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STRONG HOMOLOGY IS NOT ADDITIVE

S. MARDESlC AND A. V. PRASOLOV

ABSTRACT. Using the continuum hypothesis (CH) we show that strong ho-

mology groups HP(X) do not satisfy Milnor's additivity axiom. Moreover,

CH implies that strong homology does not have compact supports and that

HP(X) need not vanish for p < 0.

1. Introduction. Generalizing classical Steenrod homology (see [18]) Ju. T.

Lisica and S. MardeSic [5-10] have defined strong homology groups HP(X,A;G),

p > 0, for arbitrary pairs of spaces (X,A). These groups have many desirable prop-

erties. In particular, they satisfy all the Eilenberg-Steenrod axioms on pairs (X, A),

where X is paracompact and A is closed [10]. They are invariants of strong shape

[10] and vanish if p exceeds the shape dimension sdAT [15]. Moreover, under very

general assumptions, strong homology groups satisfy the relative homeomorphism

axiom and the wedge axiom [20] and, therefore, for metric compacta coincide with

Steenrod homology groups. For spaces having the homotopy type of C W complexes

strong homology groups coincide with singular groups [10].

Following J. Milnor [18], we say that a homology theory H* is additive provided

for every family of topological spaces (Xa ,a E A) the natural inclusions iQ : Xa —►

UaeAXa of Xa into the topological sum UXa induce an isomorphism of groups

(1) rP:  ^Hp(Xa)^Hp(]}xA,        pEZ.
a€A \a€A        )

If Ht is a homology theory and X is an arbitrary space one can consider the

direct system (Hp(K),iKic-), where K ranges over all compact subsets of X and

iKK' '■ K —+ K' are the inclusion maps, K C K'. We say that //« has compact

supports if the inclusions K —► X induce an isomorphism

(2) Hcp(X)=colim(Hp(K),iKK,.)^Hp(X),        p E Z.

In this paper we consider the following questions.

QUESTION 1. Is strong homology additive?

QUESTION 2. Does strong homology (of locally compact finite-dimensional

spaces) have compact supports?
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We construct simple examples for which we show, using the continuum hypoth-

esis (CH), that both questions have negative answers.

Since we will be using Z. R. Miminoshvili's version of strong homology [19]

(which agrees with [5-10] for p > 0 but allows groups Hp with negative p), the

following question naturally arises also.

QUESTION 3. Is HP(X; G) = 0 for p < 0?

This question too is answered in the negative, using CH.

We gratefully acknowledge help received from Petr Simon of Charles University

in Prague, who showed us how to settle a set-theoretic question to which we reduced

our problems (see Theorem 2).

2. The examples. Main results. Let fc > 0 be an integer and let Y^ be

a countably infinite compact bouquet of copies of the fc-sphere Sk (fc-dimensional

Hawaiian earring),

oo

(i) y<fc> = \J sk.

j=0

Let X^ be the topological sum of a countable infinite collection of copies of
y(fc)j

OO

(2) X^ = ]Jy(*).
%=o

Note that X^ is a fc-dimensional locally compact separable metric space.

In §6 we will compute the strong homology groups Hp of Y^ and X^ (in-

teger coefficients 2) for all p and fc. In this computation a certain pro-Abelian

group A plays an essential role. It is defined as follows. Let N = {0,1,...}

be the set of all nonnegative integers and let NN be the set of all sequences

n = (n(0),n(l),... ,n(i),...), n(i) E N. We order NN coordinatewise, i.e., we

put n < m provided n(i) < m(i) for every i E N. Clearly, NN is a directed ordered

set. For every n E NN we put

oo   n(i)

(3) >*n = ®®Z,
i=0 j=0

and we take for pnm: Am —► An, n < m, the natural projection.

Computation of strong homology groups (integer coefficients), performed in §6,

includes the following results.

PROPOSITION  1.   For p > 0,

(4) 77p(y(p+1>) = o.

Proposition 2. Forp>0,

(5) Hp(X^+1^) = lim1A

where lim1 A denotes the first derived limit of A.

PROPOSITION 3.

(6) F_1(xW) = lim1A.
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Proposition 1 shows that

oo

(7) ®77p(y("+1>) = 0.
t=0

Moreover, since finite additivity is an easy consequence of the Eilenberg-Steenrod

axioms, we also conclude that

(8) Hp (]Jy(p+1) J =0,       fceN, p>0.

Therefore, for strong homology with compact supports we have

(9) 77P(x(p+1>) = o.

We see, by (4), (7), (9) and (6), that there exist examples answering Questions

1-3 in the negative, provided one can answer affirmatively the next question.

QUESTION 4. Is lim1 A ^ 0?

We will now state an equivalent set-theoretic question.

Let U, V be arbitrary subsets of TV x TV and let /: U —> 2, g: V —* Z be arbitrary

functions. We say that / and g almost coincide, and we write f = g, whenever the

set

(10) {(i,j)EUnV:f(i,j)?g(i,j)}

is finite.

QUESTION 5. Let (/„, n E Nn) be a collection of functions fn: Un—> 2, where

(11) Un = {(i,j) €NxN:0<i< n(i)}.

If /„ = fm for any pair n, m E NN, does there exist a function /: N x N —> Z such

that f = fn for every n E NN?

In §8 we will prove the following theorem.

THEOREM 1.  lim1 A = 0 if and only if Question 5 has an affirmative answer.

