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GEOMETRY OF THE SEVERI VARIETY

STEVEN DIAZ AND JOE HARRIS

ABSTRACT. This paper is concerned with the geometry of the Severi variety

W parametrizing plane curves of given degree and genus, and specifically with

the relations among various divisor classes on W. Two types of divisor classes

on W are described: those that come from the intrinsic geometry of the curves

parametrized, and those characterized by extrinsic properties such as the pres-

ence of cusps, tacnodes, hyperflexes, etc. The goal of the paper is to express

the classes of the extrinsically defined divisors in terms of the intrinsic ones;

this, along with other calculations such as the determination of the canonical

class of W, is carried out by using various enumerative techniques. One corol-

lary is that the variety of nodal curves of given degree and genus in the plane

is affine.

1. Introduction and statements. The basic objects of study here will be

families of plane curves of a given degree and genus, and the first order of business

is to define the varieties we will be looking at.

(a) Severi varieties. The set of all plane curves of a given degree d is of course

parametrized by a projective space PN. What is of interest to us here is not the

space PN itself, but the various subvarieties of PN characterized by the geometry

of the curves they parametrize. The most general problem along these lines would

be to describe completely the geometry of the equisingular stratification of PN,

that is, the loci of curves of a given topological type and how these loci fit together.

This problem seems to be well beyond our reach at present, since even the local

deformation spaces of plane curve singularities may be very mysterious. A coarser,

but still very natural, stratification of PN (or at least the open subset of reduced

curves) is simply by geometric genus; we may hope to describe the geometry of

the locus Vd,g of reduced curves of given geometric genus. Even here, however, the

local picture is already very cloudy, sending us to the further simplification of the

variety V = Vd'6 of nodal curves of degree d and geometric genus g, that is, reduced

and irreducible curves of degree d having exactly 6 = |(d — l)(d — 2) — g nodes as

singularities (see [Fulton] for a discussion).

Happily, the subvariety V C PN is very well behaved: it is irreducible and

smooth of dimension N — 6, and there exists a universal family of smooth curves of

genus g mapping onto it. Unhappily, we may have cut away too much: the problem

is that V is not complete—its divisor theory, for example, is, conjecturally, trivial

(see below)—and before we can really work with it we have to remedy, in part at

least, this defect.   The first basic problem, then, is to find a good compactification
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W of V. Here by "good" we mean essentially that the points of W should actually

correspond to geometric objects (i.e., W should represent a geometrically defined

functor), and at the same time the geometry of W should be tractable: for example,

its singularities should be describable, and not too bad.

An obvious thing to try is just to take the closure of V in the space PN. This,

however, fails both of the criteria above: we do not know what plane curves are

limits of nodal curves of given degree and genus; and, worse, the singularities of

the closure of V are unspeakable. Another possibility is to put some additional

structure on the plane curve: for example, consider the natural map of V to the

moduli space JK g of stable curves of genus g, or the map of V to the Hilbert scheme

%? of zero-dimensional subschemes of P2 of degree 8 assigning to every curve C E V

its nodes, or the map of V to the projective space PM of curves of degree 2d+2g — 2

associating to each C E V its dual curve; and in each case take the closure of the

graph of the map. All of these are potentially better compactifications than the

naive closure of V in PN (in particular, on the basis of investigations by the first

author of this paper, the second approach looks promising; while it may be hoped

that work such as Ziv Ran's [Ran] might shed some light on the first). To date,

however, none has been completely worked out.

Our (compromise) solution in this paper has been to work with a partial closure

of V: we will look first at the union VofV with all the codimension 1 equisingular

strata in the closure V. This has the virtue that (as we will see) the local geometry

of V is clearly understood, and also we can say exactly which curves C E PN lie

in V. Moreover, while V is not complete, it is the complement of a codimension 2

subvariety in a projective variety, so that, e.g., if we describe the divisor theory of

V we will know it on any reasonable compactification of V.

Let us now describe the variety V. From the semistable reduction theorem for

families of curves, it follows that for any curve C E V the sum of the geometric

genera of the components of C (with their reduced structures) will be at most g.

This, together with standard dimension counts, shows that the locus of nonreduced

curves in the closure V of V has codimension strictly greater than one. With this

and the results of [Diaz-Harris], we see that V consists of the union of V with

the locus CU of reduced and irreducible curves of genus g with 8 — 1 nodes and

one cusp;

the locus TN of reduced and irreducible curves of genus g with 6 — 2 nodes and

one tacnode;

the locus TR of reduced and irreducible curves of genus g with 6 — 3 nodes and

one ordinary triple point; and

the locus A of reduced curves of geometric genus g — 1, having at most two

irreducible components, with 8 + 1 nodes.

