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CAUCHY PROBLEM OF HYPERBOLIC CONSERVATION LAWS
IN MULTIDIMENSIONAL SPACE WITH
INTERSECTING JUMP INITIAL DATA

DENING LI

ABSTRACT. Cauchy problem of hyperbolic conservation laws in multidimen-

sional space is considered, where the initial data have several jump discontinu-

ity surfaces which develop into shock fronts intersecting at a common subman-

ifold. Local existence is proved, assuming compatible conditions and uniform

stability. For isentropic flow in 2-dimensional space, the interaction of two

shock fronts and the nonexistence of three intersecting shock fronts are dis-

cussed.

Introduction. In [1], the Cauchy problem was discussed for hyperbolic conser-

vation laws in multidimensional space with initial data which have jump discon-

tinuity on a smooth hypersurface and this initial jump develops into two or more

shock fronts in t > 0. In discussing the interaction of two shock fronts, because of

the fact that at fixed time t = to, part of the bumping shock fronts remains un-

changed while the other part has already produced new shock fronts, it is necessary

to consider the Cauchy problem with initial data which have jump discontinuity on

more than one hypersurfaces that intersect with each other.

In [7], Metivier considered the interaction of two shock fronts for 2 conservation

laws in 2-dimensional space. He reduced the problem of interaction to the problem

of double shock fronts emanating from one discontinuity surface. For the stability

analysis, we can follow the similar approach to discuss the stability of interaction of

shock fronts for m conservation laws in n-dimensional space. But for the problem of

existence, the situation in the general case becomes different from the one discussed

in [7]. Certain additional conditions are necessary to get the existence result.

In this paper, the general m conservation laws in n-dimensional space will be

discussed, not only for the problem of interaction of shock fronts, but also for the

problem of other features. In particular, we discuss the isentropic hydrodynamic

equations in 2-dimensional space and get the interesting result of the interaction of

two shock fronts and that it is always impossible to have three stable shock fronts

intersecting at one common curve.

1. Problem and result. As in [1, 4, 5], we discuss the following hyperbolic

conservation laws
n

(1.1) Dt(Fo(u)) + ^DXj(FJ(u)) = 0
i

Received by the editors January 26, 1987 and, in revised form, April 27, 1987.

1980  Mathematics Subject Classification (1985 Revision). Primary 35L50,  35L65;  Secondary

76L05.

Supported by NSERC (Canada).

©1988 American Mathematical Society

0002-9947/88 $1.00 + $.25 per page

799



800 DENING LI

^O(fc-l)

\ ?

V \ y
^0 3 \ yS

^Ss\\ s'      G°k

G02 /% ~"^ 5°1

/ G01

^02

FIGURE 1

which can be written as a quasilinear symmetric hyperbolic system

n

(1.2) Dtu + J2 Aj(u)DXju + B(u)u = F(x, t).
l

Besides, we always assume that the linearization of (1.2) satisfies the block struc-

tural condition in [4].

We consider the Cauchy problem of (1.1) with the initial data

(1.3) u(x,0) = uo(x).

Here uo(x) is a piecewise smooth function having discontinuities of the first kind

on k smooth hypersurfaces So; (i = l,...,k), which intersect transversally at a

submanifold Zq of dimension (n — 2); see Figure 1.

Denote the domain between So; and Sn(;+i) DY Got (t = 1,..., fc), where S0(fc+i)

= Soy ■ We will always assume in the following that every Go; is diffeomorphic to

a quarter space in Rn. Denote the value of u.o(x) in Go; by uoi(x). We assume

u0i(x) E C°°(G0i) and u0i(x) ^ «o(i-i) on S0i, for i = 2,..., k + 1.

In this paper, we are going to prove that, under certain assumptions on «o;

(i = 1,..., fc), there exists a t0 > 0, such that for 0 < t < t0, the Cauchy problem

(1.2), (1.3) has piecewise smooth solution u(x, t) with discontinuity surfaces 5;

(i = 1,..., fc) which intersect each other on a common submanifold Z of dimension

(n - 1) in Rn x R\ and 5;|t=o = So;, ^|t=o = -^o- And on each Si, u has a shock

wave discontinuity, satisfying Rankine-Hugoniot conditions
n

(1.4) DtPi[F0(u)]i + ^2DXipi[Fj{u)]i=0,    on S;, i = 1,... ,fc.
l

Here [/]' denotes the jump difference of / across Si, and 5; = {(x, t); p;(x, t) =0}.

Denote the unit normal vector on So; by n;= (n;i,..., n;n), i = 1,..., fc. We

make the following assumptions:

,     . On every So;, there exists a scalar function n;o, sufficiently smooth

* on So;, such that

n

(1.5) nio[Fo(u)Y+ Y,nij[Fj(u)Y =0,    on Soi, i = 1, - - - ,k.
l
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When (HI) is satisfied, then by changing the sign of (my,..., mn) if necessary, we

may always take n;o > 0.