In §9 we will give a proof (following P. Simon) of the following result.

THEOREM 2. The continuum hypothesis (CH) implies a negative answer to

Question 5.  Therefore, (CH) implies lim1 A ^ 0.

Hence, Propositions 1-3 and Theorems 1 and 2 establish our main result.

THEOREM 3. Assuming the continuum hypothesis, Questions 1, 2 and 3 have

negative answers.

REMARK (added in the revised version). After this paper was submitted for

publication A. Dow, P. Simon and J. Vaughan showed that the proper forcing

axiom implies a positive answer to Question 5, and thus implies lim1 A = 0. This

means that the question whether the strong homology group HP(XP+1) of the space

Xp+1, p > 0, vanishes or not is undecidable in set theory based on the ZFC-axioms.

A paper of these authors entitled Strong homology and the proper forcing axiom is

in preparation (verbal communication from J. Vaughan).
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3. Strong homology of inverse systems. In order to define strong homology

of spaces, we need strong homology H (C) of inverse systems of chain complexes

C = (C\,p\\i,A) over preordered sets (A, <). We will also need higher derived

limits lim™ C of pro-Abelian groups C. Both concepts can be defined using the

notion of a cosimplicial replacement R'C [1, 2], where C is an inverse system in

the category C = Ch of chain complexes or the category C = Ab of Abelian groups.

F'C is a cosimplicial chain complex (Abelian group) defined by

(1) RmC=      J]      CXo,        m = 0,l,....

Ao<---<Am

To define the coface operators 6P: Rm~1C —> RmC, i = 0,1,... , m, it suffices to

define the compositions 7rA<5p, where A = (Ao < ■ • ■ < Am) and irx is the natural

projection of FmC to the corresponding factor. If i > 0, we put

(2) 7rx6l=7rXl,

where Aj is obtained from A by deleting A,. If i = 0, we put

(3) rrxS0 =p\a\,iTXo.

The codegeneracy operators a%: Rm+1C —> RmC, i = 0,1,..., m (which we will

not need), are defined by defining ttxo-1. For every i we put irxa% = rrXi, where A* is

obtained from A by repeating A,. The usual conditions on coface and codegeneracy

operators are readily verified.

In the case of pro-Abelian groups, we can make F'C into a cochain complex by

defining the coboundary operator 6: Rm~1C —► FmC by

m

(4) 0 = £(-l)W.
t=0

It is known [1, 3] that the cohomology of this cochain complex yields the derived

limits of C,

(5) Hm(R-C)^limmC.

In the case of inverse systems of chain complexes we can make F'C into a

bicomplex by putting

(6) Rpq(C) = Rp(C-q) =     J]     (c*o)-,.        P>0-
A0<-<*p

For p < 0 we put Rpq(C) = 0.

Beside the differential 6 from (4) we also have the differential d from the chain

complexes C\.

With the bicomplex (Rpq(C),6,d) we associate the cochain complex K(C) de-

fined by

(7) Kn(c)= n tfp,(c)<     neZ;
p+q=n

the differential d: K„(C) —> Kn+1(C) is given by

(8) (~l)p(dx)x = d(xx) - (Sx)x,        A = (Ao,..., Ap), A0 < ■ • ■ < Ap.
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Note that the total complex K = K(C) is defined using direct products and not

direct sums (which is more often the case).

By definition, strong homology of C is the cohomology of (K, d) = (K(C),d),

(9) Hn(C) = H~n(K),        neZ.

If X = (Xx,pxx>,A) is an inverse system of spaces and G is an Abelian group,

we associate with it the inverse system of singular chain complexes

SX = (S(Xx),pxy#,A)

and the inverse system

SX ® G = (S(XX) ® G,Pxx,# ® 1, A).

Then the strong homology group Hn (X; G) with coefficients in G is defined as the

strong group of the inverse system of chain complexes SX ® G.

REMARK 1. This definition coincides with the definition from [7] if n > 0. For

n < 0 one had in [7] Cn = Cn (X; G) = 0 and therefore //„ (X, G) = 0. If one wants

to obtain for n = 0 the same groups as in [19], one must modify the definitions

in [7] by introducing a nontrivial group C-y = C_ i (X; G) as the image of the

boundary operator d: Kq —* Ky.

REMARK 2. This section as well as the next one can be easily generalized by

replacing inverse systems C by functors F: / —► C from a small category / to the

category Ch or Ab.

4. The Miminoshvili exact sequences. The computation of strong homol-

ogy groups is usually not an easy task.   In some cases it can be performed by

computing s-stage strong homology groups Hn (C), introduced by Ju. T. Lisica

[4] and Z. R. Miminoshvili [19]. To define these groups one considers the quotient

complexes K^(C) of K = K(C), s>0, where

(i)       k^(o= n Rpq(c)=n n (^ow
p+q=n p<$ Ao<- -<AP

P<8

Then

(2) H^(C) = H-n(K^(C)),

(3) H{:](C)=lm(JZs+1),

where the homomorphisms j*'a+1 ■ Hna+ (C) —► //„ (C) are induced by the nat-

ural projections 7f(s+1)(C) —► K^(C). Clearly, these homomorphisms induce

homomorphisms £"1,B: ff^fC) -* H(ns~1](C).

REMARK 3. For s = 0 the group Hn  (C) is isomorphic to lim//n(C), where

(4) Hn(C) = (Hn(Cx),px^,k).

