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ODD PRIMARY PERIODIC PHENOMENA
IN THE CLASSICAL ADAMS SPECTRAL SEQUENCE

PAUL SHICK

ABSTRACT. We study certain periodic phenomena in the cohomology of the

mod p Steenrod algebra which are related to the polynomial generators vn G

■n,BP. A chromatic resolution of the Ei term of the classical Adams spectral

sequence is constructed.

One of the major goals of homotopy theory is the understanding of 7T*(5°), the

stable homotopy groups of spheres. A technique for studying these groups is by the

construction of certain "systematic families" of classes, first due to M. G. Barratt

[3]. One way to express this idea is as follows. Let X be a finite complex. (All

"spaces" and "complexes" are objects in the stable category localized at a prime

p.) A self-map of degree i, v: YflX —♦ X, is nonnilpotent if the fc-fold composition

vk = (vov o ■ ■ ■ ov): Y,klX —> X is essential for all fc > 0.

DEFINITION (1). For a given nonnilpotent map v, a class a E itj(S°) is v-

periodic if a can be decomposed as 5' <—► X/lX^t~'1^-—>-St~:', where X^ denotes

the k-skeleton ofX, and the composite HktX^-*X-^-*X/Xi-t~1^-^-ySt~:' is essential

for allk>0 [4].

A v-periodic class a E ir*(S°) determines an infinite "systematic family" in the

following manner. For each fc > 0 there exists an integer e with 0 < e < dimX,

such that the composite

gH+e ̂  ^[x/x(e-l)]v^x^x/x(t-l)^st-j

is essential (since the composite above is essential for all fc), so that each fc > 0

determines a class (or classes) in ir/f-i+e-t+i)^0)- Here are several well-known

examples of this sort of phenomenon.

EXAMPLE (2). Let Mv denote the mod p Moore space (p > 3). Then Adams

[1] has constructed a nonnilpotent map A: YPMV —> Mp, where q = 2(p — 1). This

map determines a family of nontrivial classes {at}, t > 1. with at E irqt-y(S°)

given by the following diagram:

Z^Mp —^ Mp

v

ggt       _^_^    gl
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EXAMPLE (3). Let V(l) denote the cofiber of the map A above. Then for

p > 5, there is a nonnilpotent map B: S2'p ~^V(1) —► V(l) which determines a

family of nontrivial classes {/3t}, t>l, with 0t E 7r[2(p2_1)t_g_1](50), by including

52(P2-i)t int0 the bottom ceu 0f S2(p2-i)tT/(1) and pinching out onto the top cell

ofF(l)[17].

EXAMPLE (4). Let V(2) denote the cofiber of B. Then for p > 7 there is a map

C: £2(p ~1>V(2) —» V(2) which determines a family of nontrivial classes {~ft} in

7r*(5°) in a similar manner [13].

Nonnilpotent self-maps of finite complexes have been classified by Devinatz,

Hopkins and J. Smith [6] as part of the affirmative solution of the Nilpotence

Conjecture. Part of this result can be stated as follows.

THEOREM (5). (Nilpotence theorem) Let X be a finite complex. A self-map

v: T,lX —► X is nonnilpotent if and only if the induced homomorphism BP„v is

nonnilpotent in BP, (X).

Here BP is the mod p Brown-Peterson spectrum, where

ir.(BP) = Z(v)[vy,v2,...],

with |i>i| = 2(pl - 1). The three examples above all represent multiplication by a

generator in BP-homology. Here BP»A is the map -vy in BP*MP, BP„B = -v2,

and BP*C = K3. Two other interesting maps representing v^s have been studied

at the prime 2. These are v4: E8M2 —► M2 and «|: T,48Y —> Y, where Y is a

certain four cell complex. Adams and Barratt have used the first map and Davis

and Mahowald have used the second map to produce families in ir*(S°) at the prime

2 in [1 and 4].

Since these systematic families in 7r*5° are associated with wn-self-maps, one

obvious way to investigate this sort of thing is by way of the Adams-Novikov spec-

tral sequence. Here the E2 term is Extrjp.Bp{BP*,BP*), with the spectral se-

quence converging to ir,X, completed at p. For the sake of convenience, we denote

VxtBp.Bp(BP*,M) by Ext(M), for a BP.SP-comodule M. Let In denote the

prime ideal (p,vy,v2,... ,vn-y) in BP*. Then the connecting homomorphisms in

Ext associated to the short exact sequences

0 —» BP./In-y^BP./In-y^BP./In^O

yield

Ext°(BP.//n)-^Ext1(SP.//„_1)-^ ■ • • -^Extn(BP,).

