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DEFORMATIONS OF FINITE DIMENSIONAL ALGEBRAS
AND THEIR IDEMPOTENTS

M. SCHAPS

Abstract. Let B be a finite dimensional algebra over an algebraically closed

field K. If we represent primitive idempotents by points and basis vectors in

eiBej by "arrows" from ej to e,-, then any specialization of the algebra acts

on this directed graph by coalescing points. This implies that the number of

irreducible components in the scheme parametrizing n-dimensional algebras is

no less than the number of loopless directed graphs with a total of n vertices

and arrows. We also show that the condition of having a distributive ideal

lattice is open.

1. Introduction. In [5], P. Gabriel leaves as an open challenge the determi-

nation of the number of irreducible components in the structure constant scheme

Algn, which parametrizes multiplication structures of n-dimensional algebras. The

number of quivers in which each vertex is either a source or a sink provides a very

weak lower bound, since the radical-squared zero algebras generated by such quiv-

ers are known to be rigid. This was converted into a numerical bound by Mazzola

in [11]. However, as an examination of the list of irreducible components for di-

mension 5 will show, most of the quivers of rigid radical-squared zero algebras have

vertices which are neither sources nor sinks. Let the directed graph described in

the abstract above be called the basis graph of an algebra, and conversely, given a

directed graph, let the unique radical-squared zero algebra with that configuration

of idempotents and radical elements be called the basis graph algebra generated by

that graph. The long range purpose of the present work is to develop machinery

for determining and classifying the irreducible components of Alg„ by studying the

effect of deformation on the basis graph, but one of its immediate applications is to

prove that every irreducible component contains no more than one loopless basis

graph algebra. For example, in dimension 5 there are nine loopless basis graph

algebras, contained in nine of the ten different irreducible components. Thus in

low dimensions the number of loopless basis graphs gives a fairly reasonable lower

bound.

A different strand in the analysis of Alg„ began with the work of M. Gerstenhaber

on formal deformations of algebras [6] and culminated in the work of Flanigan [3, 4].

In the second section we broaden Flanigan's "straightening-out" theorems, [3], so

that they will be valid for deformations over an arbitrary base space. In the third

section we stratify Alg„ by associating to each algebra a weighted basis graph,

demonstrate that this is indeed an algebraic stratification, and show that the only
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possible specializations are obtained by holding the vertices fixed and increasing the

weights, or by coalescing vertices and adding loops. This gives the desired lower

bound.

In §4 we concentrate on algebras which are candidates to be of finite represen-

tation type, and prove the openness of the distributive ideal lattice condition. The

chart for the 2- and 3-arrow algebras with distributive ideal lattice in dimension 6

is included as an illustration.

2. The "straightening-out" theorems. Let K be an algebraically closed

field. If A(t) is a finite dimensional Tf-algebra whose structure constants are formal

power series in an indeterminate t, then any set of idempotents and matrix units

for the special algebra A(0) lifts to a corresponding set for A(t). However, since

the radical of A(0) may be larger than the radical of A(t), idempotents which were

primitive in A(0) may no longer be primitive in A(t) (see [3]).

When we pass to deformations over an arbitrary base space, and in particular,

over an arbitrary component of Alg„, we have to exercise more care. Central

idempotents in a closed fiber always determine a unique etale neighborhood of the

base space whose fibers are central idempotents. This fact is frequently quoted to

show that the number of irreducible blocks in an algebra is a lower semicontinuous

function, i.e., it cannot increase when we pass to some specialization of an algebra.

However, noncentral idempotents do not lift uniquely in a deformation over an

algebraic base space. As a result, liftability of idempotents was not used as one

of the criteria to determine possible deformations in the studies of deformations of

5-dimensional algebras [7, 11].

The extra ingredient needed to extend the formal results of the algebraic situation

is the Artin approximation theorem from the theory of etale coverings This will

allow us to make a change of parameter space, after which the idempotents and

matrix units can be lifted as desired. We will need several concepts from algebraic

geometry: morphisms of finite type, etale morphisms and etale neighborhoods. For

the convenience of the reader we have collected the definitions in an appendix at the

back of the paper. For those interested in gaining more fluency in the applications

of algebraic geometry to algebra, we have included references to the various results

needed during the course of the proof.