Each of these loci is of pure codimension one in V. The first three we suspect,

but do not know, to be irreducible; the locus A is the union of the component Ao

of reduced and irreducible nodal curves of genus g — 1, and various components

consisting of reducible curves, as we will see below. Moreover, we know that V

looks like in a neighborhood of each of these loci: by standard deformation theory

(see for example [Diaz-Harris]), given a curve C in any of these loci and any

singular point p of C, the space U of deformations of C preserving the singularities

of C other than p maps with surjective differential onto the etale versal deformation
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space B of the singularity at p; the variety V will then be the inverse image of the

equigeneric locus in B. Thus, for example, the £tale versal deformation space of

the cusp y2 = x3 is given by

y2 = x3 + ax + b,

and the equigeneric locus—in this case just the locus of (a, b) for which the fiber is

singular—is given by the discriminant 4a3 + 27b2. The variety V thus looks, in a

neighborhood of CU, like the product of a cuspidal curve and a smooth (TV - 8 — 1)-

dimensional variety (Figure 1).

i-1-cu

Figure l

Similarly, the deformation space of the tacnode y2 = x4 is given by

y2 = xA + ax2 + bx + c;

and the equigeneric locus—the locus of (a, b, c) for which the corresponding fiber

has two nodes—is the smooth curve with equations b = 0, a2 = 4c. The variety V"

is thus smooth in a neighborhood of the locus TN; and a similar calculation shows

that V is also smooth near TR. Finally, we see that, in a neighborhood of a point

C of A, V is the union of smooth sheets corresponding to nodes of the curve C; see

Figure 2. (If C is irreducible, there are 8 + 1 sheets, corresponding to all the nodes

of C; if C is the union of components Cy and C2 of degrees dy and c^ there will be

dyd2 sheets, corresponding to the points of intersection of Cy and Ci.)

/—r-
I_/

Figure 2

We see from the above that, while V may be singular, its normalization W will be

smooth, and for many reasons it is more convenient to work with this normalization.

We can realize this normalization geometrically, as the inverse image of V in the

graph of the (rational) map from V to the Hilbert scheme %? of zero-dimensional

subschemes of degree 8 in P2 that associates to a point C of V its nodes: clearly

this map is regular at points of V, TN and TR, and separates the sheets of V near

A, while over the deformation space of the cusp above, the variety

{((o, b), (p, i>): y2 = i3 + ax + b is singular at (p, u)}

= {((a, b), (p, v)): v = 0, a = -3p2, b = 2p3}
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FIGURE 3.  Local equation of family: y2 - x3 •+ 3t2x - 2t3 = 0;

local equation of N: x = t, y = 0.

N_

FIGURE 4. Local equation of family: y2 - x2y + tx2 - t2 = 0;

local equation of N: t = \x2, y = t.
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\

i     / local equation of family:

1   /       x2y + xy2 + txy = 0

w^ \Y -
^*"**-^^>>^       ^^—-■^    J      N has three components,

^-"^^»»«^^^      /      with local equations

x = 0, j/ = 0;

. x = 0, y = -t; and

\^ x = -t, y = 0.

FIGURE 5. Local equation of family x2y + xy2 + txy = 0.

N has three components, with local equations x = 0, y =

0; x = 0, y = -t; and x = -<, y = 0.

is just the normalization of the discriminant locus 4a3 + 2762 = 0. We can thus view

the normalization W as a variety of plane curves with 8 assigned singularities; it

is this variety that we shall deal with almost exclusively in the sequel, andthat we

shall call the Severi variety. We will denote the normalization map W —» V -* PN

by p.

REMARK. We will use the term Severi variety for different varieties—in effect,

all partial compactifications of the locus V of irreducible nodal curves of degree d

and genus g. (In view of the fact that we consider the variety W merely a temporary

expedient, enabling us to do work on V in the absence of a good compactification,

we do not want to appropriate the term exclusively for it.) Where the term Severi

variety is used without further specification in this paper, however, we mean W.

(b) Local description of the family of curves over W. Let S" C PN x P2 be

the universal curve, that is, the variety whose fiber over each point of PN is the

corresponding plane curve; and let S C W x P2 be the pullback via p of this
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universal curve. From the explicit description of the deformation spaces of a cusp,

tacnode and triple point, it is easy to see what S looks like near each of the loci

CU, TN, TR and A. In particular, we see that there is a variety 8? —► W whose

fiber over each point w E W is the normalization of the corresponding plane curve

Cw at the assigned singularities; indeed, 8? will just be the normalization of the

total space S. Explicitly, near a point of CU the varieties §? and S will look like

Figure 3; while near points of TN and TR they will be as pictured in Figure 4 and

Figure 5 respectively. In each of the three figures we have labeled the locus N of

assigned nodes, and the inverse image N of this locus in &. Also, note that these

pictures apply not only to the Severi variety itself, but to any family Z C W of

plane curves with assigned singularities.

We now list the objects and maps we have introduced, and that we will be dealing

with. We have the diagram

N--►- N

n r

g*        'P = T1X7r    )   S G_^P2 x Z

/TT
■'

p2 z C-y W->- PN

with objects and map:

the space PN of plane curves of degree d;

the Severi variety p: W —* PN;

an arbitrary locally closed subvariety Z C W;

the family rr: §? —* Z of curves of arithmetic genus g, pulled back from the universal

such family over W;

the map n: %? —<■ P2 sending each fiber Cz = ir~1(z) oi tt to the corresponding

plane curve p(z) E PN;

the family of plane curves S C P2 x Z associated to p: Z —► PN; equivalently,

the image of W in P2 x Z via the map p = n x n;

the locus N C S oi assigned nodes of the plane curves p(z) (again, if Z is a

smooth curve transverse to A, this will be just the singular locus of S); and

the inverse image N = tp~1(N) C W.

