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A VERY SINGULAR SOLUTION OF A QUASILINEAR
DEGENERATE DIFFUSION EQUATION WITH ABSORPTION

L. A. PELETIER AND JUNYU WANG

Abstract. The object of this paper is to study the existence of a nonnegative

solution of the Cauchy problem

ut =div(|Vu|p-2Vu)-u«,        u(x,0)=0    if i # 0,

which is more singular at (0,0) than the fundamental solution of the corre-

sponding equation without the absorption term.

1.   Introduction. In a recent paper [1] Brezis, Peletier and Terman found a

very singular solution of the heat equation with absorption

(1.1) ut = Au-uq    in S = RN x (0, oo)

when 1 < q < 1 + (2/N) and N > 1. By this was meant a solution W(x,t) with

the properties

(i) W > 0 in S;

(ii) W is smooth in S, except at (0,0);

(iii) W(x,0) = 0 for all x E RN, except at x = 0;

(iv) W is more singular at the origin than the fundamental solution E of the

heat equation, specifically

/    W(x,t) dx —* oo   as t J. 0.

This very singular solution turned out to play an important role in the behavior of

more general solutions of (1.1) as t —> 0 [7] and as t —> oo [2, 6].

A corresponding very singular solution for the Porous Media Equation with

absorption

(1.2) ut = A(um) - uq

in which m > 1, was found to exist by Peletier and Terman [8] when m < q <

m+(2/N).
Motivated by these results we shall show in this paper that the quasilinear de-

generate diffusion equation—involving the p-laplacian—with absorption

(1.3) ut = div(|Vu|p_2Vu) - uq    in S

also has a very singular solution under suitable restrictions on p and q.  Here we

shall assume throughout that p > 2.
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By a very singular solution of equation (1.3) we mean a function W(x,t) which

satisfies (1.3) in some sense, and possesses the properties

(1-4) W >0inS\{(0,0)};

(1.5) W is continuous in S\{(0,0)};

(1.6) W(x, 0) = 0 for all x € Rw\{0};

(1.7) W is more singular than E at {(0,0)}.

In this definition E denotes the singular solution of equation (1.3) without absorp-

tion

Ut = div(|Vu|p"2Vu)

with p > 2. It is given by

E(x,t) = t-V»rp(0,        £ = Ixlr1/"";
where

(1.8) p = p-2 + (p/N)

and rp is given by

m = c(P,N){[eo/ip-1] - t;P/(P-i)]+}(*>-i)/(*>-2).

Here £o is an arbitrary positive constant,

c(p,N)=(?-J.) (Np)-^'-V

and [z]+ = max{0, z}.

As in [1 and 8] we look for a very singular solution of the form

W(x,t) = rll(q-l)f(n),        n = \x\t~1'0.

Such a function W will satisfy (1.3)-(1.6) if

(1.9) (i = P(q-l)/(q+l-p)

and if / is a solution of the problem

(i.io)     [ orr2/')' + ̂ Vr2/' + -&nf + —/ - r = o m (o, oo),

(1-11)     (I) I f(n) >0    on [0,oo),

(1-12) /'(0) = 0, lim np/(«+1-p»/(n) = 0.
n—>oo

We shall show that such a solution indeed exists for appropriate values of p and q.

THEOREM.   Suppose that TV > 1, p > 2 and

(1.13) p- 1 < q <p- 1+p/TV.

Then there exists a nontrivial solution f of Problem (I); / has compact support.

The conditions on p and q in this theorem ensure that the singularity of W(x, t)

at (0,0) is stronger than that of E(x,t). For instance

E(0,t)=rp(0)r1/>i    and    W(0,t) = f(0)rl/{q-l),

and, by (1.8) and (1.13), q - 1< p - 2 + (p/N) = p.
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The solution f(n) we obtain is of the form

... ( > 0    for 0 < n < n0,

3(r,) \ =0   for n0 < n < oo,

where no is some positive number. At the point n0, we find that

ibnif(i)rw..a.
v       ; >?T»?o /(n) /?

Observe that the lower bound for q in (1.13) ensures that /? > 0; the upper

bound will be needed to ensure the behavior of f(n) as n —► oo, required by (1.12).