There are several competing definitions of deformation in the context of finite

dimensional algebras. We will use the following:

DEFINITION. Let (W,t0) be any pointed affine scheme, with W = Spec(7?) for R

a commutative affine ring over K and to a closed point corresponding to a maximal

ideal mo of 7?. A flat deformation B of Bo over (W,to) is a flat 7?-algebra B

together with an isomorphism of Bq with B ®r R/m0.

REMARK. In more classical terminology, when the fibers over general closed

points of W are all isomorphic to an algebra A, then A is also called a deformation

of B, and the relationship is denoted by A —> B. This can also be read as "A

specializes to B."

Over an algebraically closed field, the Wedderburn structure theorems have a

particularly simple form: any finite dimensional algebra is a split extension of its

nilpotent radical J by a subalgebra S isomorphic to sum of matrix blocks Mn(K).

For each such block one can choose a basis of matrix units Eij with the standard

multiplication Ei3 ■ E]k = Eik.
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Let B be a matrix block isomorphic to Mn(K). There are various ways of

choosing subalgebras of B which are also direct sums of matrix blocks, and two of

these are of particular importance in deformation theory. One way is to choose a

partition n = ny + ■ ■ ■ + nr and consider the subalgebra generated by the matrix

units in the diagonal blocks of these dimensions. The other way only works if n

has a nontrivial decomposition as a product n = c ■ d of two integers. In this case

Mn(K)^Mc(Md(K)), and the matrix units of the outer matrix representations are

each sums of d of the original matrix units. In this second case the idempotents

are not primitive. Each idempotent is the sum of d of the original idempotents.

DEFINITION. Let B be an algebra which is a finitely generated free module

over a commutative ring 72. A matrix decomposition set e for B will be a set of

matrix units for an 7?-subalgebra of B isomorphic to 0™.x MTi(R). If the sum of

the idempotents is 1, we will call e a complete matrix decomposition set. If the

idempotents are primitive we will call e a primitive matrix decomposition set, and

if e spans B/ Rad B we will call e a Wedderburn set for B.

PROPOSITION 1 ("STRAIGHTENING-OUT THEOREM"). Let B be a flat de-

formation of a finite dimensional algebra Bo over a pointed affine scheme (ff' ,to),

with ff = Spec(7?). Let eo be a complete matrix decomposition set for Bq over K.

Then there is an etale neighborhood (ff',t'0) of (ff,to), with ff' = Spec(7?'), such

that eo lifts to a complete matrix decomposition set for the R' algebra B <S>r R' ■

PROOF. Any finitely generated flat module over a local Noetherian ring is free

[8, III, 9.1A(f)] so if we denote the (Zariski) localization of R at m0 by 7?o, then

B ®r Rq is a free 7?o-module. Thus replacing ff by an open neighborhood of to,

we may assume that B is free as an 7?-module.

Let 7?o denote the completion of 72 at io, with ffo = Spec(72o), and let mo be

the unique maximal ideal of Rq. Let fy,. ■ ■ ,fr be the idempotents in the complete

matrix decomposition set eo- Since idempotents can always be lifted modulo a

nilpotent ideal, they can be lifted inductively from Ro/mQ to Ro/mQ+1 for k =

1,2,..., so they can in fact be lifted to the completion. Once lifted, they can be

adjusted to be orthogonal [10, p. 53]. It suffices, in fact, to lift fy,..., fr-y to an

orthogonal set of idempotents fy,..., fr-y, for then we can define

fr = !-(/!+•• - + /r-l)

and the resulting set of idempotents fy,. ■ ■ ,fT will be complete and orthogonal.

Choose an 7?-module basis v0, ■ ■ ■, vn-y for B over R, such that v0 is the identity

of the given algebra structure on B. Let a = (a*-) E R3n be the set of 7?-coordinates

of the structure constant tensor of the multiplication in B with respect to the basis

v0,...,vn-i, i.e.

Vt   a Vj = 'Y^oJ-jVk.

(The tensor a determines a morphism from ff = Spec(7?) into the scheme of struc-

ture constant tensors Algn. Thus in what follows one could replace ff by Alg„ and

afterwards define ff' = ff XAign (Algn)'.)

