These three operators generate the lower triangular matrices, and so the image

of D/L is either the lower triangular matrices or all of Af2(fc). The fact that

d((N)) C TV for all d E D implies that J = {d E D(k(x)): d((R)) C TV} is an ideal
of F. Notice that TV C J ^ D and N <£ L. Thus L C J and hence F/L is not a

simple ring. Therefore the image of D/L cannot be Af2(fc).    □

5. Some counterexamples. We continue to assume that fc is a field of char-

acteristic zero.

The hypotheses that R be reduced and of Krull dimension < 1 are both necessary

in Theorem (3.1).

J. N. Bernstein, I. M. Gelfand and S. I. Gelfand have shown in [3] that the

coordinate ring R of the normal cubic cone, i.e., the surface in complex 3-space

given by x3 + y3 + z3 = 0, has a differential operator ring which is neither left nor

right noetherian. Here

R = C[x,y,z]/(x3+y3 + z3)

and 72 = 72 is singular.

One might initially hope that the different operators on R would be noetherian

when R was nonsingular, but S. P. Smith and J. T. Stafford have a nice coun-

terexample in [12]. Namely, let R be the coordinate ring of a variety of dimension

> 2 which has only a finite number of singular points and whose normalization is

nonsingular. Then D(R) is right but not left noetherian.

Finally, we will compute an example which shows that D(R) need not be noethe-

rian when R is not reduced, but first we present some terminology and a lemma

which is useful for computations.

Let A = k[xy,x2,... ,xt] be a polynomial ring in t indeterminates. We will

say that the monomial Xy    'x™ xt       IS °i degree m(l) + ■ ■ ■ + m(t) and of

multidegree (m(l), m(2),..., m(t)). The ring A is graded by degree and multigraded

by multidegree. An ideal B of A that is generated by homogeneous elements (with

respect to degree) is called a homogeneous (or graded) ideal of A. It is well known

that an element of A is in B if and only if its homogeneous pieces are in B. We will

call the ideal C multihomogeneous if it is generated by multihomogeneous elements.
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It is easy to show that an element of A is in C if and only if its multihomogeneous

pieces are in C.

The ring F(A) is also both graded and multigraded. Set di = d/dxi. The

differential operator

m(l)   m(2) m(t) *n(l) r,n(2) ~n(t)
Xy X2 ••'Xf Oy <72 Ot

has degreem(l) + - ■ -+m(t)—n(l)-n(t) and multidegree (m(l)—n(l),... ,m(t) —

n(t)). If d E D(A), then d has unique decompositions into finite sums E^i an(i

E^t(i),t(2),...,t(t) where dj is a differential operator of degree i, and dj(i),t(2),...,»(t)

is a differential operator of multidegree (i(l), i(2),..., i(t)).

LEMMA (5.1). Let A = k[xy,x2,... ,xt] be a polynomial ring in t indetermi-

nates and let d E D(A).

(a) IfB is a homogeneous ideal of A, then d((B)) C B if and only ifdi((B)) C B

for all i.
(b) // C is a multihomogeneous ideal of A, then d((C)) E C if and only if

di(i),i{2).i{t)((C)) C C for all (i(l),i(2),..., i(t)).

PROOF, (a) As B is a homogeneous ideal, we have that d((B)) E B ii and only

if d((f)) E B for every homogeneous f E B. Let n denote the degree of /. Then

di((f)) is either zero or has degree n + i. It follows that d((f)) = E^«((/)) E B ii

and only if di((f)) E B for all i.
(b) Similar.    □

EXAMPLE (5.2) Let 72 = A/B where A = k[x, y] is a polynomial ring in two

indeterminates and B = (x2,xy) is the ideal of A generated by x2 and xy. Then

D(R) is right but not left noetherian.

PROOF. From (1.4),

F(72) = {dE D(A): d((B)) C B}/{d E D(A): d((A)) C B}.

It is easy to see that

{d E D(A): d((A)) EB} = B- D(A) = (x2,xy)D(A).

