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CHAINS ON CR MANIFOLDS AND LORENTZ GEOMETRY

LISA K. KOCH

ABSTRACT. We show that two nearby points of a strictly pseudoconvex CR

manifold are joined by a chain. The proof uses techniques of Lorentzian ge-

ometry via a correspondence of Fefferman. The arguments also apply to more

general systems of chain-like curves on CR manifolds.

0. Introduction. If M is a nondegenerate CR manifold, its Fefferman metric

is a conformal class of pseudo-Riemannian metrics on a circle bundle over M. The

various CR invariants of M may be described in terms of the conformal geometry of

this metric; the description of chains in this setting is especially appealing. Recently,

H. Jacobowitz showed that chains on a strictly pseudo-convex CR manifold connect

pairs of nearby points. This paper presents a new proof of Jacobowitz's result which

makes use of the Fefferman correspondence. We hope that this approach will yield

new insights into the behavior of chains.

We begin with a definition of an abstract CR manifold of hypersurface type.

We then sketch briefly a construction due to Lee [15] of the pseudo-Riemannian

Fefferman manifold associated to a CR manifold, and discuss the special properties

of such manifolds. Much of this discussion applies to a slightly more general class

of pseudo-Riemannian manifolds.

We then proceed with our proof that chains on a strictly pseudoconvex CR

manifold connect pairs of sufficiently nearby points. This proof applies also to

the "pseudochains" associated to the more general pseudo-Riemannian manifolds

discussed above. Finally, we discuss an example of a CR manifold with a system

of pseudochains which are not chains.

1. CR manifolds and chains. An abstract almost CR manifold of hypersur-

face type is an odd-dimensional orientable manifold M2n+1 (which we shall always

take to be smooth) together with a field of tangent hyperplanes 772™ on which a

(smooth) complex structure J, J: H —> 77 linear, J2 = — id [h, is given. This J is

called a CR structure tensor on M. An almost CR manifold is called a CR manifold

if its Nijenhuis torsion tensor,

N(X, Y) = [JX, JY] + J2[X, Y] - J([X, JY] + [JX, Y]),

vanishes for X, Y E 77; a CR structure satisfying this condition is said to be formally

integrable.

Let 9 E T*M be a one-form which annihilates 77. A choice of such a one-form is

called a pseudo-Hermitian structure on M. The almost CR structure on M is said

to be nondegenerate if 0 A (d0)n ^ 0; this condition is independent of the choice of
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There is another way of describing a CR structure to which we will need to

refer later. Let M2n+1 be an odd-dimensional orientable smooth manifold. An

almost CR structure on M is an n-dimensional complex subbundle T^o of the

complexified tangent bundle CTM of M such that Ti,0 nT0,i = {0}, where T0,i =

Ti,0. We set 77 = Re(Ti>0 ©%); 77 is a real 2n-dimensional subbundle of TM. It

carries a natural complex structure J given by J(V + V) = i(V - V) for v E Tyi0.

The integrability of the almost CR structure is equivalent in these terms to the

requirement that [Tl0,Ti,0] C T^o-

With respect to a choice of pseudo-Hermitian structure 0 on M, the Levi form

Lg of M is the Hermitian form on Ty 0 given by

Le(V,W) = idO(V,W).

The form Lg depends on the choice of 0, but it changes only by a conformal multiple

if 9 is changed. If Le is (positive) definite, M is said to be strictly pseudoconvex.

The Levi form Lg gives rise to a real symmetric form on 77 which we also call Lg.

It was first observed by Poincare [21] in 1907 that there is no analog of the

Riemann mapping theorem in several complex variables. That is, real hypersurfaces

in C" may be locally inequivalent under biholomorphic transformations. Poincare

conjectured that real hypersurfaces in C" have certain biholomorphic invariants

associated to them. The signature of the Levi form is one such invariant. Cartan

[4] solved the equivalence problem for real hypersurfaces in C2; that is, he found a

system of invariants on such hypersurfaces whose equality is necessary and sufficient

for biholomorphic equivalence of the hypersurfaces.

Cartan also defined a biholomorphically invariant system of curves on hyper-

surfaces in C2, called chains. On S3, or on the hyperquadric 773 = {(X, Y) E

C21X — X — iYY = 0} (also called the Heisenberg group), the chains are the in-

tersections of the hypersurface with affine complex lines. In general, chains are the

solutions of a system of differential equations. To give this system explicitly for a

three-dimensional CR manifold M, choose a pseudo-Hermitian structure 0 on M,

and let us define 01 to be a complex one-form independent of 0 which annihilates

all vectors of the form X + iJX, for X E 77. For any complex-valued function c on

M, define Co, cy, and Cy by dc = cq0 + c101 + c-y-01. Then the chains on M are the

curves on M which solve the equations

(1) 01 = -p0,
(2) dp = (ip[p\2 + \icp_- ±1- %|2)0,

where b satisfies d0 = i0i01 + b0 A 01 + b0 A 01, and c and / are given by c = by

and I = cy - be - 2ibo (see [14]). Through any point of a hypersurface in C2,

in any direction transverse to the holomorphic tangent plane 77, there passes a

unique chain. Chains carry a distinguished parameter which is defined up to a real

projective transformation.