(tton On every Sot, the vector (mo,my,... ,mn) and the state (uo»>Uo(t-i))

satisfy the uniform stability condition for shock front of Majda [4].

cmi ^ ^°> ^ vect°rs (n«0inii5 • • ■ >ft«n) (i = 1,. ■ ■ ,k) lie in a common

hyperplane of dimension 2.

The assumption (H3) is in fact equivalent to the hypothesis that the hyperplanes

with normal vector (n;o, na,..., n;n) intersect at a common affine submanifold of

dimension (n — 1), which will be denoted as Zt in the following.

Obviously, the assumptions (H1)-(H3) are necessary for the existence of the

intersecting stable shock fronts.

Another assumption we are going to make is connected with the concept of ex-

treme shock. As in the case of one dimensional space, every shock front is associated

to one genuinely nonlinear characteristic of the system (1.2), cf. e.g. J. Smoller [8].

We are here interested only in the extreme shock front which is associated to an

extreme characteristic, i.e., the characteristic of the largest or smallest eigenvalue.

In this situation, the direction (n;o,n;i, • • • ,n;n) is space-like with respect to the

value u0 in one and only one side of S;o- And consequently, we get n;o > 0. The

following is our fourth assumption

There is a domain Go;, such that (mo,my,... ,mn) and (n(;+i)o,

(H4) n(;+1)i,..., n(j+i)„) are both space-like with respect to mo; and

these two vectors are both pointing outward from Go;-

REMARK. The second statement in (H4) is equivalent to the requirement that

the intersection Zt of the hyperplanes with normals (n;o, my,..., n;n) and (n(,+1)0,

"(1+1)1! • • • i n(i+i)n) has its projection into the space of x = (xy,..., xn) contained

in the domain Go*.

In particular, for Euler equations in gas dynamics, we could have at most two

shock fronts developing from one discontinuity, and these two shock fronts are

associated with the largest and the smallest eigenvalues respectively [4]. Since the

uniformly stable shock front in gas dynamics with convex state function must be

compressive, i.e., the pressure of the gas behind the shock front should be higher

than the pressure ahead of the shock front, it is easy to see that there is always

one and only one domain G;o such that the pressures in the adjacent domains are

higher than the one in G;o- So for Euler equations of gas dynamics, hypothesis

(H4) is automatically satisfied.

To fix the idea, we will always denote the domain in (H4) as Goi-

To have a piecewise sufficiently smooth solution with smooth discontinuity sur-

face, it is necessary to have compatibility conditions which are derived from equa-

tion (1.1) and Rankine-Hugoniot conditions (1.4). Hence, we make the following

assumption:

/„.-. On every So;, the compatibility conditions are satisfied up to suffi-

ciently high order.

REMARK. (HI) is nothing but the compatibility condition of order zero. The

high order compatibility conditions are the requirements upon uo to guarantee the

existence of compatible Dhpi, i = 1,..., fc; h = 1,... ,L, for sufficiently large L.
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In order to get the solution with similar discontinuity picture as Figure 1 in

t > 0, we also need the higher order forms of (H3):

There exists a submanifold Z of dimension (n — 1) containing Zq

caa\ such that Z is tangent up to high order at Zq to every hypersur-

face Si which passes through So; and has the same higher order

curvatures at Zq determined by Dhpi, i = 1,..., k; h = 1,..., L.

In particular, if the initial discontinuity S0,'s are all hyperplanes and u0 in every

Go; is constant state, then (H6) is automatically satisfied.

Now, we are going to make our last assumption. Since in Goi, two directions

(nio,nn,... ,nln) and (n20;"2i>-.. ,n2n) are both space-like with respect to uo, so

by the uniform stability assumption (H2), (ni0, • • ■, ni„) and (n2o, • • •, n2n) could

not be space-like with respect to uok and u02, respectively. Examining the possi-

bility in the adjacent domains G02 and Gofc, we have three different cases:

(1.6)(i)   (n3o,.. • ,n3„) and (n^o, • • • ,nkn) are not space-like with respect to uq2 and

uok, respectively;

(ii)   (n30i • • •, n^n) and (nko, ■ ■ ■, nkn) are both space-like with respect to uq2 and

Uoic, respectively;

(iii)   One of (n3o, ■ • •,n3„) and (nko,...,nkn) is space-like, another is not.

To fix the idea in case (iii), we will always take (n^o,... ,nkn) being space-like

with respect to UQk, and (n3o, • • • ,n3„) not space-like with respect to uo2-

REMARK. For the three cases cited above, the case (i) can never happen in

gas dynamics, because the stable shock front must be associated with extreme

characteristics and hence we have one and only one domain Go; which has two

non-space-like boundaries.