Let W E ff x Vr be the algebraic scheme determined by the a-dependent equa-

tions fi -a f3 = 6ijfj, fy + ■ ■ ■ + fr = 1, which are quadratic equations in the

coordinates of the fi and fj, together with n linear equations.  Each closed fiber
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determined by these equations is embedded in an affine space of dimension nr, and

thus the projection ir: W —> ff is a morphism of finite type. The set fi,...,fr

gives a section of ffo into the base extension W x<^ ff0, so by Artin's approxima-

tion theorem [1], there exists an etale morphism p: ff'^-ff whose image contains

t, such that there is a section a: ff' —> W x<# ff' in which the image of to is

fy,..., fr. (Equivalently, as suggested by the referee, one can use the formal crite-

rion for smoothness to show that 7r is smooth and thus ff' and a exist as asserted.)

Let fy,..., fr be the corresponding set of idempotents in ff' xVr. We thus have

a complete orthogonal idempotent set for B.

Once a lifting has been chosen for the idempotents, there is a standard technique

for lifting the matrix units. One lifts each Els, s > 1, and projects onto the proper

Peirce component by Eyy and Eas. Discarding from ff' the closed subsets on which

right multiplication by Eys is not an isomorphism from ESSB'Eyy to ESSB'ESS, we

let Esy be the inverse image of Ess under this isomorphism, so that EsyEys = Ess.

Multiplying this equation on the left by Esy, we find that

Eys • Esy • Eys = Eys ■ Esa = Eyy • Eys.

Again discarding the closed set on which right multiplication by Els is not an

isomorphism from EyyB'Eyy to EyyB'Ess, we find that

Eys ■ Esy = Eyy.

Thus p: (ff', s0) —+ (ff, t0) is the desired etale neighborhood.

DEFINITION. Let e be a matrix decomposition set for a free 72-algebra B. We

will say that an 7?-module basis x of B respects e if it contains e, and multiplication

of a basis element by an element of e gives 0 or another basis element. If J is a

two-sided ideal which is a flat 72-module, then we will say that x respects J if some

subset forms a basis for J.

COROLLARY 1.1. Suppose B' is a deformation of Bo over R!, as in the theorem,

and e is some lifting of a matrix decomposition set of Bq to B'. Let Jy D J2 D

■ ■ ■ D Ji be a nested sequence of flat ideals. If xq is a basis of Bq which respects

eo and the ideals Ji ®r R/nrto, then over an open Zariski neighborhood (ff",to)

of (ff,to) with ff" = Spec(7?"), we can find a basis x of B" = B' ®r> R" which

respects e and the ideals Ji.

PROOF. We proceed by reverse induction on the index / of J/. Restricting if

necessary to a Zariski open neighborhood of to, we choose any basis for J; which

is linearly independent over to, and perform a 7f-linear transformation so that it

coincides with a subbasis of xo over to- We then take this transformed basis as

part of a local basis for Ji-y, and transform as necessary. After performing this

operation for all i, we lift the elements of eo by e. If any elements of xo have not

yet been lifted, we take arbitrary liftings, and restrict to the Zariski open set on

which they are linearly independent.

Since xq respects eo, each basis element lies in some factor e3Boei of a Peirce

decomposition, where el,ej are idempotents from eo- If z; is a lifted basis element,

we replace it by e"j£(eV Within any set of matrix units (etJ), we choose one idem-

potent, say en, and obtain a basis of ej2Bekk by multiplying a basis of enBen by

matrix units tj\ and e~yk. The resulting basis x has the required closure property

under multiplication by elements of e.    Q.E.D.
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DEFINITION. A TT-algebra A is sober if A/Rad A is a product of fields.

To any algebra A we can associate a sober algebra A~ unique up to isomorphism.

DEFINITION. Let A be an algebra, and let e be a Wedderburn set for A, i.e. a

complete primitive matrix decomposition set which spans A/RadA. Let fy,...,fr

be a subset of e formed by choosing one idempotent for each matrix block, and set

f = fi + ■■ ■ + fr, which is also an idempotent of A. Then the algebra A" = fAf
is called the skeleton of A (as in Flanigan [3]).

REMARK. Up to isomorphism, A~ is independent of the choice of idempotent set

and of the choice of fy,..., fr, since for any other choice there is an automorphism

of A carrying one into the other. A~ is sober because

A"/Rad A" = /(A/Rad(A))/^©/<(A/Rad(A))/^0 ff/i.

