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PRODUCTS OF INVOLUTION CLASSES
IN INFINITE SYMMETRIC GROUPS

GADI MORAN

ABSTRACT. Let A be an infinite set. Denote by Sa the group of all permuta-

tions of A, and let 72, denote the class of involutions of A moving \A\ elements

and fixing i elements (0 < i < \A\). The products RiRj were determined in

[Ml]. In this article we treat the products Rjl • ■ • Ri„ for n > 3. Let INF

denote the set of permutations in Sa moving infinitely many elements. We

show:

(1) Ru •••#,•„ = SA forn>4.
(2)(a) RiRjRk = INF if {i,j,k} contains two integers of different parity;

(b) RiRjRk = Sa if» + j + k > 0 and all integers in {i, j, k} have the same

parity.

(3) Rq = Sa \ E, where 9 € E iff 9 satisfies one of the following three

conditions:

(i) 9 moves precisely three elements.

(ii) 9 moves precisely five elements.

(iii) 9 moves precisely seven elements and has order 12.

These results were announced in 1973 in [MO]. (1) and part of (2)(a) were

generalized recently by Droste [Dl, D2].

0. Introduction. Let Sa denote the symmetric group of all permutations of a

set A. Elements of A are referred to as "symbols". In 1972 Bertram [B] showed

that if A is countably infinite and C is any conjugacy class (coc) in 5,4 whose

members move infinitely many symbols, then C4 = Sa- He conjectured that,

moreover, for such a coc C, C3 — Sa- In the same year, in the course of proving

the nonbireflectionality of the automorphism groups of some infinite trees [M4], we

were led to the study of products of involution classes in Sa and found it possible

to give a description of the product of any two such classes [Ml], of any power

of an involution class [M2, M3], and, for infinite A, of any product of involution

classes [MO]. For 0 < i < \A\, let Ri = Ri(A) denote the set of permutations <p of

A satisfying <p2 = 1, fixing i symbols and, if A is infinite, moving \A\ symbols. A

class of particular significance is Ro, the class of fixed-point-free-involutions, which

turned out to be a counterexample to Bertram's conjecture ([MO, Ml], and, later

but independently, [DG]).

Our familiarity with products of cocs in the symmetric groups was significantly

advanced during the 13 years since Bertram's conjecture and its counterexample

(see [B, Bo, Dl, D2, Dv, M5] where further reference is available). Recently,

Droste [D2] combined the available data and proved the remarkable result that
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Ro — Ro(A) is in fact the only class in Sa violating Bertram's conjecture, as he

had earlier suspected [Dl].

While proofs of some of the "Bar Mitsva" (13 years old) results announced in

[MO] have been published [Ml, M2] and some have been significantly generalized

(see, e.g., [Dl, D2]), others are still without published proof. Among these is the

actual value of Rq. It is high time for this gap to be filled, and this is the main

objective of the present paper. Let us start by reviewing the content of [MO].

Assume in the sequel that A is an infinite set. In [MO] we announced three

theorems, which we denote here by TI, T2, and T3.

TI deals with the products of two factors RiRj in Sa- These products are

determined in detail (for finite and infinite A) in [Ml, Theorem 2.1]. TI is then

restated and proved as Corollary 2.5. (Theorem 2.1 in [Ml] simplifies to Theorem

2.6 when A is finite.)

T2 gives the precise value of products of three factors RiRjRk other than Rq, and

is restated as (2) in the abstract. Among its immediate corollaries is RiRjRkRi =

Sa for all 0 < i,j,k,l < \A\, stated as (1) in the abstract. (Indeed, for any coc D

and any coc C C INF we have (D ■ C) n INF ^ 0; hence D C C ■ INF. Thus, (1)

follows from (2) (and (3)).)

The part uRiRjRk 2 INF" of T2 was significantly generalized by Droste, who

showed that in fact C1C2C3 3 INF holds for any three classes in Sa moving \A\

elements [Dl, Theorem 2]. It readily follows that C1C2C3C4 = Sa whenever Ci

are classes moving |j4| elements [Dl, Corollary 5.1], which extends (1). See [D2]

for other extensions of consequences of (2).

A complete proof of T2 is given in §3, where the part RiRjRk 5 INF is derived

from a theorem of independent interest: Let |^1| = No- Then INF = RkC for

0 < k < No, where C is the class of permutations having Ho infinite orbits and no

finite orbit (Theorem 3.2). In fact, Droste showed [Dl, Lemma 4.9] that INF C DC
for any coc D C INF (Proposition 3.8). We mention in passing that C was the first

class shown to satisfy C2 — Sa by A. B. Gray in his thesis in 1960 [G], and that C

is the only class of permutations with infinite orbits only that satisfies C C RiRj

for all 0 < i,j < N0 [Ml, Corollary 2.3(1)]. See [D3] for a simple proof of Gray's

result and other properties of C.

T3 determines the value of Rq, and is restated as (3) in the abstract.1 As a

complete argument for it is a central goal of this paper, we first restate it in more

detail. Consider the following four conditions on a permutation 0 in Sa'-

(3*): 0 moves precisely three symbols.

(5*): 0 moves precisely five symbols, on which it acts as a 5-cycle.

(2* + 3*): 0 moves precisely five symbols, on which it acts as a product of two

disjoint cycles, one of length 2 and one of length 3.

(3* + 4*): 0 moves precisely seven symbols, on which it acts as a product of two

disjoint cycles, one of length 3 and one of length 4.

Call 0 £ Sa exceptional if it satisfies one of these conditions, and let E = E(A)

denote the set of all exceptional permutations Sa-

'In [MO, Theorem 3], read "£ of order 12" instead of "$12 = 1".
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T3—or (3) of our abstract—is restated as

THEOREM 0.   Let A be infinite, and let 0 £ Sa-  The following are equivalent:

(l)0<Mo3-
(2) 0 £ E; i.e., 0 satisfies one of the conditions (3*), (5*), (2* +3*), (3* +4*).