With all this said, what would we like to do with the Severi variety? Our first

goal, given that we have compactified the locus of nodal curves in codimension 1,

will be to describe the divisors and line bundles on W. To begin with, there are

many divisors on W characterized as the loci in W of plane curves with a given

geometric property; we will call such divisors extrinsic divisors, and will discuss

them in the following section. There are also a number of divisor classes that arise

just from the abstract family of curves W —► W and the line bundle £? — rfcf-pt (1);
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we call these the intrinsic divisor classes and describe them in (d) below. Finally, we

may ask what relations exist between these two classes of divisors; these relations,

together with some further questions and conjectures, are stated in the final section

of this chapter and proved in the remaining chapters of the paper.

(c) Extrinsic divisors. As indicated, we consider first the divisors in W defined

by geometric properties of the corresponding plane curves, or their position relative

to other plane figures. The most obvious are those corresponding to curves whose

singularities consist of other than 8 nodes: the boundary components CU, TN,

TR and the Aij. Other divisors characterized by geometric properties of the plane

curves themselves are as follows.

The divisor HF of curves with a hyperflex—that is, the closure of the locus of

curves having contact of order four or more with their tangent line at a smooth

point.

The divisor FN of curves with a flecnode—that is, a node such that the tangent

line to one of the branches has contact of order three or more with that branch.

The divisor FB of curves with a flex bitangent—that is, a bitangent line having

contact of order three or more with the curve at one of its points of tangency.

The divisor NT of curves with a nodal tangent—a line tangent to a branch of

the curve at a node and tangent again elsewhere.

The divisor BT of curves with a binodal tangent—i.e., such that the line joining

two nodes is tangent to a branch at one of them.

The divisor TT of curves with a tritangent line.

The divisor CC of curves with three collinear nodes.

Note that all of the above are components of the locus of curves having a total

intersection number m + 3 with a line at m points. The other components of this

locus, apart from the divisors TN and TR, are the families of curves such that the

line joining two nodes is tangent to the curve somewhere else; such that a bitangent

line to the curve passes through a node; and such that a flex line to the curve passes

through a node. We could similarly define loci of curves having a total intersection

m + 6 with a conic at m points (starting with the locus of curves with septatic

points); the point here is just that there are a lot of these divisors.

Other loci in W can be characterized by the position of the corresponding curves

relative to a fixed point p or fixed line L, as for example:

the divisor CP of curves containing the point p,

the divisor NL of curves with a node located somewhere on L,

the divisor TL of curves tangent to L,

the divisor FP of curves with a flex line passing through p,

the divisor FL of curves with a flex located somewhere on L,

the divisor BP of curves with a bitangent line through p,

the divisor NP of curves such that the tangent line to a branch

of a node passes through p,

and so on. Again, the main point is that there are many such divisors; and it is far

from apparent what relations exist among them modulo linear equivalence.

We should also introduce here three divisors on *£? as well: we have already

introduced the divisor TV of points lying over assigned nodes of the corresponding
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plane curves; in addition we have

the divisor T of points whose tangent lines pass through the point p; and

the divisor F of points lying over flexes.

(d) Intrinsically defined divisor classes. There is another approach to the Picard

group of W that offers at least the hope of introducing some order into the profusion

of divisors above. This is to focus on the intrinsic divisor classes—that is, divisor

classes defined in terms of the varieties and maps in the diagram above.

To make an analogy, to describe the Picard group of the moduli space J?g of

curves of genus g, we consider the universal curve ir: Wg —► Jfg (of course, the

universal curve exists only over the locus J?° of curves without automorphisms;

but since the complement of this locus has codimension g — 2, this will not affect

the Picard group of J?g for g > 3). On 8^ we have a naturally defined divisor class,

which is just the first Chern class w of the relative cotangent bundle. We can then

define a class Ky on Jfg by taking the Gysin image 7r„(w2) of the square of this

class; and indeed it turns out that Ky generates Pic(^), at least over Q. (Further,

it is a legitimate question whether more generally the Gysin images Ky — 7r*(u;,+1)

generate the cohomology/Chow ring of J?g in degrees up to roughly g/3; cf. [Harris,

AMS notes]). If we now want the Picard group of the stable compactification JU'g

oi Jig we have only to throw in the boundary components Aa.

In our present circumstances, W is a moduli space not for abstract curves, but

for curves with a projective embedding. Correspondingly, we have over W a uni-

versal family if of curves of genus g, and not one but two divisor classes: the

first Chern class u of the relative dualizing sheaf of W over W, and the pullback

D = ■n*(cy(cfp2(l))). A natural thing to do to define divisor classes on W is to take

all three pairwise products of these two classes and push them forward; specifically,

we define classes in Pic(W)

A = ir.(D2),        B = tt,(D-oj)    and    C = tt.(oj2).

Of course, we have to include loci in W over which the fibers of W are singular.

Here again we have to consider not only the abstract fiber C but the degrees of

the divisor D on the components of C: for each i such that 0 < i < g/2 and

(j - 1)0 - 2)/2 > i > (j - l)(j - 2)/2 - 6, we define AM to be the locus of points

w E W such that the fiber 7r_1(w) is given as the union of components Co and Cy

of genera i and g — i meeting at one point, and such that the degree of D on Co is

j (obviously, if i = g/2 the divisors Aij and Aij-j are the same). We also define

A0 to be the locus in W over which the fibers of tt are irreducible nodal curves (by

[Harris] the divisors A^ and A0 are all irreducible). As before, we will denote by

A the sum of all these divisors.