The work of Cartan was extended by Chern and Moser [6] to arbitrary ab-

stract CR manifolds of hypersurface type. They also discuss a normal form for the

equations defining a CR manifold M, produced by osculating M by an image of

the hyperquadric. This osculation takes place at a point p along a chain passing

through p.

Another way of describing chains is due to Fefferman [8]. For a strictly pseudo-

convex hypersurface M2n+l E Cn+1, he constructs a Lorentz metric on M x S1,
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defined up to a restricted conformal multiple; the conformal factor is required to

be a function constant on the S1 factor. The fibers S1 are null geodesies of the

metrics in this conformal class; the other null geodesies project to the chains of M.

Burns and Shnider [2] and Burns, Diederich, and Shnider [3] give an intrinsic

construction of the Fefferman metric, thereby generalizing the correspondence to

apply to any nondegenerate CR manifold of hypersurface type. For a CR mani-

fold M of Levi signature (p, q), they obtain a pseudo-Riemannian manifold L of

signature (2p+1,2q+1) on a certain circle bundle over M. If M is strictly pseudo-

convex, this pseudo-Riemannian manifold is of Lorentz signature. Burns, Shnider,

and Diederich's construction involves embedding Chern's CR structure bundle for

M in the conformal structure bundle of L. In this way, they show that all CR

invariants of M may be recovered from the (restricted) conformal geometry of L.

II. Construction and characterization of the Fefferman metric. Lee [15]

has given a more-direct construction of the Fefferman metric of an abstract CR man-

ifold, which we shall review here. For a nondegenerate CR manifold M2n+1 of Levi

signature (p, q), the Fefferman metric is a canonically defined pseudo-Riemannian

metric of signature (2p + 1,2q + 1), determined up to a restricted conformal factor,

on a certain circle bundle over M. This underlying circle bundle is the quotient

C = B*/R+ of the canonical bundle B of M with its zero section removed, by

the natural action of R+. Lee's construction of the Fefferman metric on C gives

a particular representative of the conformal class in terms of a choice of pseudo-

Hermitian structure on M. Lee shows that the restricted conformal class of this

metric is invariant under change of pseudo-Hermitian structure on M.

Choose a pseudo-Hermitian structure on M; that is, choose a (real) one-form 0

on M annihilating the hyperplane field 77. Let T be the unique vector field on M

so that 0(T) = 1 and TJ d0 = 0. Choose n complex one-forms on M so that the

0a, restricted to Tli0, form a basis of T1'0, and so that 0a(T) = 0.

These choices determine a (local) section c0 = 0 A 01 A • • ■ 9n of K*, and thus

also a section of C. Let 7 be the variable (mod 27r) on the fibers of C such that

[e^fo] = [?]> where [c] is an equivalence class of (n + l,0)-forms at a point of M.

Let K be the vertical (i.e., tangent to the fibers) vector field such that dq(K) = 1.

For a CR manifold M of Levi signature (p, q), the Fefferman metric on C will be

the pseudo-Riemannian metric ds2 = Lg + 20a of signature (2p + 1,2q + 1), where

rr is a canonically specified real one-form on C with cr(K) ^ 0. To this end, let n

be an n-form on C satisfying c = 0 An, f\n = 0 for any lift f of T to C. Lee shows

that n is unique. The one-form a is then chosen to satisfy

(1) dc = i(n - 2)a A c,

(2) a A dn A fj = Tr(da)ia A0AnAfj.

Lee shows that conditions (1) and (2) determine tr uniquely, and that the resulting

metric ds2 = Lg + 29a agrees with the one defined by Fefferman on nondegenerate

CR hypersurfaces in C"+1.

Sparling has shown (see [22, 10]) that a pseudo-Riemannian manifold L2n+2 of

signature (2p +l,2q + 1) is locally the Fefferman manifold of some nondegenerate

CR manifold M2n+1 of Levi signature (p,q) if and only if L admits a null Killing
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vector field K satisfying

(1) 7CJC = 0, 7fJSch = 0,

(2) Ric(7C,70 >0,
where C is the Weyl tensor of L, Sch is the Schouten tensor, and Ric is the Ricci

tensor. These conditions are invariant under conformal changes of metric on L

for which K is a Killing field of both the new and old metrics. In the presence

of condition (1), Kic(K,K) is actually constant [10]. If L is of Lorentz signature,

then for any null Killing field K we have Ric(7f, K) > 0, and the significance of the

strict inequality in the second condition is to make rot(TT) nondegenerate, where

rot(K)(X,Y) = \{(VXK,Y) - (VYK,X)}    for X,Y L K.