It is interesting to note that for the corresponding elliptic equation

(1.15) -div([Vu[p-2Vu) + uq = 0,        u > 0,

there exists a very singular solution if

P-1
p-Kq<N-^--    ifl<p<TV

N — p

or

p — 1 < cj    ifp = TV.

It is given explicitly by

u(x)=lN^q[x[~P,(q+l~P\

where
" v   p-l   i -jl/(«+l-p)

1N<™=[(wh-p)   [vrh-p-V
For further details we refer to Friedman and Veron who give in [3 and 4] a complete

classification of the isolated singularities of equation (1.15).

In this paper we have imposed the condition p > 2, leaving the range 1 < p < 2

unexplored. We intend to return to this range in a forthcoming paper.

The organization of this paper is the following. In §2 we place Problem (I) in

the context of a class of problems, and derive a few properties of its solutions.

In particular we shall prove that a solution is a decreasing function whenever it

is positive. In §3, we formulate equation (1.10) as a system of three first order

differential equations by introducing appropriate variables, dependent as well as

independent. In this setting the desired solution corresponds to an orbit connecting

two given curves in the three-dimensional solution space. In §4 we establish the

existence of such an orbit by means of a shooting argument, not unlike that used

in [8].

2. Preliminaries. We shall consider the more general boundary value problem

(2.i) [ (Krvy + ̂ =-Vr v + x-u* + f(u) = o,    x > o,

(2-2) (II) < u(x)>0    (=£0),        x>0,

(2-3) u'(o) = 0, lim u(x) = 0



816 L. A. PELETIER AND JUNYU WANG

in which p>2, 0 > 0, TV > 1 and

(2.4) f(u) = (a/fi)u-uq,

where a > 0 and q > 1. Clearly we obtain Problem (I) if we set

(2-5) « = -^T7'       0 = ^,
q-p+1 q-p+1

and require in addition that

(2.6) u(x) = o(x~a)    as x —► oo.

By a solution of Problem (II) we shall mean a function u E C1 ([0, oo)) such that

|u'|p-V E Cx(0, oo) which satisfies (2.1)-(2.3). In fact, \u'["-2u' E C*([0, oo)) and

it is readily shown that

(2.7) lim K(x)rV(:r) = ([u'r2u')'(0) = ~f(u(0)).
xlO X TV

The main result of this paper is the following existence theorem.

THEOREM 1.   Suppose TV > 1, p > 2, fi > 0 and

a> TV,    q > 1.

Then Problem (II) has a solution u with the property limI_00 xau(x) = 0.

We begin, in this section, by deriving a few properties of solutions of Problem

(II).

LEMMA 1.   Suppose u(x) is a solution of Problem (II) in which a> TV.  Then

(i) u(x) < A for allx>0;A = (a/fi)1^"'^;
(ii) u(x) is nonincreasing on [0,oo);

(iii) u'(x) < 0 at points x > 0 where u(x) > 0.

PROOF, (i) Suppose to the contrary that

(2.8) u(x) = sup{u(x): x > 0} > A.

Then at x = x: u > A, u' = 0, (|u'|p_2u')' < 0. If x > 0, we deduce, however, from

the differential equation that

(\u'r2u')'(x) = -f(u(x)) > 0,

i.e. a contradiction. If, on the other hand, x = 0, we obtain a contradiction to (2.8)

from (2.7). Therefore (2.8) must be false, and u < A on [0,oo).

(ii) Suppose that for some xo > 0, u'(xo) > 0. Then in view of (2.7) there exists

a point x E (0, x0) such that at x

(2.9) 0 < u < A,        u' = 0,        (Mp~ V)' > 0-

We shall show in Lemma 2 that u(x) > 0. This means, according to equation (2.1)

that (|u'|p"V)' < 0 at x = x, contradicting (2.9). Thus u'(x) < 0 for all x > 0.

(iii) It follows from the proof of part (ii) that u' (x) < 0 at every x > 0, where

0 < u(x) < A. Thus it remains to exclude the case that for some a > 0,

, . f = A,        0 < x < a,
u(x) \    ^ A 7     3

v ; [ < A,        a < x < oo.
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We assert that there exists a 6 > 0 such that u'(x) <0iora<x<a + 6. For, if

no such S can be found, there exists a sequence {xn}, xn j a, such that u'(xn) = 0

and 0 < u(xn) < A. By equation (2.1) the points {xn} can only be strict maxima.