Algebras with the same skeleton are called Morita equivalent. It is well known

that the representation theory of an algebra depends only on its Morita equivalence

class, and thus representation theory can be done with sober algebras. We claim

that essentially the same is true for deformation theory—the deformations of an

algebra depend only on its Morita equivalence class. The isomorphism classes of al-

gebras appearing in deformations of an algebra B0 are in one-to-one correspondence

with algebras appearing in deformations of its skeleton Bq .

COROLLARY 1.2. If B is a deformation of B0 over (ff,to), then there is an

etale morphismp: (ff',t'0) —► (ff,to) and a deformation B of Bq over (ff',t'Q) such

that B x-jc ff' has closed fibers which are Morita equivalent to the corresponding

fibers of B.

PROOF. Let eo be a complete primitive matrix decomposition set for Bq, and

Xq a basis for Bo which respects it. By Corollary 1.1 there is an etale morphism

p: (ff',so) —> (ff,to) over which eo and Xo lift to e and x in B' = B Xg> ff'.

Let fy,..., fr be a subset of the idempotents in eo, chosen one from each matrix

block, and let f0 = fy + ■ ■ ■ + fr- Let f[,...,f'r be the corresponding idempotent

sections in B', and set f = f[ + ■ ■ ■ + f'r. The skeleton Bq = foB0f0 is spanned

by all elements in the basis xq lying in Peirce blocks of the form fiBofj, and the

subalgebra B = f'B'f of B' is spanned by the corresponding elements of the R'-

module basis x of B'. Thus B is a free R' module over ff' whose closed fiber at so

is Bq". It is therefore a deformation of Bq .

Let A be any closed fiber of B', let f" = fy -\-1- /" be the restriction of the

idempotent /' to this closed fiber, and let A = f"Af" be the closed fiber of the

deformation B of Bq . We have to show that A and A are Morita equivalent.

For each i, choose a Wedderburn set Si for Att = f" Af" = f"Af". The subal-

gebra of Att generated by e, will have the form 0MCtj(K). In fact, the union e of

the e~i will be a complete primitive matrix decomposition set for A. In A, each fi

is an idempotent in a d, x d, block of matrix units. For each i, we multiply each

primitive matrix decomposition set e"; by the matrix units corresponding to fi and

in this way we produce a complete matrix decomposition set e' for A, generating a

subalgebra of the form

0®Mdj(MCj.(K))A00MdiCo(K).
i       j i       j
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Now decompose A/ Rad A into a sum of matrix blocks 0M„,(7sT). Any matrix

subalgebra of A, being irreducible, must be entirely contained in one of the n; x n;

blocks, and this defines a function <p(i, j) = I such that

0   Md>Ct](K) E Mni(K),    withn,=    ^   dlci}.

<t>(i,j)=l <t>{i,j)=l

Since e' is a complete matrix decomposition set, it generates a complete set of

diagonal blocks within A/ Rad A, and can therefore be extended to a Wedderburn

set w for A.

By construction, all of the matrix decomposition sets e, e', and w respect the set

of idempotents (/(', ...,f'r'). Thus A/ Rad(A") = f"(A/ Rad(A))/" will be spanned
by all the elements of w lying in the subset f'wf", and will have a matrix decom-

position

A/ Rad(A)^ 0 Mm, (K),    with m, =    ^   dj.
4>(i,j)=l

This shows that f'wf" is a Wedderburn set for A. Its idempotents coincide

with the idempotents in e.

For each /, we let (i,j) be the first pair in lexicographical order with <p(i,j) = I,

and let gi be the first idempotent in /"M(ji(MCij(7f))/"J:*MCj:)(7f).

Let g = J2,9i- Then gAg = gAg is the common skeleton of A and A. This proves

that A and A are Morita equivalent.

REMARK. Any deformation of a nonsober algebra Bo is obtained from a defor-

mation of its skeleton by multiplication by matrix units, since by Corollary 1.1 we

can always find a basis which respects the deformation of a Wedderburn set. Thus

the problem of classifying deformations is reduced to the problem of classifying

deformations of sober algebras.

DEFINITION. A property (P) of finite dimensional algebras over K is open if

whenever (P) holds for B0, then for every deformation B of B0 over an algebraic

scheme (C, to), it holds for all the closed fibers in a Zariski open neighborhood of

to-

DEFINITION. We will say that a property (P) is preserved by Morita equivalence

if (P) holds for A if and only if it holds for the skeleton A" of A.