§§1 and 2 are devoted to the proof of Theorem 0. (2) =► (1) is proved in §1, and

(1) => (2) is proved in §2. The condition that A is infinite is essential in Theorem

0, and Rq for finite A will be discussed elsewhere. We mention that while obviously

(2) => (1) holds for finite A, (1) => (2) fails there, and there are many examples of

finite A's and nonexceptional 0's in Sa which are not a product of three fixed-point-

free involutions. However, by Theorem 0 and the discussion preceding Proposition

1.2 in §1, for every such A and 0 there is a set A' D A oi cardinality at most 2\A\

such that the trivial extension 0' of 0 to A' (0'(a') = a' for a' £ A' \ A) is in fact a

product of three fixed-point-free involutions of A'.

In §4 we discuss briefly products of involution classes in Sa other than the R^s

and suggest (as problems) natural sequel to this work. We also provide four tables

which complete the proof of (2) => (1), in Theorem 0, given in §1.

1. No exceptional permutation is in R^. This section is devoted to the

proof of the implication (2) => (1) in Theorem 0. We first develop some notation.

Let 0 £ Sa, a £ A. Then 0(a) denotes the value of 6 at a (so (0<p)(a) =

0(ip(a)); i.e., right acts first on a symbol), and (a)e is the 0-orbit of a; that is

(a)e = {0m(a): m £l}, where Z = {0, +1, -1, +2, -2,... } is the set of integers.

For 1 < n < H0 let 0(n) denote the cardinality of the set of 0-orbits of cardinality

n. 0 is called nicely even if 0(n) is an even cardinal for all 1 < n < No (where

infinite cardinals are considered even). Let NE=NE(A) denote the set of all nicely

even permutations in Sa ■ The following two propositions hold for A of arbitrary

cardinality.

PROPOSITION 1.0 [Ml].  i?^=NE.

Let M(0) = {a £ A: 0(a) ^ a} denote the support of 0, and let m(0) = \M(0)\

denote its cardinality.

PROPOSITION 1.1 [Ml, LEMMA A.3, p. 76]. Let <p,ip e SA, 6 — <pip- The

smallest subset B of A containing M(0) which is both <p- and ijj-invariant is

B=     IJ    (a)v=     1J    (a)„.
aeM(0) aeM{$)

Assume that 0 £ Rfi and M(0) contains m symbols. By Proposition 1.0 0 = <pip,

where <p £ NE(A), ip € Ro(A). Let B be the smallest set containing M(0) which

is both <p- and V-invariant. Since |(a)^,| = 2 for all a € A, we have |S| < 2m, by

Proposition 1.1. Let £c denote the restriction of £ £ Sa to a subset C of A. Since

B is both <p- and ^-invariant, we have <pb,^b,0b € Sb, 0b = Vb^b', and with

B' = A\B, <Pb',iPb',0B' £ Sb1, 0b> — <PB'ipB'- But 0b> is the identity map of B',

so <pB> = ^b', <Pb>(2) = V>s'(2), <PB'(n) = ^B'M = 0 for n ^ 2 by tp £ Rq(A).
Since <p £ NE, we conclude that pB(n) = ^e(n) + ^B'(n) = p(n) is an even

cardinal for n ^ 2 (but ^s(2) can be odd).

Assume now that |A| = N0, 0 £ Sa, and for some coinfinite B, M(0) Q B C A,

we have 0B = <Pb^>b, where Vs G Ro(B) and pB(n) is even for n ^ 2.   Let
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B' = A\ B (so |.B'| = N0) and let <pB'  = ipB' € Sb1 be any fixed-point-free

involution. Then if <p, tp £ Sa are defined by their restrictions <Pb,<Pb'', ipB, i>B' we

have <p £ NE(A) (for "£>(2) is even" we need "|A \ B\ = N0") and ip G i*b(ji), so
0 = tptp implies 0 £ Rq(A).

We have proved

PROPOSITION 1.2.   Let A be infinite, 0 £ SA, andletm(0) = \M(0)\ = m < N0.
Then the following are equivalent:

(i) 0 £ Rfi (where Rq = R0(A)).
(ii) There is a set B containing M(0), \B\ < 2m, and tp,ip £ Sb such that

0Btp = tp, ip £ Rq(B), and p(n) is an even integer for n ^ 2.

Let now A be infinite, let 0 £ Sa be an exceptional permutation, and let m —

m(0). Then m < 7, and by Proposition 1.2 0 £ Rq follows once we can verify

that for no set B D A of cardinality at most 2m < 14 containing M(0), we have

0B = (pip for some <p,tp £ Sb, tp £ Ro(B), and^(n) even for n ^ 2. Thus, (2) => (1)

of Theorem 0 follows from

PROPOSITION 1.3. Let \B\ < 14, let 0 £ SB be exceptional, and let ip £ SB be

a fixed-point-free involution in Sb ■ Then tp = 0tp satisfies: tp(n) is odd for some

n^2.

The proof of Proposition 1.3 involves the evaluation of finitely many products

of an exceptional permutation by a fixed-point-free involution, and is readily done,

e.g., by a graphical method introduced in [M2], explained in §2. The outcome of

this computation, stated in the notation developed in §2, is given in §4 in Tables

1-4, whose content establishes Proposition 1.3.

2. Every nonexceptional permutation is in R^. This section is devoted to

the proof of the implication (1) => (2) in Theorem 0. We shall actually prove that

(1) => (2) when 0 moves only finitely many symbols. If 0 moves infinitely many

symbols, i.e., 0 6 INF, then 0 £ Rq follows from (2) (a) in the abstract, which is

proved in §3. Our goal then is to prove

THEOREM 2.0. Let A be an infinite set, and let 0 £ Sa move finitely many

symbols. If 0 £ R$ then 0 £ E.

Our proof makes use of [M2] and requires some more notation. Let N =

{1,2,...} denote the set of positive integers, N+ = N U {N0} and N0 = N U {0}.