Now let Go be the subset of the domains Go;:

Gq = {Go;; i = 3,..., fc—1 or i = 2, fc and Got has two non-space-like boundaries}.

Let q be the number of Go; in the set Go- We have k — 3<q<k— 1.

On all q + 1 boundaries which are adjacent to at least one domain Gqz E Gq, we

have the Rankine-Hugoniot conditions

n

(1.7) Dtpi[Fo(ui+i)-F0(ui)] + ^2DXiPi[Fj(ui+i)-Fj(ui)] = 0,    onS,.
1

These are m(<7-|-l) relations. Besides, the (q+l)(n+l) components of (Dtpi, Dxpz)

are not independent of each other. The normalizations

n

(1.8) \DtPi\2 + ^2\DXjPi\2 = l,        Got e Go or G0(l+i) e Go
1

are (q + 1) relations. And as in (H3), they should lie in a common hyperplane of

dimension 2, i.e., there exist (n - 1) unit vectors o j in Rn x R\, i = 1,... ,(n - 1),

such that

(1.9) (al,a])=6l3,        i,j = 1,..., (n - 1)

and

(1.10) ((Dtpi,Dxpi),aj)=0,        j = l,...,(n-1); G0t or G0(t+i) eG0-
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Once the intersecting submanifold Z is given, then the a/s in (1.9), (1.10) are

determined uniquely up to orthogonal transformations within themselves, while

(1.10) is invariant for such transformations. Hence, we will have (q + l)(n — 1)

relations for (Dtpi,Dxpi) in (1.10).

If Z is partly given, i.e., if Z is required to lie within a given surface S2, then

the aj's in (1.10) should satisfy another (n - 1) supplementary conditions

(1.11) (b,aj) = 0,        j=l,...,n-l,

where b is a given vector (the normal vector of S2). Eliminating part of o,-'s in

(1.10) by (1.11), we get (n — l)q relations for (Dtpi,Dxpi), again denoted as (1.10),

when there is no confusion possible.

If Z is completely not given, then we will have (q - l)(n - 1) relations in (1.10)

for (DtPi,Dxpi).

From the examples discussed in §§3 and 4, we will see that for n = 2, the

condition (1.10) is extremely simple. It consists of the determinant of a 3-order

matrix and the introduction of a 's is not necessary.

Now, we will view it; in G; with G0t E Go and (Dtpi,Dxpi), (Dtpl+y,Dxpl+1)

as unknowns. For these qy = mq + (q + l)(n + 1) unknowns, denoted by U in the

following, we have m(q+l) Rankine-Hugoniot conditions (1.7) on (q+1) S;, which

is adjacent to at least one G0; € Go- Besides, we have (q + 1) normalizing conditions

(1.8) and certain number of conditions in (1.10) to determine the position of every

S;. The exact number of relations in (1.10) will depend on the determination state

of Z.
Denote all the relations in (1.7), (1.8) and (1.10) as

(1.12) Q(U) = 0.

Consider the three cases in (1.6).

In case (i), we have 0 = fc — 1. Since now all (q + 1) S,'s are taken unknowns,

Z is not given beforehand. So we have in fact (q — l)(n — 1) relations in (1.10).

Hence for qy unknowns U, we have q2 = m(q - 1) + (q + 1) + (q - l)(n — 1) =

(m + n)(q + 1) - 2(n - 1) relations in (1.12).

In case (ii), we have q = k — 3. Now Z is determined by Si and S2, so we have

(q -I- l)(n — 1) relations in (1.10). Therefore, for qy U, we have 92 = m(q + 1) +

(q + 1) + (q+ l)(n -l) = (m + n)(q + 1) relations in (1.12).

In case (iii), q = k — 2. Now Z is required to be on a given surface Si. So

we have in fact q(n — 1) relations in (1.10). And for qy unknowns U, we have

q2 = m(q + 1) + (q + 1) + q(n - 1) = (m + n)(q + 1) - (n - 1) relations in (1.12).

For all these three cases where q2 takes different values, we impose the following

requirement

(H7) Jacobian DQ/DU has rank q2 at t = 0 and x E Zq.

COROLLARY 1. From (H7), we get at once that q2 < qy. fn case (i), it means

q > m — 2n+ 1. In case (ii), it means q > m — 1. In case (iii), it means q > m — n.

REMARK 2. Since only one shock front could be associated with one genuinely

nonlinear eigenvalue of the characteristic matrix of the system, we should always
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have q+1 < m. This is an absolute restriction on the number of initial disconti-

nuities. In particular, in case (ii), this implies by Corollary 1 that q = m — 1.

REMARK 3. Consider the particular problem of interaction of shock fronts

in 2-dimensional space for two hyperbolic laws considered by Metivier in [7]. It

corresponds to the case (ii) considered here, with m = 2, q = 1, exactly the only

possible situation when (H7) can be satisfied.