COROLLARY 1.3. If (P) is a property preserved by Morita equivalence, then it

suffices to check the openness of (P) on deformations of sober algebras.

PROOF. Let B0 be any algebra, B any deformation. We find p: (ff',t'Q) —►

(ff, to) as in Corollary 1.2 such that the fibers of B' Xg» ff' are Morita equivalent

to fibers of a deformation B of Bq . Let U be an open neighborhood of t'0 over

which the property (P) holds in B . Since (P) is preserved by Morita equivalence,

(P) hold for all the closed fibers over U in B'. However, these are identical with

the closed fibers over p(U) in ff. p(U) is the image of a morphism of finite type,

and thus constructible. Since p is etale over an algebraically closed field, it in-

duces an isomorphism on the completions at to and t'0 and thus p(U) is actually a

neighborhood of to as required.
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3. Applications to deformation theory. We wish now to apply the existence

of lifting of idempotents to reduce the set of possible deformations or specializations

of an algebra.

DEFINITION. (1) The basis-graph of an algebra A is obtained in the following

way:

(i) We take a set of vertices corresponding to primitive orthogonal idempotents

eo,..., er with eo + ■ ■ ■ + er = 1.

(ii) Let nij = dimeiAej. Each pair of distinct idempotents e, and ej will be

connected by n%3 arrows with a barb pointing from ej to ei, and we add na — 1

loops at ei.

(2) Let J = RadA and let n\j = dimei(Jk/Jk+1)er We will construct the

weighted basis-graph of A by putting k barbs on n* arrows or loops for each k =

1,2,.... If eiAej contains a matrix unit, it will be represented by a solid triangular

barb.

REMARK. Since any other set of primitive orthogonal idempotents can be ob-

tained from this by conjugating by a unit, the basis graph and weighted basis graph

do not depend on the choice of idempotents.

REMARK. We are deliberately trying to distinguish our diagrams from the quiver

of the algebra, which includes only the arrows of weight 1. To obtain the quiver

one first replaces the algebra by its skeleton, as defined in §2, and then eliminate

all arrows of weight greater than 1.

Example. The first weighted basis graph in Figure 1 represents M2(K), and

the second represents the upper triangular 3x3 matrices.

Figure l

LEMMA 1. If B is a deformation over a nonsingular curve (ff,to), then there

is a flat family of ideals J such that Jt C Rad Bt everywhere, with equality holding

almost everywhere.

PROOF. As is well known, dimRad(Bt) is an upper semicontinuous function of

t, and thus this dimension equals some fixed minimal value d on a Zariski open

subset U of ff. Let ^d,n-d be the Grassmann variety of d-dimensional subspaces

of V. The conditions for being a two-sided nilpotent ideal are algebraic conditions

depending on the structure constant tensor of B, and therefore define an algebraic

subvariety Y of ff x S^d,n-d- Over U, where there is a unique ideal satisfying

these conditions, we get a section a: U x ^d,n-d- Let W = a(U). Since ^d,n-d

is complete, the intersection of W with the fiber over t0 is nonempty [8, II, 4.9, and

Definition, p. 100].

However, in order to get a flat family of ideals, we need more than just the

existence of such a point. The first projection of W onto U is an isomorphism,

hence 7Ti: W —> ff is birational. A birational morphism onto a normal curve is an

isomorphism so W^ff [8, V.3.8.1]. Thus we have a section ff —► ff x^d,n-d with
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image W. Restricting to a Zariski neighborhood of t0, this section determines a set

of 72-linearly independent elements of B, and we let J be the B-module generated

by these elements. This family is flat at t0, since it is free in a neighborhood of io-

J is a two-sided nilpotent subideal of B, since W was a component in the variety

of two-sided nilpotent ideals over ff. Since it is nilpotent, it is a subideal of Rad B.

PROPOSITION 2. Let B be a deformation of B over a curve (ff,t0), such that

the dimension of the radical is constant in each fiber. Then the basis-graph is also

constant and the function

H?j = dimei(J/Jk+1)ej

giving the number of arrows with no more than k barbs is upper semicontinuous.