A type is a cardinal valued function defined on N+. We shall use small letters

r,s,t,... to denote types, and boldface small letters r, s, t,... to denote sets of

types. The zero type o is defined by o(n) = 0, n £ N+, and for each n £ N+, n*

is the type defined by n*(m) — 8nm, m £ N+. The sum £}t€/ ti of a set of types

{ti: i £ 1} and the product k ■ t (or briefly, kt) of a type t by a cardinal number k

are defined naturally by

(]>> ) W = X>(")),     (kt)(n) = k(t(n))        (n€N+).
VtG/     / i€I

Thus, for any type t we have

t = ^2 *(n)  n*-
n€N+
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We note that the types with the addition as a binary operation and multiplication

by a cardinal number form a semimodule over the semiring of cardinal numbers in

a natural way.

For 0 £ Sa, the type 0 defined on N+ in §1 by 0(n) = cardinality of the set of

0-orbits of cardinality n is called the type of 0, and 0 is called a t-permutation if

0 = t. Since 0,0' £ Sa are conjugate if and only if 0 = 0 , types serve as convenient

"names" for classes in the symmetric groups, and we proceed to use them to produce

convenient notation for class invariants. For a type t let

\t\ =   y^ nt(n)    (cardinality of the domain),

m(t) =    Y^    nt(n)    (cardinality of the support).

Kn6N+

\t\ is also called the cardinality of t, and t is called finite if |i| < No- t is called

finitary if m(t) < No-

Define a three-place relation P(r,s,t) on types as follows [M5]:

P(r, s, t) iff there is a set A and £, n, c £ Sa such that f = r, 7j = s, f = t and

£ = m (equivalent^, &<; = 1A).

Thus, P(r, s, t) implies |r| = |s| = |i|. The most useful properties of P are [M5,

Lemma 1]:

SYMMETRY: P(ti,t2,tz) if and only if P(U,tj,tk) whenever {i,j,k} = {1,2,3},

SUPERADDITIVITY: P(ri,Si, tt) for all i £ I implies

\iel        i€l        i€l     )

HOMOGENEITY: P(r,s,t) implies P(kr,ks,kt) for every cardinal number A;.

We now use P to model the product of conjugacy classes in symmetric groups

and, more generally, the products of conjugacy sets (subsets of Sa closed under

conjugacy in Sa) in the realm of types.

DEFINITION 2.0. Let s, t be sets of types. Define a set of types s © t called the

composition of s and t by

r £ s 01    iff   P(r, s, t) holds for some s € s, t £t.

When no confusion may arise, it will be convenient to use the same symbol for

a type and the singleton containing it. Thus, if s, t are types we have

sQt = {s}Q{t}.

The nth power tn of a set of types t is defined inductively by t1 = t, tn+1 =

tn©t.

If * is a type, we let tn = {t}n.

The class of sets of types forms a commutative semigroup with the composition

operator 0.

The addition of types extends naturally to sets of types by

u + v — {u + v: u £u,v £\}.
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Similarly, the product of a type by a cardinal number (scalar multiplication)

extends naturally to sets of types by

k ■ u = {ku: u £ u}.

The class of sets of types with addition + and scalar multiplication again forms a

semimodule over the semiring of cardinal numbers, which carry also the semigroup

operation of composition 0. We shall use the following convention in forming

expressions (terms) in this structure:

1. A type t may always stand for the singleton {t}.

2. Priorities of operations in expressions involving •, 0, + is in this order, unless

indicated otherwise by bracketing.

Thus, for example,

2 • H0 0 N0 ■ {3*, 1* + 2*} + V = ((2 ■ %) 0 {N0 • 3*, N0 ■ 1* + N0 • 2*}) + V.

A most useful observation is

u0» + «'0ti'C (u + u') © (v + v'),

and, more generally,

^ ut O ut C I ̂ 2 ut J 0 I ̂  v% J .
te/ Vie/    /       \t€/    /

For n £ N+ let n® = N0 ■ n*. For a set of permutations X, let X = {£: £ £ X).

Thus, if \A\ = N0, then R0 = {2®} = 2® (by our convention that allows a type

to stand for its singleton). We now define for 0 < i < No a type r,, so that r% = Ri,

by
T% =t-l*+N0-2* =z-l*+2®.

By Proposition 1.0 we have

r\ = {t: \t\ = N0,«(n) is even for all n £ N+}

and

r3Q = r2Qro = l4 = {0:0£Ri}.

We note that by r0 £ r%, 1® £ r$ (i.e., the identity permutation 1^ of a countable

set A is a product of three fixed-point-free involutions), and so in Theorem 2.0 we

may, with no loss of generality, assume that A is countable. Thus, Theorem 2.0 is

equivalent to

THEOREM 2.1. Let \t\ = N0, m(t) < N0, t <£ rg. Then t £ 1® + {3*,5*,2* +

3*,3*+4*}.

Our next goal is to formulate a theorem on finite types, implying Theorem 2.1.

First define some sets of finite types as follows.

ro = {k ■ 2*: k £ No}    (set of finite fixed-point-free involution types),

ne = To    (set of finite NE types),

roo = ne U (ne + 2*)    (set of finite types £satisfying:£(n) is even for n ^ 2),

rooo = roo 0 ro-
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We have [M2, Lemma 1, p. 5]

(i) r0 C r0o C r0oo-

(ii) each of ro, roo, rooo is additively closed.

We now restate Proposition 1.2 as

PROPOSITION 2.2. Lett = 1® + t0, where \t0\ = m(t) = m < N0. Then t £ r$

if and only ifto + k-l*£ rooo for some k <m.

Thus, Theorem 2.1 (hence Theorem 2.0) follows from

THEOREM 2.3.   Let \t\ < No, t(l) = 0.  The following are equivalent:

(a) For all k £ No, k ■ 1* +t £ r0ooi

(b) «e{3*,5*,2* + 3*,3*+4*}.

PROOF OF THEOREM 2.3. (b) =>• (a). Indeed, otherwise we have some t £

{3*, 5*, 2* + 3*,3* + 4*} and some k £ N0 satisfying k ■ 1* + t £ r0oo, and so by

Proposition 2.2, m ■ 1* +1 £ r0ooi for some m < 7, contradicting Proposition 1.3.