Generally speaking, we cannot get rid of (H7) in order to get our desired result.

Nevertheless, it is only a sufficient condition. In some special cases, e.g., in the

examples of §3, where the condition in Corollary 1 is not satisfied, we still get the

existence result.

Now, the main result of this paper can be stated as follows.

THEOREM. Suppose that the Cauchy problem (1.1), (1.3) with intersecting dis-

continuity data satisfy all the conditions (H1)-(H7). Then there exists a to > 0,

such that (1.1), (1.3) has a piecewise differentiable solution u in 0 < t < to, which

has jump discontinuity at differentiable surfaces S; 's, intersecting with each other

at a common submanifold Z of dimension (n — 1), and on S;, Rankine-Hugoniot

conditions (1.4) are satisfied.

2. Proof of the Theorem. The basic idea of the proof consists of two steps.

First, we try to determine the position of Z. Then, by a transformation, we reduce

the given problem to a problem of multishock fronts we discussed in [1].

First of all, by (H4), we know that the (n— l)-dimensional hyperplane Zt, perpen-

dicular to (nio, nu, • • • i "in) and (n2o, n2i,..., n2n), has its projection in x-space

contained in Goi for t > 0. We now discuss the three cases in (1.6).

Case (i). In this case, for qy unknown variables (Dpy,..., Dpk) and (u2,... ,uk),

we have q2 independent relations Q(U) = 0. But at t = 0, according to our

assumptions (HI) and (H3), we know t/0 = (ny,..., nk, uq2, ..., uok) satisfies all

these relations, i.e., Q(Uq) = 0. Thus, from (H7) and the implicit function theorem,

we know that near t = 0, x E Zq, there is a vector function U(t,x) satisfying

Q(U(t,x)) = 0 and U(0,x)[xezo = Uq. It is worth pointing out here that the

function U(t,x) is determined uniquely only when q2 = qy. Otherwise U(t,x) may

not be unique. (Similar argument also applies to the discussion of cases (ii) and

(hi).) Now (Dpy,... ,Dpk) satisfies (1.10) near t = 0, x E Zq, and it determines a

submanifold Z of dimension (n — 1), with Z\t=0 = Zq.

y^    *0k

°0fc /__

^.--"   Z^o ~~"~ 501

01      ~ / G
"oi     /

^02

Figure 2
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Case (ii). In this case, (n3o,..., n3n) and (n^o, • • •, nkn) are both space-like with

respect to U02 and UQk. We are now to follow the approach of G. Metivier. First,

we extend the hypersurface S0i beyond Zq into a smooth hypersurface S0i_ without

boundary. Soi will divide Rn into two new domains, denoted as Goi and Gofe, with

Goi contained in G0i and Go* in Gok. See Figure 2.

And also, we extend «oi and uok smoothly into Goi and Go*: such that the

extended values u0y and uok satisfy all Rankine-Hugoniot conditions and the uni-

form stability condition of Majda in [4]. By the result of Majda [5], we know

the following Cauchy problem

( n

Dt(F0(u)) + J2DXj(Fj(u)) =0,    in t> 0, x E Rn,

(2-1) \ ,     '
,   ns      I uoi(x),    xeGoi,

u(x,0) = <
{ U0k(x),      X EGok,

has a local shock wave solution u(x, t) which is sufficiently smooth on either side of

a sufficiently smooth hypersurface Sy. Denote two domains separated by Si as Gi

and Gfc, with Goi contained in Gi, and Gok in Gk- The value of u(x,t) in Gi and

Gk will be denoted as riy(x,t) and uk(x,t).

Similarly, we can extend hypersurface S02 across Zq into S02 which separates Goi

and Go2- Also, we extend i*oi and U02 into uoi and U02, and then solve the Cauchy

problem with initial data (iioi,uq2), having one jump discontinuity. The resulted

shock wave solution will be denoted by iiy (x, t), u2(x, t) and S2 which separates Gi

and G2.

Now in the domain Gi = Gi nGi, we have ity(x,t) = iiy(x,t). The conclusion

follows from the fact that the directions (nio, • • •, ni„) and (n2o, • • •, n2n) are both

space-like with respect to uoi- At t = 0, the hypersurfaces Si and S2 have their

normal vectors equal to (nio, • • • > "in) and (n2o, • • •, n2n), respectively. Hence, by

continuity, for small t, the hypersurface Si and S2 would be space-like with respect

to iii and riy. Hence the values of riy and ui in the domain Gi fl Gi will depend

only on the initial values in Goi where iti(a;,0) = uy(x,0) = uoy(x). Consequently,

we have ity(x,t) = riy(x,t) in Gy = GyC\Gy.

