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BOREL MEASURES AND HAUSDORFF DISTANCE

GERALD BEER AND LUZVIMINDA VILLAR

ABSTRACT. In this article we study the restriction of Borel measures defined

on a metric space X to the nonempty closed subsets CL(X) of X, topologized

by Hausdorff distance. We show that a <r-finite Radon measure is a Borel

function on CL(X), and characterize those X for which each outer regular

Radon measure on X is semicontinuous when restricted to CL(X). A number

of density theorems for Radon measures are also presented.

1. Introduction. Let CL(X) (resp. K(X)) denote the collection of closed (resp.

compact) nonempty subsets of a metric space (X, d). We denote the open £-ball

with center a in X by Se[a], and the union of all such balls whose centers run over

a subset A of X by S£[A]. Certainly the most familiar topology on CL(X) is the

Hausdorff metric topology (cf. Castaing and Valadier [4] or Klein and Thompson

[9]), induced by the infinite valued metric

hd(E, F) = inf{e: Se[E] D F and Se[F] D E}.

It is the purpose of this article to study the behavior of Borel measures restricted

to QL(X) with respect to this topology.

With respect to properties of measures, we adopt the terminology of the funda-

mental survey article of Gardner and Pfeffer [7]. A countably additive measure p

defined on the Borel a-algebra of a metric space X will be called a Borel measure if

it is locally finite: at each x E X, there is a neighborhood V of x with p(V) < oo.

A Borel measure p is called a Radon measure if it is inner regular by compact sets:

for each Borel set B, p,(B) = smp{p(K): K E K(X) and K C B}; it is called outer

regular if for each Borel set B, p(B) = ini{p(V) : V open and B C V}. Of course,

a Borel measure is automatically outer regular at each compact set, and compact

sets have finite measure. Although outer regular Radon measures have been called

regular Borel measures in the widely read graduate texts of Halmos [8] and Rudin

[16], this terminology remains nonstandard among researchers in measure theory.

In addition to [7], an earlier paper of Gardner [6] serves as a good second ref-

erence on Borel measures. Still, Chapters 8, 9, and 18 of [15] contain within them

all that we need here. We shall use results from these chapters freely, and at this

time single out two facts for special attention (cf. Exercises 9-2 and 9-3 of [15]).

LEMMA 1.1. Let (xn) be a sequence in X with distinct terms. Then the count-

ing measure determined by E = {xn:n E Z+} on the power set of X, defined by
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p(A) = the cardinality of A D E, is locally finite, and is hence an outer regular

Radon measure, if and only if (xn) has no cluster point.

LEMMA 1.2. Suppose 5Zn=1 an is a convergent series of real numbers, and (xn)

is a sequence in X with distinct terms.  Then the assignment

oo

V(A) = ^2anXA(Xn)
n=l

determines an outer regular Radon measure on X.

We set forth some additional notation and terminology. The set of limit points

of X will be denoted by X', and its set of isolated points by I(X). If A C X, its

closure and complement will be denoted by A and Ac, respectively. The subset A of

X is called discrete if its relative topology inherited from X is discrete; A is called

e-discrete if whenever {01,02} C A, we have d(ai,02) > e. By Zorn's lemma, a

nonempty subset A of X will have for each positive e a maximal e-discrete subset

E. Such a set E must satisfy A C S£[E], whence hd(E, A) < e. We use this fact to

prove the following lemma that will be used twice in the sequel.

LEMMA 1.3. Let p be a Radon measure on a metric space (X,d). Suppose

F E X' is nonempty, closed, and a-finite. Then for each positive e and 8 there

exists a closed subset A of X with hd(A,F) < e and p(A) < 8.