The rest of this section is devoted to the proof of (a) => (b). The argument for

(a) =► (b) splits into five steps, the first three of which are essentially reproduced

from [M2]. We first give

OUTLINE OF PROOF OF  (a) =*• (b).

First. Define a large additively closed subset p of r0oo and a set of finite types

called residua.

Second. Recall that every finite type t admits a representation t = to + h where

to £ p and t\ is a residuum.

Third. Describe a graphical method of establishing t £ rooo-

Assume now that |£| < N0, t(l) = 0 and for all k £ N0   t + k ■ 1* ̂  r0oo-

Fourth. Let t = to + *i, where to £ p and ii is a residuum. Then ti = 3* or

h =5*.
Fifth. If h = 3* then t0 £ {o, 2*, 4*}. If h = 5* then t0 = o.

Obviously, this establishes (a) =>• (b).

Let us turn to the details.

Define three families of finite types fj, i = 1,2,3, as follows:

t £ fi     iff    t = 2 ■ n* for some n £ N.

t£t2    iff   t = (2n)* for some n £ N0.

*€f3    iff   t= (l+2k)* + (7 + 2/)* for some fc,/GN0.

Let p denote the additive closure of f = fi U f2 U f3; that is,

t £p    iff    t is a finite sum of members of f.

(p is the class of types of the "proper permutations" in the terminology of [M2];

see [M2, Definition 4.5, p. 15].)

Notice that o £ p and that |i| is even for every t £ p, as this holds for any t £ f.

This follows also from

PROPOSITION 2.4 [M2, PROPOSITION 4.6].  p C r00o-

We call a finite type t a residuum iff t = to + *i, <o £ P => to = o. This definition

immediately gives the following.



752 GADI MORAN

PROPOSITION 2.5. Lett be any finite type. Then t = to + ti, where to £ p and

t\ is a residuum.

Notice that this representation is not unique. Indeed, if t = 1* + 3* + 5* + 7*,

then t — t0 +1\ = t'o +1\ are two distinct such representations, with to = 5* + 7*,

h = V+ 3*, t'0 = 3* + 7*, t\ = 1* + 5*.
By inspecting the family f one easily sees

PROPOSITION 2.6. Let t be a residuum. Then t satisfies one of the following

three conditions:

(0) t = o.

(1) t = (2n + 1)* for some n £ N0.

(2) * £ {1* + 3*, 1* + 5*,3* + 5*, 1* + 3* + 5*}.

(See [M2, Definition 4.7 and Lemma 4.8, p. 16].)

Our argument in the sequel requires the verification of claims "i £ r0oo" for

various types. We will use the graphical method introduced in the appendix of

[M2] which we reproduce here for the reader's convenience.

; f
3        4 17 8
f—"f-1*       H-f il2

V A Y    >9
1—-4-U    k-* i£--« \'   w
5        2 6      10 9 3   S -^^ 5 11 10

•r' N»

(a) (b)

FIGURE 0

(a) Displays 9 = <prp, where

0=(1)(2,3)(4,5,6)(7,8,9,1O)

p=(3,5)(l,4,2,6)(7,10,9,8)

V-=(l,6)(2,5)(3,4)(7,9)(8,10).

Hence, P(l* + 2* + 3* +4*,2* + 2 ■ 4*,5 • 2*), and so 1* + 2* + 3* + 4* 6 (2* + 2 • 4*) 0 5 ■ 2* C

roo 0 ro = rooo-

(b) Displays tp = 9ip, where

<p = (1,2,3,4,5,6)(7,8,9,10,11,12)

0=(1)(3)(5)(7)(2,4,6)(8,11,1O,9,12)

ip = (1,6) (2,3) (4,5) (7,12) (8,10) (9,11).

Hence, P(2-6*,41*+3'+5*,6-2*), and so (by symmetry of P), 4-1* +3* +5* € 2-6* ©6-2* C

roo 0 ro = rooo-

Let (bea finite type. To show t £ rooo; one has to produce permutations ip,ip

of a set of cardinality \t\ with ~<p £ r0o and tp £ r0 such that 0 = tpip satisfies

0 — t. We denote a £>-orbit of length k greater than 2 as the set of vertices of

a fc-gon in the plane, whose sides, oriented positively (counterclockwise), describe
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the action of tp on the vertices. <p-orbits of cardinality 2 are described as the

endpoints of a line segment, and fixed points of <p as isolated points. We describe

the action of ip (who has only orbits of cardinality 2) by disjointed dashed segments,

connecting pairs of points. The action of 0 is obtained by following ^-action first,

then tp-action. To verify that indeed t £ r0oo, mark in order points as the 0-action

dictates. The disjoint-cycle decomposition obtained for 0 should indicate that 0 = t.

(See Figure 0(a).) Equivalently, one can start with a description of the 0-action by

solid polygonal lines on the points, and the V-action by dashed line segment, and

verify that tp = 0ip satisfies Tp £ roo (see Figure 0(b)).

We are now ready to proceed with the proof of (a) =>■ (b).

Let t be a fixed type satisfying |£| < No, t(l) = 0 and for all k £ Nq t+kl* £ rooo-

Let further t = to+t\, where to £ p and t\ is a residuum, as provided by Proposition

2.5.

Proposition 2.7. t\ = 3* or *i = 5*.

PROOF. We have to deny all other options for t\ listed in Proposition 2.6.

t\ = o is ruled out, as then (€pC r0oo-

^ = 3* + 5* is ruled out, as 4 • 1* + i, = 4 • 1* + 3* + 5* £ r00o by Figure 0(b),

and so 4 • 1* + t = t0 + (4 -1* + ti) £ r0oo as t0 £ p C r00o, 4 • 1* + ^ € r00o,

and r0oo is additively closed. ty £ {1* + 3*, 1* + 5*, 1* + 3* + 5*} is ruled out by

t(l) = t1(l) = 0.