(e) Relations and conjectures. What relations exist among the various divisor

classes introduced so far? Our principal result is simply that all the extrinsic

divisors defined above are linearly equivalent to rational linear combinations of the

divisor classes A, B, C and the boundary components. We will in fact prove, in the

following chapter, that a very broad class of such divisors are so expressible, and in

Chapters 2, 3 and 4 we determine the classes of several of the divisors listed above.

We state our results here. First, we have formulas for the classes of the boundary
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components CU, TN, and TR:

(1.1) CU -3A + 3B + C-A.

(1.2) TTV ~ (3(d -3) + 2g- 2)A + (d- 9)B - |C + §A.

We observe one immediate consequence of these formulas: since the linear com-

bination

(Id - 18) • CU + (6d - 6) • TTV + (12d - 198) • TR + (Id - 80) • A

has positive coefficients for d > 17 and is by (1.1)—(1.3) linearly equivalent to a

positive multiple of the divisor class A, which is ample on the closure V of the variety

V of nodal curves, we deduce that V is affine whenever d > 17. Other positive

linear combinations of the boundary components likewise yield ample divisors on

compactifications of V when d < 17, so that we may deduce the

COROLLARY.   The variety V of nodal curves of given degree and genus is affine.

It follows in particular that V contains no complete curves, i.e., that there does

not exist a complete family of nodal plane curves with constant geometric genus.

As for the classes of the other divisors described above, one is obvious: the locus

CP of curves containing a point p E P2 is just the image 7r(rj_1(p)); its class is

thus irt(D2) = A. As for the rest, we have:

(1.4) NL ~ (2d - 3)A/2 - B/2.

(1.5) TL-A + B.

(1.6) FP-3A + 0B + 2C- A.

(1.7) FL~3A + 3B-A0,y.

(1.8) FTV ~ (Od + 0g- 21)A + (3d - 18)5 - 5C + 2A - (d - 2)A0,i.

(1.9) TVP ~ (4d + 2g- 11)A + (d- 8)B -2C + A.

(1.10) HF ~ 6A + 18B +11C-oA + 4A0A.

(1.11) TV ~ (d - 3)D - w + tv* A.

(1.12) T-2.D-I-W.

(1.13) F~3/J + 3w-A0,i.

(1.14) BRN ~ (3d2 - 12d + 9 - (2g - 2))A -(d- 3)B.

(1.15) BRT ~ 4A + OB + 2C.

(1.16) BRF ~ 9.4 + 215 + 12C.

(Here BR stands for the branch divisor of the subscripted divisor in W, viewed as

a branched covering of W.)

Emboldened by these examples, by the techniques of the following chapter, and

by the analogy with the moduli of abstract curves, we (some of us, anyway) may

make the

CONJECTURE. The Picard group of the Severi variety W is generated over Q,

by the classes A, B, and C and the classes of the boundary components Ao and
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We do not see, at present, any way to prove this; the basis for the conjecture

is simply the fact that every divisor that has been described in the Severi variety

can be seen to be in the span of the intrinsic divisor classes. Observe that since

the coefficients of the three classes A, B, and C in the formulas (1.1)—(1.3) for the

classes of CU, TN and TR are independent, A, B and C are themselves rational

linear combinations of CU, TN, TR and the boundary components A0 and Aij.

The restrictions of A, B and C to the variety V of nodal curves are thus torsion

classes, and the conjecture above is equivalent to the

CONJECTURE'.   The Picard group of the variety V of nodal cures is torsion.

In a future paper, the authors will show that, with the exception of the cases g =

0 or 1 and 8 = 0,1 or 2, the divisor classes A, B, C and A are indeed independent.

Note that there is one divisor class on the Severi variety that has not yet been

mentioned: the canonical class K\y. In the final chapter of this paper, we determine

this class; we find that

(1.17) Kw = --A + -B + —C-—A.v       ' 2 2 12 12

We do not know for what values of d and g this class is actually effective.

Finally, we note that while we are dealing here with a parameter space for

curves in P2, for some purposes one might want to take the quotient of W by the

action of PGL3 and look at the moduli space for triples (C,2f, V), where C is

a curve, -S" a line bundle on C, and V C H°(C,Jz?) a linear system mapping C

birationally onto a curve of the appropriate type. Such a quotient exists, at least

when the degree d > 5, since all the curves in W will be stable, and the results

of this paper, suitably rephrased, apply in this context. Specifically, for any family

of triples {(C\,S?\,V\)}xez—that is, a family ir: & —► Z of curves, with a line

bundle Yon? defined up to twists by pullbacks of line bundles from Z and a

subbundle W C ■k*3' of rank 3—we already have a divisor class ui = Cy(u)%>/Z) on

ff', and we can define a (rational) divisor class D = cy(Jz?) by normalizing 3? so

that cy(T~) = 0—that is, by setting D = CyLS?) - -K*cy(^)/3. In this way, we

can define rational classes A, B, and C on Z. Of the extrinsic divisors, the ones

invariant under PGL3 of course define divisors on the quotient; the others can be

defined in terms of their relations with A, B, and C (for example, the class of the

divisor CP of curves passing through a point can simply be defined to be the divisor

class A = n*(D2)). With this understood, all the formulas of this paper continue

to hold.
ACKNOWLEDGMENTS. We would very much like to thank Bill Fulton, who first

introduced us to these questions.

