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ABSTRACT. Let a: E —» E be a subshift of finite type and Aut(<x) be the

group of homeomorphisms of E which commute with o. In [Wl], Wagoner con-

structs an invariant for the group Aut(tr) using K-theoretic methods. Smooth

hyperbolic dynamical systems can be modeled by subshifts of finite type over

the nonwandering sets. In this paper we extend Wagoner's construction to

produce an invariant on the group of homeomorphisms of a smooth manifold

which commute with a fixed hyperbolic diffeomorphism. We then proceed to

show that this dynamical invariant can be calculated (at least mod 2) from the

homology groups of the manifold and the action of the diffeomorphism and

the homeomorphisms on the homology groups.

In [Wl], Wagoner introduces new methods for constructing invariants on

Aut(rjyi), the group of homeomorphisms which commute with a subshift of finite

type a a '■ ̂a —* £a- The methods are developed using the action of Aut(fj^) on

the collection of Markov partitions of S^. If / is a Smale diffeomorphism of a closed

manifold M, it is well known that there is a finite collection of subsets {fl;} of M,

and /|fi; is topologically conjugate to a subshift of finite type. In analogy with

Aut(aA) we can consider Aut(/), the group of homeomorphisms of M which com-

mute with /. By explicitly constructing elements Wagoner has shown this group

has a very rich structure.

THEOREM (WAGONER [W2]). Let q > 4 and 1 < e < q - 2. Then there is

a Smale diffeomorphism Fa '■ Sq —► Sq with a basic set Qe of index e together with

a topological conjugacy between a a and F^|ne so that given any symmetry g in

Aut(o\4), there is a homeomorphism G: Sq —* Sq satisfying

(A) G commutes with Fa on Sq.

(B) G|fie = g under the identification of Ant(G[Cle) and Aut(<7^).

Boyle, Lind and Rudolph [BLR] have recently shown that Aut(o\4) contains a

free nonabelian group on infinitely many generators. There are also examples where

Aut(aA) contains every finite group.

In this paper we extend Wagoner's constructions to produce an invariant on

the group Aut(/) by studying its action on the nonwandering set of /. Our main

result is that, with certain hypotheses on /, this invariant can be calculated from

the actions of / and elements of Aut(/) on the singular homology groups of M.

Precisely, there are two homomorphisms, <f> defined using the dynamics of the system

and $ defined by homological methods, from the group Aut(/) to the Whitehead

group Wh2(F(t)).  If / is a fitted Smale diffeomorphism and F = Z/2, then the
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two invariants are equal. For a field F, the group Wh2(F(t)) is isomorphic to

(&P(FP)* for p a prime ideal in the ring of Laurent polynomials F[t,t~l] and

Fp = F[t,t~1]/p. The summation extends over all prime ideals p.

This paper contains results of my dissertation obtained under John Wagoner at

Berkeley. I thank him for his guidance and friendship over the past years.

1. The invariants $ and 4>

1.1. Algebraic preliminaries. Let F be a field. If G is a finitely generated

abelian group and a is an endomorphism of G, then we can define T(G, a) to be

coker(l ® / - t ® a) on F[t, t~x] ®z G. Observe that since G is finitely generated,

T(G,a) is a torsion F[t, t"1] module since 1 ® a must satisfy some polynomial on

F®zG = Fn. Ii pis another endomorphism of G that commutes with a, then 1(8/9

commutes with 1 ® / - t <S> a and we let Tp denote the induced map on T(G, a).

If we let C denote the category whose objects are pairs (G,a) with morphisms

p E hom((G, a), (G', a')) if a o p = p o a', then T can be considered a functor from

C to the category of torsion F[<,i_1]-modules.

We record some facts concerning the functor T for future reference.

PROPOSITION 1.1.1. T(G,a) is naturally isomorphic to the direct limit of the

system F®G -^ F ® G -^+ F ® G -» • • •.

PROOF. Let Ni = F <g> G x {i} for i > 0. Let g denote an element of F (g> G

and denote elements of Ni by (g, i). Also let 1 (g) a be denoted by a. The directed

system is defined by giving maps Oij: N —► Nj for i < j. Let aij(g,i) = (a:'~tg,j).

Define tp: lim i Ni —► T(C7, ct) by tp(g, i) = tl ■ g (we are now considering gEF ®G

as in F\t,t~l] ® G). Notice that if (g,i) = (g',j) in the direct limit, then if j > i

we must have akg' = ak+3~%g for some k > 0 and it follows

tp(g,i) = fg = tHk+i-*ok+i-*g = tk+3ak+3~lg = tk+3akg' = V g' = tp(g',j).

Thus tp is well defined. If txg E ^[i,*-1] ® G there is a positive integer j so that

i + j > 0. In T(G,a), t*g = ti+iajg. Let 0(f*g) = (ajg,i+j). Different choices for j

give congruence elements of lim t Ari. Also 0(tl -tag) = (al+1g,i+l+j) = (a^g,i+j)

which shows 0 defines a map from T(G, a) to the direct limit. It is now trivial to

check the induced maps are inverses.    □

Since direct limits commute with the formation of homology we have

COROLLARY  1.1.2.   The torsion functor T is an exact functor.

PROOF. Let 0 —» (A, a) -^> (B, P) -^ (C, 7) —> 0 be an exact sequence of abelian

groups A, B, and C and a, fi, and 7 are endomorphisms of the corresponding groups

so that ia = fii and 7r/? = 771". The homology of this sequence is zero since it is exact.

Applying T, the homology of the resulting sequence is also zero since T is isomorphic

to a direct limit. Therefore the sequence 0 — T(A,a) -* T(B,0) -* T(C,i) -» 0

is exact.    □

Now let M be a finitely generated torsion F[t,t~l] module and let g be an

F[t, t~l] module automorphism of M. Let jp be a prime ideal in the principal

ideal domain F[t,t~l], and let Mp denote the ^-primary component of M. Then

M = 0pMp. Each Mp is canonically filtered by Mp = pxMp and Mp/Mp+1

is isomorphic to a vector space over the field Fp = F[t,t~1]/p.   Since g is an
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automorphism, gMp C Mp and g induces a linear automorphism of the F^-vector

spaces Mp/Mp+l. Let

det(ff) = TT{determinant of g on Mlp/MP+1} E F*p,
P

%

and let

det(g) = ©det(ff) E®F*p = Wh2(F(t)).

p p

Wh2(F(t)) arises in algebraic K-theory as a quotient

0 - K2(F[t,t-1]) - K2(F(t)) - Wh2(F(0) - 0.

1.2. The homological invariant $. Using the preliminaries from §1.1 we are

able to define the homological invariant $. Let M be a compact n-dimensional

smooth manifold and let / be a diffeomorphism of M. Let g E Aut(/) be a

homeomorphism of M which commutes with /. / and g induce automorphisms

f,k and g*k of the groups Hk(M;2).  Let Tg*k be the induced automorphism of

T(Hk(M;2),f*k). Define $(<?) = 11^=0det(T9*J("1)fc in Vfh2(F(t)), where we

are writing each F* as a multiplicative group. The functorality of the construction

shows $ is a group homomorphism.

The image of $ is contained in the finite set of (Fp)* where p is a prime dividing

det(7 - t ® /*), this determinant as an endomorphism of F[t, t"1] ® H*(M; 2).

In §3.2 we will demonstrate that det(-) is a Euler-Poincare mapping [L, p. 98].

From this it follows the product defining $ is a natural extension of det(-) to define

a Euler-Poincar6 characteristic for complexes of torsion modules.

1.3. The space of Markov partitions. Following Wagoner's construction

in [Wl] of rpA'. Aut(tT^) —> Wh2(F(t)), in the next two sections we outline the

construction of </>: Aut(/) —► Wh2(F(t)) making a few minor changes and demon-

strating statements only when the proofs differ from the corresponding statements

found in [Wl].

The central tool is the notion of a Markov partition of a basic set. We recall

some definitions and basic facts from smooth dynamical systems theory. Let / be a

smooth diffeomorphism of a closed manifold M. We say x E M is nonwandering if

for every neighborhood U of x, (Uin|>o fnU) (~\U ̂  0. The set of all nonwandering

points will be denoted by Cl. We assume Q has a hyperbolic structure. Briefly this

means there is a splitting of TqM, the tangent bundle M over fi, into two summands

Eu and Ea so that Dfx: E" —* Ey,x* and Dfx: Ex —> Ej,, are expansions and

contractions respectively relative to some norm on TM. Under this hypothesis fi

can be characterized as the closure of the periodic points of /. Furthermore the

compact invariant set fi decomposes as a finite disjoint union of compact invariant

sets fii. Each fi^ contains an orbit of / which is dense in fit. These fi, are called

basic sets.