This follows from an examination of Raychaudhuri's equation for null geodesies [12]

(note that a null Killing field is geodesic, shearfree, and divergence free), or from

some calculations we shall make in the next section. Observe that rot(7<')(A', K) = 0

for any X E 7fx, and that K^~ has odd dimension 2n+ 1. Since K is a null Killing

field, rot(K)(X,Y) = (VXK,Y). Thus rot(7f) is nondegenerate if and only if,

for each X E K-1, X £ span(TiT), there is a Y E K±, Y £ span(Tf), such that

(VXK, Y) ^ 0. This means that VK is a nondegenerate linear transformation

from Kx/K to K±/K. We show later in a more general context that (VK)2 =

— Ric(7C, K) id [k^/Ki and thus that VK projects to (a multiple of) a CR structure

tensor on M.

III. Lorentz metrics and pseudochains. More generally, let L2n+2 be a real

line bundle or circle bundle (with Lorentz metric ( , )) over an odd-dimensional

orientable manifold M2n+1, such that the vertical null vector field Ti" is a null

Killing field satisfying the conditions

(1) rot(TT) is nondegenerate,

(2) (C(X, K)K, X) = 0 for X E K±,
where C is the Weyl conformal curvature tensor of L. We shall see that the re-

stricted conformal class of (L, ( , )) determines an almost CR structure on M,

together with a system of curves (given by projecting the null geodesies of L onto

M) which we shall call pseudochains.

The holomorphic tangent plane field 772™ is given, as before, by projecting 7fx

onto M. In general, however, the CR structure tensor J will not be simply the

projection of V7C To define J, we must recall the definitions of null sectional

curvature and make a few observations about null sectional curvatures of vertical

null planes.

DEFINITION [11]. Let TV be a null tangent vector at a point p to a Lorentz

manifold L; let X be any spacelike vector perpendicular to TV at p. (Then N AX

is a null plane containing TV.) The null sectional curvature kn(N A X) of the null

plane TV A X with respect to TV is

k.n(N AX)= (R(X, N)N, X)/(X, X).

This curvature is independent of the choice of X in N AX, but it depends quadrat-

ically on the choice of TV in TV A X.



CHAINS ON CR MANIFOLDS AND LORENTZ GEOMETRY 831

The Weyl conformal curvature tensor of an m-dimensional pseudo-Riemannian

manifold is defined by

(C(X,Y)Z,W) = (R(X,Y)Z,W)

+ —*—{(X, W) Ric(Z, Y) - (X, Z) Ric(W, Y)
m — 2

+ (Y, Z) Ric(W, X) - (Y, W) Ric(Z,X)}

+ {m-mm-2)mX-ZHY'W)-{X'W){Y'Z))-

In particular, for X, Y _L K we have

(C(X, K)K, Y) = (R(X, K)K, Y) - -^ Ric(7f, K)(X, Y).

Therefore, if (C(X, K)K, X) = 0 for all X _L K, we see that

KK(KAX) = ^-Ric(K,K).

Thus the sectional curvatures of all vertical null planes are equal; let kk denote

their common value. To show kk is positive, write

(R(X,K)K,X) = (VXVKK,X) - (VKVXK,X) - (V[X,K]K,X).

Assume that X is extended so that [X, K] = 0. Then

(R(X, K)K, X) = - (VKVXK, X)    (using VKK = 0)

= -K(VXK, X) + (VXK, VKX).

But (VXK,X) = 0 since K is Killing, and [X,K] = 0, so

(R(X,K)K,X) = (V XK,V XK).

In terms of null sectional curvature,

kk(X,X) = (VxK,VxK).

Now VXK E K1, since (VXK, K) = \X(K, K) = 0. And VXK is not a multiple
of K, since the assumption that rot(K) is nondegenerate means that (VXK, Y) ^ 0

for some Y E K^-. Therefore, VXK is a nonzero spacelike vector, as is X, and

(R(X, K)K, X)       (VXK,VXK)KK=        (X,X)       =       (X,X)       >0"

We are now ready to define the CR structure tensor on M.

PROPOSITION.   J = 7r((l/v//cA7)V7f|K±) is a CR structure tensor on M.

PROOF. We must show that J2(X) = -X for all X E -n(Kx); that is, we must

show that (VK)2(X) = -kk ■ X (mod K) for all X E KL. It suffices to show

that ((VK)2(X),Y) = -kk(X,Y) for all X, Y in /f1.

<(V702PO, Y) = (VVxKK, Y) = -(VYK, VxK)    (since K is Killing)

= -X(VYK,K) + (VxVYK,K)
= 0 + (R(Y,K)X,K) = -(R(Y,K)K,X)

= -^- Ric(K, K) (X, Y)    (since (C(X, K)K, Y) = 0)
2n

= -KK(X,Y).
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Here we have used the identity VaVb7C - VvabK = R(A,K)B, which holds for

any Killing field K and any vectors A and B, in the fourth equality; we have also

assumed during the calculation that [X, Y] = 0.    U

The CR structure tensor we have just defined may or may not be integrable.

Graham [10] shows that the curvature conditions K\C = 0, TfJTfJ Sch = 0 are

sufficient to ensure integrability (where C is the Weyl tensor and Sch is the Schouten

tensor of L). Of course, every CR structure tensor on a 3-dimensional manifold

is integrable. If kk is constant, then K may be replaced by the new Killing field

Ky = K/^/kk, and then the CR structure tensor becomes just ^(VTfil^j.).