Since by the continuity of u', there will be minima between the points {xn}, where

u' = 0, equation (2.1) yields a contradiction.

If we multiply equation (2.1) by xN_1, we can write it as

(2.10) (xN-1\u'\p-2u')' + ^xNu' + xN~1f(u) = 0.

Integration over (a,x), where a < x < a + 6, now yields, after some elementary

manipulations:

xN-lWrl + *"[A_u{x)]

(2-n) N ,. r
= -jr SN-1[A-U(s)]ds+  j     SN~1f(u(s))ds.

P  J a J a

Because u is decreasing on (a, a+ 6)

(2.12) fX sN-1[A-u(s)]ds< j-(xN -aN)[A-u(x)]

and, remembering the definition (2.4) of /:

fX sN-1f(u(s))ds<qAq-1 f   sN-1[A-u(s)]ds
(2.13) '3a _ ^a

<q-^(xN-aN)[A-u(x)].

Hence, if we substitute (2.12) and (2.13) into (2.11), and divide by xN[A — u(x)],

we obtain

MM-') {-©"}■
If we now let x tend to a, we arrive at the contradiction 1//3 < 0.

Thus, we have excluded the possibility that u = A on some interval [0, a], a > 0.

This completes the proof of the lemma.

In the following lemma we discuss the behavior of a nonnegative solution of (2.1)

near a zero.

LEMMA 2.   Let u be a nonnegative solution of equation (2.1) such that at some

point xo > 0, w(xo) = 'u'(xo) = 0. Suppose a > TV.  Then

(i) u(x) = 0 for all x > xo;

(ii) if xo > 0 and u > 0 in a left neighborhood of xq, then

limu-V|p-1 =xQ/0.
xlx0

PROOF, (i) If not, we may assume that u(x) > 0 and u'(x) > 0 for x E

(xo,xo + e), where e is some sufficiently small positive number.

We multiply the equation by x^-1 and integrate over (xo,x), where xo < x <

xo + s. This yields

x^-i|w'|P-i + ^u+^Z^ fXsN-1u(s)ds= f sN-1uq(s)ds.
P P JXQ J Xo
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Hence, because a > TV,

^—u(x)< j   sN-luq(s)ds< ^-(xN -x0v)uq(x)

or

^4»'-'« {>-(?)"}■
If we now let x tend to xo, we arrive at a contradiction.

(ii) Choose e > 0 so small that u > 0 and u' < 0 in (xo — £, xo).  Then, as in

part (i) we obtain

XN~1 |U'|P-1 + ^_!1   /       s^-lw(s) ds=*+ sN-1Uq(s) ds

P       Jx P Jx

when x € (xo — e, xo). Hence, because a > TV,

K(x)[p-X      x      /iI0sJV-1^(g)ds

u(x)      - 0 +       xN~1u(x)

and
lu'WI"-1      x      a- TV /*" aw-xu(8) ds

u(x)      > fi fi xN'1u(x)      '

If we let x t xq in these inequalities, we obtain the required limit.

REMARK. The limit in part (ii) of Lemma 2 is equivalent to

(2-14) hm   £4,/ '"' = %
V ' xTxo   p - 2 fi'

where v = u(p-2)/(p-i).

3.   The system. The limit (2.14) suggests we introduce the new dependent

variables

„ = u(p-3)/(p-i)   and   tt, = _Lzlw».
P-2

Equation (2.1) can then be written as the first order system

(   , P-2
(3 1) —^~T
a n\ ^     >  I N — 1 t rv
^•2j u(wp-1)' = wp ---vw"-1 -^w+^w- vl+ti

V x fi fi

where p = (q - l)(p - l)/(p - 2), because w > 0 by Lemma 1.

To simplify the left side of (3.2), we also introduce a new independent variable

t through the symbolic equation

d      i       ,n     p-2 d
— = (p - l)vwF     -—.
dt dx

This yields the system

' v' = -(p-2)vwp~1,

TV - 1     „_,      x . ,
(IV) < w' = wv-vwp     - -w + g(v),

x fi
, x' = (p- l)vwp~2,



A SINGULAR SOLUTION OF A DIFFUSION EQUATION 819

where primes now denote differentiation with respect to t and

(3.3) g(v) = (a/fi)v - v1+».