Hyperbolicity also guarantees the existence of smooth stable and unstable man-

ifolds Ws(x) and Wu(x) through each point x E Vl. If

we(x) = {y e M\d(fnx, fny) <e for n > 0}

and

W?(x) = {yE M[d(fnx, fny) <eiorn<0}
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then W£(x) and W£(x) are small discs centered at x contained in Ws(x) and

Wu(x) respectively. Assuming the transversality condition—that is Ws(x) inter-

sects Wu (y) transversally for every x and y in fi—there is a continuous map [ , ]

defined on some neighborhood of the diagonal in fi x fi (i.e. d(x, y) < £ for some e

and e depends only on /) by (x,y) i-» [x,y] = W£(x) n W£(y). Let R E fi, we say

R is a rectangle if the diameter of R is less than e and for every x,y E R, [x, y] E R.

We denote W?(x) n .ft by Wu(x, R) and W°(x) DRby Ws(x, R).

For zero-dimensional basic sets fi,, a result of Bowen implies /|fi; is topologically

conjugate to a subshift of finite type. The proof of Bowen's theorem uses the concept

of a Markov partition of fi*. A Markov partition for a zero-dimensional basic set is

a finite cover by rectangles {Ry,... ,Rn} such that

(1) Each Ri is the closure of its interior.

(2) Rt n Rj = 0 for i ^ j.
(3) \ixERt and f(x) E R0, then fWu(x,R%) D Wu(fx,Rj) and fWs(x,Rt) C

W'{fx,Rj).
We will denote the collection of all Markov partitions of fii by P%, or if no

confusion is possible by P. We denote elements of P by ll, "V, etc. where each U is a

collection {Uy,..., Un} of rectangles. We say U is refined by V and write ll < V ii

for every V E V, there is a U E ll and V EU. We consider P as a simplicial complex

where an n-simplex is an ordered (n + l)-tuple [Uo, Uy,..., Un] such that Ui < U3

if i < j. It is easy to show that for U and "V in P, U fl f defined as {U r\V[U E U

and V E V} is also a Markov partition and U < U Hi) > 1). A consequence of

this is the simplicial complex P is contractible. If g is a homeomorphism of M

and gV is defined as {gVy,..., gVn} one can show U fl fV and U f) f_1V are also

Markov partitions. We define U(—n,rn) = f~nU fl • • • fl U fl • • • fl fmU for positive

integers n and m. The previous comment and induction show U(—n,m) is also a

Markov partition. As n and m —► +00, the diffeomorphism / contracts rectangles

in the stable direction and f~l contracts rectangles in the unstable direction. It

follows that as n, m —► +00, the diameters of the rectangles in U(—n, m) tend to 0,

consequently given any U and "V it follows from the Lebesgue covering lemma that

there exist integers N and M so that U < 1)(—N,M). We introduce something like

a length function l(U,V) defined only if U < V by

l(U,V) =min{n-f-m|"V < U(-n,m)}.

We say [Uo, Uy,..., Un] is a tight n-simplex if l(Ui, Ui+y) < 1 for all 0 < i < n.

PROPOSITION 1.3.1. Given U and V vertices in P, there is a path in P which

we denote as

U = Uo~Uy-Un-l-Un = V

such that (Ut, Ul+y) is a tight edge for 0 < i < n.

PROOF. [Wl].    D

Given a tight edge (U, V), there are four possibilities:

(i)u<v <u(o,i),
(2) V <U < V(0,1),
(3) U < V <U(-1,0),
(4) V <U < V(-1,0).
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We denote the four cases by U ^+ V, U <— 1>,U —*")), and U <— V respectively.

Tight edges are important because they define explicit isomorphisms between

certain finitely generated torsion modules which we define now. Let U be a Markov

partition. Define 1U to be the free abelian group on generators Ui E U. We define

an endomorphism of 2U on generators Uj by

A(u)Uj = Yl AiJUi
UiEU

where Aij = 1 if Ui n fUj ^ 0 and At] = 0 otherwise. The finitely generated

torsion module of interest is T(2U,A(U)) which we shall frequently abbreviate as

TU.
Different Markov partitions give rise to different endomorphisms A(U); however,

they are all related by the notion of shift equivalence. Two endomorphisms A: G —♦

G and B: H —* H are shift equivalent if there are morphisms R: G —> H and

S: H -+ G so that RA = BR, AS = SB and SR = AP,RS = Bp for some natural
number p.

PROPOSITION 1.3.2. Two morphisms A = A(U) and B = A(V) that arise

from Markov partitions U and V in P that form a tight edge are shift equivalent.

In fact we can take p = 1.

The proof is originally due to Williams and is well known. We recall it to set

down notations and conventions to be used later.

PROOF OF 1.3.2. There are two cases to consider.

Case 1. U —► V. We want to exhibit two morphisms R and S that fit into a

commutative diagram as below

2U    ^l    2U

s       ^>^        s

2V    -►   IV.
A(V)

Let A = A(U), B = A(V). For a fixed VT E V, there is exactly one Ui E U so that

VT C Ui. Define a zero-one matrix RiT by Rir = 1 iff Vr C Ui. Let R be the map

defined by R(Vr) = J^i^irUi- Let Sri be the zero-one matrix where Sri = 1 iff

Vr n fUi # 0. Define S(UZ) = £r SriVr.

First we show RS = A, or equivalently that At] = 1 iff (RS)ij = J2r RirSTj = 1.

If J2r RirSrj = 1, then at least one term, say RiTo ■ Sroj = 1. This implies Vro E Ut

and Vro n fUj # 0, it follows 0/F,n fU3 E Ut n fU3 and Al} = 1. There
can be at most one ro so that RiroSroJ = 1 because by hypothesis V < U(0,1),

and VTo n fUj E Vro determines r0 uniquely. On the other hand if A^ = 0, then

[/, n fUj = 0 and there can be no Vr so that Vr E Ui and Vr n fUj ^ 0. So

RirSrj = 0 for all r.

It remains now to show SR = B. Assume Brs = 1, then Vr n fVa ^ 0. Let

Uj be the unique element of U so that Vs E Uj. Then Rjs = 1 and Ria = 0 for

* # i- So J2i SriRis = SrjRjs. Srj = 1 because 0 ^ Vr C\fVs C VrnfUj. The sum
^2i SriRia can at most be one since for a fixed s, Ris can be nonzero for at most

one value of i. To conclude we show (SR)rg ^ 0 implies Bra ^ 0. If (SR)rs / 0

then there is a j so that SrjRJS = 1, and so Vr n fUj ^ 0. By Lemma 2.1.9, Case
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1, for x E Vs, Wu(x,Vs) = Wu(x,Uj) so fWu(x,V3) = fWu(x,U3). Intersecting

with Vr gives fW?(x) n fVs l~l VT = fW?(x) n fU3 n Ur ^ 0. Thus /Us n Vr ^ 0

and Srs ^ 0.

Case 2. ii —► V. We define morphisms P and Q so that the following diagram

is commutative

VI   ^   zu

p[   9^' p
2V     «&   2V.

Let Pri = 1 if Vr C Ui and 0 otherwise, Qjs = 1 if /Vs fl £/j ^ 0 and 0 otherwise.

Define P(£/j) = J^r PriVr and Q(VS) = J2jQjsUj- The demonstration that the

diagram commutes is similar to Case 1.    □

The morphisms constructed above generate isomorphisms of TU to TV. If U —►

V, then the morphisms R and S give rise to maps TR and TS which fit into a

commutative diagram as a consequence of the functorality of T

TU     im    TU
TR^^

TS S-^ TS

TV    -►   TV.
TA(V)

From the definition of TU it follows TA(U) corresponds to multiplication by t~l.

Thus TS and TR are isomorphisms since both TS o TR and TR o TS are isomor-

phisms. If U -^ V, then TP and TQ are isomorphisms and (TP)-1 = t ■ (TQ).

For arbitrary Markov partitions U and "V, by connecting them in P with a tight

path we can construct an isomorphism of TU to TV. Let

U = U0-Uy-U2-U„-i -un = v

be a tight path. We choose isomorphisms from TUi to TUi+y for 0 < i < n in the

following fashion:

(1) If Ui -^ Ui+i the isomorphism is (TR4)-1.

(2) If Ui <— Zij+i the isomorphism is TRi+y.

(3) If £/, —► Zij+i the isomorphism is TPi.

(4) If Ui <— i/j+i the isomorphism is (TPi+i)_1.

The composition of these yields an isomorphism rp(U, V): TU —> T"V.

A fundamental fact is that this isomorphism does not depend on the particular

choice of tight path from U to V. An important ingredient of the proof of this fact

(found in [Wl]) is that any loop in P of tight edges can be bound by a complex

consisting of tight two simplices.