Since the flow of L along K is isometric, it takes null geodesies of L to null

geodesies of L. This ensures that, by projecting null geodesies of L to M, we

obtain a system of curves on M determined by initial point and initial tangent

direction. This initial direction must be transverse to 77, for curves tangent to 77

cannot be the projection of null geodesies of L.

These curves are just the chains of M in the CR structure induced from L,

if L satisfies Sparling's conditions; if Sparling's conditions are not satisfied, then

they will generally differ from the chains. We shall call curves of such systems

pseudochains. It is the object of the next section to show that pseudochains connect

nearby points of strictly pseudoconvex CR manifolds. This includes the result of

Jacobowitz [14] that chains connect nearby points of a strictly pseudoconvex CR

manifold, as the special case where the pseudochains are derived from a Lorentz

manifold which is locally Fefferman.

So far, we have been considering Lorentz manifolds L which are line bundles or

circle bundles over the base M. However, if the fibers of L are circles, we may

replace L with a line bundle L over M (or, at least, over an open neighborhood U

of M), so that L is a covering space of L. That is, we may "unroll" the circular

fibers into lines. To avoid confusion, in the next section we assume that all our

Lorentz manifolds are line bundles over M. Since the theorem we wish to prove is

of a local nature, we may make this assumption without loss of generality.

IV. Connectivity theorem and lemmas.

THEOREM. Let M2n+1 be a strictly pseudoconvex CR manifold, with pseu-

dochain structure derived from the conformal class of the Lorentz manifold L2n+2.

Then, for any point p E M and any neighborhood U of p, there is a neighborhood

V of p, V C U, so that p can be joined to any distinct point q E V by a smooth

pseudochain remaining in V.

The idea of the proof is to show that the lightcone of a point p of L, where

7r(p) = p, is shaped so that the projection map rr: L —► M takes an appropriate

portion of it onto a neighborhood of p. Since the lightcone of p consists of those

points of L which can be reached from p by a smooth null geodesic, this is equivalent

to showing that p can be joined to every point of the neighborhood by a pseudochain.

We begin by recalling that null sectional curvatures of all vertical null planes

along a given fiber 7 = 7r_1(p) are equal to the same positive constant. From

Jacobi's equation, a point p 6 7 must then have future and past null focal points

along 7 of order 2n. Now choose a vertical hypersurface T tangent to the lightcone of

p along 7; Lemma P enables us to show that every fiber near 7 in V enters the future

and the past of p. By Lemma N, we see that this happens in a normal coordinate
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neighborhood of p, for fibers close enough to 7. But, in such a neighborhood,

the boundaries of the past and the future of p are the lightcone of p, so we may

conclude that fibers close to 7 in T intersect the past and future lightcones of p.

From topological considerations, we then see that every fiber near 7 = 7r_1(p)

intersects the lightcone of p, and we are done.

The first lemma is a generalization of part of Proposition 7.27 of Penrose [20],

and our proof follows its proof closely. Before stating the lemma, we recall the

notions of null focal point and null coordinate system as set forth in [20].

Let 70 be a null geodesic orthogonal to a spacelike (n — 2)-surface E0 at a point

p. A point q E 70, q # p, is said to be a focal point to E0 along 70 of order fc if and

only if there exist fc nontrivial independent Jacobi fields along 70 which vanish at q

and which arise from a fc-parameter variation of 70 through affinely parametrized

null geodesies orthogonal to Eo-

For the construction of the null coordinate system, let Uq be the null hypersurface

(near E0) generated by the family (7) containing 70 of null geodesies orthogonal

to Eo- Varying E0 smoothly in some one-parameter family (E) such that the

direction of variation is not tangent to fio, we obtain a one-parameter family of

null hypersurfaces (fi). The null generators of (fi) form a congruence extending

(7). Let T be the null vector field tangent to this congruence; then T = —Vu, where

u is the variation parameter whose level sets are the hypersurfaces (fi). The vector

field T is geodesic (VyT = 0) and rotation free. Let v be the affine parameter on

7 with d/dv = T and v = 0, u = const, on (E). Choose the remaining (n — 2)

coordinates Xi so that each geodesic 7 is given by u,xy,... ,xn-2 = const. Then

the metric may be written as

ds2 = 2du(dv + \adu + b\dxx) + rXli dxx dx^,        X,p=l,...,(n-2).

This coordinate system is valid near 70 until a focal point to Eo is reached [20,

Proposition 7.26]. The surfaces (E) may be allowed to degenerate to points. In this

case the focal points of Eo = {p} are called conjugate points to p along 70.

LEMMA P. Let Xn be an n-dimensional Lorentz manifold of signature (—,+,

...,+); let p,q E X. Let 7 be a future-null geodesic from p to q.

(a) If the first internal point of 7 which is conjugate to p is conjugate of kth

order, 1 < k < n — 2, then there is a k-parameter variation of 7 through timelike

curves from p to q.

(b) Let E be an (n — 2)-surface which is spacelike and contains p, such that 7

is orthogonal to E at p and there is a focal point of E along 7 between p and q.