The desired isomorphism Hn (C) —> lim//n(C) is obtained as follows. An arbi-

trary element u of Hn (C) is the j^-image of an element of //„ (C), which is

given by a cocycle x of K_n(C). This cocycle consists of chains xXo E (CXo)n and
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xXoXl E (CXo)n+i, Ao < Ai, such that dxXo = 0, dxXoXl = pXoXlxXl - xXo. There-

fore, the homology class [xXo] E Hn(CXo) is defined and pXoXl*[xXl] — [x\0], which

shows that ([za0]), ^o € A, is an element of Iim7/„(C). We assign this element to

u (for more details see [15]).
_is\ _

The s-stage strong groups Hn   and the strong groups Hn are connected by exact

sequences, announced by Z. R. Miminoshvili [19]. We state these sequences in the

following two theorems.

THEOREM 4.   For every integer n there exists an exact sequence

(5)

0 - hm1 Hn+1(C) -+ //^(C) - /7i0)(C) - lim2Hn+1(C)

• • ■ - lim* Hn+i(C) - 7/iS2s+1(C) -» H^'UC) - lims+1 Hn+1(C) - • • • .

THEOREM 5.   For every integer n there exists an exact sequence

(6) 0 - lim1 Hnsly(C) -» 77n(C) -► limF(s)(C) -♦ 0.

/n (6) lim and lim1 are applied to the towers (Hm (C) <— //m (C) ♦—■••)> w^ere

m = n and n+ 1 respectively.

The referee has informed the authors that a different proof of Theorems 4 and

5 as well as of Corollaries 1 and 2 will appear in [17].

For any inverse system of chain complexes C and s > 0 we define subcomplexes

(7) r's»(C) = Ker(/fW(C) -♦ K^-^(C))

and groups

(8) Dst(C) = Hs+t(Kis\C)),

(9) Fst(C) = //s+t(r(s)(C)).

Clearly,

(10) rW(C)=        [J       (CA0)S-n

Ao<-<A.

and the differential of the complex r("'(C) is given by Y\(-l)sd. Therefore,

(11) Est=     n     H.t(CXo).

Consider the short exact sequence of cochain complexes

(12) o -»r<a>(c) -* /s:(s)(C) -»^'-^(C) -»o

with obvious morphisms. The corresponding long exact sequence of cohomology

groups can be interpreted as an exact couple of bigraded Abelian groups.

F —*— F

(13) fc^     Jj

E
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where Dst and Est are given by (8) and (9) respectively and i, j and fc have

bidegrees (-1,1), (1,0) and (0,0).

We now consider the derived couple

F' —1—> D'

<"> ,\    //

F'

of the exact couple (13) (see [11]). Then D' = iD, E' = Ker(jk)/lm(jk), i' = i\D',
fc' is induced by fc and j' is induced by ji~x■ The bidegree of i' is (-1,1), of fc' is

(0,0) and of/ is (2,-1). Moreover,

(15) Dst = lm(Ds+1't~1 ^Fs,t)

= Im(//is+V(C) - //ilt(C)) = H{l\_t(0,

(16) E'st = limsH-t(C).

In order to obtain (16) first note that

'E9t = ker(Est % Fs+1'*)/Im(Fs-1't ^ Est).

If we show that jk: E8t —► Fs+1,t coincides (up to sign) with 6 (see §3(4)),

6:       n     H.t(CXo)^       fl       H-t(Cx0),
Ao<---<A3 Ao<---<Aa-|-i

(16) will follow from the definition of lims.

(11) shows that the domain and codomain of the two maps coincide. An element

of Est is a cohomology class [x] E Hs+t(T^(C)), where x E T^(C) E K^(C)

is given by xXo...Xi, 0 < i < s, and xXo = ■ ■ ■ = xao-a,-! = 0, dx = 0.

Consequently, (Sx)Xo...Xs = 0, so that dx = 0 implies d(xXo...Xs) = 0. Now

fc[a;] = [a;] E Hs+t(K^(C)). Since j is the boundary homomorphism of the ho-

mology sequence, jk[x] = [dy] E Hs+t+1(Kis+1\C)), where y E /f(s+1)(C) and

j/Ao-A; = xx0-xi, 0 < i < s. Clearly, (dy)Xo...x, = 0 for 0 < i < s. Moreover,

(Sy)x0- .A,+ 1 = (6x)Xo...Xs+1. Therefore,

(-l)9[dy]Xo...Xs+1 = [(<5x)a0...as+1]

as desired.

We obtain from (14) the long exact sequence

r> _  r\l—l, — n _   jpll, — n — l _    r)/l, —n —1 _    r\lO,—n

(17)
v     ' t      _   T?is,—n — l _   j-\/s,—n — l _   j-\/s—l,—n _   ipts+l,—n—1 _

Using (15) and (16) we see that (17) coincides with (5).

In order to prove Theorem 5, we use this well-known fact (see, e.g. [16, Theorem

A.19]).
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LEMMA 1. Let C = (Cm,pmm+i) be a tower of epimorphisms between cochain

complexes and let C = limC.  Then there is an exact sequence

(18) 0^1im1Fn-1(C)^Fn(C)-+limF"(C)^0,        n 6 2.