1.4. The dynamical invariant cp. Elements of Aut(/) must preserve the

nonwandering set. If g E Aut(/) and fij is a basic set in fi, then gQi must also

be a basic set although it may be different from fia. Thus the elements of Aut(/)

permute the basic sets of /. We do have some control of this. Since each basic set

contains a dense orbit, the dimension of E™ C TXM is independent of x E fii. We

define the index of fi, to be dim(j£").   Since g commutes with /, jjfii must have
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the same index as fi;. We let fife denote the union of basic sets of index k and Ok

denotes a particular basic set of index k.

We will study Aut(/) by considering the action of its elements on Markov par-

titions of the various fi*1 and using the ideas from the previous section. First we

need a technical lemma.

LEMMA 1.4.1. Let U be a Markov partition of Ui. Then there are Markov

partitions V refining U so that gV is also a Markov partition of f/fi,.

PROOF. We will construct V of the form U(-n,m). It is clear U(-n,m) <

U(—N,M) if N > n and M > m. Let e be as in the definition of rectangle.

Since g is uniformly continuous we can choose n and m so large that the diameter

of gU is less than e for every U E U(-n,m). Observe gWu(x) = Wu(g(x)) and

gWs(x) = Ws(g(x)), recall W£(x) and W£(x) contain small discs about x in Ws(x)

and Wu(x) respectively. Also, from [BI] we know W£(x) DB£'(x) = W£,(x) where

B£'(x) denotes the e'-ball at x and e' < e. From these facts and the uniform

continuity of g and g'1 it follows there are small numbers e' and e" so that

W£s,(g(x))E9W£s(x)EW£s„(g(x)),

W?,(g(x))c gW?(x) EW2,(g(x)).

Now choose n and m so that the diameters of gU for U E U(—n,m) are less than

the minimum of the set {e,e',e"}. If x,y E gU, then [x,y] = W£(x) n W£(y) =

W°,(x) n W$(y) E gWI(g~lx) n gW^(g~lx) = g[g-lx,g-ly]. Thus gU is a

rectangle. Properties 1 and 2 for partitions are clear because g is a homeomor-

phism. For Property 3 let x E gUi (~l f~lgUj for Ui, Uj E U(-n,m). We

want to show fWu(x,gUi) D Wu(fx,gUj). Now g~lx E Ui D fUj and since

U(—n,m) is a Markov partition fWu(g~1x,Ui) D Wu(fg~lx,Uj). We rewrite this

as fW?(g-lx) fl fU% D W?(fg~lx) n Uj. Applying g

fgW^g-'x) n fgU% D gW^fg-'x) n gU3 D W?,(fx) n gUj = W?(fx) n gU3

since the diameter of gU3 is smaller than e and e'. On the left

fgW^g-'x) n fgUi = f(gW?(g-lx) n gUi) E f(W?„(x) n gUt) = f(W?(x) n gUz)

since the diameter of gUi is less than £ and e'. This shows

/^■(ai,^)^^/*.^)-

The demonstration that fWs(x,gUi) C Ws(fx,gUj) is similar.    D

For each basic set fi*, i = 1,2,... ,j(k), of index fc let Ui be a Markov partition.

Let Vi be a refinement of Ui so that gVi is also a Markov partition of gClk. We

let g also denote the permutation of the index set, gUk = fi*(i). From §1.3 there

are isomorphisms tp(Ui,Vt): TUt -> TV; and V(»^i, ^a(»)) = TgVi -» TZig(i). There

is also a canonical identification of T"Vj and T^V, given by V E V h-> gF E gV.

Under the map induced by this from 2V to 2gV we have the identification A(Vi) =

A(gVi). We let TG(Vi) denote this isomorphism. Altogether we have a composite

isomorphism rp(Ui, Vt) o TG(Vi) o rp(gVi: Ug(i)): TUt —► TUg(i). (Read composition

from left to right here.) By taking direct sums over all basic sets of index k we

obtain an isomorphism

0MU,-, Vi) o TG(Vt) o rP(gVi,Ug{i))]: 0Ti/, - 0T^ff(l).
i i t
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Under the rearrangement of the indices 0, TUg(x) = 0t TUt. Call this rearrange-

ment isomorphism ft. Define an automorphism T(g,fc) of @tTUi by T(g,k) =

@i[rp(Ux, Vi) o TG(Vi) o rp(gVi,Ug(i))] o R. We have already remarked that this

definition does not depend on the tight paths chosen. It is also independent of the

choice of {V;}. This is a consequence of the following lemma.

LEMMA 1.4.2.   TG(V')=rP(V',V)oTG(V)orP(gV,gV).

PROOF. It is possible to choose a tight path from "V to V so that the image

under g of each partition in the path is also a Markov partition. Thus it suffices to

check the equation for ("V, V) a tight edge. Assume "V —► V. Then gV -£♦ gV and

the matrices R and S for these two tight edges are identical if we use the natural

order on gV coming from V, i.e. if "V = {Vi,..., Vn} then gV = {Uy,... ,Un} where

Ui = gV% for each i. The case V —► V is similar.    □

The dynamical invariant <p(g) is defined as \~[kdet(T(g, fc))'-1' where again

we are using multiplicative notation in each F*. The product is from fc = 0 to

fc = dim M.
We remark that the definition of <p(g) is also indepdent of {Ui}. In fact if {U[}

is another choice of partitions, then ©a rp(Ui, U[) defines a conjugacy from T(g, fc)

and T(g, fc)' defined using the {U'i} partitions. That is

T "I _1

T(g,k)' = ^rP(UrM'l)oT(g,k)o   0V(M)        •
i L   t

It follows det(T(g, fc)') = det(T(g, fc)).
We also would like to note that our order of composition of the isomorphisms

defining T(g, fc) is reversed to Wagoner's original definition and so our automor-

phisms are the inverses of the ones he defines. Of course they contain the same

information and we choose this order to avoid an inverse appearing in the statement

of our main theorem.

The argument to show (p is a group homomorphism follows essentially verbatim

from [Wl] and is a consequence of rp(U, V) being independent of path.

2. The main result

THEOREM. Let f be a fitted Smale diffeomorphism of an oriented closed smooth

manifold M. If we take F = Z/2 in the definition of the torsion functor T, then as

homomorphisms from Aut(/) to Wh2(2/2(t)), <p and $ are equal.

REMARKS. The theorem is true for any field F provided / preserves the orienta-

tions assigned Eq; however, this is an exceptional case as most examples show. The

theorem is probably also valid for nonfitted diffeomorphisms. As the proof stands

the only problem extending the theorem is 2.1.2 and concerns technical matters on

extending the stable and unstable manifolds of /.

The proof divides naturally into two parts. Part one demonstrates that the

mod 2 dynamical invariant can be calculated in terms of the homolopgy groups

of certain pairs in M. The second part relates this information to the absolute

homology groups of M and the homological invariant 3>.

2.1. Filtrations and filtration pairs. Given a manifold M and a diffeo-

morphism / there are finite sequences of compact submanifolds of M of the same
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dimension as M: 0 C My C M2 C • • • C Mn = M, with the properties that

/(Mj) C int M; and that for each 1 < i < n, exactly one basic set fi; is contained

in Mi — Mi-y. Furthermore fi; = ("Inez fn(Mi — M;_i). These filtrations also have

the property that the basic sets in M; - M;_i occur with nondecreasing index. We

use the following notation to reflect this.

0 = M? c M° C • • • C M°(0) = M°

= Mq1 C M1 C • ■ • C M/(1) C M1 C M02 C • • • C M0n C Mx" C ■ • ■ C M?,n)
= Mn = M,

where M* - Mk_ x contains the basic set of index fc denoted by fi* for 0 < fc < n

and 1 < i < j(k).

(Mk, Mk_y) is an example of what is called a filtration pair for the basic set fi*.

DEFINITION. A pair (X,A) of compact submanifolds of M with boundary and

of the same dimension as M is a filtration pair of a basic set fi if

(1) f(X) c intX and f(A) c int A.

(2)n = (\nezr(x-A).
For a sufficiently fine Markov partition of a basic set fi there is a relation between

the endomorphisms A(U) and /» acting on the relative homology of a filtration pair

for fi. To make the relationship precise we assign an orientation to Eft (possible

because fi is zero dimensional and hence totally disconnected). Let A(x) = ±1,

depending on whether Dfx preserves or reverses the orientations. By taking a

sufficiently fine Markov partition U we can assume A is constant on each rectangle

in U. Define B^ = A([/;) if f/; n fUj ^ 0 and 0 otherwise. Let B(U) be the
endomorphism of 2U defined on the generators Uj E U by B(U)Uj = ^B^C/;.

Since [Btj\ = Aij it is clear that as endomorphisms of Z/2 <g>z 2U, A(U) and B(U)

are equal, and that T(2U; A(U)) = T(2U, B(U)) for T defined using F = Z/2, which
we assume from now on.

Let G be an abelian group and let B(U) define a map from Gn —► G" by

(n n \

J2Biygt,... ,^2Bingi j .
i=l i=l /

Bowen and Frank [BF] demonstrated that if M is orientable and if (X, A) is a filtra-

tion pair for the basic set of index fc then B(U): Gn —> Gn and /,: Hk(X, A; G) —>

Hk(X,A;G) are shift equivalent. This implies

T(2U,B(U))=T(Hk(X,A;2),U).