Thus, ti = (2n + 1)* for some n £ N0. We need to show that n = 1 or n = 2.

Indeed, n — 0 is ruled out, as then ti = 1* and so 1* +1 = t0 + 2 • 1* £ r0oo- If

n > 3, then 1* +£, = 1* + (7 + 2fc)*, where Jfc = n -3 > 0, and so 1* +h e f3 C p,

and r-rl = (0 + (r+fi)ep + pCpC r0oo, i-e., 1* +t £ r00o-

Thus n — 1 or n = 2 and t\ = 3* or ti = 5*.    □

PROPOSITION 2.8.   Iftx=Z* thent0£ {o,2*,4*}. Iftx=h* thent0 = o.

PROOF. We start with seven observations (l)-(7) of the form s £ rooo, proved

graphically by Figures 1-7.

(1) 1* + (3 + 2k)* + (6 + 21)* £ rooo for k, I £ N0. Indeed, by Figure 1,

1* + (3 + 2k)* + (6 + 2/)* £ (2 • 1* + (jfc + /) ■ 2* + 2 • 4*) © (5 + k +1) ■ 2* C r00o-

V.A__    ,
'-v-' /' i

k ' ' '

'/.-A
FIGURE  1

(2) 5-1* +3-3* £ rooo-
Indeed, by Figure 2,

5 • 1* + 3 • 3* € (2* + 2 • 6*) 0 7 • 2* C r00o-
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t

A    --<>--
r''

Figure 2

(3) 1* + (3 + 2k)* + (3 + 20* + (5 + 2m)* £ r000 for k,l,m£ N0-

Indeed, by Figure 3

1* + (3 + 2k)* + (3 + 21)* + (5 + 2m)*

€ (4 • 1* + (k + / + m) • 2* + 2 • 4*) 0 (6 + k + / + m) • 2* C r00o-

k

\AVx ,-A.V
/VA-

i
Figure 3

(4) 5 • 1* + 2 • 2* + 3* £ rooo-

Indeed, by Figure 4,

5 ■ 1* + 2 • 2* + 3* £ 2 ■ 6* © 6 • 2* C r00o-

♦i

A W\
r'' ""•

Figure 4

(5) 1* +2*+ 3*+ 4* £ r000-

Indeed, see Figure 1(a).

(6) 7 • 1* + 3* + 2 • 4* € r000-

Indeed, by Figure 5,

7 - 1* + 3* + 2 • 4* £ (2* + 2 • 8*) 0 9 • 2* C r00o-
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tf no-/*     \    *
4 •       4

FIGURE 5

(7) 1* + 5* + (2n)* £ r00o for all n £ N.

Indeed, for n = 1 we have, by Figure 6,

1* + 2* + 5* £ (2* + 2 ■ 3*) 0 4 • 2* C r000;

for n — 2 we have, by Figure 7,

1* + 4* + 5* € (2 • 1* + 2 • 4*) 0 5 ■ 2* C r00o;

and for n > 2, (7) follows from (1).

!>-<□

Figure 6

Figure 7

We proceed to prove Proposition 2.8. Thus, t is a finite type satisfying t(l) = 0,

t = to + ti, where to S p and by Proposition 2.7 t\ = 3* or t\ = 5*, and in addition,

for all k £ N0, k ■ 1* + t £ rooo-
Step 1. t0(2n) = 0 for n > 3.

Otherwise, let t'0 satisfying t0 = t'Q + (2n)*, n > 3. Then t0 € p, and we have by

(1)

1* +1 = 1* + (3 + 2k)* + (2n)* + t'o £ rooo

where fc = 0 if t\ = 3*, and k — 1 if £i =5*.

Step 2. <0(2n + 1) = 0 for n > 2.

Otherwise, let £o = (5+2m)*+£0', where 5+2m = 2n+l, m G N0. Since t0 £ p, *o

is a finite sum of members of f and so to = (5+2m)*+<0' = (5+2m)* + (l+2fc')*+i0,

where (^ep and (1 + 2k')* + (5 + 2m)* £ f. Since t(l) = 0 we have k! > 0, and
so k! = k + 1 for some k £ N0, and we have t0 = (3 + 2Jfc)* + (5 + 2m)* +1'0 with
£0 e p- Thus,

t = t0 + ^ = (3 + 2fc)* + (3 + 2/)* + (5 + 2m)* + t'0,

where / = 0 if h = 3* and / = 1 if tx = 5*. But then, by (3)

1* + * = 1* + (3 + 2k)* + (3 + 2/)* + (5 + 2m)* + t'0 £ r00o-
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Step 3. t0(n) = 0 for n ^ 2,3,4.

This follows from Steps 1,2 and t(l) = 0.

Step 4. t0(2) < 1 if h = 3*, i0(2) = 0 if *, = 5*. Indeed:
1. If ti = 3* and <0(2) > 2, let £0 = 2 • 2* + <0. Then t'0 £ p and we have, by (4)

5 ■ 1* +1 = 5 • 1* + 2 • 2* + 3* + t'0 £ r000-

2. If ti = 5* and t0(2) > 1, let t0 = 2* + (0.

Then i0 G P and we have by (7)

l*+< = l*+2*+5*+£0er0oo-

Step 5. t0(3) = 0.
Indeed, if *0(3) > 0 then £0(3) > 2, as i0 € P and by Step 3, i0(2n + 1) = 0 for

n^l. Let to = 2 ■ 3* + t'0. Then t0 G p, and we have:

If ti =3*, then by (2)

5 • 1* + t = 5 • 1* + 3 • 3* + t'Q £ r00o-

If ti=5*, then by (3) (with Jfc = I = m = 0)

1* +1 = 1* + 2 • 3* + 5* +1'0 E r000-

Step 6. «0(4) < 1 if ii = 3*, *0(4) = 0 if tx = 5*.
Indeed, if ti = 3* and t0(A) > 2, then £0 = 2 • 4* +1'0, where t'0 £ p, and we have,

by (6)
7 • 1* + t = 7 ■ 1* + 3* + 2 • 4* + t'0 £ r000,

while if ti = 5* and £o(4) > 0, then t0 = 4* +10, where i0 G p, and we have by (7)

l* + t = l* + 4* + 5*+t0er0oo.