2. Relations among divisor classes via Porteous' formula. In this and

the following two chapters we will show how the extrinsic divisors CU, TN, TR

and others may be expressed in terms of the intrinsic classes A, B, C and A. These

problems naturally break up into two parts: first, if we work only over the com-

plement of A in W, they may all be set up readily as applications of Porteous'

and Porteous-type formulas; this is what we will do in this section. This will prove

that the extrinsic divisors are linear combinations of the intrinsic ones, and tell us

the coefficients of A, B, and C; to find the coefficients of the components of A will

require the more ad-hoc analysis carried out in §§3 and 4.
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We will keep the notation introduced in the last chapter. Recall in particular that

we denote by D the class of the bundle (f(l) on P2, and also its pullback to P2 x Z,

S and ff; we will also denote by £? the associated line bundle (f(D) — r)*cfp2(T)

and by Sfc its restriction to a fiber C of 7r. In addition, we will denote by w the

first Chern class of the relative dualizing sheaf u^/z-

(a) Cusps. We start with the divisor class CU of curves with a cusp. As we

indicated, the computations of the classes CU, TN and TP will be made first over

the complement of A in W; for the remainder of this section, then, we will assume

ZcW -A.
We can characterize points of ff that become cusps of the corresponding curves

in the plane as follows: let p E ff be a point, and let C be the fiber of 7r through

p. Then the image r](p) will be a cusp of the curve n(C) if the divisor 2 • p fails to

impose independent conditions on the linear system r)*H°(P2,(f (1)) C HQ(C,5C);

that is, if there are two independent elements of r)*H°(P2,cf (1)) whose restriction

of C vanishes to order 2 at p.

To determine the class of the locus of points where this happens, we set up a

bundle map. First, we let If be the trivial vector bundle of rank 3 on ff whose

fiber at every point is just the vector space H°(P2,cf (1)). Secondly, we define a

vector bundle J^2) of rank 2 whose fiber at a point p of ff is the space of sections

of the sheaf ^c/-2c(_2p), that is, the space of local sections of the restriction of

J2? to C, modulo those vanishing to order 2 at p. Precisely, we can define ^2) as

the direct image

^'a)=ir1.(x5^®<f/<f(-2A))>

where 7Ti and W2 are the projections from W2 = & xzff io ff and A C ffi is the

diagonal. We then have a natural map tp from i? to ^2). given naively at p by

taking a section a E H°(P2,(f(l)), pulling it back by n, restricting it to C and

evaluating it at p; or more precisely, given the inclusion of Ein Tr*(-K»^f), as the

direct image of the quotient map -k\2C —► tt^-S57 <8> <f/(f(—2A). In any event, the

locus in ff oi points mapping via n to cusps of their fiber is the locus where tp fails

to have rank 2, and the class of this locus is simply the second Segre class of the

bundle S^t) where the Segre class of a bundle is the inverse of the Chern class (see

for example [Fulton, book]). We have thus

Cr/ = [7r,(c(^2))-1)]1

and it remains to calculate this quantity.

Now, the Chern class of ^2) can be calculated (as it is, for example, in [Harris,

AMS notes]) by observing that if &"' C ^2) 's the subbundle whose fiber at every

point p is the space of sections of 2c(—p)/^c(—2p), then we have isomorphisms

9^)1 &' = & and &' 3 S? ® w; thus

c(9[3)) = (1 + D)-(1 + D + u)

and

c (fp )r1 = ( 1 - D + D2 + ■■■)■( 1 -(D + uj ) + (D + uj )2 + ■■■)

= 1-(2D + uj) + (3D2 + 3D ■ u + w2) + • ■ • .

We have thus

CU = 7T,(3£»2 + 3D ■ oj + w2) = 3A + 3B + C,

verifying (1.1) modulo the boundary components A.
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(b) Tacnodes. Next, we look at tacnodes. Here the idea will be similar, but

a few technical complications arise. To begin with, we ask when a pair of points

p and q on the same fiber C of 7r will map to a tacnode of the image n(C). In

order for this to happen, of course, they must map to the same point of the plane—

meaning that the divisor p + q must fail to impose two conditions on the linear

series n*H°(P2,(f (1)) restricted to C. Their tangent lines must then coincide; this

means that there is a divisor in the linear series r}*H°(P2,(f(T)) containing p and

q both doubly, or equivalently that the divisor 2p + 2q imposes only two conditions

on the linear series r}*H°(P2,(f(T)). To describe the locus of pairs (p, q) for which

this happens, we introduce a pair of bundles: <^i,i) will be the bundle over ^

whose fiber at a point (p, q) is the space of sections of 3c/£fc(—P — Q), and ^2,2)

the bundle with fiber T(^c/-Sc(-2p - 2q)) over (p, q). Precisely, if ff3 denotes the

triple fiber product of ff with itself over Z, then

(2.1) 9[yA) = 7rli2. (irlSf ® c?/cf(-Ay3 - A23))

where 7Tj,j2)... denotes projection on the product of the iQth factors, and A^ denotes

the diagonal where the ith and jth factors are equal; and similarly

^2,2) = *i,2. (A^ ® ^/^(-2A13 - 2A23))-

Clearly, <^i,i) is a quotient of ^2,2)! and we have by evaluation a diagram of

bundle maps

^y  ^(2,2)