For our purposes we need to make this isomorphism explicit. We shall construct

a map a: 2U -* Hk(X,A;2) for a suitable filtration pair (X,A). This map shall

have several important properties and to establish them we must assume / is a

fitted diffeomorphism. Diffeomorphisms are fitted with respect to some handle

decomposition of M. We recall the definitions (see [F, p. 28]). A handle set H(k)

is a union [jt n;(fc) where each /i;(fc) is diffeomorphic to Dk x £>""*, a product of

discs. The handles are constructed using local coordinates around critical points

of index fc for some self-indexing Morse function. For x E /i;(fc) corresponding to

(p,q) E Dk x Df", we let W?(x) be the image of Dk x q and W°(x) the image

of p x D"~k.  A diffeomorphism is fitted with respect to handle sets H(k) if / is
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hyperbolic over the handle sets and if fc < / and x E hi(l) and y = fnx E hj(k)

for n > 0, then fnW?(x) D Wf(y) and f~nW?(y) C W?(x). It follows W?(x) C

Wu(x) and W?(x) D Ws(x) if x E fi. Notice that W?(x) and W?(x) are defined

even if x is not in the nonwandering set. Thus we can define an extension of the

canonical coordinates (x,y) t-> [x,y] = W£(x) C\W£(y) from some neighborhood

of Afi, the diagonal in fi x fi, to some neighborhood of Afi in M x M. That

is, if x and y are in the same handle /i;(fc) and d(x,y) < e, let (x,y) h-> [x,y] =

W?(x) D W?(y). This extension is used to construct a: ZU -» r7fc(X,A). We

remark that the hypothesis that / be fitted can be weakened slightly using the ideas

in [HPPS] of semi-invariant disc families with the hypothesis that the families can

be chosen to foliate a neighborhood of the nonwandering set. This is clearly the

case for fitted diffeomorphisms although it is still unknown whether such a choice

of families is always possible for an arbitrary diffeomorphism /.

To define a: 2U —* Hk(X,A;2) we let U be a Markov partition as in the def-

inition of B(U). For each rectangle U% E U, let IV; be a neighborhood of Ui in

M so that IV, fl Wj =0 for i ^ j. This is possible because the rectangles are

open and closed in fi. For each rectangle [/; choose a periodic point xz of / in

Ui. Xi E Wu(xt,Uz) C W?(xi) C Wu(xi). Let a(x{,Ui) be a neighborhood of

Wu(xi,Ui) contained in W£(xi) fl W;. In [BF] these neighborhoods are assumed

to be fc-dimensional submanifolds of Wu(xi) with boundary. This will not be pre-

served under our setting; we assume each a(z;, Ui) is homeomorphic to some pseu-

domanifold with boundary (see [Sp, p. 150]). This can be accomplished by choosing

the neighborhood to be a manifold as in [BF] and then triangulating. We call such

neighborhoods nice. Similarly we can construct nice neighborhoods f)(xi,Ut) of

Ws(xi,Ui) contained in W£(xi) fl IK;. By taking U fine enough and a(x;,f/;) and

f)(xi,Ui) small enough we can assume [a(x;,C/;),/?(i;,[/;)] is defined using the ex-

tended canonical coordinates. The local product structure of the handles guarantees

this is a neighborhood of £/; in M. Ui C int[a(xi,Ui),0(xi,Uij] C IV;. Therefore
\Ji[a(xi,Ui),P(xi,Ul)] is a neighborhood of the basic set fi in M.

LEMMA 2.1.1. Let W be a neighborhood of a basic set fi in M. Then there is

a filtration pair (X, A) so that X — A C int W.

PROOF. Let (Y,B) be any filtration pair. Since f(Y) C Y and f(B) C B and

fi = f|n€Z fn(X-A), it follows there is an integer N so that fNY-f~NB C int W.

The desired filtration pair is (fNY, f~NB).    D

Choose a filtration pair (X,A) so that X — A c int [Jl[a(xi,Ui),fi(xi,Ul)]. It

follows a(xi,Ui) C X and da(xi,Ut) C A. (d as a fc-dimensional pseudomanifold

contained in Wu(xi).) Also fi(xi,Ul) E M - A with dfi(xi,Ul) C M - X. Since

the a(xi, Ui) and fi(xi,Ut) where chosen as nice, they represent homology classes

[a(xi, Ui)] and [fi(xl, Ui)] in Hk(X, A; 2) and r7„_fc(M - A, M - X; 2) respectively.

Until further notice we will drop the coefficients in the homology groups; they are

assumed to be the integers. Define a: IU —► Hk(X,A) on the generators Ui E U

by a(Ui) = [a(xt,Ui)[ and extend linearly. Since the IV; are pairwise disjoint, it

follows the a(Ui) represent independent elements in Ht(X,A). By orienting the

a(xi,U%) and fi(x%,Ui) we can assume that the cohomology classes [/?(x;,[/;)]* in

Hk(X,A) (which are the images of [/3(xi,Ui)] under the duality isomorphism

Hn.k(M -A,M-X) = Hk(X,A))
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when paired with [a(xj,Uj)] give 6tJ, the Kronecker delta. Since the pairing is

linear, it follows that it is zero on the torsion subgroup of Hk(X,A) and there-

fore the images of the [a(x;,r/;)] remain independent in F, the quotient group

Hk(X, A)/Tor(Hk(X, A)). By abuse of notation we shall denote the images of

[a(xi,Ui)[ in F also as [a(xi,Ui)].

We use the extended canonical coordinates to define a(yt, Ui) for other choices

of yi E Ui. Let «(?/;, [/;) = [a(z;, [/;),?/;]. The extended canonical coordinates still

satisfy the formula [[x,y],2] = [x,z] and so for any two yi,y[ E Ui, [a(y;, [/;),?/,■] =

a(y[,Ui). Similarly, let /?(y;,f/;) = [?/;,/?(x,,Ui)]. The construction of (X, A) shows

these sets also represent homology classes. Unfortunately, in Hk(X, A), [a(yi, Ui)] ^

[a(xi, Ui)] for all choices of ?/;. However, the ambiguity is removed when we consider

their images in T(Hk(X,A),f+).

PROPOSITION 2.1.2. The image of the class [a(yuUi)] in T(Hk(X,A),f„) is
independent of yi E U%.

PROOF. It suffices to show the images of [a(x%,U%)] and [a(«/;,Ui)] are equal.

There is a homotopy in M from the set a(xi,Ui) to «(?/;, Ui) constructed by choosing

a path 7: / —* Ws(xi) with 7(0) = x% and 7(1) = [a:;,?/;] and letting H: a(x;,t/;) x

/ - M by H(z,t) = [2,7(01- H(z,0) = [z,xt] = z and H(z,l) = [z,[xt,yt]] =
[z, yi] E a(yi, Ui). This homotopy does not show

[a(xi,Ui)] = [a(yi,Ui)]

because the homotopy may not remain in X. Since z; is a periodic point of /,

there is an integer p so that /pz; = z;, and it follows /p(lVu(z;)) = Wu(xi). Given

z E a(xi,Ui), z and [2, j/,-] both lie in Ws(z), so we can choose n such that the

distance between fpnz and fpn[z,yi] is arbitrarily small provided these images re-

main in the handles. By compactness of a(z;,<7;) we can do this uniformly over

a(xuUi). Since fX C int A" and fpWu(xl) = Wu(x%), d(Wu(xi),M - X) = e > 0.

Therefore Be(Wu(x{)) C X. By choosing n so large that d(fnpz, fnp[z,y%]) <

e for all z E a(z;,[/;) such that the images remain in the handle set implies

d(fpnz, fpn[z, 7(<)]) < £ for these z. Points z where fpnz does not tend to fpn[z, yt]

imply fpnz E A. Therefore fpnH(-, ■) C X and this gives a homotopy from

fpna(xl,Ul) to fpna(yl,Ul) over ~X=A. In T(Hk(X,A),f.),

\a(yi,Ui)] = tnpf:p[a(Vl,Ut)] = tnp[fnpa(yl,Ul)]

= tnp[fnpa(xl,Ul)] = tnpf:p[a(xt, Ui)] = [a(zt, Ui)].    □

THEOREM 2.1.3. The endomorphism a: 2U —► Hk(X, A) induces an isomor-

phism Ta: T(2U,B(U)) ->T(Hk(X,A),f*) of F[t,t~l] modules.

LEMMA 2.1.4. Let Tor(Hk(X,A)) denote the torsion subgroup of Hk(X,A)

and let F denote the free group Hk(X,A)/Tor(Hk(X,A)). If /„ is the map in-

duced on F by /», then the canonical quotient map from Hk(X,A) to F induces an

isomorphism T(Hk(X, A),/.) a T(F,Jt).