Assume that the first such focal point is of kth order, 1 < k < n — 2. Then there

is a k-parameter variation of 7 through timelike curves from E to q. If k = n — 2,

every point ofT, in a neighborhood of p is in the past of q.

PROOF. Let r be the first conjugate point to p, or focal point to E, beyond p

along 7; by assumption, it is of fcth order. By Proposition 7.26 [20], there is a null

coordinate system 6 valid in some neighborhood of the portion of 7 between p and

r, and valid also at p in case (b).

Let T = 7. We may choose the u-coordinate of 6 so that (d/du,d/du) < 0

along 7. Scale u so that -Vu = T, and take u = 0 on 7. (T = d/dv, where v is

the affine parameter on 7.)
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Choose a point w on 7 to the future of r, close enough to r so that rw contains

no pair of conjugate points. Then, if r' precedes r on 7 and is close enough to

r, the point r' will not be conjugate to w either. Thus the segment r'w of 7 is

covered (except at w) by another null coordinate system 6. Choose 6 so that

T = d/dv = d/dv = T along 7.

Since r is a fcth-order conjugate point of p (or focal point of E) along 7, there

are fc independent nontrivial Jacobi fields Xi,... ,Xk on 7 which vanish at r, and

which arise from a fc-parameter subfamily containing 7 of the congruence (7) of

null lines of 6 continuous with 7. We have DXi ^ 0, Xi = 0 at r. So, the Xi

have the form Xi = (vq — v)Yi, where vo is the value of v at r. The Yi are smooth

vector fields defined along 7 which are orthogonal to 7 (but not tangent to 7), and

nonvanishing at r, so the Vj are spacelike at r ((Yl,Yi)[r > 0). We may assume that

the Yi are mutually orthogonal at r' ((Yi, Yj)[r- = 0 if i ^ j).

Now

(YA'WVaVbU = -(Ft)a(^)"VaT6 = -(VYi,T,Y3)

= -(uo - v)-l(VXtT,Y3) = ~(vq - v)-l(VT(v0 - v)Yt,Y3)

= (v0-v)-1(Yl,YJ)-(VTYl,YJ)

near r, this quantity being large and positive just to the past of r on 7 if i = j.

Thus, if the point r' is sufficiently close to r and just before r on 7, we have

(Yl)a(Yt)bVaVb(u -u)>0    (formula Pl)

at r', since VaV;,w is continuous at r. In fact, the matrix

Bl} = (Yl)a(YJ)bVaVb(u-u)\r.

is positive definite.

Now set U = d/du at r', and consider expr, applied to the (fc 4- l)-plane n

spanned by U, Yy,..:, Yk. Write the general element of n as xU + yyYy + ■ ■ -+ykYk,

and consider u and it as functions of the coordinates (x, yy,... ,yk). We have

u = u = 0 at the origin r' = (0,0,... ,0), and also du/dyi = du/dyl = 0 at r'

(since du(Yi) = —(Yi,T) = 0, and similarly for u). Also du/dx = du/dx = 1 at r'

(since U(u) = -(U,T) = 1 = -(U,t) = U(u)). Finally, formula (Pl) states that

Aij — Aij is positive definite, where A%3 = d2u/dytdyi[r'.

Consider the hypersurface

k

4x+ J^ (Aij + AlJ)yly:l = 0
i,j=l

(hypersurface (P2)) in n. Taylor's theorem gives

1    k

u = - Y2 (At] - A^^yj + o(yly]),        1 < j < fc,
I, J — 1

1   *
u = - ^2(Aij - AtJ)ylyJ + o(yly]),

t=i

so for small enough ||(yi,... ,yk)[[ > 0, we have u < 0 < u.  Thus, expr, applied

to this value of (x,yy,... ,yk) gives us a point r" for which u > 0, so r" <C w, and
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for which u > 0, so (in case (a)) p <C r". That is, there exists a broken causal

curve from p to w passing through r". In fact, for each value of (x,yy,... ,yk) on

the hypersurface (P2), such that \\(yy, ■. ■, yk)\\ is small enough, there exists such a

curve passing through r"(yy,...,yk) = expr'(x,yy,- ■ ■ ,yk)- Therefore, there exists

a fc-parameter variation of 7 through broken causal curves from p to q which are

not null geodesies. By Proposition 4.5.10 of Hawking and Ellis [12], such curves

can be varied to give timelike curves joining p and q, so case (a) is done.

To complete the proof of part (b), recall that r' is covered by the null coordinate

system 6; for ||(yi,.. ■ ,yk)\\ small enough, r"(yy,..., yk) will be covered by 6 also.

Let (u, v, wy,..., wk, Zfc+i,..., zn-2) be the n-tuple representing the coordinates of

r" in 6. We have shown above that u(r") and v(r") are positive for each r". By

construction, u = v = 0 on E. Therefore,

r" = (u,v,u>i,... ,wk, zk+i,... ,zn-i) > (0,0, wy,...,wk,zk+i,...,zn-i) E E.