Clearly there is a class vn E Ext°(BP*//„). Denote the class (66- ■ •5)(wJl) E

Extn(BPt) by grt , where r/r'"' is meant to represent the "nth Greek letter". It

is shown in [13] that for n = 1, 2 and 3, these classes in Ext survive the Adams-

Novikov spectral sequence to represent the classes at,Pt and 7t, respectively. The

following conjecture generalizes these results.

CONJECTURE (6). For p a sufficiently large prime, depending on n, gr[n' is a

nontrivial class in Ext"(BP*) which survives the Adams-Novikov spectral sequence

to represent a nontrivial homotopy class in irtS°.
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The process of investigating Ext(BP+) by means of the n-fold connecting homo-

morphism shown above can be set up formally as the Chromatic spectral sequence

of [13], which filters the Adams-Novikov spectral sequence E2 term into wn-periodic

subquotients, known as the "chromatic filtration". This can be geometrically real-

ized by spectra [15].

A natural question to ask is: how does this machinery of w„-self-maps of finite

complexes and their associated systematic families in ir*S° appear in the classi-

cal Adams spectral sequence? At the prime 2, this question was answered in [9]

and [16]. There, a fair amount of technical machinery was necessary to start the

analysis. For odd primes, the question may be answered in a much simpler fashion.

Recall that the classical Adams spectral sequence (abbreviated by "clASS") at

a prime p has E2 = Exts/(Z/p,Z/p) => nt-s(S°)~, where A denotes the mod p

Steenrod algebra and "denotes completion at p. Let An denote the Hopf subalgebra

generated by {0,P\... ,Ppn'1} if p is odd, {Sq1,... ,Sq2"} if p = 2. Then A =

limnAn, so that

Ext A (Z/p, Z/p) S limn ExU„(Z/p, Z/p).

We can use information about the cohomology of the finite Hopf algebra An, then,

to infer results about the clASS E2 term.

Consider E(n) — E(Q0, Qy,... , Qn), the Fp exterior algebra on the first n + l

Milnor generators. Then E(n) is a Hopf subalgebra of An, where we denote the

inclusion by i: E(n) <—► An. Recall also that for n > 0 there is a spectrum BP(n),

known as the Baas-Sullivan spectrum [2] (or as the Johnson-Wilson spectrum in

[14]), such that ir*(BP(n)) = Z(p)[t>i,t;2,... ,vn], where ]vn] — 2p" - 2. Its coho-

mology is given by H*(BP(n)) = A®E(n) Z/p, (where, as in the sequel, all coho-

mology groups are assumed to have Z/p coefficients, unless otherwise specified).

Then the clASS converging to ir*(BP(n)) has

E2(BP(n)) = ExtA(H*(BP(n)),Z/p)

= ExtA(A®E(n)Z/p,Z/p)

= ExtErn)(Z/p, Z/p) by change of rings

= Z/p[<?0,Vi,... ,Vn],

converging to ir*(BP(n)) = Z(p)[ui,t;2,... ,vn], where the class "f," = {Qi} in

Ext^/P) ~~ (Z/p, Z/p) represents the homotopy class v^ and multiplication by qo

corresponds to multiplication by p in ir*BP(n). Here the E2 term is concentrated

in even dimensions, so that the clASS collapses from that stage. The inclusion map

i: E(n) «-> An given above induces the restriction map in cohomology

i*:ExtAB(Z/p,Z/p)^Extf;(n)(Z/p)Z/p) = Z/p[9o,«i,...,v„].

DEFINITION (7). A class x E Ext^„(Z/p, Z/p) is said to represent vk if the

restriction i*(x) is vk E Ext£(n)(Z/p, Z/p).

With these conventions, we can state our first main result.
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THEOREM A.   For all n > 1, p an odd prime, there exist classes uy,u2,... ,un

in ExtAn (Z/p, Z/p) such that

(i) Z/p[q0,uy,u2,... ,un] C ExtAn(Z/p,Z/p),

(ii) i*(un) =vnE ExtE(n)(Z/p, Z/p),

(iii) i*(u{) = vf"+1 E ExtE{n)(Z/p, Z/p) for l<i<n,

(iv) un is a non-zero-divisor in ExtAn(Z/p,Z/p).