PROOF. By Lemma 9.4 of [15] there is a cr-compact subset C of F for which

p(F — C) =0. Let E be a maximal e/3-discrete subset of F, and set By = E fl C

and B2 = EO(F — C). Since the set C is separable, By must be countable. Write

By = {bn:n E N} where either TV is an initial segment of Z+ or N = Z+. Now

each neighborhood of bn contains infinitely many points, and by local finiteness of

the measure, there exists a neighborhood within Se/g[bn] of finite measure. By the

countable additivity of p, we can find xn such that d(bn,xn) < e/9 and p({xn}) <

2~nS. Note that {xn:n E N} is e/9-discrete, so that A = {xn:n E N} U B2 is

closed. Also, hd(E,F) < e/3 and hd(E, A) < e/9 force hd(A,F) < e. Finally,

OO

p(A) < p({xn:nEN})+ p(F - C) < ^ 2~n6 +0 = 8.

n=l

2. Borel measurability of a Radon measure. Recall that an extended

real valued function / is called upper semicontinuous (u.s.c.) at a point a of X if

whenever a > f(a), there exists a neighborhood V of a for which f(V) E (—00, a);

equivalently, whenever (xn) converges to a, we have limsup„_>00 f(xn) < f(a).

Dually, / is called lower semicontinuous (l.s.c.) at a if —/ is u.s.c. at a. Even for

Lebesgue measure p/, on the line, semicontinuity in either sense with respect to the

Hausdorff metric on CL(AT) fails. Lebesgue measure is not u.s.c. at the positive

integers Z+, for if Fn = U^LiU _ Vn>i + l/n]> we nave limn—00 hd(Fn,Z+) =

limn_oo 1/" = 0, but pl(Z+) = 0 < 00 = limsupn^oo Pl(Fu). On the other hand,

lower semicontinuity fails at each compact set of positive measure, for each one is

the /id-limit of a sequence of finite sets. As a special case of a more general result,

we shall see that Lebesgue measure when restricted to CL(i?) is however the limit

of a sequence of u.s.c. measures.
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LEMMA 2.1. Let p, be a Borel measure on a metric space (X,d), and let K E

K(X). For each F E GL(X), set \(F) = p.(Ff\K). Then A is hd-u.s.c. on CL(X).

PROOF. Fix F E CL(X). We consider two cases: (i) FHK = 0; (ii) Ff)K £ 0.

In the first case, there exists 8 > 0 for which Ss[F] C\K = 0. Thus, if hd(F, E) < 8,

we have X(E) = p(En K) < p(Sg[F] n K) = 0, whence A is actually continuous at

F. In the second case let (Fn) be a sequence in CL(X) convergent to F. Clearly,

if (nk) is an increasing sequence of positive integers and xk E Fnk for each k, then

each cluster point of (xk) must lie in F. By the compactness of K, for each 8 > 0,

it follows that Sg[F n K] contains Fn f~l K eventually. If \(F) = oo, then A is

automatically hd-n.s.c. at F. Otherwise, let a > p(F f] K) be arbitrary. By local

finiteness, there exists an open neighborhood V of FC\K with p(FC\K) < p(V) < a.

By the compactness of F n K, the open set contains Sg[F n K] for some 8. Since

Ss [F n K] contains Fnf)K eventually, we have

limsup A(Fn) = limsupp(FnC\K) < p(V) < a.
n—>oo n—>oo

We conclude that limsup^^^ X(Fn) < X(F).

The main result of this section bears on a question of Wilansky [18].

THEOREM 2.2. Let p be a a-finite Radon measure on a metric space (X,d).

Then the restriction of p to (CL(X),hd) is a Borel function.

PROOF. By Lemma 9.4 of [15], there exists an increasing sequence (Kn) in

K(X) with pt(X - lj~=1 Kn) = 0. For each n E Z+ and each F E CL(X), let
An(F) = p.(F n Kn). By Proposition 8.5 of [15], we have p(F) = limn-,00 An(F);

so, by Lemma 2.1, pt restricted to CL(X) is a limit of an increasing sequence of

hd-n.s.c. functions and is thus of (extended) Baire class two.

3. Upper semicontinuity. We have seen that an outer regular Radon measure

need not be hd-n.s.c. on CL(X). However, there are certain closed sets at which

such a measure must be hd-n.s.c. We indicate these here, and characterize those

X for which each regular measure is hd-n.s.c. on CL(X). The proof of the next

fact follows immediately from the monotonicity of a measure and the definition of

Hausdorff distance.