Together with the value uy(x,t) in Gi D Gi, we also get the values of uk(x, t)

and u2(x,t) in Gk and G2. In particular, we get the intersecting submanifold Z of

the hypersurfaces Si and S2.

Case (iii). This is the intermediate case between case (i) and case (ii). As in case

(ii), we extend Soi beyond Zq and extend uoi, UQk into uoi and u,Qk. By solving

the corresponding Cauchy problem, we get the solution v,y(x,t), uk(x,t) and the

separating shock front Si, for small t.

By assumption (H7), as we have done in case (i), we can solve 171 functions

(Dp2,... ,Dpk) and (u2,... ,uk-y) from q2 relations Q(U) = 0. Thus we get a

submanifold Z of dimension (n — 1) on Si.

Summing up, in all three cases in (1.6), we have constructed submanifold Z on

which are defined <7i functions satisfying (1.7), (1.8) and (1.10). This concludes our

first step in the proof of the Theorem.
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In our next step, we begin by constructing two smooth hypersurfaces Yy and Y2

such that Z = YyV\Y2 and the following conditions are satisfied:

(1) Yy,Y2 are not tangent, at t = 0, to any Sot at Z0;

(2) In case (i), Filt^o C Goi, V2|t=o C G0i and Yy, Y2 are both space-like with

respect to uoi- In fact, we will choose Yi near the direction (n2o, • • • ,n2n) and Y2

near the direction (nio, • • •, "in) in the neighborhood of Z0- Since (n2o, • • •, n2n)

and (nio, • • • ,"in) are space-like with respect to u0i, so are the hypersurfaces Yy

and Y2.

In case (ii), Fi|t=0 C G02, Y2\t^0 C Gok. Also for Yy near (n30,... ,n3n), Y2

near (n^o, • • •, nkn), they are space-like with respect to U02 and Uok, respectively.

In case (iii), Fi|t=o C Goi, Y2|t=o C Got- And Yy,Y2 are space-like with respect

to uoi and uok respectively.

Having constructed the hypersurfaces Yy and Y2, we are ready to perform the

necessary transformation of variables.

First, we perform a transformation in Rn such that in new coordinates, Zq =

{x; xy = x2 = 0} and the projections of Yy and Y2 onto the hyperplane zi = 0

are the domains x2 < 0 and x2 > 0, respectively. Let Y2 = {(t,x);t = r(x),x2 >

0}. Extending r(x) smoothly into x2 < 0, denoted by f(x), and performing the

transformation

(2.2) x' = x,        t' = t-f(x),

we get Y2 = {(t',x'); t' =0, x2 > 0} in new coordinates. In order to simplify the

notation, we will omit the prime in the following.

Now, the plane t = 0 becomes t + f(x) = 0. By another transformation, we can

make this hypersurface become the hyperplane Xy = 0, with the original domain

t > 0 becoming xy > 0. Notice that by all these transformations, the solvability

of the problems remains equivalent and the space-like hypersurfaces remain to be

space-like.

Let Yy = {(t,x);t = s(x),x2 < 0} in new coordinates. Let r2 = t2 + x\,

y = arctan(i/x2), then Yy can be written as y = K(r, xy, x3,..., xn) where 7r/2 <

y < 37r/2. Now perform the transform

t' = rsin(ir/K)y,

(2.3) <   x'2 =rcos(ir/K)y:

Xy = Xy,   X3 = 23, . . . , Xn = Xn.

Then, in the new coordinates, Yy is a half plane {t' = 0, x'2 < 0}, while Y2 remains

to be {f = 0, x'2 < 0}.

REMARK 1. Here we notice that transformation (2.2) has singularity at t = x2 =

0 when taken as a transform in the whole space, because it transforms a broken

surface into a smooth one. But it is a diffeomorphism in any domain yy < y < y2,

with y2 — yy < ir.

REMARK 2. If in particular, we can take Yy and Y2 to be two parts of one

smooth hypersurface t = r(x), as in the physical examples we discuss in §3, then

the transform changing Y2 into t = 0 automatically changes Yy into t = 0.
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After all these transformations, we denote the resulted quasilinear hyperbolic

system as

n

(2.4) A0(u)Dtu + Ay(u)DXlu + ^Aj(u)DXju + B(u)u = F(x, t),

2

in xy > 0, t > 0.

Here we omit the prime in new coordinates.

On xy = 0, t > 0, we have the boundary condition

(2.5) u = u0(t,x').

Here uo(t,x') is in fact part of the uq in (1.3), after the transformation (2.2) and

(2.3).   It is worth pointing out that the hyperplane xy = 0 is space-like in new

coordinates, though we call (2.5) a boundary condition.

On t = 0, xy > 0, we impose the initial condition

(2.6) u(x,0)=wo(x)

where the value of wq(x) is determined as follows.