PROOF. We first make a base extension, replacing ff by its normalization, which

will be a smooth curve. Flatness is preserved by base extension [8, III, 9.1A(b)]. Let

e be a complete primitive matrix decomposition set, and x a basis which respects

it, and which respects the family J of ideals guaranteed by Lemma 1. By Corollary

1.1 we can find an etale cover ff' of ff and sections e, x such that x respects e and

j' = j xr ff'.
Let so be the distinguished point of the new deformation B' = B x%? ff' over

(ff',s0). By hypothesis, J = J (to) was the radical of B, so J'(s0) will be the

radical of B'(so)—>B. We divide the entire deformation by J'. B'/J' has a basis

given by the sections of the semisimple set e,(s) over each point s, and this is a

trivial deformation of B/J. Thus we have a fixed set of vertices, corresponding to

the original idempotents.

Since x respects e, the dimension et(s)B'(s)e~j(s) is also fixed whenever x is a

basis. Thus the number of arrows from vertex to vertex is also fixed.

Since x respects J', dim e%Je2 is constant. Thus we need to show that

dimei(J')k+1ej is lower semicontinuous. The set ii(J')k+1ej is generated by the

admissible products i2, ■ • ■ iik+, of basis elements. The locus on which the dimen-

sion is < r is defined by the vanishing of (r + 1) x (r + 1) minors and is thus an

algebraic subvariety. Thus dime'i(J/)'c+1e7 is lower semicontinuous. In particular,

it is constant over an open dense subset of ff', so we get a generic weighted basis-

graph defined by these numbers, and these functions Hk- are upper semicontinuous

whenever the radical dimension is constant.

DEFINITION. The basis graph of a closed fiber over the open set on which the

radical dimension is minimal will be called the generic basis graph of the deforma-

tion.

PROPOSITION 3. Let B be a deformation of B over (ff,t0). Then the basis-

graph of B either equals the generic basis-graph of B or is obtained from it by

coalescing vertices, replacing each vanishing vertex by a loop.

PROOF. As before, we first replace ff by its normalization. Let e be a complete

primitive semisimple set for B, J the flat family of two-sided ideals such that

Js = RadBs at the general point s. By passing to a base extension ff', we can

find algebraic sections x respecting e and J' = J x%- ff'.

Let si be any point whose basis-graph is generic. Since e"o • ■ • h form a set of

idempotents in si, we can find a set of primitive idempotents subordinate to this
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set:

7bl +-r-/bmo = «o(si), ■ ■ •, fli +-h flm, = et(sy).

We then have

nXj = dime~i(sy)BSjej(sy) = ^dimfikBSlfjk.

Each vertex e^ is obtained by coalescing m^ vertices fn,..., fimi■ Hi ^ j, then the

number of arrows from i to j is the sum total of all the arrows from fcp to fjq for

all p = 1,..., m„ q = 1,..., m,. If i = j, then the generic basis-graph contributes

a number of loops equal to

X] n(ik)(ik') + ^(n(ik)(ik) ~ 1) =     X^n(lfc)(ifc)     -»"« = «»- mi-
*:#*:' fc \^fc,fc' y

There are actually na — 1 loops at et. Thus whenever m,i vertices coalesce to one,

we add m; — 1 loops to make up for the lost dimensions.

EXAMPLE. In Figure 2 we give an example of the weighted basis-graph of M2 ©

M2 deforming to M2(k[t]/(t2)).

Figure 2

DEFINITION. Let Algn be the algebraic subscheme of Spec (if [c*-]), the affine

space containing all the structure constant tensors a = (a*-) such that the multi-

plication

Vi -c Vj = ^2akjVk

is associative and has an identity.

REMARK. This is the conventional parameter space for associative unitary n-

dimensional algebras. The structure constant scheme Cn, as defined in Schaps [13],

is the subscheme of Algn for which vo is the identity element.

DEFINITION. If Q is a directed graph with r vertices and n — r arrows, then

there is an n-dimensional radical-squared zero algebra, unique up to isomorphism,

which has Q as its basis graph and as its quiver. If we let xy,..., xr be the vertices

and av+ij ■ ■ ■ ,xn be the arrows, the multiplication is given by

i '    j — OijXi X, 7 ^ r

Xi ■ xk = xk if xk denotes an arrow ending at vertex Xi,

xk ■ Xi = xk if xk denotes an arrow beginning at vertex Xi,

xk ■ xi =0 if k,l > r.