PROOF OF 2.1.4. Apply T to the short exact sequence

0 - Tor(Hk(X,A)) -» Hk(X,A) - F - 0.



784 FRANK ZIZZA

Assuming M is orientable we can apply a result from [BF], /«|Tor(i?fc(X, A)) is

nilpotent. This implies T(Tor(Hk(X, A)),/*) = 0 and the result follows since T is

an exact functor.    □

PROOF OF 2.1.3. Comments after the construction of a show that its image

injects in F. So by the lemma, it is sufficient to show a induces an isomorphism

from T(2U,B(U)) to T(F,f,\F).
The morphisms B(U) and /» define morphisms of the free Z-modules 2U and F.

Let B be the matrix of B(U) relative to the basis Ui EU and let M be the matrix

of /* obtained by extending the independent set {a(x;, £/;)};=i,...]n to the basis for

F. B and M are integer matrices and M has the form (^ ^). Relative to these

bases the matrix of the linear map a is (70") • The first task is to show a defines a

map on the cokernels. Let (1®/-£<8>.B) = imagel<S>I-t®B and write t®B as tB

and t <g> M as tM. We must show a(I — tB) E (I — tM). Let v be the coordinates

of v E 2U. av E F has components

ft)-©-
a(I-tB) = {a(I-tB)v[vEV}= j (v    *Bv\  vev\.

To show
(v — tBv \      , T     ..,.0      J €</-«">

we must solve the equations

<'-<«>(:)=(""oB")

(a and 6 are column vectors with entries from F[r-, f-1]).

tr     ,A^fa\      (a-tBa-tCb\
V-tM^\b) = \b-tDa-tNb)-

Let a = v. We want b so that Cb = 0 and 6 — £Z)v — tTVfc = 0. From the second

equation (/ — tN)b = tDv. In [BF] it is shown the matrix N is nilpotent (Lemma

3.6). Therefore I -tN is invertible and if p is such that Np+1 = 0, then

b = (I - tN)-HDv =(I + tN + --- + tpNp)tDv.

Bowen and Franks also show CNW = 0 for all j > 0. It follows that Cb = 0.

(Remark: It is crucial to be working with Z coefficients at this stage.)

From [BF] we know B and M are shift equivalent. Therefore as vector spaces

over Z/2 we know T(2U, B(U)) = T(F, /,|F). Thus to show Ta is an isomorphism

it suffices to show Ta is an injection.

°W=(;)«0   »     (;)=(J-tM)(;)     forsome(;).

ir    ^^fa\      (a-tBa-tCb\      (v\
V-tM\b) = \b-tDa-tNb) = \0)

gives the equations b = (I - tN)~ltDa and so as before Cb = 0. We get v =

a - tBa - tCb = a - tBa = (I - tB)a and so v = 0 module (I - tB).    D
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Recall now the construction of the automorphisms T(g, fc) of 0^ TUi used to

define the dynamical invariant (p(g). For simplicity, let us assume there is one

basic set fi of index fc. We observed the value of <p(g) is independent of the initial

choice of Markov partition U since the determinant function det(-) is independent

of conjugacy. So for our convenience we may assume out initial Markov partition

U is chosen so that gU is also a Markov partition. This reduces T(g, fc) to TG(U) o

rp(gU,U) since the initial term rp(U, U) is the identity. Let Uo = gU,Un = U and let

Uo-Uy-Un-y-Un

be a tight path connecting gU and U. The isomorphisms defining T(g, fc) arise from

the following sequence after T is applied

TU -2^ 2gU = 2Uo-2Ux-2Un = 2U.

The morphisms from ZZi; to 2Ui+y for 0 < i < n are obtained from Proposition

1.3.2.
The point is to use the morphisms a to translate this information to information

determined by homology groups of filtration pairs for fi in M and the maps induced

by / and g. This is accomplished in the following three propositions.

Before the construction of the a morphisms we need a lemma to ensure the

Markov partitions appearing in our tight path defining T(g, fc) can be chosen arbi-

trarily fine.

LEMMA 2.1.5.   Given a tight path from U to V

U = Uy-U2-Un = V

the path

Uy(-N,M) - U2(-N,M)-Un(-N,M)

is also a tight path connection U(—N,M) to V(—N,M).

PROOF. It is sufficient to show (U(-N,M), V(-N,M)) is a tight edge if (U, V)
is tight. This follows from induction on N and M after the observations:

(1) If U < V then U(-1,0) < V(-1,0) and U(0,1) < V(0,1).

(2) U(-i,j)(0,l) = U(-i,j + l) and U(-i,j)(-l,0) = U(-i-l,j).    D
Thus we may assume all the partitions defining T(g, fc) can be chosen so that

B(Ui) is defined for each 0 < i < n.

PROPOSITION 2.1.6. Let U be a Markov partition of a basic set fi* of index k

so fine that gU is also a Markov partition of gClk and so fine that the morphisms

B(U) and B(gU) are both defined. Let (X, A) be a filtration pair of Qk as in the

construction of a morphism a: 2U —► Hk(X,A). Then there is a filtration pair

(Y,B) of <jfi* and a morphism a': 2gU —* Hk(Y,B) so that Ta' is an isomorphism

and the following diagram commutes

2U       -22L      2gU

°[ la'
Hi(X,A) -► Hk(Y,B).

9-
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PROOF. Let (Y,B) = g(X,A) = (gX,gA) and let a'(gUi) = [</a(z;,<7;)] where
a(xi,Ui) are the neighborhoods of IVu(z;,C/;) chosen to construct a. From the

lemma that U can be chosen so that gU is also a partition we see that ga(xi,Ui)

is a nice neighborhood of Wu(gxi,gUi). Commutativity of the diagram is trivial.

When T is applied Ta' is also an isomorphism. To show this one checks the steps

in the construction of a. These steps are:

(1) Periodic points z, E Ui are chosen and neighborhoods iV; of £/; are chosen

to be pairwise disjoint,

(2) Nice neighborhoods q(z;,C/,) of IVu(z;,C/;) are chosen that are contained in

Wu(xt) n Wi. Also neighborhoods fi(xi, U%) of Ws(xi, Ui) are chosen.

(3) Using extended canonical coordinates [, ] the set W = UJa(z;, £/;), /?(z;, [/;)]

is a neighborhood of the basic set and (X, A) is a filtration pair of fi* chosen so

that X - A C int W.

(4) For ally, E Ut, a (yt,Ut) defined as [a(x;, Ui),yt] and fi(yz,Ui) = [y%,fi(xu,Uij]
are neighborhoods of Wu(yi,Ui) and Ws(yi,Ui) respectively with da(yi,U%) C A

and d/3(yi,Ui) EM-X.
In these steps to demonstrate Ta' is an isomorphism, z, is replaced by gxi,

a(xi, Ui) is replaced by ga(xi, Ui) which is a nice neighborhood of Wu(gxl,gUl) and

fi(xi,Ui) is replaced by gfi(ii,Ui). It may be necessary to reorient the <7/?(z;,C/;)

to show Ta' is an isomorphism but this does not affect the construction of a'. It

is clear (gX, gA) is a filtration pair of </fi; and that dga(xi, [/,) C gA.    □

PROPOSITION 2.1.7. Let (U,V) be a tight edge. Let a: JU -* Hk(X,A) as

in Proposition 2.1.6. Then there are a filtration pair (Y,B) and a map a': 2V —►

Hk(Y,B) which induce an isomorphism after T is applied. Furthermore (Y,B) can

be chosen so that there is an inclusion from (X, A) to (Y, B) or vice versa (depending

on the morphism 2U — 2V constructed for the tight edge as in Proposition 1.3.2) so

that the following diagram commutes after T is applied

IU -► IV

a a'

Hk(X,A)   induced by. Hk(Y,B).

inclusion

To prove Proposition 2.1.7 it is necessary to known how the various stable and

unstable sets Ws(ur,Vr) and Wu(vr,Vr) are related to Ws(vr,Ui) and Wu(vr,Ui)

for a tight edge (U,V).

LEMMA 2.1.8. If U is a Markov partition of a basic set, then so is UdfU and

for sufficiently fine U, if x E U% C\ fUj then
(i) wu(x,ulnfuJ) = wu(x,ul),
(ii) Ws(x, Ui n fUj) = fWs(f~lx, Uj).

COROLLARY. Since the stable manifold of f is the unstable manifold of f~l and

the unstable manifold of f is the stable manifold of f"1 we have a dual statement

for the partition U fl f~lU :

(i)ws(x,ulnr1u]) = ws(x,ul).
(ii) wu(x,uinf-1Uj) = f~lwu(fx,Uj).

These are used to prove the following lemma.
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LEMMA 2.1.9. Let (U,V) be a tight edge. There are four cases to consider.

All unions are disjoint unions.