LEMMA 3.1. Let p be a measure on the Borel a-algebra of (X,d), and let

F E CL(X).  Then p is hd-u.s.c. at F if and only jyiimn_oc, pt(Sy/n[F]) = p(F).

THEOREM 3.2.   Let p. be a measure on the Borel a-algebra of (X,d).

(i) If p is locally finite, then p is hd-u.s.c. at each K E K(X).

(ii) If F E CL(X) and p(Fc) < oo, then p is hd-u.s.c. at F.

PROOF. If K E K(X), then each open neighborhood of K contains Sy/n[K] for

some n, whence p, is u.s.c. at K by Lemma 3.1 and local finiteness of p. On the

other hand, if p(Fc) < oo, then for each n, p(Sy/n[F] — F) < oo. By Proposition

8.6 of [15],

0 = p(0) = J f) (S1/n[F] - F)) = nlhnop(51/n[F] - F).

As a result, lim,,^^ p(Sy/n[F]) = p.(F) by additivity of p.
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An important class of outer regular Radon measures are finite Borel measures

on Polish spaces (cf. [14]). By Theorem 3.2, each such is hd-u.s.c. on CL(X). We

next characterize those closed subsets of an arbitrary metric space X at which each

outer regular Borel measure on X is hd-u.s.c.

THEOREM 3.3. Let (X,d) be a metric space and let F E CL(AT). The following
are equivalent:

(i) Each outer regular Borel measure on X is hd-u.s.c. at F.

(ii) Whenever E is a closed subset of X disjoint from F, then ini{d(x,y):x E

E,yEF}>0.

PROOF. (i)—>(ii). If (ii) fails, then there exists a sequence (xn) with distinct

terms in E such that for each n, d(xn,F) < 1/n. Clearly, (xn) can have no cluster

point, for E C\ F = 0. By Lemma 1.1, the counting measure p for {xn:n E Z+}

is outer regular. However, by Lemma 3.1, p fails to be hd-n.s.c. at F because for

each n, the set Sy/n[F] contains infinitely many xn.

(ii)—»(i). Let V be an open neighborhood of F. By (ii), there exists 6 > 0 such

that ini{d(x,y):x E Vc, y E F} > 8. We conclude that Sg[F] C V, so that Lemma

3.1 guarantees the upper semicontinuity of each outer regular Borel measure at F.

As an immediate corollary of Theorem 3.3, we have

THEOREM 3.4.   Let (X,d) be a metric space.  The following are equivalent:

(i) Each outer regular Borel measure on X is hd-u.s.c. on CL(X).

(ii) Whenever E and F are disjoint members of CL(X), we have

inf{d(z, y): x E E, y E F} > 0.

The class of spaces satisfying condition (ii) of Theorem 3.4 is well studied and

properly contains the compact spaces. In the literature, such spaces have been

called UC spaces, Lebesgue spaces, and Atsuji spaces (cf. [2, 13, and 17]). The

first name reflects the fact that these are precisely the spaces on which each con-

tinuous function is uniformly continuous; the second has been used because these

are also the spaces for which each open cover has a Lebesgue number. The last

name acknowledges Atsuji's fundamental paper [1], containing the first extensive

list of their characterizations. An analog of Theorem 3.4 characterizes the complete

spaces, as follows.

THEOREM 3.5.   Let (X,d) be a metric space.  The following are equivalent:

(i) Each outer regular Borel measure on X is hd-u.s.c. on TB(X), the collection

of closed totally bounded subsets of X.

(ii) (X, d) is complete.

PROOF, (i)—»(ii). Suppose X is not complete; then there exists a Cauchy se-

quence (xn) in X with distinct terms with no cluster point. Set F = {x2k: k E Z+}

and let p be the counting measure for {x2k-y:k E Z+}. (See Lemma 1.1.) For each

n E Z+ let Fn = {x2k:k < n}U{a;2fe-i: k > n}. Then (Fn) is a sequence in TB(X)

/id-convergent to the totally bounded set F. Since p(F) = 0 and p(Fn) = oo for all

n, the measure is not hd-u.s.c. on TB(X).