We denote this algebra by Aq and call it the basis-graph algebra of Q.
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(i) (ii) (iii)

Figure 3

DEFINITION. We say that a directed graph Q' degenerates to a directed graph

Q if Q is obtained from Q' by collapsing subsets of vertices and replacing each

vanishing vertex with a loop, so that a subset of m vertices is replaced by one

vertex and m — 1 loops.

THEOREM 1. Every irreducible component of Algn contains at most one loopless

basis graph algebra, so the number of loopless directed graphs provides a lower bound

to the number of irreducible components.

PROOF. Every irreducible component W has a generic minimal radical dimen-

sion, and thus, by Proposition 2, has a generic basis-graph Q'. If Aq is a basis-

graph algebra with basis graph Q in W, then Q' degenerates to Q by Proposition

3. However, if idempotents in Q' coalesce to form Q, then Q contains loops. If Q

is loopless, then Q' = Q.

Propositions 2 and 3 give a fairly strong set of necessary conditions for the ex-

istence of deformations. For deformations over k[[t]] these were already derived by

Flanigan [3], although they do not seem to have passed into general use by repre-

sentation theorists, perhaps because of the formal base space, or perhaps because

they were not formulated in combinatorial terms.

What seems to have halted Flanigan's attack on the classification of finite di-

mensional algebras was the problem of giving sufficient conditions for the existence

of deformations of what he calls type II, those involving creation of idempotents.

We intend to remove this obstacle in a subsequent paper [2] by giving a diagonal-

ization theorem for idempotent splitting deformations. This leads to an inductive

procedure for constructing such deformations, inductive in that it depends on a

knowledge of the deformation chart for n — 1 dimensional algebras. We will also

give a list of easily provable sufficiency conditions which in low dimensions will

generate much of the chart in dimension n from the chart in dimension n — 1.

As an illustration of the weighted basis graph used in this section, we give a

partial deformation chart in dimension 5, with the algebras placed as in Happel's

chart in [7]. The lines indicate deformations implied by general sufficiency theo-

rems. They are drawn solid when minimal, dotted otherwise. The only algebras

included are those with a basis for which the product of two basis elements is

another basis element times 0, 1, or — 1. Thus the continuous families are left out.
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Key to deformation charts (Figures 4 and 5). The symbols in Figure 3 represent

the following:

(i) a loop whose products with every other radical element is zero;

(ii) the radical of K[x]/xm+1, for m = 2, and m = 3;

(iii) the radical of k2(K), the alternating algebra on two generators.

4. Deforming algebras with distributive ideal lattice. It is known (see

[12]) that every algebra of finite representation type has a distributive lattice of

ideals. If we let Aji represent the Peirce component eyAej, this means that Aji is

a uniserial (Ajj — Aii)-bimodule, i.e. has a unique chain of subbimodules. More

specifically

(1) An is isomorphic to E(m.i) = k[z]/zm'+1.

(2) Aji is generated by a single element y either as an Ajj-module or as an A,»-

module. That is, we have a basis {y, Zjy,..., z-'y}, dj < mj, or {y, yzi,... ,yzi'},

di < mt.

The ideal lattice of an algebra is the same as the ideal lattice of its skeleton,

so the property of having a distributive ideal lattice is preserved under Morita

equivalence.

We now prove that the distributive ideal lattice property is an open condition,

using the corollaries to Proposition 1 in §2. We remark that the definition of

openness of a property (P) in terms of deformations which is given in §2 is equivalent

to saying that the set of closed points in Algn for which (P) holds is the set of closed

points in an open subset of Alg„. This is the definition used in P. Gabriel's proof of

-■-r^-
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FIGURE 4
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Figure 5

the openness of finite representation type [5] and in A. Schofield's proof of openness

of i-bounded global dimension [14].

PROPOSITION 4.   Having a distributive ideal lattice is an open condition.

PROOF. Since the distributive ideal lattice condition is preserved under Morita

equivalence, it suffices, by Corollary 1.3, to show that if Bo is a sober algebra and

B is a deformation of Bo over an algebraic scheme (ff,to), then there is an open

neighborhood of io over which (P) holds.