By Lemmas 1 and 2 it suffices to find a solution (v(t),w(t), x(t)) defined for t > 0

with the properties

0 < v(0) < B,    w(0) = 0,    x(0) = 0

and

(3.4) lim v(t) = 0, lim x(t) = lim fiwp~1(t) < oo,
t—>oo t—»oo t—>oo

where

(3.5) B = 4(p-2)/(p-i) = (a/0)1/".

The set of critical points of (IV) in the half space x > 0 consists of the two half

lines

Ly = {(v,w,x): v = 0, w = 0, x > 0},

Li = {(v,w,x): v = B, w = 0, x > 0}

and the curve

C = {(v, w,x): v = 0, wp~l = x/P, x > 0}.

(See Figure 1.)

On this curve C we define for every 7 > 0 the point

P, = (O,(7/0)1/(p-1),7).

J-======^-——

FIGURE 1. The sets Ly, L2 and C
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Near P^, the flow of (IV) is described by the linear system obtained by linearizing

(IV) at P1. The coefficient matrix M of this system is given by

/-(p-2)2 0 0 \

M=     *=£±i (p-l)g     -^)1/(p"lj     .

\(p-l)(2)(v-2)/{P-i) 0 0 J

Its eigenvalues are

A1 = -(p-2)I     Aa = (p-l)l    A3 = 0

and their corresponding eigenvectors:

,        L     9^      (^-^)(P-2) + 2p-3 11/1\W)/H)\

e2 = (0,1,0),

e3 = (0,(7//?)1/(p-1),(p-l)7)-

In view of (3.4) we look for an orbit which enters a point Pn on C. For such

orbits we have the following result [5, p. 127].

LEMMA 3. For each 7 > 0 there exists a unique (up to translation) nonconstant

solution

U(t,i) = (v(t,i),w(t,i),x(t,i))

of (IV) such that lim^oo U(t,i) = P1. In addition, as t —> 00, f/(i, 7) enters Pn

along the eigenvector ey at P1.

Because Xy and ey depend continuously on 7, we may choose the translation so

that <7(0, 7) is a continuous function. Thus, from classical results on the continuous

dependence of solutions of ordinary differential equations on the initial value and a

parameter in the equation, we may deduce the following lemma.

LEMMA 4. Let 7* > 0. For given constants e, T > 0 there exists a constant

6 > 0 such that 1/ |7 — 7*| < 6, then

\U(t,~t)-U(t,~(*)\<e    forallt>T.

Here [ ■ \ denotes the usual norm in R3.

To prove the existence of a solution u of Problem (II) which converges to zero at

infinity sufficiently fast, we use a shooting argument, shooting backward from P1

for different values of 7 > 0. The idea of the proof will then be to show that there

exists a 70 > 0 and a time T0 £ (-00,00) such that

lim U(t, 70) E Lq = {(v, w, x): v > 0, w = 0, x = 0}.

The function U(t,^o) is then readily found to correspond to a solution of Problem

(II).
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W

FIGURE 2. The sets S and F

4. The existence proof.  We shall need the sets

S = {(v,w,x): 0 < v < B, w >0, x>0},

F = {(v, w,x): 0 < v < B, w = 0, x > 0},

where B was defined in (3.5). (See Figure 2.)

Because the vector ey points from P1 into S, the orbit U(t,"i), when it emerges

from P-, as time runs backward, will enter S. We shall denote the time when it

leaves S again—time still running backward—by T,:

T1=snp{t:U(t,1)^S}.

If it does not leave S, i.e. U(t,"j) E S for all t E (Tmm,oo), where (Tmm,oo) is its

maximal interval of existence, we set T7 = Tmin-

We shall denote the set of values of 7 E R+ for which {/(£, 7) leaves S through

the bottom by 67:

G = {7 > 0: ^ > -00 and U(T~,,i) E F}.

LEMMA 5. Suppose a > TV. Then there exists a number 71 > 0 such that if

7€ (0,71), then 7 G G.

PROOF. Choose

and define the set

Si = {(v,w,x): 0<v < 71, 0<x<7i-v, 0<w< (x//?)1/(p_1)}.