Case 1. U -i» V. Let vr E VT E V and Vr C Ut E U. Let J be the set of indices so

that Vr = \Jjej(Uif}fUj) and let Vij be an arbitrary point in Ws(vr, Vr)(~\UiC\fUj

for each j E J. Then

WU(vr,Vr)=WU(Vr,Ui),

WS(vr,Vr)=  [} fWS(rlVl3,U3).

J€J

Case 2. U <— V. Let vr E Ui E Vr and let I be the set of indices so that

Vr = U;e/ Ui. Choose z; G [/, n Vr D W°(vr) for each i E I. Then

WU(Vr,Vr)=WU(vr,Ul),

WS(Vr,VT) = \JWS(xl,Ul).

iei

Case 3. U —> V. Let vr E Vr E V and Vr C U%. Let J be the set of indices so

that Vr = Uj-gj Ui n Z"1^. Choose zti G [/; n Z-1^ n W?(vT) arbitrarily. Then

WU(Vr,Vr)=\Jr1WU(fxl],U]),

J€J

WS(Vr,Vr) = WS(vr,Ul).

Case 4. U <— V. Let vr G Vr. Let 7 be the set of indices so that Vr = U,e/ Ui-

Choose i, 6 f/, fl IV "(tv). Then

W/u(^,Vr) = |JlV"(z„C/!),

WS(vr,Vr)=WS(vr,Ul).

The proofs are straightforward and omitted.

PROOF OF PROPOSITION 2.1.7. There are four cases to consider.

Case 1. U —> V. Given a: 2U —» Hk(X, A) we want to choose (V,i?) and

construct a': Z"V —► Hk(Y, B) so that the following diagram will commute when T

is applied

2U       ^—       2V

Hk(X,A) ^— Hk(Y,B).

R is the morphism defined in Proposition 1.3.2 and i is inclusion. In fact let

(Y,B) = (fX,A) C (X,A). Choose periodic points vr E Vr E V. By hypothesis

there is an integer i and an index set J so that Vr C Ut and VT = U,€j UiHfUj. Let

Wi be the neighborhoods off/; from the construction of a, then W'r = \Jj€J WiC\fWj

is an open neighborhood of Vr in Lemma 2.1.5 guarantees that the edges (U, V) in

our tight path can be chosen so fine that our extended canonical coordinates are
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defined. We use these coordinates to define a'(vT,VT) and fi'(vr,Vr) in terms of

a(xi,Ui) and /3(z;,C/;) that define a. Let

a'(vr,Vr) = a(vT,Ui) = [a(xiUi),vr],

P'(Vr,Vr) =  |J ff3(f-1Vl],UJ) =  [J f[f-1VtJ,P(xl,UJ)].
jeJ j€J

The Vij may be chosen arbitrarily in Ws(vr,Vr) D I/; fl fUj. Also, note the union

over J is a disjoint union. The previous lemma shows these two sets are neighbor-

hoods of Wl(vr,Vr) and IVs(tv,Vr) respectively. The disjoint neighborhoods W'r in

M and the continuity of / show these sets are nice. For the filtration pair (Y, B) =

(fX,A), fX-A c int UrKK,Vr),/3'(iv,Vr)]. It follows that a'(vT,VT) C fX and
da'(vr, Vr) C A, also fi'(vr, Vr) C M - A and dfi'(vr,Vr) EM-fX. Therefore the

sets a'(vr,Vr) and fS'(vr,Vr) represent homology class [ct'(nr,Vr)] and fi'(vr,Vr)] in

Hk(fX,A) and Hn-k(M - A,M - fX) respectively. If [f3'(vr,Vr)]* is the dual

of [fi'(vr,Vr)] in Hk(X,A) under the isomorphism Hn-k(M - A,M - fX) =

Hk(fX,A) and if ( , ) is the pairing of fc-dimensional cohomology classes with

fc-dimensional homology classes, then by reorienting fir(vr,Vr) if necessary we can

assume ([fi'(vr,Vr)]*, [a'(vr,Vr)]) = Srs, the Kronecker delta.

Now define a': 2V — Hk(Y,B) on generators Vr E V by a'(Vr) = [a'(vr,Vr)]

and extend linearly.

As in the proof of Theorem 2.1.3, a' induces an isomorphism Ta': T(2V ,B(V))

^T(Hk(fX,A),f.).
If Vr E V, R(Vr) = Ui and q(C/;) = [a(x;,t/;)]. On the other hand a'(Vr) =

[a'(vr,Vr)] = [a(xi,Ui),vr]. Proposition 2.1.2 now shows the diagram commutes

after T is applied.

Case 2. U —► V. For Vr E V the hypothesis gives VT = \JieI Ui for some set of

indices I. Let IV, be the neighborhoods of [/; from the definition of a, and define

Wl = U;e/ Wt- The W'r are pairwise disjoint neighborhoods of the sets Vr. Let vr

be a periodic point in VT and let i E I be defined by vr E Ui

a'(vT,Vr) = a(vr,Ul),      f3'(vr,VT) = (J/%;,[/;).

iei

The yi may be chosen arbitrarily from Ui H W3(vr,Vr) and the union is disjoint.

Lemma 2.1.9 shows these sets are nice neighborhoods of Wl(vr,Vr) and Ws(vr,Vr)

respectively. Let (Y, B) = (X,A), then

X - A c int \J[a'(vr, Vr), P'(vr, Vr)] = int U«K, Ui), P(yi, Ui)]
r i

= mt\J[a(xi,Ut),p(xl,Ut)].
i

It follows dtv>r,Vr) C A and dfi'(vr,Vr) E M - X. Define a': ZV -» Hk(X,A)
by a'(Vr) = [a(vr,Vr)], the construction results in an isomorphism Ta'.

For Ui E U, recall R(Ui) = Vr where r is defined by Ui C Vr. a'(R(Ui)) =

a'(Vr) = [a(vT,Vr)] and a(Ui) = [a(xi,Ui)]. Proposition 2.1.2 shows the following
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diagram commutes after T is applied

2U       —5—       2V

77, (X, A) —=— 77fc(X,A).

Case 3. U -^* "V. For Vr G V, then Vr C Ui, for some i and Vr = Uj€j^ n

f_1Uj for some set of indices J. Let IV/ = Ujej Wt H f~xWj be the disjoint open

neighborhoods of VT in M. Choose t;r G VT to be periodic and define

a'(vr,Vr)= \J f-1a(fxt],U]),
jeJ

f3'(Vr,Vr) = fi(vr,Ul).

The Xij E Wu(vT, Ui n f~lUj) are arbitrary. Lemma 2.1.9, Case 3 shows these sets

are nice neighborhoods of Wu(vr,VT) and Ws(vr,Vr) respectively. The neighbor-

hoods W'r show the union defining a'(vr,Vr) is a disjoint union. Let (Y, B) be the

filtration pair (X,f~1A). By the construction

X - f~lA C int \J[a'(Vr,Vr), P>r, Sr)]
r

and da'(vr,Vr) C f~lA. Define a': 2V -» T^X^M) by a'(Vr) = [a,(ur,Vr)].

Ta' is an isomorphism and if we let i : (X, A) C (X, f~xA) and P be the linear

map defined in Proposition 1.3.2 we have a diagram

TU       —^-» ZV

a a'

77fc(X,A) -► r7fc(X,/-M).
i.

For u; G £/, let I be the set of indices such that r G 7 iff Vr C Ui, then P(£7;) =

Ere/Vr.
na(Ui) = [a(xi,Ui)],

a'P(Ut) = a' \T,VA =^a'(Vr) = £»r,Vr)].

By Proposition 2.1.2 £r[a>r, Vr)] = £,»;,V,)] for any choice of v'r E Vr n

lV"(z,-, (7;) (= means congruent modulo the image of (1 ® 7 - £ ® /*))

r [JeJ

for any t>£ G Wu(v'r, Vr) n [/, n /_10,-.

Let Jr be the set of indices such that Vr = (J -g Jr (I/; n f'1Uj). Since Wu(ur, Vr)

= Wu(v'r, Vr) = Wu(xuUi) n VP1 the sets a(x<, Ui) and (Jr6/ Ui€yr /_1<*(/X,,<7,)

are both nice neighborhoods of lVu(x;,f/;)  in IV"(z;).     Both neighborhoods
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also have boundary in f~lA. Therefore the homology classes they represent in

Hk(X,f~1A) are equal.

[a(xi,Ui)]=   (J  |J rla(fv\vUJ)   .
. T  i€Jr

Since lVr' D \Jjejr f~laifvij>Uj) and {W1.} is a disjoint family

U U r'aUv^Uj) =J2 [J/-'"(fv^Uj) = 5»r,vr)].
r   jeJr r       j£jr r

This shows the diagram above commutes after T is applied.