We must find all d E D(A) with d((B)) C B. As B is bihomogeneous, we may use

the lemma above to assume that d has bidegree (n,m). Below is a representation

of the ideal B. The ideal B is given as the fc-vector space spanned by the shaded

monomials.

y3   :§.*V?JS**.y^.:•:•:•:?!3y3.::>
....... ■•.;.;.; • • • • • • •;.;.;.; •   • • • ■ ..

y   '■■/. x y •# x y $> * y*M

y  i§x y £:§• x^y W* x3y $i

1 x     ill x.?.x:::x:xx.3. •:■:•::::
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The effect of d is to map a given monomial to a scalar times the monomial which

is n places to the right and m places up. If this location is off the diagram, i.e.,

below or to the left, then the scalar is automatically zero. The operator d will map

B into B precisely when all of the monomials in the shaded area are sent either back

into the shaded area or to zero. In other words, d must vanish on any monomials

in the shaded region which get mapped into the nonshaded region.

We now consider all of the possible cases for (n,m).

Case 1 (n > 1). Monomials are mapped to the right n > 1 places and then either

up or down according to m. Thus d((B)) C B for any such d.

Case 2 (n = 0, m > 0). Monomials are mapped up m > 0 places. Thus

d((B)) C B for any such d.

Case 3 (n = 0, m = — q < 0). As the only monomial in B mapped to the

nonshaded region is xyq, we have that d((B)) E B ii and only if d((xyq)) = 0.

Subtracting off elements of B ■ D(A), we are left with a linear combination of

x(d/dx)(d/dy)q and {yl(dj'dy)q+l: i > 0}. Observing that yl(d/dy)q+i vanishes

on xyq for all i > 1, it is left to determine if a linear combination of the form

ax(d/dx)(d/dy)q + 0(d/dy)q vanishes on xyq, where a,0 E fc. Setting the value

of this operator at xyq equal to zero results in the equation q\(a + 0)x = 0, from

which it follows that a = -0. Hence d is in the span of (x(d/dx) — l)(d/dy)q and

{yl(d/dy)q+':i>l}.

Case 4 (n = — p < 0, m > 1). Modulo B ■ D(A), we have that d is in the span of

{ym+l (d / dx)p (d / dy)1: i > 0} and must vanish on the monomials xp, xpy, xpy2,_

The resulting equations show that any such d is zero.

Case 5 (n = —p < 0, m = — q < 0). Modulo B ■ D(A), we have that d is in the

span of x(d/dx)p+l (d/dy)q and {yl(d/dx)p(d/dy)q+l: i > 0}, and must vanish on

the monomials xp+1yq and xpyq,xpyq+1 ,xpyq+2,_The resulting equations show

that any such d is zero.

Combining the results from these five cases yields

{d E D(A): d((B)) EB} = (x2,xy)D(k[x, y]) + xk[d/dy] + yD(k[y])

+ (x(d/dx)-l)k[d/dy] + k.

Using the following computations, it is easy to check that the vector spaces

k(x(d/dy)p + B ■ D(A)), for p > 0, are actually left ideals of F(72). It follows that

D(R) is not left noetherian.

xk[d/dy]x(d/dy)p C x2k[d/dy](d/dy)p C x2D(k[x,y]).

yD(k[y])x(d/dy)p C xyD(k[y])(d/dy)p C xyD(k[x,y]).

(x(d/dx) - l)k[d/dy]x(d/dy)p C (x(d/dx) - l)xk[d/dy](d/dy)p C x2D(k[x,y]).

To see that D(R) is right noetherian, we will show that D(R) is generated as a

right module over the image of the subring fc + yD(k[y]) by the cosets 1 + B ■ D(A),

(x(d/dx)-1 )(d/dy) + B-D(A), and x(d/dy) + B-D(A). That these three elements

generate all of D(R) can be seen from the equations

x(d/dy)yD(k[y]) = (xy(d/dy) + x)D(k[y])

and
(x(d/dx) - l)(d/dy)yD(k[y])

= (x(d/dx) - l)(y(d/dy) + l)D(k[y])

= (xy(d/dx)(d/dy) - y(d/dy) + (x(d/dx) - l))D(k[y]).
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That the ring fc + yD(k[y]) is right noetherian follows from the symmetric version

of (2.2) with F = D(k[y]) and F = fc + yD(k[y]). We conclude that D(R) is

noetherian as a right fc + yD(k[y])-module and hence as a right F(F)-module.    □
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