(See Figure 3.)
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c

J% Fb

FIGURE 3. The set Sy

We compute where on the boundary <9Si of Si, U(t,q) may enter or leave Si.

On the front Ff of Sy,

Ff = {(v,w,x): 0 < v < 7!, x = 71 -v, 0 < w < (x//?)1/(p_1)}

the outward pointing normal vector is given by nj = (1,0,1) (not normalized). Let

X denote the vector field determined by (IV). Then

nrX = vwp~2{(p - 1) - (p - 2)w}

> vwp~2{(p - 1) - (p - 2)(71//?)1/(p-1>} > 0

in view of the definition of 71. Thus, Ff is part of the exit set of Si.

On the top Ft of Si,

Ft = {(v,w,x): 0 < v < ~/y, 0<x<7i-t>, x = fiwp~1}

the outward pointing normal nt is given by

nt = (0,(p-l)pV-2,-l)

and

nt-X=(p- l)fiwp~2 lg(v) - ^t—^vw"-1 j - (p - l)vwp~2

= (p- l)vwp~2{(a - TV) - pV} > 0,

where we have used the definition of 71 again. Thus Ft is also part of the exit set

ofSi.
On the left-hand side Fi of Si,

Fi = {(v,w,x): v = 0, 0 < x < 71, 0<wj< (x/fi)1/{p-1)},

we have v' = 0, x' = 0 and

w' = w{wp~1 -(x/p)} <0.

Therefore, this side is invariant, and orbits in F; converge to Ly.

Finally, on the bottom Fb of Si:

Fb = {(v,w,x): 0 < v < qy, w = 0, 0 < x < 71 - v}
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we have w' = g(v) > 0 because 71 < B. Hence Fb is part of the entrance set of Si.

Thus, we have shown that the entrance set of Si consists of only Fb, and therefore

that if a trajectory leaves Si when time runs backward, it must do so through Fb-

Because Fb C F, it remains to prove that (i) the trajectory U(t,q) enters Si

from Pry E C when t decreases from +00, and (ii) that it must leave Si again at

some io > —°°. Now, according to Lemma 3, U(t,q) enters P-, along the vector

-ey at P~,. Thus as regards (i) it suffices to prove that the vector

,       L    9^      (a-N)(p-2) + 2p-3 /7 y"-2^"1^

points from P-, into Si.

The point P-, lies on the curve where the left-hand side 7) and the top Ft of Si

intersect. The outward pointing normals on F; and Ft are

nt = (-1,0,0),    nt = (0, (p - l)/3(7//3)(p-2)/(p-1), -1).

Therefore

a ■ m = -(P- 2)7/0 <0

and

because a > TV, whence indeed, ey points into Si.

To prove (ii), suppose to the contrary that U(t,q) E Sy for all t E R. Then, by

(IV),

(4.1) v(t) / v,    x(t) \x       as t —■ -00,

where 0 < v < 71 and 0 < x < 71. In addition

(4.2) limini w(t) = 0,
t—*—00

since otherwise x(t) —■ -00 as t —> -00, and U(t,q) would leave Si as t decreases.

Also, because wp~1(t) < x(t)/f3 when U(t,q) E Sy,

1^    o     x        a-N + 1 y , x 1
ty > t<r - — m; H-v — v ^" > wp — —w + —v

because a > TV and v < 71 < {(a - TV)//?}1/". Thus, in view of (4.1),

(4.3) to' > wp - ^-w + —ti
p ^p

for — ( large enough.

It follows from (4.3) that there exists a number wy > 0 such that if for some

time ty E R, w(ty) < wy, then there exists a time t2 < ty such that w(t2) = 0 and

w'(t2) > 0. Thus, in that case, U(t,q) would leave Si at t = t2 in backward time.

Since, by assumption, this cannot happen, we must conclude that w(t) > wy for all

—t sufficiently large. This contradicts (4.2), and completes the proof of (ii).
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Figure 4. The set S2

LEMMA 6.   There exists a number 72 > 0 such that if 7 > 72, then 7 ^ G.

Proof. Set

v- 1
M = max{g(v): 0 < v < B}.    72 =/?(1 +M) + -—-B

p-2

and define the set S2 (see Figure 4).

S2 = \(v,w,x): 0 < v < B, w > 1, x > 72--v > .
I P-2   j

As in the proof of Lemma 5, we determine the entrance set and the exit set of S2.