and, by what was said above, the locus fi in ff^ of pairs (p, q) mapping to a tacnode

is the locus where tpy has rank 1 and ^2 rank 2. The class of this locus is then

given, by a generalization of Porteous' formula: taking transposes, we have maps

gr*■^(2,2)  ^^

•^1,1)     ^

and by [Fulton, book, Theorem 14.3] the class of fi is given by the determinant

c2(F*-^1*1))   cz(Z* -9[{tl))    _,qr.   s      (<r*   .        (qr„   .
C0(g*-P{l2))     Cy(g*-F(;2))      -a2^(l,l)J-*l^(2,2))-*3^(l,l)J

where s(9) is the Segre class c(9)~l

(2-2) = (Cy(9(yA))2 - Ca(^lfl))) • Cl(^2,2))

-c1(^1,1)3 + 2c1(^1,1))c2(^1,1))

and the divisor TTV will then be the pushforward, via the map ir: ffi —* Z, of this

class (by abuse of language, we will use ir to denote the projection from ff^toZ

for any k).
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The next step is to determine the Chern classes of the sheaves 9. Here a naive

approach like last time doesn't work; instead we have to use the definition of the

sheaves 9 and apply the Grothendieck-Riemann-Roch formula as in [ACGH].

Consider, for example, the description (2.1) of the sheaf <^i,i). Since the sheaf

TrgJ? <g> cf/cf (-A13 - A23) is supported on a subvariety of ff finite over ff2, it

will have no higher direct images under the map 7^2; thus by the Grothendieck-

Riemann-Roch the Chern character of its direct image under 7Ti 2 will be given

by

(2.3) ch(7rli2. (ir*35? ® ^/^(-A13 - A23)))

= TT.,2. (Td(^3/«2) • c,h(ir*35f ® Cf/cf (- A13 - A23)))

= 7n,2.((l - w3/2 + w32/12) ■ (e°3 ■ (1 - e-A—^3)))

where Wj and Di denote the pullback to ff3 via 7Tj of the classes w and D respectively

= 7r, ,2. ((1 - u)Z/2 + u:\ll2) -(1 + D3 + D2z/2) ■ (A - A2/2 + A3/6 + A4/24))

(where A = Ai3 + A23) modulo classes supported over loci of codimension greater

than one in Z. We can evaluate this expression by applying relations in the Chow

ring oiff3: we have

D3 = ujf = A*j = 0 for all i ^ j, again modulo classes supported on loci of

codimension greater than one in Z;

Di ■ A^ = Dj ■ A^, and u>i • A„ = u/j ■ Aij     for all i, j;

A^ ■ Ajk = A^ ■ Aik for all i^j^k^ i;
A2j = -uji ■ A^; and

fl"i,2.(A-A,3) = Di andfl-i^.^i-Ajs) = wj fori = 1,2; and using these relations

allow us to evaluate the last expression. Explicitly, we have

chi(^i,i)) = 7Ti,2.(-w3 • (A13 + A23)/2

+ D3 ■ (A13 + A23) - (A13 + A23)2/2)

= 7Ti,2.(-a;3 • (A13 + A23)/2 -I- D3 ■ (A13 + A23)

+ Uy ■ A13/2 - A12 • A13 -I- uj2 ■ A23/2)

= -UJy/2 - UJ2/2 + Dy + D2 + OJy/2 + w2/2 - A12

= Dy + D2 - A12,

ch2(^i,i)) = 7r1|2.((A13 + A23) • (w2/12 - uj3 ■ D3/2 + D2/2)

- (A13 + A23)2 • (-uj3/2 + D3)/2 + (A13 + A23)3/6)

= 7Ti,2. ((A13 + A23) ■ (w|/12 - w3 • £>3/2 + Dl/2)

+ UJy ■ (Dy - UJy/2) ■ A13/2 + w2 • (D2 - UJ2/2) ■ A23/2

- (Dy - ujy/2) ■ A12 • A23 + w2 • Ai3/6 -I- uj\ ■ A23/6

- wi • A12 ■ A13/2 - UJ2 ■ A12 • A23/2)

= w2/12 + w^/12 - uy ■ Dy/2 - ui2 ■ D2/2 + D\/2 + Dl/2

+ UJy • Dy/2 - Uj\/4 + UJ2 • D2/2 - wf/4 - Dy ■ A12 + UJy ■ Aj2/2

+ w2/6 + ui\/0 - ujy ■ A12/2 - w2 • A12/2

= D\/2 + Dl/2 - Dy ■ A12 - UJy ■ A12/2.
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Of course we have cy(9[yty\) = chi^, ,)) = Dy + D2 - Ai2; and

c2(^M)) = dn(^lt 1})a/2 - cha^x,!))

= D\/2 + D\/2 + DyD2-ujy A12/2 - 2£>i • Ai2

- (D\/2 + D\/2 - Dy • A12 - Wi • A12/2)

= Dy ■ D2 - Dy • A12

The computation for the Chern classes of the bundle <^2,2) is of course identical

to that above, except for the coefficients 2 appearing in (2.1) and (2.3). In any

event, by (2.2) we need only determine the first Chern class; and we find

Cl 0^2,3)) = Chi(^2i2)) = 2Dy + 2D2 +UJy+UJ2- 4A12.