Step 7. If ti = 5* then t0 = o.

This corollary of Steps 3-6 establishes Proposition 2.8 if ti =5*.

Step 8. If h = 3* then *0(2) + *o(4) < 1.
By Steps 4 and 6 t0(2), <o(4) < 1, so we have only to show that t0(2) = io(4) = 1

is impossible. Indeed, assume t0(2) = to(4) = 1. Then t'0 £ p, where t'0 is defined

by t0 = 2* + 4* + t'0, and we have by (5)

1* + t = 1* + 2* + 3* + 4* + i0 G r000-

Step 9. If *i =3* then t0 £ {o,2*,4*}.
This corollary of Steps 3, 5 and 8 establishes Proposition 2.8 if ii = 3*.    Q

The proof of Proposition 2.8 is complete, and Theorems 2.3, 2.1, 2.0 are proved.

3. The products RiRjRk, i + j + k > 0. This section is devoted to the proof

of the statements (2) (a) and (2)(b) of the abstract. We first reduce the argument

to two theorems that deal with countable A (Theorems 3.2, 3.3).

Let |A| = N„,i/ > 0, and recall that

Rt — Ri(A) = {tp £ Sa'- *p2 = 1a,<P fixes i symbols and moves N„ symbols},

C — C(A) = {0 £ Sa '■ 0 has N„ infinite orbits and no finite orbits},

INF = INF(A) — {ip £ Sa '■ tp moves infinitely many symbols}.

By [Ml, Theorem 2.1] (or by simple direct argument, using Proposition 1.0 and

[Ml, Theorem 3.2(3)]) we have the following.
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PROPOSITION 3.0.   C C RiRj for all 0 < i,j < N,.

By [Ml, Corollary 2.3(3); (3) on p. 77] we have

PROPOSITION 3.1. // {i, j, k} has two integers of different parity, then RiRjRk
CINF.

We shall prove

THEOREM 3.2.   Let \A\ = N0. Then INF = C ■ Rk for 0 < Jfc < N0.

THEOREM 3.3. Let \A\ = N0. IfO < i,j,k < N0, i + j + k > 0 and all integers
in {i,j,k} have the same parity, then Sa = RiRjRk-

We now derive (2) (a) and (2)(b) using the terminology developed in §2.

For any ordinal v let

tp, = {t: \t\ = K}-

Thus tp, = Sa whenever |A| = N,.

inf„ = {t: |i| = N,, m(t) > N0}.

Thus, inf„ = INF(A) whenever |A| = N,.

r,,, =M*+N,-2*.

Thus rito = rt, and ritU = ip for any ip £ Ri(A) if |A| — N,.

We have

(i) tp, = rk,v 0 Tk,u for N0 < k < N, if v > 0 [M2, Corollary 2.5].

(ii) inf0 C 7^,0 0 r^o © rk,o for 0 < i,j, k < No, by Proposition 3.0 and Theorem

3.2.

(iii) info Q N® 0 rM for 0 < Jfc < N0, by Theorem 3.2.

(iv) N® G rji0 0 r,,o for 0 < i,j < N0, by Proposition 3.0.

(v) rk,v G riiU © rj<u iff all integers in {i,j, k) have the same parity.

(v) follows from [Ml, Theorem 2.1], but we sketch a direct proof here:

1. If, say, i + j < No and i + j = 1 (mod 2), then any t £ ri%v 0 r7j, satisfies

*(N0) > 0 by [Ml, Corollary 2.3(3)], so for all k, rk,v £ riiUQrj,J.
2. If all integers in {i,j, k) have the same parity, then r^, G ritU QrjiV. Indeed,

w.l.o.g. i < j, k and so, by assumption, j = i+2u, k = i+2v for some 0 < u, v < N,.

Let A = A0UAi, where |A0| = i, |A,| = N, and let A, = B U CO D where |B| =2u,

\C\ = 2v, \D\ — N,. Then one easily defines tp,ip £ Sa such that A0, B, C, D are tp-

and ^-invariant, tpAo = ipA0 = 1a0, <PAi is a fixed-point-free involution, ipB = 1B,

*Pc — <Pc, and ipo is a fixed-point-free involution, as is tpDtpD. Then Tp = »•<,„,

ip = TjyV and pip = rk,v

With no loss of generality, assume 0 < i < j < k < N, in the sequel.

PROPOSITION 3.4. // v > 0, k > N0, and j > N0 or j < N0 and i = j (mod 2),

then R^Rk = Sa-

PROOF. We have to show tp, = r,,, Qr^v©rjt,,. But under these assumptions,

we have rk,v G r,,, • r,-,„ by (v), and rk,v • rk,» = tp, by (i). Thus,

tp„ = rk,„ ■ rk,v C rj,, • r,> • rfcil/ C tp,.    D
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PROPOSITION 3.5.   INF C RiRjRk for all 0 < i, j, Jfc < |A|.

PROOF. For u = 0 this holds by Theorem 3.2 and Proposition 3.0, so assume

v > 0. We have to show inf C n,u © Tj>v 0 r/^,.

Case 1. k > N0. By Proposition 3.4, INF C RtRjRk if j > N0, so assume j < N0.

Thus, we have r2i, = rI>0 + r0,„, r,,, = rJ:0 + ?"o,j/- Hence, by (iv)

N® + rk,u £ r,-,o © rv,0 + r0,„ © r0,„ C (rj>0 + ro,i/) © (r]fl + r0,„)

Also, by (i), (iii) and rk,v = r0,o + rk,v,

inf,, = info + tp, C \t® © r0,0 + rfc,„ © rfe,„ C (N^ + rfc>„) 0 rfc>,.

Thus

inf, C (N® + rfc,,) 0 rfc,, C riyV Q rjt„ 0 rfc,,.