So there exists a broken causal curve from the point (0,0, wy,... ,wk,zk+y,... ,zn-i)

of E to q passing through r"(y1:... ,yk) = (u,v,wy,... ,wk,zk+1,...,zn-2). By

Proposition 4.5.10 of [12], this can be varied to give a timelike curve. Thus there

is a fc-parameter variation of 7 through timelike curves from E to q. If fc = n - 2,

each point of E in a neighborhood of p can be joined to q by a timelike curve.    □

For the second lemma, recall that a neighborhood U of a point p in a pseudo-

Riemannian manifold X, ( , ) is called a normal coordinate neighborhood of p if

there is a neighborhood U of Op in TPM on which the exponential map expp is a

diffeomorphism onto U. A normal neighborhood U of p is geodesically star-shaped

with respect to p (but not necessarily geodesically convex).

We derive the second lemma as a consequence of the following proposition.

PROPOSITION. Let X and Y be locally compact Hausdorff spaces. Let f: X —*

Y be a local homeomorphism, and let A be a compact subset of X such that f[jy

is injective. Then there is an open subset U of X containing A such that f\rj is a

homeomorphism.

PROOF. If no such open set U containing A exists, there must be sequences of

points {xa}, {ya} of X arbitrarily close to A such that f(xa) = f(ya)- Let V be

an open subset of X containing A such that the closure V of V is compact. Within

V, choose convergent subsequences Xi —> x and yi —► y with x,y E A. Since / is

continuous, f(x) = f(y).

If x ^ y, then / is not injective on A. But if x = y, then / is not one-to-one on

any neighborhood of x, and thus / cannot be a local homeomorphism.

Thus no such sequences can exist, and there is some neighborhood U of A in X

such that f\u is a homeomorphism.    □

COROLLARY (LEMMA N). Let ^([a,b]),0 E (a, b), be a segment of a geodesic in

a pseudo-Riemannian manifold Y, such that 7([a, b]) has no self-intersections and

contains no point conjugate to 7(0). Then there is a neighborhood U of ~f([a,b])

which is a normal neighborhood 0/7(0).

PROOF. Apply the Proposition with X = T^^Y, A = exp~1)(7([a,o])), and

/ = exp7(0), to obtain a neighborhood U of 7([a,6]) on which exp^Q) is invertible.

Then choose a neighborhood of A = exp~}Q, (i([a, b])) contained in exp^1, (U) which
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is star-shaped with respect to 0 E T^^Y; this is possible because A is star-shaped

with respect to 0. The image of this star-shaped neighborhood is the required

normal neighborhood U of 7(0) containing 7([a,o]).    □

PROOF OF THEOREM. Fix a point p E M, and a point p E ir~1(p) c L. Let

7(i) be a parametrization of 7r_1(p) such that 7 = K and 7(0) = p; then 7(f) is an

affinely parametrized null geodesic of L.

We know that sectional curvatures of all vertical null planes K A X in T^t)L

are equal and positive, for all t. An examination of Jacobi's equation shows that

all Jacobi fields J(t) along 7(1) with J'(0) = 0 and J(0) = X, where X is some

spacelike vector perpendicular to K, vanish simultaneously at a point ^(w/2y/K) to

the future of 7(0) on 7, and at a point 7(-7t/2v/k) to the past of 7(0) on 7, where

k = kk(K AX).

Let E2" be a portion of a wavefront of the lightcone of 7(7t/2v/k) at p = 7(0).

Then E is a spacelike surface of dimension 2n, perpendicular to 7 at p, and having

past and future null focal points of order 2n along 7 at affine distances —-k/2^/k

and +tt/2,/k respectively.

Next, let r2"+1 be the vertical hypersurface in L consisting of those fibers of ir

which pass through E2n, i.e., let T = 7r_1(7r(E)). Let 7(a) be a point of 7 to the

past of p = 7(0), which lies between the first past-conjugate-point of p along 7 and

the first past-focal-point of E along 7. Choose also a point 7(6) between the first

future focal and conjugate points of p on 7. Since the vertical null vector field K on

L is a Killing field, the hypersurface T is foliated by the past and future translates

of E under the action of K. Let Ea be the past-translate of E on which the point

7(a) lies; let E& be the future-translate of E containing 7(6). By Lemma P, every

point of Ea close enough to 7(a) lies in the past of p (denoted J~(p)), and every

point of E;, near 7(6) lies in the future of p (denoted J+(p)). In terms of T, this

means that every fiber of ir in T near 7 enters the future of p and the past of p

before reaching E^ and Ea, respectively.

By Lemma N, there is a neighborhood U of 7([a, 6]) which is a normal coordinate

neighborhood of p = 7(0). In such a neighborhood, the proof of Proposition 4.5.1

(Hawking and Ellis [12]) shows that the boundary dJ+(p) of the future of p is the

future lightcone of p (which we will denote LC+(p)); also dJ~(p) = LC~(p). We

now see that those fibers of ir which enter J± (p) before leaving U must intersect

LC±(p). Since U is an open neighborhood of 7([a, 6]), we may say that every fiber of

7r close enough to 7 in T intersects both LC+(p) and LC~(p). Now, the lightcone

of p is ruled by the null geodesies which pass through p. By the "conservation

lemma" (also called the "constant-of-motion lemma"), any geodesic of L has a

constant inner product with the Killing field K which is tangent to the fibers of ir.