Note that the short exact sequence of cochain complexes

(19) o - c - n cs ̂  n cs-+ o
s>0 s>0

induces a long cohomology sequence

(20) ■ • • -> Jl Hn~l(Cs) -p f[ Hn~l(C3) - Hn(C)
s>0 s>0

-^ YlH^Cs)1^? l[Hn(Cs) -+ ■ ■ ■ .
s>0 s>0

The sequence (18) is readily obtained from (20), because lim is the kernel of 1 -p

and lim1 is the cokernel of 1 - p.

Application of Lemma 1 to the tower

K(0)(C) <- K(s)(C) 4- K{s+1)(C) <-

yields the exact sequence

(21) 0^1im1F^1(C)^:r7n(C)^lim//W(C)^0,        nSZ.

It remains to show that (21) implies (6). However, this is an immediate conse-
_is\

quence of the definition of Hn   and the following lemma [1, Chapter IX, Proposition

2.2].

LEMMA 2. Let G = (Go ♦— Gy «—•■•) be a tower of Abelian groups and let

pG = (pi(Gi) *— p2(G2) <— ■■■). Then the homomorphisms pm induce isomor-

phisms

(22) lim G a limpG,        lim1 G » lim1 pG.

To prove Lemma 2, consider the cochain complexes

(23) M = (0 - M° = n Gm -" M1 = JJ Gm - 0),
m>0 m>0

(24) jV = (0^7V°= npG,,,1^^^ I]pCm-0),
m>l m>l

where (1 -p)(i0,a:i,...) = (xQ -py(xy),xy - p2(x2),...). Clearly,

(25) H°M = lim G,        HlM = lim1 G,

(26) H°N = limpG,        //J/V = lim1 pG.

Therefore, it suffices to show that the cochain mapping M —► N induced by pm

is a cochain homotopy equivalence. This is indeed the case because the inclusions

Pm(Gm) —> Gm_i induce the homotopy inverse cochain mapping TV —► M (with

cochain homotopies given by the identity maps M1 —► M° and N1 —* TV0).

Theorems 4 and 5 imply the following corollaries, used in §6.
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COROLLARY 1.   Let 1 < so < «i be such that for a given integer p one has

(27) lim* HP+S(C) = 0,        so<s<sy,t>0.

Then the homomorphisms jlp~lyt yield isomorphisms

(28) H{;°-1\c)K---KHi;)(C)K---nHpai)(C)

for Sq < S < Sy .

PROOF. (27) implies limsHp+a(C) = 0, lims+1 HP+S(C) = 0 for s0 < s < sy.

Therefore, by (5), the homomorphisms jp~x's, so < s < sy, yield the isomorphisms

(28).

COROLLARY 2.   Let so > 1 be such that for a given integer p one has

(29) lim* HP+S(C) =0,        so<s,t>0.

Then the homomorphisms j9-1'3 and jp induce isomorphisms

(30) H{ps°-1)(C)^---^H<ps)(C)^---^Hp(C),        s0<s.

PROOF. By Corollary 1, in the tower (Hp0)(C) <- Hp1](C) <-••■) the projec-

tions jp    '   are isomorphisms for so — 1 < s. Therefore,

(31) limffj,a)(C) « HPS)(C),        sQ - 1 < 1.

Similarly, since also lims Hp+s+y (C) = lims+1 Z/p+a+i(C) = 0, So < s, in the

tower (Hp+1(C) <— 7/p+1(C) <—•••) the projections jp+1'   are isomorphisms for

s > so- Therefore, the tower is Mittag-Leffler and

(32) lim1/7isi(C) = 0

(see [3] or [14]).

Now (6) implies

(33) limHps)(C)^Hp(C).

(33) and (31) yield (30).

5. Strong homology of spaces. ANR-resolutions. Following [5, 10] we

define strong homology of spaces using ANR-resolutions [12]. An ANR-resolution

of a space X consists of an inverse system X = (Xx,pXfi,A) of ANRs (for metric

spaces) and a system p = (pa) of maps px: X —> Xx, A € A, such that pXfip,i = px,

for A < p. Moreover, p must satisfy certain approximate factorization conditions

(RI), (R2) (see [12] or [14]). Instead of stating these conditions we state here two

equivalent conditions (see [12, 14]):

(BI) For every normal covering U of X there is a A E A and a covering Vx of Xa

such that p^CVa) refines U.

(B2) For every A E A and open set V E Xx, which contains pa(X), there is a

p > A such that

(1) PXp(X^) C V.
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It was proved in [6 and 8] that for any two cofinite ANR-resolutions p: I-»X,

p': X —► X' of a space X there is a natural isomorphism FP(X; G) —* //P(X'; G).

Therefore, the strong homology group HP(X;G) of the space X was defined as

77P(X;G), where p: X —► X was any cofinite ANR-resolution. It was shown in

[13] that in this definition one can also use ANR-resolutions which are not cofinite.

We will now consider ANR-resolutions of topological sums of spaces. Let

(Xa,a E A) be a collection of spaces and let X = UaeAXa. For each a E A

let

pQ = (Pa*): X*-> Xa = (X^PaVA*)

be an ANR-resolution. Let A = riae.4 ^a t>e ordered by the product ordering <.

That is, if A = (A(a)), p = (p(ct)) E A, we put A < p if and only if A(a) < p(a)

for every a E A.   For A = (X(a)) E A let Xa = lIa€j(Xwtt,.   Furthermore, let

Pxp. ■ Xp -» Xa, A < p, and px: X -* Xx, A, p E A, be given by

PA/i|-X£(Q) = Px(a)p.(a) : X%(a) ~* ^A(q)' Pa|XQ = P°(a) ■ Xa —> X"(Q).