On the bottom Fb of S2:

Fb = <(v,w,x): 0 < v < B, w = 1, x > 72--v \

w' is given by
TV — 1        x

iu' = 1-v - -3 + g(v).
x fi

Hence, because g(v) < M,

w'<l+M-^l2-^B)=0

in view of the definition of 72. Therefore, Fb is part of the exit set of S2.

On the back Fa of S2:

Fa = I (v,w,x): 0 < v < B, w > 1, x = 72-—-v \

an outward pointing normal vector na is given by

na=(-^,0,-l).
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Therefore, on Fa,

na-X=(p- l)vwp~2(w - 1) > 0

whence Fa is also part of the exit set of S2 ■

On the right-hand side FT of S2:

Fr = <(v,w,x): v = B, w > 1, x > 72--B >

we have
v' = -(p-2)Bwp~l <0,

so that Fr is part of the entrance set of S2.

Finally, as we saw in the proof of Lemma 5, the left-hand side F; of S2 is invariant.

Thus, we have found that the entrance set of S2 is Fr. Therefore, as time is

reversed, orbits can only leave S2 through Fr.

In view of the definition of 72, P1 E Fi if 7 > 72. Since ey points into S2, it

follows that U(t, 7) E S2 if 7 > 72 and t is large. As we have seen U(t, 7) can only

leave S through Fr. Because Fr n F = 0 this means that 7 ^ G if 7 > 72.

We may conclude from Lemmas 5 and 6 that as t decreases from +00, U(t,io)

enters S and must leave it again through F when 7 is small, and cannot leave it

through F when 7 is large. Thus, if 70 = sup{7 > 0: 7 E G} then 70 < 00. We

shall show that U(t,~jo) is a solution of (IV) which passes through or tends to the

half-line

L0 = {(v, w,x): v > 0, w = 0, x = 0}

as t decreases.

Let

T0 = inf{T E [-00,00): U(t, 70) E S for all T < t < 00}.

We shall consider the cases To > —00 and To = —00 in succession, (i) To > —00.

Since U(t, 7) depends continuously on 7 for t bounded (Lemma 4), U(Tq, 70) E dF.

In addition, x' > 0 when U E S, and therefore U(T0,70) E dF(~){x < 70}. However,

the half-lines

Ly = {(v, w, x): v = 0, w = 0, x > 0}

and

L2 = {(v, w, x): v = B, w = 0, x > 0}

are invariant. Therefore, we are left with the conclusion that cT(To,7o) E Lq n

{v < B}.

(ii) T0 = -00. In this case x'(t) > 0 and x(t) > 0 for all t E R and hence

x(t) —► xo as t —► —00, where xo > 0. Similarly, v'(t) < 0 and v(t) < B for alH £ R

whence v(t) —> vq as t —> —00, where 0 < vo < B. It follows because x' has one sign

that liminf«__00 x'(t) = 0. This means, since v0 > 0, that liminft__oo w(t) = 0.

We assert that

(a) x0 = 0;

(b) limt—oo w(0 = 0.

To prove (a), suppose that xo > 0. Then there exists a sequence {tk}, tk —* -00

as k —» 00 such that U(tk, 70) —* F U L2 as k —» 00. However, because orbits leave

S through F when time runs backward and L2 is invariant, this possibility must

be ruled out, and (a) is proved.
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Suppose now that (b) does not hold, i.e., there exists a number e > 0 and a

sequence {rk}, rk —> -oo as k —. oo such that w(rk) > £ and w'(rk) = 0 for all

k > 1. Writing vk = v(rk),wk = w(rk) and xk = x(rk), the equation for w' becomes

IV -l P— 1 7} Xk . .
—-—vkwp     =wp---wk+g(vk).

Xk P

If we now let k —► oo, the left-hand side becomes unbounded, whilst the right-hand

side remains bounded. Hence, we obtain a contradiction, and (b) is proved as well.

We conclude from (a) and (b) that U(t,^o) —* Lq D {v < B} as t —> —oo.

Finally, we conclude that both if To > —oo and if T0 = —oo, the orbit {U(t, 70):

To < t < 00}, where equality applies if To > —00, connects the half-line T-o to the

curve C.

This completes the proof of Theorem 1.
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