Thus the lightcone of p is transverse to the fibers of ir, except along 7 = 7r_1(p).

That is, ir restricted to LC — 7 is a local homeomorphism.

In fact, ir restricted to (LC+ — 7) fl U is a homeomorphism. If any two points

qy and q2 of (LC+ — 7) fl U lay on the same fiber, then the one (say q2) to the

future could be reached from p by a broken null geodesic consisting of the light

ray from p to gi, followed by the section of the fiber (which is also a null geodesic)

from gi to 172. This curve is not a smooth null geodesic, since the first segment is

nonvertical and the second is vertical, so by Proposition 4.5.10 of Hawking and Ellis

[12], q2 can be reached from p by some timelike curve. Thus curve can be made to
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lie pointwise close to the broken null geodesic from p to q2, and thus to lie in U.

But then 172 could not have been a point of LC+(p), since LC+(p) E dJ+(p) in

U. So no two points of (LC+ - 7) n U can lie on the same fiber, and ir\(Lc+-*i)nu

is one-to-one. Thus tt|(lc+--7)0(7 *s homeomorphism. Similarly, ir\(LC--i)r\U 1S a

homeomorphism.

Finally, we must show that ir maps a suitable subset of the lightcone of p onto an

open neighborhood V of p in M. To this end, define a subset £+ of (LC+ — 7) fl U

as follows: include in £+ the open segment of each future-null geodesic through

p, from p to the point where the geodesic either (1) leaves U, or (2) intersects T,

whichever comes first. In case (2), include also the intersection point. Define a set

Z~~ similarly.

From £+ and L~ we shall construct a new set S. Choose t+, t~ E R, t~ < 0 <

t+, so that 7(i~) is to the past of the first past-conjugate-point of 7(0) along 7,

and so that 7(i+) is to the future of the first future-conjugate-point of 7(0) along

7. Let S be the union of (1) a copy of £+, past-translated an affine distance t~

under the action of K, (2) a copy of L~, future-translated an affine distance t+, (3)

those segments of fibers in T intersecting both the translates of £+ and £," which

lie between the intersection points, and (4) the closed segment of 7 from 7(1-") to

7(i+). S is homeomorphic to an open (2n + l)-ball; p = 7(0) is in the interior of S.

Now define an equivalence relation R on S by declaring two points a and 0 of

S to be ^-equivalent if ir(a) = ir(0). Then the set B = S/R is still homeomorphic

to an open (2n + l)-ball, and the equivalence class [p] of p is in the interior of B.

The projection map ir: L —> M induces a map rr: B —> M which, by the above

discussion, is manifestly one-to-one and continuous. By the invariance of domain

theorem [24], the set V = ir(B) is an open (2n + l)-ball in M, and ir(p) = p is in

the interior of V.

Since every point of the sets C+ and £.~ can be reached from p by a null geodesic,

and since the image of £+ U £~ under ir is the same as the image of B under 7? (that

is, V) by construction, we have shown that a point p of M admits a neighborhood

V such that every point q of V, q ^ p, can be reached from p by the projection of

a null geodesic of L. That is, p and q can be connected by an L-pseudochain.    □

V. Example of a nonstandard pseudochain system on the Heisenberg

group. We now turn to the study of an example of a three-dimensional CR man-

ifold with a system of pseudochains which are not chains. We have noted that

Fefferman metrics satisfy K\C = 0, where C is the Weyl tensor; thus a four-

dimensional Fefferman metric must be of type TV or 0 in the Petrov classification

(see Kramer et al. [16]), and Lorentz manifolds of other Petrov types cannot be

Fefferman. We shall study such a metric with a rotating null Killing field, identify

its quotient CR manifold, and show that the pseudochains of the induced system

differ qualitatively from the standard chains on this CR manifold.

The Lorentz manifold we wish to study is the Godel universe [9], which we label

G4. This spacetime is homeomorphic to R4, and carries the Lorentz metric

ds2 = dx2 + dz2 + \e2i dy2 - (dt + c* dy)2.

It is a solution of the Einstein equations (with cosmological constant) for a pressure-

free perfect fluid, and it is of Petrov type D [16]. Let us write f = d/di, X = d/dx,

Y = d/dy, Z = d/dz.   The two null congruences f + Z and f - Z are in fact
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commuting null Killing fields with nonvanishing rotation. Let Ky = T + Z and

K2 = T - Z. We shall consider the quotient CR manifold M3 of G4 by the null

geodesies tangent to the Killing field K = y/2Ky.

The space M3 can be realized in G4 as the subspace z = — i; we give it the

coordinates (r, x,y), where r = i - z, x = x, and y = y. The holomorphic tangent

plane field on M is found by projecting Kx to TM; it is spanned by X = 7r*(X)

and Y = ir*(T - e~~xY). (X and T - e~xY are orthonormal spacelike vector fields

of G.) The CR structure tensor J on M is given by J = ir*(VK); we see that

J(X) = Y and J(Y) = -X.