Clearly, X = (Xx,pXfi,A) is an inverse system of ANRs and p = (pa): X —> X

satisfies the condition pXlMPfi = px, for A < p.

THEOREM 6. // each pa: Xa —> Xa is an ANR-resolution, then p: X —► X is

also an ANR-resolution.

PROOF. We must verify conditions (BI) and (B2).

(BI) Let U be a normal covering of X = UaeAXa. Since Ua = U\Xa is a

normal covering of XQ, there is a A(a) E Aa and a covering Vwav of X"^ such

that (pS'(a))-1(VA,(Q)) refines Ua. We now put A = (A(a)) E A and VA = \Ja V^,a).

Clearly, Va is a covering of Xa = 111"-, and P^^Va) refines U.

(B2) Let A = (A(a)) E A and let V C Xa be an open set which contains

(2) p7w = UPAW*a)-

Then, for every a E A, Va = V n !".> contains Pwa)(XQ) and, therefore, there

is a p(a) > X(a) such that

(3) P?(a)M(a)(^(a))CVQ, a € A.

Consequently, p = (p(a)) € A, p > A and

(4) pam(xm) c y.

REMARK 4. If A and A" are infinite, A is not cofinite. In particular, this is the

case when A = N and AQ = TV for each a E TV.

6. Strong homology of the spaces Y^ and X^K The aim of this section

is to determine the strong homology groups (integer coefficients) of the spaces Y^

and X<fc> defined in §2.

THEOREM 7.   Ifk>0, then

' 0, P#0,fc,

(i) ffp(y<*>)«j rUNz,   P = k,
2, p = 0.
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—    <M     (o, P + o,

(21 '^"lW   » = »-
Theorem 8. // fc > 0, </ien

0, P > fc,

_       ,,,            lim A, P — k,

l3> «,<*w>~   lim*-,A, p</t,p#0,

. limfcA©(©teiVZ),    p = 0;

' 0, p > 0,

(4) 77P(X(0))« i   lim A,        p = 0,

linTpA,    p<0.

PROOF OF THEOREM 7. Let y„(fc) be the wedge of n + 1 copies of the fc-spheres

n

(5) y W = V Sfc,        n > 0.

3 = 0

Let pm„: y„ —► Yjn , m < n, and pm: Y^ —► Y"m be the natural projections.

Then Y'fc' = (y„ ,pmn) is an inverse sequence of compact fc-dimensional ANRs

and PmnPn = Pm, m < n. Clearly, p = (pm): Y^ —► Y'*' is an inverse limit and

since we are dealing with compact spaces, p is an ANR-resolution [14]. Therefore,

//p(y(fc)) (integer coefficients) equals HP(Y^) and the Cech homology group

HP(YW) = limHp(Yik)) = /7p0)(Y(fc))

(see Remark 3).

Notice that for fc > 0

0, P#0,fc,

(6) Hp(yW)=\   e;=0Z,    p = k,

1; P   =   0.

For fc = 0 we have

Clearly, pmn*: Fp(V"n ) —» Hp(Ym ') is the natural projection. Therefore, we find

for the Cech homology groups, for fc > 0,

'0, Pr^0,fc,

(8) 7/p(y(fc>)«|   FUnZ,    P = k,

2, p = 0.

(9) 7/(y(°})«|0' p^0'
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Since (Hp(Yq ') <— Hp(Yy )«—•••) is a tower with epimorphic projections, we

conclude that condition (29) of §4 is satisfied for all p and s > 0. Therefore, by

Corollary 2 to Theorem 5,

(10) HP(Y^)^HP(Y^),

and the groups Hp(Y^kS>) are given by (8) and (9) as claimed.

REMARK 5. Strong homology groups of Y^ can also be determined using [18].

PROOF OF THEOREM 8. Let us denote the copies of Y^l in X^ by Yi

(omitting fc), i E N, and the copies of Sk in Yx by S1. Using for Y% the same

resolutions

pln = (pm):Y>^Y* = (Yn:,pmn)

as in the proof of Theorem 7, and applying Theorem 6, we obtain an ANR-resolution

p = (pa): X<fc) -» XW = (X{ak),pab,A) for X«. Here A = NN is the set of all

functions a: N —► N, where a < b if and only if a(i) < b(i) for all i E N.

(ii) 4fc) = IIH0,

Pa6: X^fc) -» Xak\ a<b,is UieNPa(j)6W and pa: X^ -» xifc) is HieNp^(i).

By (6) and (7), for fc > 0,

0, P#0,fc,

(12) 77P(XW)=|   ©ieN©^Z, p = k,

,  ©ieNZ, p = 0,

and for fc = 0,

(13)        Hp{xi°)] = 1 (eJ£Nz) © meN©;« z), p = o!

This menas that for fc > 0 the pro-group HP(X.^) is given by

'0, P^0,fc,

(14) Hp(X^)=l  A, p = k,

,  ®i£nZ. P = 0,

and for fc = 0 by

where A is the pro-group described in §2.

We will first prove (3) for fc > 0.   If p > fc, then, by (14), //P+S(XW) = 0

for s > 1 and therefore, by Corollary 2, Hp(X^) = Hp0)(X^) = limHp(X^).