(ii)—>(i). Each closed and totally bounded subset of a complete space is compact;

so, (i) follows from (ii) and Theorem 3.2.

We remark in closing that "Borel" can be replaced by "Radon" in the statements

of each of the last three theorems.
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4. Lower semicontinuity. In this section we produce sufficient conditions for

a Radon measure to be lower semicontinuous at a fixed closed set F, which are also

necessary provided F is tr-finite.

LEMMA 4.1. Let F be a nonempty closed subset of a metric space (X,d), and

let p be a Radon measure on X. If p(F) = p(F n I(X)), then p is hd-l.s.c. at F.

PROOF. Let a < p(F) be arbitrary. By the inner regularity of p at the Gg-set

F n I(X), and the fact that [F D I(X)]' CF- I(X), we have

p(F) = sup{p(K):K C F n I(X),K finite}.

Choose a finite subset {xy,... ,xn} of F n I(X) with p({xy,... ,xn}) > a. Since

each Xj is isolated, there exists <5 > 0 for which 5«[zj] = {xj} for j = 1,... ,n. Now

if hd(E, F) < 8, the set E must contain {xy,..., xn}, whence p(E) > a.

We were unable to find a simple counterexample showing that p(F) =

p(FC\I(X)) is not necessary for hd-lov/er semicontinuity of an outer regular Radon

measure p at F. Our construction involves the free union of an uncountable family

of outer regular Radon measures. Suppose {Xf.i € 7} is a disjoint family of Haus-

dorff spaces, and p, is outer regular and Radon on Xz for each i E I. Then the

following set function always defines a Radon measure on the free union (topological

sum) [5] X = J2iei Xt of the spaces:

p(A) = sup < ]P pi(A fl Xi): J finite, J E l\ .

However, p need not be outer regular; in particular, p is not outer regular if our

collection of measure spaces consists of uncountably many copies of the line with

Lebesgue measure. It can be shown [3] that outer regularity of p is characterized

by this condition: the set of indices i for which the support of p, contains at least

one point of measure zero is countable. Our counterexample involves a measure

space of this type. Let Q denote the rationals, and let X = Q x [0,1], equipped

with the metric d defined by

Ml      a\i      r\\      f min{l,|ai-a2|}    if/?i=/?2,
d((ay,0y),(a2,02)) = <

( 1 otherwise.

Clearly, X so metrized is the free union of uncountably many copies of the rationals

with the usual topology. Let (qn) be a one-to-one enumeration of Q, and let /? E

[0,1] be fixed. By Lemma 1.2, the set function pp on Q x {/?} defined by pp(A) =

X^{2~": (qn,P) E A} is outer regular and Radon, whence by our remarks, the free

union p of {p^: 0 < /? < 1} is also such a measure on X because each point of X

has positive measure. Now let F = {0} x [0,1]. Since F is uncountable, p(F) = oo,

again because each point of X has positive measure. Since I(X) = 0, it is evident

that p(F) # p(F n I(X)). Still, p is l.s.c. at F, for if hd(E,F) < 1, then the
set E must meet Q x {/?} for each (3 E [0,1]. As a result, E is uncountable and

p(E) = oo.

THEOREM 4.2.   Let p, be a Radon measure on a metric space (X,d), and let

F E CL(X) be such that F C\X' is a-finite.  The following are equivalent:

(i) p is hd-l.s.c. at F.

(ii)p(F) = p(FnI(X)).
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PROOF. The implication (ii)—>(i) is established by Lemma 4.1. Conversely,

suppose (ii) fails. Then both p(F (11(X)) < oo and p(F D X') > 0 hold. Pick 6

satisfying 0 < 8 < p(F D X'), and let a = p(F n I(X)) + 8. We show that for each

e > 0, there exists E E CL(X) with hd(E,F) < e and p(E) < a, which implies

that (i) fails. Since F C\ X' is fj-finite, by Lemma 1.3, there exists A G CL(X)

with hd(A, F D X') < e and p(A) < 8. Let B be a maximal e/2-discrete subset of

F n I(X). The set E = A U B is closed and

hd(A UB,F)< max{hd(A, F n X'), hd(B,F C)I(X))} < e.