Plugging this into (2.2) above, we find that the class

fi ~ ((Di +D2- A)2 - (DyD2 - DA)) ■ (2(Dy + D2) + ojy + w2 - 4A)

- (Dy +D2- A)3 + 2((Dy +D2- A)(DyD2 - DA),

where we write A for A12 and suppress the subscript on a D or w multiplied by A

= D\ + 3D\D2 + 3DyD\ + D\- 18£>2A + 12JDA2 - 4A3 + ujyD\

+ UJ2D2y + UJyD\ + UJyD\ + UJyDyD2 + UJ2DyD2 - OujDA + wA2.

Now, ir*D3 = 0, as is the direct image of any triple product all of whose terms

are from the same factor of ff2; and we can deal with any triple product involving

two terms pulled back from one factor of ff2 and one term from the other by writing,

for example,

ir,DyUJyD2 = Tt»(D2 ■ TT2,(u)y ■ Dy))

= ir*(D2-n*B) = d-B

(here, as before, we use ir: ffk —► Z to denote the projection from ffk for any fc).

We can similarly deal with any term involving a single A by projecting first onto

one (either) factor of ff2; and with terms involving A2 by writing A2 = —wA.

Doing this, we find that

TN ~ (7r»[fi])/2 = 3dA + 3d A - 18A - 12B - 4C

+ (2g - 2)A + (2g - 2)A + dB + dB - OB - C

= ((3d -9) + (2g-2))A + (d-9)-B-5- C/2,

verifying (1.2) modulo the boundary components A.

(c) Triple points. It remains to determine the class of the divisor TR of curves

with triple points. The approach here is exactly like the previous two: we will use

Porteous' formula to determine the class in the triple product ff3 of the locus of

triples (p, q, r) mapping to triple points, and then push forward from ff3 to Z.

To begin with, observe that a triple of points (p, q, r) in a fiber Cz of ff will

map to the same point of the image n(Cz) if the divisor p + q + r imposes only one

condition on the linear system n*H°(P2,cf (1)). To describe the locus 5 C ff3 of

such points, we thus want to introduce a vector bundle 9(x, 1,1) of rank 3 on ff3 whose

fiber at a point (p, q, r) will be the vector space of sections of J£c/-S?c{—p — Q — r);

officially, we let ff4 be the fourfold fiber product of ff with itself over Z, A^ the
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diagonal and iriu...,ik the projection map on the product of the iQth factors, and

set

(2.4) 9{ythl) = xi,2,3. «& ® cf/cf (- A14 - A24 - A34))-

Having defined ^(1,1,1), we have a vector bundle map tp: W —► ^(1,1,1) defined by

evaluation (officially, identifying & with the direct image 71-1,2,3.(714J?), tp, is just

the pushforward of the quotient map ir%Jj? —► 7^.2* <8> cf/cf(-A14 - A24 - A34));

and the locus H of points in ff3 mapping to triple points of their fiber is then the

locus where the map <p has rank 1. The class of H is then given, by the standard

Porteous formula, as the determinant

(O ty] Pl -     C2(^l,l,l))      C3(9[yAtl))

1       ' W"    Cl(^l.l,l))      C2(^l,l,l))

and it remains to evaluate the Chern classes oi 9(y^ytyy

We do this in the same manner as above: by applying the Grothendieck-Riemann-

Roch formula to the description (2.4) of the bundle ^1,14). We have

ch(^Mil) = Tn.2,3. (Td(ff4/ff3) ■ ch(ir*4& ® Cf/cf (-Ay4 - A24 - A34)))

= Tn.2,3. ((1 - W4/2 + Uj\/12) ■ (eD< • (1 - e-Ai4-A24-A34)))_

Since the expansion of this product and the evaluation of the pushforward are

formally identical with the calculation made above for ^1,1), we will spare the

reader (some of) the details and simply state the outcome, which is that

ch(^i,i,i)) = 3 + (Dy + D2 + D3 - A12 - A13 - A23)

+ ((D2 + D2 + D\)/2 - DyAy24 - D2A234 - D3A134

- (UJy A124 + W2A234 - W3Ai34)/2 + A123)

+ (-(D2Al2 + D2A23 + D23A13)/2

- (uJyDyAi2 +W2D2A23 +UJ3D3Ay3)/2

- (ojy2A12 + uj\A23 + w|Ai3)/6 + WA123 + DAl23)

and hence

ci0?i,i,i)) = Dy + D2 + D3 - A12 - A13 - A23

C2(^,l,l)) = DyD2 + DyD3 + D2D3 - DyAy2 - D2A23 - D3Ay3

- DyA23 - D2Ay3 - D3A12 + 2Ai23

C3(^(l,l,l)) = 2DAi23 + DyD2D3 - DyD2A23 - D2D3Ay3 - DyD3Ay2.

Thus, by (2.5),

[S] = J2 D2iD3Dk - J2 D2D3Atk - 5 £ D2D3 A]k

+ 4J2 DiDjAl3k + 4J2 D2tAiok + £ D,DJ(Aik)2

+ £ D2(A}k)2 - 6 £ D,Ai3Aijk + 4(A123)2
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where the summation in each case is over cyclic permutations of {1, 2, 3}. Taking

the pushforward to Z and dividing by 6 we arrive at

TR = d2   A/2-d- A/2 - od ■ A/2 + 2A

+ 2A-dB/2- (2g - 2) ■ A/2 + 3B + 2C/3

[d? + 6d + 8 \   .     d-6n     2„
= {—2-° + 1)A--2- B+3C

verifying (1.3), again modulo the boundary components.