Thus Ui E ExtAn (Z/p, Z/p) represents uP . We hereafter abuse notation and

write Z/p[q0, v\ , v2 ,... ,vn]c ExtA„ (Z/p, Z/p). At the prime 2, the best that

one can show is that Z/2[h0, Vy1, v22,... , vn"+1] c ExtAn (Z/2, Z/2), where Ni is

some (possibly very large) integer [9]. The proof in the mod 2 case requires the use

of Koszul-type resolutions [5, 9], together with a theorem of Lin and Wilkerson,

rather than the simpler machinery used below. It should be noted that there are
k

possibly many classes in ExtA„ (Z/p, Z/p) representing v\ , one of which we will

explicitly produce in the proof of the theorem. For notational ease, we will let

Wi C ExtAn (Z/p, Z/p) denote the coset of classes which represent v\ . An easy

inspection of the May spectral sequence converging to ExtAn (Z/p, Z/p) shows that

there is only one class in the same bigrading as the class un of the theorem, so that

vn is uniquely represented.

PROOF.   Let An denote the dual of the Hopf algebra An.   Then there is an

extension of Hopf algebras:

Fp    ► Pn —* An    ► En —* Fp,

where Pn is the truncated polynomial algebra Z/p[£i, &,... , £n]/(£^_i ) and En

denotes the Fp exterior algebra E(ro,Ty,... ,rn). Here |&| = 2pl —2 and |tj| =

2pl — 1. Associated to this short exact sequence, we have a Cartan-Eilenberg

spectral sequence (CESS) converging to ExtAn(Z/p,Z/p), with E2 term given by

ExtFn(Z/p,Ext£r,(Z/p,Z/p))

[14]. To analyze this spectral sequence, we first note that Ext£rv (Z/p, Z/p) is a poly-

nomial algebra on n + 1 generators, which we denote by Z/p[ao, ay,... ,an], where

ai has bigrading (1,2p* — 1). The spectral sequence collapses from E2 for odd primes

[12], as one can see by filtering the dual of the Steenrod algebra by the number of r's

in a term. This filtration leads to an E2 term filtration in terms of the a^s, which is

preserved by the differentials in the CESS, for p > 2, so that there can be no nontriv-

ial differentials. Hence the E2 term gives a filtered version of ExtAn (Z/p, Z/p). The

P„-coaction on H*En = Z/p[a0, ay,... ,an] is given by V(ofc) = ££jt-i ® <*«• Thus,

the P„-coaction on the class an is tp(an) = S^_i ®a-=l®oj6Pn® H*En-

Since an is primitive in H*En, it yields a nontrivial cohomology class in

E2=ExtPn(Z/p,H*En).

Further, the map

(■a1^): Z/p[a0,ay,... ,an] -* Z/p[a0,ay,... ,an]
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is the inclusion of a direct summand as a map of of Pn-comodules, since xp(x) can

have a term containing an if and only if ap divides x. If we let un denote the class

in ExtPn(Z/p,H*En) = E0ExtAn(Z /p, Z/p) given by the map (-ap), then un is a

nontrivial class in bidegree (p, 2pn+1 - 1). Further, the map (-ap) induces

(■an): ExtPn(Z/p,H*En) - ExtPn(Z/p,H*En)

which is also the inclusion of a direct summand. Thus the class un E ExtA„ (Z/p, Z/p)

representing (-an) is a non-zero-divisor.
n — i + l

To produce the classes u, for i < n of the theorem, one notes that ip(a^        ) =

1 <8> ap , so that (ap ) is a primitive in H*En- Let Ui denote the class in
n-i + l

EoExtA„(Z/p, Z/p) representing (-ap ). The w,'s are not necessarily non-zero-

divisors, however, since the map

(•aP        ): Z/p[a0,ai,... ,a„] —► Z/p[a0,ai,... ,a„]

is not the inclusion of a direct summand of Pn-comodules (a class x E H*En might

have ap as a factor of tp(x) even if x is not divisible by ap        ).
n-i+l

That i*(ui) — fp follows from the fact that the edge homomorphism of

the CESS of an extension is the restriction map. Equivalently, the result is clear

from the following commutative diagram of Hopf algebras and the naturality of the

CESS:

Fp   -►  Pn   -►      A*n      -►      En      -►  Fp

^ «l «l 4'

Fp -► E(n)* -► E(n)* -► Fp

This completes the proof of the theorem.