In fact, in all three cases of (1.6), we can always extend Soi, S02 and «oi, ^02,

UQk as we did before for the case (ii), and then construct the one shock wave solution

separately. As in the case (ii), we denote by v,y(x,t) and uk(x,t) the shock wave

solution resulted from extending Soi, uoy and UQk, denote by tty(x,t) and u2(x, t)

the shock wave solution resulted from extending S02, uoi and uo2.

As we pointed out in case (ii), ity(x,t) = uy(x,t) in their common domain of

definition, independent of the way of the extension. Also in the cases (i) and (iii),

by the same argument, we have riy(x,t) = uy(x,t) in their common domain of

definition.

Now, we take wq(x) as follows: If Ki|t=o (or V"2|t=o) lies in Goi, Wq(x) takes the

value of iiy(x, t) = ity(x,t) (transformed by (2.2) and (2.3)). If Yi|t=o (Y2|t=o) ues

in G02 (Got), wo(x) takes the transformed value of u2(x, t) (uk(x,t)).

With wq(x) thus determined, we are to consider the initial-boundary value prob-

lem (2.4)-(2.6). Here the initial data Wq(x) have jump discontinuity at x2 = 0, the

boundary xy = 0 is space-like and the boundary data uo(t,x') is piecewise smooth

having jump discontinuity surfaces emitting from xy = x2 = 0.

From the assumptions (H2) and (H7), we know by implicit function theorem

that for small xy > 0, there exist sufficiently smooth functions (m,Xj) on x2 = 0

such that the transformed Rankine-Hugoniot conditions (1.5) are satisfied. Here

i = 2,..., fc; j = 1,..., fc (for case (i)) or i = 3,..., (k — 1); j = 3,..., k (for case

(ii)) or i = 2,..., (fc - 1); j = 2,..., k (for case (iii)). Since the set of coefficients

for which uniform stability conditions are satisfied is open, we know that for small

xi > 0 and for these (ut,Xj), the uniform stability conditions (H2) is satisfied. In

particular, at xy = 0, u;'s are equal to the boundary value uo and A^ coincide with

the tangent directions of the discontinuity surfaces of uo.

The problem (2.4)-(2.6) is very much like the multishock wave problem we dis-

cussed in [1], except that we now have the boundary condition (2.5).
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As a matter of fact, for the multishock wave problem without boundary condition

on xi = 0, we proved in [1] the following:

THEOREM FOR MULTISHOCK WAVES. For the Cauchy problem of the hyperbolic

conservation laws (1.1) with initial data u° = (u° ,u°_) which have jump disconti-

nuity along one smooth hypersurface So, if

(i) there are smooth functions it0, Xj on So, i = 2,..., fc; j = 1,..., fc; such that

Rankine-Hugoniot conditions are satisfied for k sets o/(Aj,u°, u°+1), j = l,...,k;

with u\ = u°_, uk+1 = u°+;

(ii) these k shock fronts are separately linear stable in the sense of Majda in [A];

(iii) high order compatibility conditions are satisfied;

then,  there exists a positive to, such that in [0,to],  there is a piecewise smooth

solution of (1.1) with k shock fronts.

Now for the problem (2.4)-(2.6), we can proceed just as in [1] in proving the

above theorem. First of all, we perform the transformation containing the un-

known shock fronts so that the original free boundary problem is reduced to a fixed

multiboundary problem with newly introduced unknown functions pj, describing

the position of the shock fronts. Second, by the compatibility hypothesis (H5), we

can construct an approximating solution (u®,p^) such that the problem is further

reduced to a problem for (vi,qj) — (u° - u;,p° - p3), which satisfied the homoge-

neous initial and boundary conditions at t = 0 and xi = 0, with the right side of

the equation having zero traces at t = 0 and xi = 0 up to sufficiently high order.

Then let t' = logt, x'2 = x2/t, we get a new problem without initial conditions and

all the boundaries are uncoupled. Such a problem can be treated similarly as in [1]

and the existence of the solution follows.

This concludes our proof of the theorem.

3.   Interaction of isentropic shock fronts in 2-dimensional space. As

the application of our Theorem, we consider isentropic hydrodynamic equations of

polytropic gas in 2-dimensional space:

' Dtf + DXl(fvy) + DX2(fv2) = 0,

(3.1) I  Dt(fvy)+Dx,(fv2+p) + DX2(fvyv2)=0,

. Dt(fv2) + DXl (fvyv2) + DX2(fv2+p) = 0.

Here vy,v2 are velocities of the gas in xi,X2 directions; / is the density of the gas

and p = AfT with A, r constants and r > 1.

The problem we are going to discuss comes from the interaction of two shock

fronts, as G. Metivier discussed in [7] for 2 x 2 systems in 2-dimensional space.