The Godel universe is a completely homogeneous space-time. It has the five

symmetries [9]:

(1) i^i+b,

(2)y^y + b,
(3) z — z + b,

(4) x^ x + b, y -* e~by,

(5) a rotation (best described in other coordinates).

These induce the following four symmetries of M:

(l)r — r + b,

(2)y-+y + b,
(3) x -> x + b, y -» e~by,

(4) rotation.

Thus M is a homogeneous CR-manifold. Symmetries (l)-(3) leave invariant the

vector fields

(1) T = ir.(Ki),

(2)X = irt(X),

(3) W = ir*(s/2e-xY) = ^/2T = Y.

These vector fields form a Lie algebra with the product relations

[T, X] = [T, W] = 0; [W, X] = W.

Thus we see that M is a Lie group isomorphic to R x P2, where P2 is the noncom-

mutative half-plane. The identity element is the point (r, x, y) = (0,0,0).

The homogeneous 3-dimensional CR manifolds have been classified by Cartan

[4]. The space M we have been considering is called Eg in Cartan's classification

(see no. 37 of [4]), and it is locally equivalent to the Heisenberg group 773 =

{([/, V)C2\U - U - iVV = 0}. In fact, M may be thought of as the universal cover

of the Heisenberg group with a chain through infinity, {(u,u)|V = 0}, removed.

The map from M3 in three real coordinates (r, x, y) to 773 given as a subset of C2

in two complex coordinates (U,V) is given by

u=y-^fl,     v = e-x + lT.

(Our coordinates (r,x,y) on M3 correspond to Cartan's coordinates (a,b,c) on Eb

as follows: r = b, x = -c, y = a.) The point (0,0,0) of M is sent to the point

(i/2,1) of 77 in C2.

The null geodesies of G4 project to a system of pseudochains on M. We have

shown that two sufficiently nearby points of M are connected by a curve of this
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system. However, these pseudochains differ markedly in their local and global be-

havior from the standard chains. We shall map the G4-pseudochains of M to the

Heisenberg group, where the standard chains are well known, in order to make the

comparison. There we shall find that G4-pseudochains are never closed in suffi-

ciently small neighborhoods, and that they do not connect pairs of points globally.

This, of course, is in striking contrast to the behavior of the standard chains of 773,

some of which are circles in any neighborhood, and which do connect any pair of

points.

To show the difference in the global behavior of chains and G-pseudochains,

consider the function r on G given by

1 + e2i + \y2e2x
cosh(2r) =-^2-.

Chandrasekhar and Wright [5] computed the geodesies of the Godel universe G,

and they found that this function r is bounded above by the value ro = ln(l + \/2)

on the null geodesies which pass through (i, x, y, z) = (0,0,0,0). Projecting r down

to a function f on M, we see that f is bounded by ln(l + y/2) on the G-pseudochains

passing through (r,x,y) = (0,0,0). Thus

1 + e2i  .  I w2 ix
3 > cosh(2r) =    +C    +2VC    .v   > 2gX

Now passing from M3 to 773 via the correspondence given above, we find that

l + |V,|-4 + 2Re2(C/)|I/|-4
- 2|V|-2

on the G-pseudochains passing through the point (i/2,1) of 77. Since 21m(U) =

\V\2 on 77, we may rewrite this inequality as

3>l + |lm-2(/7) + §Re2(c/)Im-2(c/)

lm'^U)

Simplifying, we have

-2Re2(<7) > 41m2(U) - 12Im(f/) + 1.

In order for this inequality to have solutions, it is necessary that —2 < Re(f7) < 2.

Even if Re(U) = 0, which allows lm(U) to take on the widest possible range of

values, we find that

(3 - 2>/2)/2 < lm(U) < (3 + 2\f2)/2.

Using the defining equation Im(J7) = ||V|2 of 77, we see that the coordinates

(U, V) must remain in a compact subset of C2 on the pseudochains passing through

(i/2,1), and so these pseudochains remain in a compact subset of 77. Thus most

points of 77 cannot be joined to (i/2,1) by a G-pseudochain. The standard chains

of 773 join any pair of points (even making allowances for the absence of points on

the line V = 0), and so the standard chains through (i/2,1) do not remain in any

compact set.

The pseudochains of this system also differ locally from the standard chains in

that they are not closed in small neighborhoods.   To see this, consider the func-
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tion / given by restricting the ^-coordinate of the Godel universe to any affinely

parametrized null geodesic. Since d/dz is parallel, / is a linear function of the

affine parameter of the geodesic, and therefore it is strictly monotone and un-

bounded above and below. Since d/dz is also nonvertical, / projects to a function

F on pseudochains with the same properties; F is the r-coordinate of a point of

a pseudochain in the coordinates (r, x,y) on E# discussed above. Mapping to

the Heisenberg group, we see that Arg(V) is always decreasing on every pseu-

dochain. Thus, no pseudochain of this system in a sufficiently small neighborhood

of 77 - {V = 0} can be closed.
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