Consequently, (14) implies
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Now assume that p < fc. Then HP+S(X^) = Ofors>fc-p+l>l. Therefore,

by Corollary 2,

(17) FP(XW) m7/pfc"p)(xW),        p < fc.

Moreover, by (14), Hn(X^) = 0, forn < fc, n ^ 0, and /70(X(fc>) is the constant

pro-group ©ieN Z. Therefore,

(18) lirn'/7p+s(xW) = 0,    for s < k - p - 1,* > 0.

By Corollary 1, for p + 1 < fc, we have

(19) Hpk-p-1)(XW)~Hp0)(xM) = {°m P*_°;

For p + 1 = fc, (19) is obvious.

Now consider the exact sequence §4(5) of Theorem 4, for n = fc — 1. Putting

s = k — p and using (17) and (19), one concludes that

(20) /7p(X(fc)) = limfc-pA,        p<fc,p# 0,-1.

For p = 0, —1, §4(5) yields the exact sequence

(21) 0 -♦ lim* A -» 770(XW) £ ® Z - limfc+1 A - ff.^X'*') -> 0.

However, tp is an epimorphism because the homomorphism rp from §1(1) is a

right inverse of tp, i.e. tprp is the identity on ©ieN Z. Therefore, (21) yields a split

exact sequence

(22) 0^1imfcA^770(XW)^®Z->0

and the exact sequence

(23) 0 - lim*+1 A -» H_y(XW) -» 0.

(22) and (23) imply (3) in the cases p = 0, -1.
Now consider the case fc = 0. Clearly, for every p and s > — p or s < — p and for

t > 0 we have

(24) limtHp+s(XW)=0,

because HP+S(X^) = 0. Applying again Corollaries 1 and 2 we obtain

(25) FTp(X(°))«//W(X(°))=0,        p>0;

(26) Hp(xM)*Hp-ri(XM),       p<0;

(27) i?<-p-1)(X(0)) = <>(X(°>) =0,        p < 0.

The exact sequence §4(5) for n = — 1 now yields

(28) /7p(X<0>) = lim-p(A).
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7. Additivity of Cech homology groups.

THEOREM 9.   Cech homology groups are additive.

This is asserted in [16]. However, in the literature we could not find a proof, so

we give one here.

Let (Xa,a € A) be a collection of spaces and let X = Ua€AXa be their topo-

logical sum. We must show that the inclusions ia: Xa —> X induce isomorphisms

(1) *'.: ®//P(X»)^//pnjX"),

determined by i?: Hp(Xa) -» HP(X).

LEMMA 3.   i* is a monomorphism.

PROOF. We first consider the case of two summands X = X1 HX2. We choose

points a1 E X1, a2 E X2. Let r1: X -» X1 be defined by

(2) r^X^id,

(3) r1\X2=a1.

Analogously we define r2: X —► X2. Note that r1!1 = id and therefore r\i\ = id,

which shows that i\ is a monomorphism. Similarly, i2 is a monomorphism.

If u= (ul,u2) EHp(Xl)@Hp(X2) is such that i»(u) =0, i.e.,i\(u1)+il(u2) =

0, then r\i\(ul) + r\il(u2) = 0. If p ^ 0, rii2(u2) = 0 = Hp({a1}) and we see that

w1 = 0. Analogously, u2 = 0 so that u = 0.

If p = 0, r\i2(u2) is of the form — jlg\[al], where j1: {a1} —> X1 is the inclusion,

g1 E G and [a1] is the class of /^({a1}), determined by the point a1. In this case

u1 =£g1[a1]. Similarly, u2 = j2g2[a2]. Since {a1,a2} is a retract of X = XXHX2,

the inclusion j: {a1,a2} —> X induces a monomorphism H0({a1,a2}) —> H0(X).

Note that

0 = ii(V) + il(u2) = iljtfla1} + i2j?g2[a2]

( ) =].(kWW] + klg2[a2]),

where fc1: {a1} —► {a1 ,a2},k2: {a2} —> {a1,a2} are inclusions. Consequently,

(5) fc191[a1] + fc292[a2]=0.

Now, it suffices to conclude that (^[a1] = g2[a2] = 0, because this will imply

u1 = u2 = 0. However, this assertion follows from the fact that Lemma 3 holds for

the sum {a1,a2} = {a1}]! {a2}.

The proof for finitely many summands is obtained by induction. In the general

case we first need to observe that every element u of ©aGy4 Hp(Xa) is contained

in a finite sum ©"=1 Hp(Xa) and that i'» restricted to this sum factors through

Hp(U2=yXa). However, the inclusion H"=1XQ —► Uae^Xa induces a monomor-

phism on Hp.

REMARK 6. Lemma 3 also applies to strong homology because its proof uses

only functoriality of the homology groups and the fact that for polyhedra (one-

point and two-point sets) these groups agree with singular homology groups and

therefore are additive.
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PROOF OF THEOREM 9. It remains to prove that i* is an epimorphism. Let

pa = (Px>): Xa -» Xa be an ANR-resolution of Xa, a E A, and let p = (px): X ->

X be the ANR-resolution defined in §5 (see Theorem 6). Since

Hp (Xa) = lim Hp (Xa)    and    Hp (X) = lim HP(X),

we must prove that the homomorphism

(5) i»:  ®lim//p(XQ)^lim//p(X)

a€A

is an epimorphism.