Case 2. A; < No- First note that by (ii), info Q ro o- Since 1® G Tq 0 as well, and

ro,v = N„ • ro,o, we conclude that inf, C r$ ,. Indeed, any t £ inf, is representable

as t = X^e/ *j, where |/| = N, and ij G info U {1®}; so ti £ r^0 for all i £ I and

we have

t = ^ti£K- (4to) C (N, ■ r0,0)3 - »■£„.

By fj,, = rj>0 + r0,„, r,-,„ = r,-)0 + r0,„ and (iv) we obtain

N® + »"o,„ C rI)0 0 Tjfi + r0,„ © r0,„ C (rifl + r0,„) © (rjfi + r0,„)

— rjt, © Tj,,.

Hence, by rfci„ = rkfi + r0,„ and (ii)

info + inf„ C K® © rk,o + rg_, 0 r0i„

£ (Nq5 + »£„) O (rfci0 + r0ll/) = (N® + rg>v) © rfc,,.

Similarly,

info + N, • 1* C (N® + i/£„) © i/fc>.

Also,

inf, = (info + inf,) U (inf0 + N, • 1*)

so

inf„C(N0B+r0!i,)©^,,.

Thus, again

inf, C (N® + r^,) 0 rfe,, C rt>, © r,,„ 0 rfc,,.    D

PROPOSITION 3.6. RiRjRk = INF if {i,j,k} contains two integers of different

parity.

PROOF. By Proposition 3.5 RiRjRk 2 INF, and by Proposition 3.1 RiRjRk Q

INF.    D



PRODUCTS OF INVOLUTION CLASSES 759

PROPOSITION 3.7. RiRjRk - Sa if i + j + k> Q and all integers in {i,j, k)

have the same parity.

PROOF. For v = 0 this identity holds by Theorem 3.3, so assume v > 0. We

have to show tp, C ntV 0 r,-,, 0 r^,,. By Proposition 3.4 we may further assume

k < No- Hence

r%,u — *"i,o + fo,t/,    fj> = rjto + ro<u,    rk,v =rk,o + rotI/.

For any ordinal u, let

e, = N, • 1* + {3*,5*,2* + 3*,3* +4*}.

By Proposition 3.5 and Theorem 2.0 r^, = tp, \ e„. Hence, by e„ = eo + N„ • 1* C

tp0 + r^ , and r^ , C tp0 + r$,, we have tp0 + 7q , = tp,. Since by Theorem 3.3

r%fl © rjto 0 rkfi = tp0, we have

tp„ = tp0 + r^, = r,,0 © rj.o 0 rk,o + r0,„ © r0,„ 0 r0,„

Q (rt,o + r0,u) 0 (rj,o + r0,v) © (rk,o + f0,v)

(2)(a) and (2)(b) are Propositions 3.6 and 3.7, respectively.

We now prove Theorems 3.2 and 3.3. Recall that for 0 < i < N0, u = t • 1* +

N0-2* =«-l* + 2®.

PROOF OF THEOREM 3.2. Obviously C■ Rk Q INF for all 0 < k < N0. Indeed,
if tp £ Sa is Unitary, i.e., moves finitely many symbols, 0 £ C, then ip = 0tp must

have infinite orbits, and so ip £ Rk for all 0 < k < No- Thus, C ■ Rk contains no

finitary permutations; i.e., C ■ Rk Q INF.

INF C C ■ Rk for all 0 < k < No is a consequence of Droste's result:

PROPOSITION 3.8 [Dl, LEMMA 4.9].  INF C C ■ D for any class D C INF.

PROOF OF THEOREM 3.3. By Proposition 3.5 it is enough to establish:

PROPOSITION 3.9. Let fin = {t: m(t) < \t\ = N0}, andletO <i<j < fc < N0.

//

(*) {i,j, k] has no two integers of different parity,

(**) 0 < k,
then fin C rj © r, © r^.

Proposition 3.9 is established via a sequence of reductions.

3.9.1. ri £ riQrj iff {i,j, 1} does not contain an even integer and an odd integer.

3.9.1 is a restatement of (v).

3.9.2. fin C rHo © rNo. Indeed,

finch: |*|=   Y,  t(n) = Ko\=r«0OrHo,
I n€N+ )

where the last equality is a restatement of [Ml, Corollary 2.4].

3.9.3. We may assume k < No- Indeed, by (*) and 3.9.1, rk £ r, O r3, so

r2k = rkQrkCriO r3 © rfc. If k = N0 then, by 3.9.2, fin C n 0 r} 0 rk-
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3.9.4. r^ n fin C n 0 r, 0 rk. Indeed, r, = rt + r0, Tj = r, + r0, rfc = rk + r0;

hence

rt 0 r, 0 rfc = (rj + r0) © (r^ + r0) © (rfc + r0) 2 r, 0 rj 0 rfc + r^.

But by (*) and 3.9.1 rk £ n © r,-, so 1® G rfc 0 rfc C rj © rj 0 rk- Hence 1® + r^ C

rj © rj 0 rfc. But by fin D r% C 1® + r$ we have ro3nfinCr,0 rj © r^.

3.9.5. Let n+ = n* + 1® (n G N+). Let e = e0 denote the set of four types

{3+,5+,2++3+,3++4+}. If eC nQrjQrk then fin C n Qrj 0 rk.
Indeed, by Theorem 2.0, fin \ e C r$ so by 3.9.4, fin \ e C rj 0 r3• 0 rk.

3.9.6. For any k £ N we have 3+, 5+ G rk 0 rk, 2+ + 3+, 3+ + 4+ G rk+2 © rk.

Indeed, 3* G (1* + 2*)2, 5* G (1* + 2 • 2*)2 by

(1,2,3) = [(1,2)(3)][(1),(2,3)],

(1,2,3,4,5) = [(1,2)(3,5)(4)][(1),(2,5)(3,4)].

Also, 1® G t2 whenever |*| = No, so, since k — 1 > 0,

3+ = 3* + 1® G (1* + 2*) 0 (1* + 2*) + rk-i 0 rk-i C (1* + 2* + rfc_x)2 = r\,

5+ = 5* + 1® G (1* + 2 • 2*) 0 (1* + 2 • 2*)

+ rfc_i©rfc_1 C (l*+2-2*+rfc_1)2 = r^.