Case 4. U ^- V. Fix Vr E V and choose vT E Vr. We know Vr = \JieI Ui for

some set of indices 7. Let W'r = (J;e/ ^ and let a'(vr,Vr) = U;g/ a(x'i-> Ui) for xf E

Wu(vr,Vr) n Ui. Also let p'(vr,Vr) = P(vr,Uio) where i0 is defined by vT E U%a C

VT. Let (Y,B) = (X,A) and a':2V -* Hk(X,A) by a(Vr) = [a'(vT,Vr)]., Ta'

is an isomorphism. P(Vr) = J2ieiUi and a'(Vr) = [a'(vr,Vr)] = [{ji€ia(x'i,Ui)].

[{Jieia(x'iiUi)] = ^2l€I[a(xf,Ui)] since a(x'l,Ul) C W; and the W; are disjoint.

Each [a(x't, Ui)] = [a(z;, C/;)] for any other z; G C/;, thus

a'(Vr) = J2Hxi,Ui)] = a (Y,U% ] = a(P(Vr)).
iei \%ei    J

This shows the diagram below commutes when T is applied

TU       ^- 2V

Hk(X,A) ^^ Hk(X,A).    a

This completes the proof of Proposition 2.1.7. At this point we have constructed

a ladder of maps

TU ^^        2gU        = 2Uo - TUn
Ot[ a'i Qol Otnl

Hk(X,A)      -+     Hk(Y,B)    =   Hk(X0,Ao)    -    77fc(X„,An)
9-

The horizontal maps from 2Ut to Zi/;+1 are either ft's or P's and the maps be-

tween the homology groups of the filtration pairs (X;, A;) are induced by inclusions.

When T is applied all the maps induce isomorphisms and the diagram commutes.

The composition of the isomorphism across the top row is T(g,k). Unfortunately

(X„, An) 7^ (X, A) and an ^ a. The following proposition shows the ladder can be

extended so that the additional isomorphisms on the top row are the identity and

the added isomorphisms on the bottom row are induced by inclusions. Finally the

last vertical map will be a.

From the constructions it follows (Y, B) = g(X,A) = (X0,A0) and (Xn,An) =

(/jvXo,/_mAq) for some large positive integers JV and M.



HYPERBOLIC DYNAMICAL SYSTEMS 791

LEMMA 2.1.10. Let (X, A) and (X',A') be two filtration pairs of the same

basic set. Define (X*, A*) = (XUX, AU A'). Let i and i' be the inclusions

(X,A)-(X*,A*) —(X',A').
i i1

Then i and i' induce isomorphisms after T is applied.

PROOF. The proof of this lemma can be found in [BF, p. 86].

PROPOSITION 2.1.11. Let (Z,C) = (Xn U X,An U A). Let an: TU -*

Hk(Xn,An) anda:TU^Hk(X,A).

These maps fit into the following diagram

TU - -— TU

an a

Hk(Xn,An)    —+Hk(Z,C)^   Hk(X,Z)

and this diagram commutes after T is applied.

PROOF. iy.an(Ui) = [a„(z;,r/;)] and i2.a(Ut) = [a(z,,f/;)] in Hk(Z,C). From

Proposition 2.1.2, we know the images of these classes in T(Hk(Z, C), /*) are inde-

pendent of z; and x'n. So we may assume z; = x\. Then a(x,,f/;) and a„(z;,£/;)

are both neighborhoods of IV"(z;,f/;) contained in Z with boundary in C and it

follows they represent the same homology class in Hk(Z,C).    D

To sum up,

THEOREM 2.1.12.   In the constructed ladder

TU -^ TgU        = TU0

a a ctQ

Hk(X,A)    -    Hk(Y,B)    =   77fc(Xo,Ao)    -•••
9

- TUn = TU = T-U

q4 r
■••-    Hk(Xn,An)    —    Hk(Z,C)    ^—    Hk(X,A).

The top row induces T(g, fc) when T is applied and the end vertical maps are a.

Ta gives us a conjugacy from T(g, fc) to a map on homology induced by g and some

inclusions.

If there is more than one basic set of index fc, we will have a collection of maps

a;: 2Ui —* Hk(Xi,Ai) where Ui are Markov partitions of the basic sets fi* and

(X;,A;) are filtration pairs for fi*. The above ladder will have a; on the left end

and a9(;) on the right. Taking direct sums over i and rearranging the indices on

the right will produce a conjugacy 0^ Ta; of T(g, fc) with an isomorphism induced

by maps of homology groups.

2.2. Putting the information together. This section's aim is to translate

the information from §2.1 obtained from the relative homology groups of filtration

pairs on the bottom row of the ladder into information that is obtainable from the

absolute homology groups of the manifold M.
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We recall the filtration of M from the beginning of 2.1 composed of filtration

pairs (Mf,Mk_y) for the individual basic sets

0 C M° C M° C • • • C M°(0) = M°Ml c Ml c • • • C M1 C • • • C Mn = M.

Let (X;,A;) be the filtration pairs from the construction of the a. Proposition

2.1.10 shows that if (X;, A;) and (M^, Mk_y) are filtration pairs of the same basic

set then

T(77fc(X„^,),/,)-T(77fc(M*,M*_1),/t)

and this isomorphism is induced by two inclusions. Taking direct sums we have

isomorphisms

m
QT{Hk(Xi,Ai)J.)eiQT{Hk{Mf,At$_l),f.).

i j = l

The pair difference M* - M*_1 contains all the basic sets of index fc; we regard

(Mk, Mk~l) as a filtration pair for the portion of the nonwandering set of index fc.

To this point the coefficient group of the homology functor has been the integers.

Now we must reduce to Z/2 coefficients. This makes no difference by virture of the

following lemma.

LEMMA 2.2.1. If the torsion functor T is defined with field F = Z/2, then for
any filtration pair (X, A) of a basic set of index k

T(77,(X,A;Z),/»)^T(77,(X,A;Z/2),/,)    for alii.

PROOF. From [B2 and BF] we know /, on 77,(X, A; G) is nilpotent for i^k and

if Tor(77fc(X,A;Z)) is torsion subgroup of 77* (X, A;Z) then /.|Tor(77fc(X, A;Z)) is

nilpotent. It follows T(77,(X, A;Z),/t) and T(Tor(77fc(X, A;Z)),/„) are the trivial

module. Consider now the exact universal coefficient sequence

0 -» 77fc(X, A) 8 Z/2 - 77*(X, A Z/2) - Hk_y(X,A) * Z/2 - 0

and the fact that 77fc_i(X, A) * Z/2 S Tor(77fc_,(X, A)) * Z/2. Since T is an exact

functor we obtain

0 - T(Hk(X, A) ® Z/2, /,) -» T(77fc(X, A; Z/2), /.) - 0 -+ 0.

The result

T(Hk(X, A) ® Z/2,/.) =i T(Hk(X,A),ft)

follows using the identification Z/2 ® 2/2[t, t'1] £ 2/2[t, r1].    a

We observe that the modules in the statement of the proposition are zero unless

i = fc.

PROPOSITION 2.2.2.   From the portion of the filtration of M

M*"1 = M0* C M* C • • ■ C M* = Mk

we have

T(77fc(M*,M*-1;Z/2),/t) = 0T(77fc(M*,M*_1;Z/2),A).
t=i



HYPERBOLIC DYNAMICAL SYSTEMS 793

PROOF. The proof is by induction on i. For the duration of the proof let Mt* =

Mi. All coefficients are Z/2. Consider the long exact Mayer-Vietoris sequence of

the triple (M2,Mi,M0).

Hk+y(M2,My) -^ Hk(My,M0) - Hk(M2, M0)

■*♦ Hk(M2,My) Sl* Hk.y(My,Mo) -*■••.

Since (M2,Mi) and (Mi, Mo) are filtration pairs for basic sets of index fc,/» on

77fc+i(M2,Mi) and Hk~y(My,Mo) are nilpotent. Since T is an exact functor the

above long exact sequence gives the following short exact sequence

0 - THk(My,M0) -» THk(M2,Mo) -» THk(M2,My) - 0.

(We have dropped /» from each term.) This sequence is in fact split exact. If

{zi} E Hk(M2,My) is a basis over Z/2 there is an integer N so that f*d*Zi =

0 for all i. From the exactness of (2.2.3) there are y, G Hk(M2,My) so that

j*tti = f*Zi. Define s: Hk(M2,My) -» Hk(M2,M0) by s(z;) = y< and extend

linearly. It follows j»s = /* on Hk(M2,My). Apply T,Tjt°Ts = Tf? = -t~N.
Let S = tN ■ Ts. Then S splits the short exact sequence. It follows now that

THk(M2,M0) = THk(M2,My) ®THk(My,M0). To continue the induction it is

necessary to know /, is nilpotent on Hk-y(M2,Mo). This also follows from the

Mayer-Vietoris sequence

- Hk-y(My,M0) - Hk-y(M2,M0) - Hk-y(M2, My) -

since /* is nilpotent on each end. Applying the Mayer-Vietoris sequence to the

triple (M3,M2,Mo) continues the induction.    □

The sets M* can be taken to be closed submanifolds with boundary of the

same dimension as M. We wish to consider maps of the filtrations of M, say

M*, fc = 0,1,..., n, where M* contains the basic sets of index < fc and such that

M* c U;<A: IVs(fi;). W3(fi;) is the stable manifold of the basic sets fi; of index

i, and is an open submanifold of M. The M* do not form a dissection of M,

that is Hl(Mk,Mk~1) ^ 0 for i' ^ fc (however, the previous proposition shows

T77;(77*,M*_1) = 0 for t ^ fc). Thus a spectral sequence argument is applied

to relate the groups 77;(M*,Mfc_1) to H*(M). We first observe how the spectral

sequence behaves with respect to maps between different filtrations for M.