An arbitrary element v of lim//p(X) is given by a collection (vx), A E A, A =

FLeA A°' wnere wa E HP(XX) and

(6) Pxli(vli)=vx,        A < p.

We must find a finite set {aty,... ,an} C A and elements va' E limHp(Xa'),

j = 1,... ,n, such that

(7) iai(vai) + --- + ia"(va") = v.

Let xa be a singular p-cycle of Xa = HXwqn, which belongs to the class vX-

There are uniquely determined p-cycles x" of Xw , such that

(8) ZA=£*A-

a€A

Moreover, for a given A € A there are only finitely many a € A for which x" ^ 0.

Put

(9) B = {a E A: 3X E A,0 / [x$] E Hp(Xax{a))}.

We will show that B is a finite set.

We first prove that whenever for some A, A' € A and for a given oG^we have

A(q) = A'(q), then

(10) [«?] = [«?']•

Indeed, one can choose p E A, p > A, A'. Then, by (6),

(11) PXp.[xp] = [xx],

(12) pvMM = [*v],

which implies

(13) Px(a),(a)K] = lxaxl

(14) Pj'(a)M(«)[«S] = [*?']■

Since A(a) = A'(a), the left-hand sides of (13) and (14) coincide.

Now choose for every a E B some Aa E A such that [xf ] / 0. Define A E A so

that

(15) A(a) = AQ(a),        a E B;

for a E A \ B, X(a) E Aa is arbitrary. Applying (10) to A and AQ we see that

(16) [*S] = K1*0,        aEB,

because A (a) = AQ(a).
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Now (16) implies x" / 0 for a E B. However, we already observed that for an

arbitrary A 6 A the set of all a E A, for which x" ^ 0, is finite. Therefore, B must

be finite.

Let B = {ay,... ,an}. For any j E {l,...,n} we will now define v*3 E

limHp(Xa3) so that (7) holds. For any A., E A"3 we define (va3)X] as [x"3'] E

HP(X^3), where A € A is such that X(aj) = Xj. By (10), (vai)Xj does not depend

on the particular choice of A but only on aj and Xj. If Xj < A'-, one can assume

that A < A'. Then, by (12), [xx] = Paa'[xA'] and therefore

(17) («0')a,=P&jK')aJ-

This shows that ((va')Xj) 6 lim//p(Xa').

Notice that for every A € A and j E {1,..., n} we have

(18) («?'(«"■'))* = («"')>(«,) = (va')x3 = \xl'\.

By (18), (8) and the definition of B, we see that

(19) (£tQ>(«a>)]    -El^HEKH    E*a   =\xx] = vx,
\j=l J >        ol€B aeA LaeA

so that (7) holds.
REMARK 7. Applying Theorem 10 to X<fc> = IIi€Ny(fc), we see (by §6(16)) that

limA = ©t€Nnj6NZ-

8. Proof of Theorem 1. Along with the pro-group A (defined in §2) we will

consider here also a pro-group B defined as follows. B = (Bn,qmn,NN), where

n(i)

(i) Bn=n n z
i£Nj=0

and qmn : Bn —► Bm, m < n, are the natural projections. We will need the following

lemma.

Lemma 4.

f 0, p / 0,
(2) limp B = J.   „ , „

; 1 n(„)GNxNZ,  P=0.

PROOF. By the explicit description of limp (see (3(1))), we know that limpB is

the pth cohomology group of the cochain complex F'B, where

n0(i)

(3) fpb = n nn1

Clearly, (3) can also be written as

(4) RpB=UUcp(i,j),

where

(5) cp(i,j)= n z.
r»o<---<np

0<3<n0(i)
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The coboundary operator 6 in 7?'B induces a coboundary operator in C'(i,j) mak-

ing C'(i,j) into a cochain complex such that R'B is a product of the complexes

C'(i,j), (i,j) E N x N. Since Hp commutes with products, we see that

(6) limpB = 7/p(/rB)=      Yl      Hp(C-(i,j)).
(ij)eNxN

To determine Hp(C'(i,j)), consider the set T(i,j) C NN of all n e NN such that

0 < j < n(i). Let Z(i,j) be the constant pro-group Z indexed by T(i,j). Then

(7) R-(Z(i,j)) = C-(i,j),

so that

(8) limp Z(i,j) = Hp(R-(Z(i,j))) = Hp(C-(i,j)).

Since Z(i,j) is a constant inverse system we conclude (by [3, Theorem 1.8]) that

(9) BrfKi.jD-15   "^
[2,    p = 0.

Now, (6), (8) and (9) yield the desired formula (2).

We now prove Theorem 1. First note that A C B, i.e., An C Bn is a subgroup

for every n E NN and qmn[An = pmn, m < n. Let B/A = (F„/A„,rm„,NN),

where rmn is the induced homomorphism. Clearly,

(10) 0^A-.B^ B/A -* 0

is a short exact sequence of inverse systems of Abelian groups. Therefore, we have

a long exact sequence

(11) 0 — lim A -» lim B -► lim B/A -> lim1 A -»lim1 B -+

Since lim1 B = 0 (Lemma 4), we see that lim1 A = 0 if and only if lim B —> lim B/A
is a surjection.