Here, for physical examples, (3.1) is a 3 x 3 system.

The problem of interaction of two shock fronts can be reduced to the problem

in §1 with fc = 4, provided that only two shock fronts are produced after the

interaction.

First, we consider the special case of constant state. Suppose at t = 0, u =

(f,vy,v2) is piecewise constant in Rn with four discontinuity straight lines inter-

secting at xy = x2 = 0. See Figure 3.

Denote the four discontinuity straightlines by S±i and S±2, the four domains

between them by Gy,G±,G2, and the values of u in four domains by uy,u±,u2.
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We will restrict ourselves to the discussion of the special case where the data are

symmetric with respect to X2 axis, i.e.

io n\ ( S±y={x;   X2 = ±kyXy},
(3.2) i ky,k2 >0,

I *±2 = {x; X2 = ±k2Xy},

and

(3.3) V+y=-V-y,      V+2=V-2 = V2,      Vu = Vl2 = «21 = 0,       f+=f-.

Since shock fronts are not characteristic, from Rankine-Hugoniot conditions it

follows that the tangential speed to S±i in G± must be equal to the tangential

speed in Gi, i.e., zero. So velocity (v±y,v±2) in G± should satisfy

(3.4) v±i±fciv±2 = 0.

Similarly, the tangential velocities on two sides of S±2 being equal leads to

(3.5) v^y ± k2v^2 = v21 ± k2v22 = ±k2v22-

Let the shock front direction of S±y be (h±y,+~ky, 1). Taking h+y = h-y = hy

and by (3.3) and (3.4), we get from Rankine-Hugoniot condition:

(36) f  hy(f+-fy) + k\f+V2 + f+V2=0,

I   - />l/>2 - f+V2(l + fc?) - (p+ - p_) = 0.

Similarly, let the shock front direction of S±2 be (n±2,±fc2,1)- Taking h+2 =

h-2 = h2 and noticing (3.3), (3.5), we get

(3 7) { ^"+^2 +V2+ k^V2 ~ V22^ ~ ^2^2 + V22^ ~ °'

I f+(h-2 + v2 + k\(v2 - v22))(v2 - v22) + (p+ - pi) = 0.

The hypothesis (H3) for (hy,+~ky,l) and (h2,±k2,l) lying in a common plane

becomes very explicit now. In 3-dimensional space, three vectors lie in a common

plane if and only if the corresponding 3x3 matrix is degenerate. Thus we have

hy ky      1 hy ky      1
det hy     - ky    1=0,   det hy     - ky    1=0

h2        k2    1 h2     - k2    1
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or equivalently

(3.8) hy = h2.

Here, because ky ^ fc2, so (3.8) does not mean that S+i and S+2 have the same

slope with respect to t = 0.

In (3.6)-(3.8), we have five relations for nine variables (hy,h2,f+,fy,f2,v2,v22,

ky,k2). We should choose these parameters such that (3.6)-(3.8) are satisfied and

hi, hi > 0, f2 > f+ > fy. For the variables thus chosen, our hypotheses (H1)-(H3)

are all satisfied.

Eliminating hy,hi,ky,ki in (3.6)-(3.8), we get

(3.9) fi(v2 - v22)(Af{ - A/; + fiViVa) + A(/; - fr2)fyv2 = 0.

Now fixing /+ = 1 and f2 > 1, we denote the function on the left-hand side of

(3.9) by T(fi),

T(fy) = fi(Vi - V22)(Af{ -A + fyV2V22) + A(l - f2)fyv2.

For v22 < v2 <0, we have

(3 10) {T(0) = f2(v2-v22)(-A)<0,

I T(l) = f2(v2 - v22)fyv2v22 + A(l - fr)v2 > 0.

Consequently, there exists at least one fy E (0,1) such that (3.9) is satisfied and

o < h < f+ < f2.
Now for e « 1, we take

(3.11) v2 = 0(eA),        v22 = 0(e2),        l-f2 = 0(e).

Then from (3.6)-(3.8), we have

(3.12) hy>0,        l-/i=0(e3),        hy =0(e"1), and

1 + fc? = j^s(fi - !)(/[ " 1) = 0(e~2).

Therefore, for e << 1, we have a real positive solution for fci.

From (3.7), we have

(3.13) kl(v2 - v22) = f2(hy + v22) - (hy + v2) = (f2 - l)hy + f2v22 - v2.

Since v2 - v22 > 0, (f2 - l)hy > 0, (f2 - l)hy = 0(1), f2v22 -v2= 0(e2), so (3.13)

also has a real solution for fc2.

Thus, we can choose (hy,h2, fy, f+, f2,v2,v22,ky,k2) such that (3.6)-(3.8) are

satisfied and hy, h2 > 0, f2 > f+ > fi- Consequently (H1)-(H3) are satisfied.