Finally

p(E) < p(A) + p(B) <8 + p(FC\ I(X)) = a.

THEOREM 4.3. Let (X, d) be a metric space and let F E CL(X). The following
are equivalent:

(i) Each Radon measure p on X is hd-l.s.c. at F.

(ii)FEl(X).

PROOF. Suppose (ii) fails. Let (xn) be a sequence of distinct terms in X conver-

gent to some a E F. The Radon measure given by p(A) = xa(o) is not h,j-l.s.c. at

F, for if Fn = (F - S1/n[a]) U {x: d(x, a) = d(xn, a)}, then limn_00 hd(Fn, F) = 0.

Thus (i) fails. Lemma 4.1 yields (ii)—>(i).

THEOREM 4.4.   Let (X,d) be a metric space.  The following are equivalent:

(i)X = I(X).
(ii) Each Radon measure on X is hd-l.s.c. on CL(X).

PROOF, (i)—»-(ii). This is immediate from Lemma 4.1 or Theorem 4.3.

(ii)—>(i). Suppose X has a limit point a. Then the measure defined by p(A) =

Xa(o) is a Radon measure that fails to be hd-l.s.c. at {a}.

THEOREM 4.5.   Let (X,d) be a metric space.   The following are equivalent:

(i) For some e > 0, X is e-discrete.

(ii) Each Radon measure on X is hd-continuous on CL(X).

PROOF, (i)—>(ii). Condition (i) implies that hd yields the discrete topology on

CL(X).
(ii)->(i). Suppose (ii) holds; then by Theorem 4.4, X = I(X). If (i) fails,

for each n E Z+, we can find isolated points xn and yn with d(xn,yn) < 1/n.

Since all points are isolated, we may assume without loss of generality that the

terms of xy,yy,x2,y2,... are all distinct. As a result, E = {xn:n E Z+} and

F = {yn:n E Z+} are disjoint closed sets that do not lie a positive distance apart

so that X is not a UC space. We conclude that X admits a Radon measure that is

not hd-u.s.c, contradicting (ii).

5. Density theorems. Here, we address these questions: given a Radon mea-

sure on a metric space (X, d),

(1) When are the closed sets of measure zero hd-dense in CL(X)?

(2) When are the closed sets of finite measure hd-dense in CL(X)?

The answer to (1) involves a class of spaces somewhat larger than the Baire spaces

(recall [5] that X is called Baire if the intersection of each sequence of dense open

subsets of X is again dense).
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DEFINITION. A topological space (X,d) is called weakly Baire if each open

dense-in-itself subset is uncountable.

It is easy to check that X is Baire if and only if each open dense-in-itself subset

is of second category in X. Now if V is an open dense-in-itself subset of a Hausdorff

space, each singleton subset of V must be a nowhere dense subset of X. As a result,

if X is Hausdorff and Baire, and V is an open dense-in-itself subset, then V must

be uncountable; so, X is weakly Baire. However, a weakly Baire space need not be

Baire. For example, Q x R as a subspace of the plane is a weakly Baire space that

is a first category space. The subspace of 1^ consisting of those sequences that are

zero eventually is another such space. Krom [10] has presented a metric Baire space

X for which X2 is not Baire. But weakly Baire spaces are closed under arbitrary

products. For the space X of Krom, McCoy [11] has shown that (K(X),hd) fails

to be Baire. We leave it to the reader to show that the hyperspace is still weakly

Baire, resulting in another example of a weakly Baire space that is not Baire.

LEMMA 5.1. Let p be a Radon measure on a metric space (X,d). Suppose that

each nonempty open subset of X contains a point of measure zero. Then for each

F E CL(X) and e > 0, there exists 8 > 0 and a 8-discrete set E with hd(F,E) < e

and p(E) = 0.