Also by (2), we see that limB is the set of all functions /: N x N —> Z. For

n E NN let Un = {(i,j) E N x N: 0 < j < n(i)}. Elements of Bn/An are classes

of functions /„: Un —> 2, where /„, f'n: Un —* 2 are in the same class [/„] = [f„]

whenever /„ - f'n E An, i.e., /„ and f'n almost coincide. Therefore, elements of

lim B/A can be interpreted as families ([/«]) of classes of functions /„: Un —* 2,

n E NN, such that fm = fn for m < n. It is now clear that limB —► lim B/A is a

surjection if and only if the answer to Question 5 is affirmative.

9. Proof of Theorem 2.  We first prove a simple lemma.

LEMMA 5. Let nk, fc E N, be a sequence of functions nk: N —► N. Then there

exists a function n: N —* N such that for every k E N the set

(1) {i'eN: nk(i)>n(i)}

is finite, i.e., nk is almost < n.
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PROOF. Put n(i) = max{n°(i),...,n,(i)} + 1. Fix an element fc E N. For

i > fc we have n(i) > 1 + nk(i) > nk(i). Therefore, the set (1) is contained in

{0,l,...,fc-l}.

LEMMA 6.   Let (ma), 0 < a < wi, be an uy-sequence of elements from NN.

Then there exists an ojy-sequence (na), 0 < a < a;i, of elements from NN such that

(i) each na: N —► N (strictly) increases;

(ii) for 0 < a the set {i E N: n0(i) > na(i)} is finite;

(iii) for each 0 < a < ujy the set {i € N: ma(i) > na(i)} is finite.

PROOF. We define the functions na by transfinite induction. We take for n°

any increasing function with n°(i) > m°(i) for every 1 E N.

Let a < ojy and assume that we have already defined n& for /? < a so that (i)-(iii)

are fulfilled. We define na as follows. First note that {n@: 0 < 0 < a} is a countable

collection of functions N —► N. By Lemma 5, there is a function n: N —► N such

that the sets {i E N: m0(i) > n(i)} and {1 E N: n0(i) > n(i)} are finite for every

0 < 0 < a. We choose for na any increasing function na > max(n,mQ).

LEMMA 7. Let (na: 0 < a < cjy) be elements ofNN satisfying (i) and (ii) of

Lemma 6 and let ga: N x N —► Z, 0 < a < wy, be a collection of functions. Then

there exist functions fa: Un<* —* 2, 0 < a < uy, such that fp = fa for any /3 < a

and fa ^ ga for each 0 < a < ojy.

PROOF. We define the functions fa by transfinite induction. We choose for /o

any function Uno —► Z which differs from go at infinitely many points (i,j) E Uo-

Assume that we have already defined f@ for 0 < /? < a in agreement with the

requirements. In defining fa we distinguish two cases.

Case 1. a = 0+1. By (ii) in Lemma 6, the set {i E N: n^(i) < na(i)} is infinite.

Therefore, Una \ Une is infinite. Put

,„s t r   \      I //»(*'J')' (i,j)EUn0,
(2) fa(t,j) = <      ,.  ..,,      ..  ..     ..    , ,r

[9a(i,j) + i,    (i,j) E Un« \UnB.

Clearly, fa £ ga and fa = fp> for all /?' < /?.
Case 2. a has no immediate predecessor. Then one can find a sequence 0y <

02 < ■ ■ ■ < a with lim/3n = a. We define (by induction on i) an increasing

sequence of integers fci < • • • < fci < • • • with the property that the following sets

are contained in the segment [0, ki]:

(3) {fc€N: n03(k) >n0,(k)},        j<l<i,

(4) {fceN: nA(fc) >na(k)},

(5) {fc € N: 3j,l < i,3(k,m) E Un,} nUn„„f0.(k,m) ^ f0l(k,m)}.

The construction of this sequence is possible because, by properties (i) and (ii)

from Lemma 6 and by the induction hypothesis, (3)-(5) is a finite collection of

finite subsets of N.

We now define fa(k,l), for fc2 < fc < fc,+i, by

' f0,-i(k,l),        forO^/^rc^-'Ofc),

(6) fa(k,l) = I f0,(k,l), forn/?-'(fc)</<n/3'(fc),

,ga(k,l) + l,      iorn0i(k)<l<na(k).
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For each i E {0,1,2,... } the set

(7) {(k,l) EUne, nUn«: fa(k,l) ? f0i(k,l)}

is contained in the set [0, fci] x [0, na(kx)] and is therefore finite.   Consequently,

fa — fffi ■ On the other hand, the set

(8) {(k,l)EUn«:fa(k,l)?ga(k,l)}

contains infinitely many points of the form (k,n0i(k) + 1), where fci < fc < fcj+i

and therefore, fa ^ ga as desired. This concludes the proof of Lemma 7.

In order to prove Theorem 2 we now assume the continuum hypothesis Ni = 2^°.

Therefore, there is a bijection a t—> ma between the set of ordinals {a: 0 < a < uiy}

and the set NN. Similarly there is a bijection a *-* ga between the same set of

ordinals and the set of all functions N x N —> Z. By Lemma 6, we choose an

wi-sequence (na), 0 < a < uy, satisfying conditions (i)-(iii). Let (fa) be the ojy-

sequence of functions fa: Un* —► Z from Lemma 7. Finally, for each 0 < a < uy

we define a function ha: Um<* —* 2 by

(7) h {k ])=( fa(k,l),    (k,l)EUn*nUm°,

\ 0, otherwise.

It is now clear that ha = hp and ha ^ ga for arbitrary 0 < a, 0 < ujy.

This completes the proof of Theorem 2.
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