Similarly,

2*+3* G (3-1*+2*) 0(1*+ 2-2*),

(3* + 4*) G (3 • 1* + 2 ■ 2*) 0 (1* + 3 • 2*)

by

(1,2,3)(4,5) = [(1,2)(3)(4)(5)][(1)(2,3)(4,5)],

(1,2,3)(4,5,6,7) = [(1,2)(3)(4,6)(5)(7)][(1)(2,3)(4,5)(6,7)].

Thus

2+ + 3+ = (2* + 3*) + 1® G (3 • 1* + 2*) © (1* + 2 • 2*) + rfc_, © rk-x

C (3 • 1* + 2* + rk-i) 0 (1* + 2 • 2* + rk-i) = rk+2 O rk

and

3+ + 4+ = 3* + 4* + 1® G (3 • 1* + 2 ■ 2* + rfc-i) © (1* + 2 • 2* + rfc_,) = rk+2 ©r.

3.9.7. eCr,0r,0 rk whenever k £ N. Indeed, by 3.9.6 e C r\ U (rfc+2 0 rk),

and by (*) and 3.9.1 rk, rk+2 £ n 0 r,, so e C r, 0 r^ 0 r^.

Proof of Proposition 3.9.  If k = N0, fin c n © ^ © rk by 3.9.2.  If
0 < k < N0, fin C rj 0 r3 0 rk by 3.9.5 and 3.9.7.

The proof of Theorem 3.3 is complete.

4. Odds and ends. 1. We mention some problems suggested by the results of

this paper.

We did not evaluate products of involution classes in Sa involving classes moving

less than |A| elements. Some such products are, however, readily available. For

instance, if |A| = N, and R is an involution class moving NT symbols where 0 <

t < v, then R2 is the group SA+1 of permutations of A moving at most NT symbols

(this follows from [Ml, Corollary 2.5] and mentioned in [MO]); it follows that if
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R' is another class moving NCT symbols, r < a < v, then RR! = SA+1 • R'. Thus,

products of arbitrary number of involution classes moving infinitely many symbols,

can be evaluated easily (compare [Ml, Theorem A.l, p. 75]). Thus, the following

seems to be interesting (and, we believe, tractable):

Problem 1. Let |A| = N0. Determine the products /„, 'Ink, where J„ is an

involution class in Sa whose members move 2n symbols.

For k = 2 this problem is solved in [Ml]. The powers Ik can be recovered from

[M2, M3].
Theorem 3.2 and Proposition 3.8 suggest

Problem 2. Determine the set K all cocs E C INF satisfying E £DXD2 for all

cocsDi, D2 CINF.

C £ K by Droste's result [Dl, Lemma 4.9 (Proposition 3.8)].

2. We complete the proof of the implication of (2) => (1) in §1 by displaying the

products of the exceptional classes in Sa by the class of fixed-point-free involutions

of A, where m < |A| < 2m, |A| even, and m is the number of symbols moved

by a member of the exceptional class under discussion. The proof is completed in

verifying that each permutation in each such product has an odd number of orbits

of length n for some n ^ 2.

This can be checked in the following listing of the twelve relevant sets of types

(see §2). The set is denoted on top of a column, under which its members are listed.

TABLE 1

(l*+3*)02-2*    (3-1*+3*) ©3-2*

l*+3*                    l* + 2*+3*

_6*_

TABLE 2

(l*+5*)Q3-2*    (3-1* +5*) ©4 -2*    (5 -1* + 5*) Q 5 - 2*

l* + 2*+3*             l*+2-2*+3*            1* +3-2* +3*

2-l* + 4*                2-1*+2*+4*            2-1*+2-2*+4*

6*                            2*+6*                         2-2*+6*
1* +7*                         1* + 2* + 7*
3*+5'                         2* +3* +5*

_10*_

TABLE 3

(1*+ 2*+3*) 03-2"    (3-r +2" +3*) 04-2*    (5 ■ 1* + 2* + 3*) 0 5 ■ 2"

31* +3* 31* +2* +3* 3-r+2-2*+3*

l* + 5* l*+2*+5* l*+2-2*+5*
2*+4* 2-2*+4* 3-2*+4*

l*+3*+4* l*+2*+3*+4*

8*                                          2*+8*

_4* +6*_
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TABLE  4

(1*+3*+4*)©4-2*     (3-1*+3*+4*)©5-2*     (5 ■ 1* + 3* + 4*) 0 6 ■ 2*     (7 • 1* + 3* + 4*) 0 7 ■ 2*

3-1*+2*+3* 3-1*+2-2*+3* 31*+3-2*+3* 31*+4-2*+3*

l*+3*+4* l* + 2*+3*+4* 1*+2-2*+3* +4* 1* + 3 ■ 2* + 3* + 4*

l*+2*+5* 1*+ 2-2*+5* l*+3-2*+5* 1* + 4 ■ 2* + 5*

2-2*+4* 3 -2* +4* 4-2*+4* 5 ■ 2* + 4*

2   1*+6* 2   1*+2*+6* 2   1*+2-2*+6* 2   1*+3-2*+6*

8* 2*+8* 2-2*+8* 3-2*+8
l*+33* l*+2*+3-3* 1*+2-2*+3-3*

2   1* +3* +5* 2-1*+2*+3*+5* 2 ■ 1* + 2 • 2* + 3* + 5*

2-1*+2*+6* 2-1*+2-2'+6* 21*+3-2*+6*

4*+6* 2*+4*+6* 2-2*+4*+6*

3*+7* 2*+3*+7* 2-2*+3*+7*
l*+9* l*+2*+9* l* + 2-2*+9*

l*+5*+6* 1*+2*+5*+6*

2-3*+6* 2*+2-3*+6*

l*+3*+8* 1*+2*+3*+8*

12* 2* + 12*

_6* +8*_
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