We now use these classes representing vk in ExtAn (Z/p, Z/p) to define what it

means for elements in ExtA(Z/p, Z/p) to be ^-periodic or Wj-torsion.

DEFINITION (8).   Let S C ExtAn(Z/p,Z/p) be the multiplicative set consisting

of the elements which represent v\ for some fc. Define ExtAn(Z/p,Z/p)(v~1) to

be the ring S_1ExtA„(Z/p,Z/p).

Note that this definition is independent of the power of up chosen. Let

Pn '■ ExtAn+1 (Z/p, Z/p) -* ExtAn (Z/p, Z/p)
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denote the restriction map in cohomology. Then these localizations fit together into

the following tower:

ExU(Z/p,Z/p)

I

ExU„+1(Z/p,Z/p) -► ExtA„+1(Z/p,Z/p)(t;:-1)

(9) 1
ExtAn(Z/p,Z/p)    -►   ExU„(Z/p,Z/p)(0

ExtAi(Z/P,Z/p)    -►   ExtAi(Z/p,Z/p)(vrl).

Taking the inverse limit, we obtain a map

(10) /,: ExtA(Z/p,Z/p) — limiExtAjZ/^Z/p)^-1)}.
n

This allows us to make the following definition.

DEFINITION (11). A class a E ExtA(Z/p, Z/p) is Vi-periodic if fi(a) ^ 0 and

is Vi-torsion if fi(a) = 0.

This definition is equivalent to the following. Let

qn : ExtA(Z/p, Z/p) -» ExtAn (Z/p, Z/p)

denote the restriction map. A class a E ExtA (Z/p, Z/p) is Ui-periodic if and only

if for each n such that a = qn(a) # 0, we have a(vf )3 ^ 0 in ExtAn(Z/p, Z/p)

for all s > 0, where we use the informal notation for any representative for a power

of Vi. A class a E ExtA(Z/p, Z/p) is Wi-torsion if and only if for each n such that

d = qn(a) ^ 0, there is some s > 0 such that d(up )s = 0 in ExtA„ (Z/p, Z/p).

Note that for some TV sufficiently large, d = qn(a) / 0 in ExtAn(Z/p, Z/p), for all

n> N.

THEOREM B. If a class a E ExtA(Z/p, Z/p) is Vn-periodic, then a is also vn+k-

periodic for all k > 0. Equivalently, if a is vn-torsion, then a is also Vi-torsion for

all i < n.

This result is known in the setting of BP.BP-comodules by a result of Johnson

and Yosimura [7]. At the prime 2, this appears as Theorem C in [9]. The proof for

odd primes is similar to that for the prime 2.

PROOF. The proof uses a map of algebras which is essentially the total reduced

power operation. Let t be an indeterminate of degree 2(p — 1), and let

pt = j2 pntn
n>0
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be the total reduced power operation. Let

r:A*^A*[t]

denote the action of Pt on the left. Then r is a map of right A-algebras given by

r(rn+y) =rn+1 +Tntp"     ifn>-l,

r(£n+l) = Sn+l + ZntP"       if !i > 0.

Recall that (A//An)* is isomorphic to

Z/p[£f,£f~\...,£p,£„+i,...]®£(r„+i,Tn+2,...),

both as algebras and as right A-modules. Similarly,

(A//£(n))*SZ/p[6,6,...]®£(r„+i,rn+2,...).

The following lemma follows easily from (12).

LEMMA 13.   There are inclusions

r(A//An+yyc(A//Any[t],

r(E//E(n + l)yc(E//E(n)y[t].

By Lemma 13, we have maps (after suitable change of rings)

r* : ExtAn+1(Z/p, Z/p) - ExtAn(Z/p, Z/p)[t],

r*:ExtEln+y)(Z/p,Z/p) -» Ext£(n)(Z/p,Z/p)[t],

which are ring homomorphisms, since r is given by a map of algebras. The image

of ExtAn+1 (Z/p, Z/p) is contained in the ideal generated by tp . Note that if a class

a E Ext A( Z/p, Z/p) has nontrivial restriction a EExtAn+l(Z/p,Z/p) and

ExtAn(Z/p,Z/p), then r(d) = d. (Here, as in the rest of the paper, we use a to

denote any nontrivial restrictions of a € ExtA(Z/p, Z/p) in ExtAm(Z/p,Z/p), for

all m > 0.)

LEMMA 14.   The induced map

r*: ExtE{n+y)(Z/p, Z/p) -» Exts(n)(Z/p, Z/p)[t]

has the values

r*(vl+y) = Vi+y+VitP' E ExtE(n)(Z/p,Z/p)[t]

whenever 1 <i < n.