PROOF. Let A be a maximal e/3-discrete subset of F. For each a E Awe may

choose xa in the open set Se/g[a] with p({xa}) = 0. Now E = {xa:a E A} is

e/9-discrete, and Se/2[E] D F and Se/Q[F] D E hold. Thus, hd(E,F) < e. Finally,
by inner regularity, E has measure zero because each compact subset of E is finite.

THEOREM 5.2. Let p be a Radon measure on a metric space (X,d). The

following are equivalent:

(i) {x:p({x}) = 0} is dense in X.

(ii) The closed sets of measure zero are dense in (CL(X),hd).

(iii) The finite sets of measure zero are dense in (K(X),hd).

(iv) The compact sets of measure zero are dense in (K(X),hd).

PROOF. The implication (i)—>(ii) is immediate from Lemma 5.1. Suppose (ii)

holds, and K E K(X) and e > 0 are arbitrary. Since K E CL(X), there exists by

(ii) E E CL(X) with p(E) = 0 and hd(K,E) < e/2. Let A be a finite subset of
K with K E S£/2[A]. For each a E A, choose xa E E with d(a,xa) < e/2. Then

F = {xa: a € A} is a finite set of measure zero satisfying hd(K, F) < e. The proof

of (iii)—>(iv) is trivial. Finally, suppose (iv) holds. Since {a} E K(X) for each

a E X, the density of the sets of measure zero in K(X) forces Se[a] to contain a

compact set, and therefore a point, of measure zero for each positive e. Thus, (i)

holds.

COROLLARY 5.3. Let (X,d) be a metric space and let p be a Borel measure on

X for which {x: p({x}) = 0} is dense in X. Then {K: K E K(X) and p(K) = 0}

forms a dense Gg-set in (K(X),hd).

PROOF. By the upper semicontinuity of p on K(X), for each n E Z+ the set

{K:K E K(X) and p(K) < 1/n} is hd-open in K(X). The density of sets of

measure zero holds in K(X) without inner regularity, and the result follows.

Evidently, whenever p is a diffused Radon measure, then the sets of measure zero

are dense in CL(X) (we remark that each outer regular diffused Radon measure
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is necessarily u-finite (see, e.g., p. 245 of [15] or, more generally, Corollary 13.4

of [7])). A necessary condition for each nonempty open subset of X to contain a

point of measure zero is that each isolated point of X have measure zero; by inner

regularity, this is equivalent to requiring that p(I(X)) = 0, i.e., that suppp C X'.

This condition is also sufficient for a Radon measure when X is weakly Baire. More

precisely, we have

THEOREM 5.4.   Let (X,d) be a metric space.  The following are equivalent:

(i) X is weakly Baire.

(ii) Whenever p is a Radon measure on X with p(I(X)) = 0, then the sets of

measure zero are hd-dense in CL(X).

PROOF, (i)—>(ii). Let p be Radon with p(I(X)) = 0; we show that each

nonempty open subset V of X contains a point of measure zero. If V fl I(X) ^ 0,

then V n I(X) ^ 0, and we are done. Otherwise V = V - I(X), so that V is

dense-in-itself. Fix a EV; since X is weakly Baire and each open subset of a dense-

in-itself set is dense-in-itself, the ball Se [a] contains uncountably many points for

each positive e. By local finiteness, p(S£[a]) is finite for some e with Se[a] E V; so,

by countable additivity of p, this ball contains a point of measure zero.

(ii)—»(i). Suppose that (i) fails, i.e., X contains a countable open dense-in-itself

subset V. Sequence V in a one-to-one fashion by (an). By Lemma 1.2, the weighted

counting measure p(A) = Yl^~nXA(an) is a Radon measure on X, and it assigns

measure zero to each isolated point of X. Clearly, V contains no point of measure

zero. By Theorem 5.2, we conclude that the sets of measure zero are not hd-dense

in CL(X). Thus, (ii) fails.

THEOREM 5.5.   Let (X,d) be a metric space.  The following are equivalent:

(i) Each open subset of X is uncountable.

(ii) X is weakly Baire and I(X) = 0.

(iii) Whenever p is a Radon measure on X, then the closed subsets of measure

zero are hd-dense in CL(X).