As we saw in the proof of Corollary 1.3, replacing (ff, i0) by an etale neighbor-

hood does not affect the test for openness, so we may assume that we have sections

fi(t), ■ ■ ■, fr(t) over ff lifting the idempotents /i(0),..., /r(0) of A0 and sections

lifting elements of a basis Xq-

Let A be the fiber over a general closed point t of ff. We first show that each local

Peirce block is a truncated polynomial ring. For each i, let /? be the idempotent

in A corresponding to fi(0) and let z be the evaluation at i of a section lifting

the generator z0 of the radical /f) Aof^^K^/z^1. Since /, z, z2,..., zm are

linearly independent in Ao, we must have f,z,z2,... ,zm linearly independent in

the general fiber A. Thus /t'Ao/t' is commutative, of the form

K[z]/(zm+1+amzm + ---+a0),        a% E K.

Since the field is algebraically closed, the polynomial factors in each closed fiber

into a product of powers of linear factors, showing that f-Af- is a product of

truncated polynomial rings.

It remains to show that fiAf'k ^ 0 is a uniserial (fiAfi - /^A/j[.)-bimodule for

two primitive idempotents ft, f'k coming from decompositions of distinct idempo-

tents e0, e0 in B0. Let eo(i) be idempotent sections over ff, inducing idempotents
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fo, fo in the fiber A, with f0 = fx + ■ ■ ■ + fr, and f0 = f[ + ■ ■ ■ + f's. By the dis-
tributivity condition, e0B0e0 is a uniserial (e0Boe0 - e0Boe0)-bimodule. Without

loss of generality we may assume that it is generated on the left by eoB0eo-^E(m).

Let yo be the generator, and zq a generator of the radical of eoBeo- We then have

e0B0e0 = {y0, z0y0, ■■-, zfoo}-

Let i/o(i) be a section, and let y E A be the induced element of A. We let z be

an element of A corresponding to z0. We then have a basis {y, zy,..., zdy} for

foAfQ. This basis induces spanning sets for each of the Peirce components fiAf'k.

Letting yik = ftyf'k, we conclude that }iAf'k is spanned by {y%k,Ziyik,... ,zfyik}

where z% = fizfi is the Ajj-component of z. If d' = dim fiAf'k, then there is

some polynomial h of minimal degree d" > d' such that h(zi)yik = 0. Every

zjyik f°r j > d' can be expressed as a combination of terms of lower degree, so

we conclude that d" = d', and {yik,. ■. ,zd ~1yik} is a basis. The proof is now

complete. We mention, in conclusion, that since some power of Zi is zero, some

power of Zi annihilates yik, and we can show inductively that in fact h(zi) = zf .

In Figure 5 we illustrate the deformation of algebras with distributive ideal lattice

by giving the deformation chart for all such algebras whose basis-graph involves

two or three arrows. Note that, by the first part of the proof of the theorem, two

coalescing idempotents cannot be connected by an arrow. Therefore the number of

arrows which are not loops in each connected component of the chart is fixed.

Appendix. We list here the various terms we will need from algebraic geometry.

For simplicity, we have restricted ourselves to affine spaces.

DEFINITION. A morphism /: Spec(B) —► Spec(A) is of finite type if the corre-

sponding ring homomorphism f: A ^> B makes B a finitely generated A-algebra. If

B is finitely generated not only as an algebra but even as a left A module, then we

say that / is finite. (Geometrically this implies that there are only a finite number

of points of SpecB over each point of Spec(4) [8, p. 84].)

DEFINITION. A morphism f:Y —► X is etale if for every point y E Y and

x = f(y), there are affine neighborhoods Spec(B) of y and Spec(A) of x such that

B = A[ty,..., i„]/(/i,. ..,/„), with df/dt invertible [1, p. 11].
NOTATION. Let X be a scheme, and x a point of X. Then tf\,x will denote the

local ring of X at x in the Zariski topology. (If Spec (A) is an affine neighborhood

of x, then tfx,x is the localization of A at the prime ideal corresponding to x.)

@x,x will denote the completion of tfx,x at its unique maximal ideal, and K(x) the

residue field.

DEFINITION. Let (X, x) be a pointed scheme. A pointed scheme (X1', x') together

with an etale morphism f:X'—>X such that f(x') = x, and K(x) = K(x') will

be called an etale neighborhood of (X, x) [1, p. 20].

REMARK. If /: Y -» X is etale, and f(y) = x, then dx>x®K(x) K(v) -* 0Y,y- If
the ground field is algebraically closed, or K(y) = K(x) as in an etale neighborhood,

then 6x,i^6yir
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