PROOF. We compute in the bar construction. Let ir: A* —► E(n)* be the natural

restriction and e denote the augmentation. Then the change of rings isomorphism

ExtA(Z/p, (A//E(n)y) S ExtE(n](Z/p,Z/p)

is given in terms of the bar construction by

where

Y}a'i]a'']E(A/IE(n)y®A\
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Recall that H*E(n) = Z/p[q0,vy,... ,vn], where Vi = {Qi}, corresponding to dri

in the bar resolution for E(n)*.   Consider the element Y^fl,!^] = d[n].   It is

a cycle since d2 = 0 and further, ^£(£fl;/)[7rri] = ^N, since £(tf-j) = ° unless

j — i. So it follows that ^Iff-jl^-] is a representative for vt. The element r*(vi+y)

is therefore represented by

£b-tfp+w)N = El&->tP'~y>yl = Etf-Mpi

which represents Vitp .

COROLLARY 15.   If xEExtAn+l(Z/p,Z/p) represents vp   then

r*(x) = i + 2/<pk+" € ExtA„(Z/p,Z/p)[«],

w/iere y represents vp .

PROOF. This follows from naturality (Lemma 13 and Lemma 14).

PROOF OF THEOREM B. Let a E ExtA(Z/p, Z/p) be ui+i-torsion. It suffices to

show that a is ^-torsion. Let n be sufficiently large so that the restriction qn(a) ^ 0

in ExtAn(Z/p,Z/p). Let d denote both qn+y(a) and qn(a), as above. Since a is

Vi+y-torsion, there is some integer s such that xa = 0 in ExtJ4ri+1 (Z/p, Z/p), where

x represents vp+v Then

0 = r* (id) = (a; + ytp"+' )r* (o) = id + ya«p'+' = 0 + yaip8+',

where y represents vp by the above corollary. Thus d is Ui-torsion in Ext^,, (Z/p, Z/p),

implying our result.

It should be remarked that the total reduced power operation r can be factored

through the Davis-Mahowald splitting, which decomposes A(g>A„ Z/p[i, i_1] as a

sum of A ®a„_, Z/p's [8].

As an easy consequence of Theorem B, we have the following corollary.

COROLLARY C.   There is a filtration, which we call the chromatic filtration,

ExtA(Z/p, Z/p) = F_! D F0 D Fi D • • ■ D Fn D Fn+i D ■ ■ ■

such that Fn/Fn+y is the subquotient of classes that are Vk-torsion for all k < n

and vj-periodic for all j > n + 1.

PROOF. Let F„ = ker (fn), where the map /„ is given in Definition (11). The

result follows immediately from Theorem B.
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One should think of this chromatic filtration in the following manner:

ExtA(Z/p, Z/p)       -►       (<7o-periodic quotient)

U

(go-torsion subgroup) -►    (vy -periodic subquotient)

U

(vy -torsion subgroup) -►    (^-periodic subquotient)

U

(f2-torsion subgroup) -►    (^-periodic subquotient)

U

u

(un-torsion subgroup) -► (t>„+i-periodic subquotient)

U

PROPOSITION (16).   The chromatic filtration ofExtA(Z/p,Z/p) is complete.

PROOF (MAHOWALD). Recall that vp is a non-zero-divisor in ExtAn (Z/p, Z/p).

For each class a E ExtA(Z/p, Z/p), there is some integer n such that a = qn(a) ^ 0

in Ext a„ (Z/p, Z/p). So for each such n, the class a is vn-periodic. Hence

P| (t>n-torsion subgroup) = 0,

n>0

completing the proof.

Haynes Miller has constructed a chromatic spectral sequence converging to

ExtA(Z/p,Z/p) using the collapsing of the CESS for p odd [11]. This allows one

to define vn-periodicity in ExtA(Z/p,Z/p) in another manner. It is not hard to

show that if a class a E ExtA(Z/p, Z/p) is i>„-torsion in Miller's definition, then

it is also f„-torsion in the sense given above. The converse seems to be quite

difficult to prove, because of the intractability of the chromatic SS differentials. It

is conjectured that the two definitions of vn-periodicity in Ext,4(Z/p, Z/p) agree.

The chromatic filtration given above is intimately tied in with the idea of "root

invariants" in stable homotopy. See [10 or 16] for a partial explanation of this

relationship.
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