PROOF. The equivalence of (i) and (ii) is obvious, and (ii) implies (iii) by

Theorem 5.4. Now suppose (iii) holds. By Theorem 5.4, X must be weakly Baire.

Also, if X had an isolated point p, then p(A) = Xa(p) would be a Radon measure

on X for which {p} would not be in the hd-closure of the sets of measure zero, in

violation of (iii). Thus, (ii) holds.

THEOREM 5.6. Let p be a Radon measure on a metric space (X,d). Suppose

that either p is a-finite, or X is weakly Baire.  The following are equivalent:

(i) For each e > 0 there exists a Borel set B of finite measure with I(X) C S£[B].

(ii) {F: F E CL(X) and p(F) < oo} is hd-dense in CL(X).

PROOF, (ii)—>(i). If I(X) = 0, let B be any singleton subset of X. Otherwise,

choose a closed set of finite measure B for which hd(I(X), B) < e.

(i)—>(ii). First assume p is cr-finite. Fix F E CL(X) and let e be positive. By

Lemma 1.3, there exists a closed set A of finite measure with hd(A, F C\ X') < e.

Choose a Borel set B of finite measure with I(X) C Se/i[B], and let C be a maximal

e/4-discrete subset of B. Then

A* = {x:xEC and SE/2[x]n(FD I (X)) ^ 0}



BOREL MEASURES AND HAUSDORFF DISTANCE 771

is an e/4-discrete set satisfying Se/2[A*] D Fnl(X) and S£/2[FnI(X)] D A*. As

a result, the closed set E = A U A* has finite measure and satisfies hd(E, F) < e.

Now assume X is weakly Baire. By condition (i), there exists for each e > 0

a Borel set B of finite measure with I(X) C S£[B]; so, arguing as in the cr-finite

case with I(X) replaced by I(X), for each F E CL(X), the set F n1(X) can be

approximated in Hausdorff distance by closed sets of finite measure. Also, the proof

of Lemma 5.1 shows that F - I(X) can be approximated by closed sets of measure

zero because each point of F — I(X) is a condensation point of X and is, therefore,

a limit point of {x: p({x}) = 0}. Condition (ii) now follows in the obvious way.

Condition (i) does not force condition (ii) without some additional assumptions

on p and/or on the space X. To see this, we return to the free union X of un-

countably many copies of Q as presented in §4. Since I(X) = 0 for this metric

space, (i) holds vacuously. However, no closed subset of X which is intersected

by uncountably many horizontal lines can be approximated by closed sets of finite

measure in Hausdorff distance.

6. Borel measures and the Vietoris topology. Ranking second in famil-

iarity among topologies on closed subsets is the Vietoris (or finite) topology ry.

Basic facts about this topology can be found in the fundamental paper of Michael

[12] or in [9]. Most simply described, this topology has as a subbase all sets of the

form

V+ = {F:FE CL(X) and F C V},

V~ = {F:Fe CL(X) and F n V ± 0},

where V is an arbitrary open subset of X. Although this topology agrees with

the hd-topology on K(X), it is generally neither stronger nor weaker than the hd-

topology on CL(X). Specifically, ry includes the hd-topology if and only if (X, d)

is totally bounded, whereas the reverse inclusion holds if and only if (X, d) is a UC

space, (cf. Lemma 3.2 of [12]). Of course, this topology makes sense when X is an

arbitrary topological space, and the behavior of Borel measures with respect to it

is no more difficult to describe in this broader context. It turns out that the theory

is substantially less rich than that developed in the previous sections. We outline

some results here, under the assumption that X is Hausdorff.

First, it is easy to see that each outer regular Borel measure is rv-u.s.c. on

all of CL(X), for if V is open and p(V) < a, then F E V+ implies p(F) < a.

Also, the sets of finite measure for each Borel measure on X are always dense in

(CL(X),Ty), for the finite subsets of X are dense in (CL(X),ry) (cf. Proposition

2.1.6 of [9]). It is not hard to show that Theorem 4.2 goes through without the

fj-finiteness assumption, whereas in the statement of Theorem 5.2, K(X) may be

replaced by CL(X) wherever it appears.
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