(H4) is satisfied because /+ = /_ > fy, and so Gi is the required domain. (H5),

(H6) are automatically satisfied for constant initial data. For variable data, (H5),

(H6) are also satisfied if the data are G°° tangent to the constant data at x = 0.

Now consider (H7). For the problem with constant initial data, (H7) is not

needed. For the general problem with variable initial data, noticing that our prob-

lem corresponds to case (ii) in (1.6), we have k = 4, q = k — 3 = 1, m = 3.

Therefore, q= 1 <2 = m — 1, contradictory to Corollary 1 in section 1. Neverthe-

less, if we consider the special case of interaction of two symmetric shock fronts,

so the Rankine-Hugoniot conditions on S±2 are symmetric.   We will have three
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unknown functions h2,v2,f2. Hence the condition in Corollary 1 is satisfied. Since

(H7) is to exclude certain submanifold of lower dimension, by suitably choosing

initial data, we can also make (H7) satisfied.

In summary, with the above chosen initial data, we get the local existence re-

sult for the problem of interaction of two symmetric isentropic shock fronts in

2-dimensional space, by the Theorem in §1.

4. An example of nonexistence. Again, we consider the isentropic hydro-

dynamic equations for polytropic gas (3.1). At t = 0, u = (f,vy,v2) is piecewise

smooth in R2 with three discontinuity straight lines intersecting at Xi = X2 = 0.

See Figure 4.

Without loss of generality, we assume Si = {x;x2 = 0, xi > 0}, S2 = {x; xy =

k2x2, x2 < 0}, S3 = {x; xi = /C3X2, X2 > 0}, and «n = t>i2 = 0. Let (hy,0,1),

(h2, —1, k2), (h3, —1, k3) be the shock front directions on Si, S2 and S3, then from

the fact that the tangential speeds on two sides of a shock front should be equal,

i.e.,

(4.1)       V3y = 0, k2V2y + V22 = 0, l>32 = k3V2y + V22 = (fc3 - k2)v2y = 0

we deduce from Rankine-Hugoniot conditions

(4 2) { hl{h ~ fl)+hVz2 = h^h " /l) + (fc3 ~ k2>>V21 = °'

I  hyf3V32 + f3V%2 +p3~py =0.

{43] (h2(f2-fy)-f2V2y(l + k2) = 0,

\h2f2V2y-f2vly(l + k2)-(p2-Py)=0.

(4 4) { M/3 ~ h) + V2l{h + hk2k3 ~ hk2k3 + /3fc3) = °'

I   - h3f2v21 + (1 + k2k3)f2vly - (p3 - p2) = 0.

In order to have three stable shock fronts intersecting on a common line, (4.2)-

(4.4) must be satisfied together with the condition for (hi,0,1), (h2,-l,k2) and

(h3, — 1, fcs) lying in a common plane

hy        0      1

(4.5) det  h2     -1    k2   = hy(k2 - k3) - (h2 - h3) = 0.

h3     -1    k3
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We are going to show that there is no set of data (vn, fi, f2, f3,k2,k3,hi,h2,h3)

satisfying (4.2)-(4.5) with f3 > f2 > fy for a convex state function p = p(f).

Eliminating hy,h2,h3 from (4.2)-(4.5), we get

'   (/3«2l)2(fc3-fc2)2 = (/3-/l)(p3-pi),

/i/2t;22i(l + fc22) = (/2-/i)(p2-Pi),

(4-6) \   hhv221(l + k2) = (f3 - f2)(P3 - pj),

(ki - fc3)2/3 (l + fc22)/2        h + h%    ,   ,,   ,, n
—1-r-f-1-7-T + k2k3 = °-

^      h~ Ii J2 — h h - fi

Further eliminating v21 and fc2, fc3 from (4.6), we have the relation for (fy,f2,f3),

which after simplification can be written as

(4-7) fih(Pi ~P3) + /l/3(P3 -Pi) ~ fifi(Pi -Pi) =0.

Fixing fy,f2, we write the left-hand side of (4.7) as M(f3). Since M(f2) = 0,
we need only to show that M'(f3) < 0 for f3> f2.

M'(f3) = f2p(f2) - fyp(fy) + (fy - f2)p(f3) + (fy - f2)f3p'(f3)

= (fi - h)(hp'(h) + p(h)) + (h - /i)(/V(D +p(D)
where f* = fi + 6(f2 - fy), 0 < 9 < 1.

From f3 > f\ p' > 0, p" > 0, we get />'(/*)+ p(/') < f3p'(f3) + p(f3),
consequently M'(f3) < 0. Thus we know (4.7) is never satisfied for f3 > f2.

Therefore we get the conclusion that there can be no such shock fronts in R2 x R+

for hydrodynamic gas equations with convex state function, which have three stable

shock fronts intersecting at a common curve.
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