Let {M*} be a filtration of M such that M* contains all the basic sets of index

less than or equal to fc. If g E Ant(f), then Nk = gMk is another filtration of M

with the same property.

LEMMA 2.2.4. The homeomorphism g: M —► M induces a map g: Mk —»

Nk. In the spectral sequences associated to the two filtrations, this map induces

g* : E\t —y 75* t which can be identified with

g.: H.+tWM'-1) - Ha+t(N',N-1)

and the resulting morphism g+: 7?J°t —* E™ induces g»: Hn(M) —► Hn(M) from

the sequences

0 -> Fs_yHn(M) - F,77n(M) -* £~_s - 0,

FsHn(M) = imageHn(Ms) -* Hn(M).

PROOF. Follows from the naturality of the spectral sequence of a filtration [Sp].
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LEMMA 2.2.5. 7/M* and M are two filtrations of M audi: M* C M , then

the induced maps on the spectral sequences are

(1) at the E1 terms, it: H^M^M"-1) -» 77s+t(Ms,Ms_1),

(2) at the E°° terms result in the identity map on 77* (M).

Using the results from 2.1 and Proposition 2.2.2 we can show the dynami-

cal invariant <p can be calculated from the E1 terms of spectral squences. The

conjugacies Ta constructed in part one show det(T(<7, fc)) = det(hg*k) where

g*k: Hk(Mk,Mk~1) —► Hk(Nk,Nk~1) and 7* is a composition of isomorphisms

induced by inclusions between the many filtrations of M produced by the tight

path.

We assemble this into a diagram and then prove the necessary commutativity.

©TU,- - ®rff*(M*,M*_,)- THk(Mk,Mk-^)

i j

lTG(U) [Tg. [Tg,

@TgUj -(BTH*(Nj'Ni-i) - THk(Nk,Nk-1)

I I I
|tight |induced |induced

|path I | by II |by

[construction [inclusions [inclusions

I I I
I I I
I I J

®TUgU) - ®THk(Nk,Nk_y) - THk(Nk,Nk   ')

i i

10,1V III [Ti.

@THk(Nk U Mkg(j),- THk(MkUNk,

J

^-lUM^.,,) M*-lUJV*_1)

R

T©,-rv in' \Tj.

^TH^M^yM^y) - THk(Mk,Mk~i)

i ^s*

\R /^

®TU3 - 0rffiW(},M».1) ^

Commutativity in square I follows from 2.1.7. Commutativity in square II follows

from Proposition 2.2.2 and the fact that every map is induced by an inclusion. It

may be necessary to use Lemma 2.1.7 to fill out filtration pairs for basic sets into

a filtration of M.   Commutativity of square III is checked by demonstrating it
_k _k

on every summand Hk(Nj,Nj_y) using the fact that the horizontal isomorphism
_k   _k _k   _k _ y

of ($:i(THk(Nj,Nj_y) with THk(N ,7V      ) can be reduced to some inclusion

map on the individual Hk(Nj,NJ_1). This argument would also show square III'

commutes. It remains to show Ti„ and Tjt are isomorphisms on squares III and

III'.
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LEMMA 2.2.6. Let Mk,M be closed subsets of M containing all the basic sets

of index < fc, and such that each is contained in \Ji<k IVs(fi;).   Then inclusions

induce an isomorphism ofTHk(Mk,Mk~1) withTHk(M ,M      ).

PROOF. Observe M*UM   is also a filtration of M with the properties mentioned

in the statement of the lemma.  So we can assume i: M* c M .  Since M* is a
_k

neighborhood of \Ji<k fi; and M    C \Ji<kW3(Qt) is closed and hence compact,
—— k

there is a positive integer N so that fNM   C M* for each fc. The commutative

diagram shows Tn is an isomorphism.

(Mk,Mk~1    C    (Mk,Mk~1)

i \. '

(Mk,Mk~l    -    (Mfc,Mfe_1)       n

fN

The composition of the vertical isomorphisms in the left-hand column yields

T(g, fc); the composition of the maps in the right-hand column yields an auto-

morphism THk(Mk,Mk~l). The horizontal isomorphisms show the determinant

construction applied to both gives the same element of Wfi2(Z/2(£)). This right-

hand column of isomorphisms gives an automorphism of TE1 terms in the spectral

sequence associated to the filtration {Mk}. (Recall T77;(M*, Mk~1) = 0 if i ^ fc.)

Furthermore, we can calculate (p(g) from the TE1 terms.

Given an automorphism r of a first quadrant E1 spectral sequence consisting of

finitely generated torsion T^i-1] modules we can form the following element of

Wh2(F(0)

X(r) = n(-l)fcdet(r: E\ - E\),        E\ =   0  E^.
fc=0 i+j=k

PROPOSITION 2.2.7. Let E = {Ei} be a chain complex of finitely generated

torsion F[r-,£_1] modules and let r = {t;} be a chain map of automorphisms, r

induces the automorphism r* on the torsion modules 77* (E). If

x(0) = U.(-lYtet(0),
i

thenx(r) =x(t*)-

PROOF. This follows from abstract nonsense [L] once we demonstrate the fol-

lowing property of det(-).

LEMMA 2.2.8. Let 0 —* B —* B —* C —> 0 6e a short exact sequence of torsion

F[t, t~x] modules. Let a, fi, and 7 be automorphisms so that ia = fii and rtfi = 77c

Then det(fi) = det(a)det(7).

PROOF. Let p be a prime ideal in F[i,f-1]. It suffices to verify the formula

on p-primary torsion modules. Let B% = p'B, C% = plC, and A1 = i~xB%. Then

0 —* A' —> B% —► Cl —> 0 is exact. It follows from the snake lemma in homological

algebra that 0 -♦ A/Ai+1 -+ Bl/B%+1 -* C/Ci+1 -* 0 is also exact. Let a;,/?;,
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and 7; be the morphisms induced by a, fi, and 7 on these quotient modules isomor-

phic to vector spaces over Fp = F[t,t~1]/p. Then det(/3;) = det(a;) det(7;), for all

elements of F*. Taking products over i we obtain

det(P)= jrjdet(a;)J   det 7.

It remains to show I~I;det(a;) = detp(a) since the filtration used to define a; is

not the canonical filtration of A used to define det.

If A = Ao D Ay D • • • D An+i = 0 is a filtration of A so that A;/A;+i is
isomorphic to a vector space over Fp and A' C A is such that A; D A' D A;+i and

Ai/A and A'/A;+i are also vector spaces over Fp, then 0 —♦ A'/A;+i —► A;/A;+i —*

Ai/A' —► 0 shows det(a;) = det(a|A'/A;+i)det(a|A;/A'). It follows from the
butterfly lemma and Schur's theorem for modules that ©{ A;/A;+i is independent

of the filtration up to isomorphism and consequently det (a) is independent of the

filtration of A.    □

Since T commutes with homology, we can use 2.2.7 to compute <p(g) on the TE2

terms of the spectral sequence. Since T77,(M*,M*-1) = 0 if i ^ fc, it follows

TEfj = 0 unless i = j and that TE\j £ TE%. Thus

T(Hn(M;T2),ft) -T(£~0,/*) -T«0,/*).

Since the automorphism of TE} j was induced by g and inclusions, it follows from

2.2.4 and 2.2.5 that the automorphism of T(Hn(M; Z/2), /*) is induced by Tg* and

identity maps. (Although the direction of the inclusions varies, the inverse of the

induced identity map is still the identity.) But Tg» defines $(<?). Thus <p(g) = $(g).

We conclude with a few remarks.

Since /* is an isomorphism on the groups Hk(M;T/2), the modules

T(77fc(M,Z/2),/,)

are all isomorphic to Hk(M; Z/2) as Z/2[t, t~l] modules with tu = /»_1w.

Work is continuing at the present time to facilitate the computations. If —

denotes the involution of Wh2(F(r)) induced by 11-> t-1, then we suspect Poincare

duality in the n-dimension manifold M will produce a formula for $(g) such as

*fo) = (-l)dimA,*(0).
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