(d) REMARKS. What is clear from these constructions, above and beyond the

coefficients of the divisors CU, TN and TR, is that any of the divisors described

in the previous section can in this way be expressed, modulo the boundary com-

ponents, as a linear combination of the divisors A, B and C. Thus, for example,

the locus of curves with tritangents will be the image of the rank 2 locus of the

evaluation map from % to the rank 6 bundle ^2,2,2) on ^3 whose fiber at a point

(p,q,r) is r(^c/-Sc(-2p-2q — 2r)), and so expressible by Porteous' formula; the

locus of curves with flex bitangents will be the rank 2 locus of the evaluation map

from %? to the analogously defined bundle ^2,3) on ff2; and so on (other examples

will be worked out in §4). Without carrying out the computations explicitly, it is

clear that the classes of these divisors will lie in the (rational) span of A, B, C and

the boundary components in Pic(W).

As for the determination of the coefficients of A in the classes of these divisors, we

will carry this out in the following two sections, using a variety of ad-hoc techniques.

We would like to say here, however, that this approach is not really satisfactory to

us: apart from the question of whether these techniques will suffice, it would seem

much preferable to have a way of extending the technique employed in this section

to the boundary. The obstacles to doing this are nontrivial: it is not hard to see

that the bundles 9 introduced above will not extend to vector bundles on ffk over

all of W, and while in theory they will extend to vector bundles on a suitable blow-

up of ffk, this is difficult to carry out in practice. What is clearly called for, then,

is a version of Porteous' formula that applies to (at least some class of) coherent

sheaves.

3. Divisors on PN and their restrictions. Another technique for computing

the classes of divisors on the Severi variety is to consider divisors on the space PN of

all curves in the plane, determine their class (i.e., degree) in PN, and then analyze

their restriction/pullback to the Severi variety to obtain relations in Pic(W). This

is what we shall do in this chapter; the relations that we arrive at will be applied

in the following chapter.

Specifically, the divisors in P^ we shall consider here are the divisor of curves

of degree d

(i) tangent to (i.e., having a point of intersection multiplicity two or more with)

a fixed line;

(ii) having a point of intersection multiplicity three or more with some line of a

fixed pencil;

(iii) having a point of intersection multiplicity four or more with some line; or

(iv) having a point of intersection multiplicity three or more with a line at a

point on a fixed line.
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Call these divisors M2, M3, M4, and TV3 respectively (the fact that they are

indeed divisors, if not already apparent, will emerge in the course of the following

computation). Their degrees may all be determined by one technique; we do this

now.

(a) Degrees of the divisors M and TV. To begin with, we introduce the standard

incidence correspondence

E={(p,!):p6l}cP2 xP2*.

We will think of E as the universal line over P2 . Observe that the Chow ring of

E is generated by the pullbacks rn of the hyperplane (line) classes ci(<^(l)) of the

two factors, with the relations

Vi = 0;        n2r)j = 1;    and   r]yr]2 =rjy+ rfc.

Now, let & be the line bundle ir*(cf(d)) on E, and let fi be the relative dualizing

sheaf of E over the second factor P2*; observe that since E is a divisor of type (1,1)

on P2 x P2*, and the Chern class of the relative dualizing sheaf of P2 x P2* over

P2   is —3?7i, we have

ci(fi) = -3*71 + (/7i + n2) = -2?7i + n2.

We can introduce a vector bundle &k on E whose fiber at every point (p, /) is the

space of sections of the sheaf cfi(d)/cfi(d)(—k ■ p) = ^;-/^r(—fc • (-p,/)), that is,

sections of S? restricted to the fiber I = {(q,I): q E 1} of E over /, modulo those

vanishing to order fc at (p,l). (Officially, if E2 is the fiber product of E with itself

over P2 , A C E2 the diagonal, and 771,772: E2 —* E the projections, f§k will be the

sheaf r?i,(r72^ ® cf/cf(-kA)). The obvious quotient maps

&k —* &k-l —>->S2-^9y—S

give a filtration of &k with successive quotients ^, & ® fi,..., $* <g> fife_1, so that

c(&k) = (1 + dny) ■ (1 + (d- 2)ny +r,2).(1 + (d - 2fc + 2)r,y + (k - 1)772)-

Now, on the product PN x E, we have a natural map

rk:7r*y(cfpN(-l))^5?k,

which, at a point (/, (p, I)) of PN x E, simply takes a scalar multiple of the poly-

nomial /, restricts it to I, and evaluates it at p. The zero locus $k of this map

is, of course, the space of triples (/, (p,l)) such that /|; vanishes to order fc at p.

By looking at the projection on the second factor E, we see that $!k always has

codimension exactly fc in PN x E when k < d; writing A for the hyperplane class

on P^ or its pullback to PN x E, we can determine its class as

(3.1) [*fc] = 7r1.(cfc(7rI(^PN(l))®%))=7r1. (£ A^ ■ *(&„)) .

The classes of the divisors Mi introduced above may now be calculated readily.

To start, the locus M2 of curves tangent to a fixed line lo is just the image in PN

of the intersection of ^2 with the inverse image of the locus {(p,Iq)} C E; since

this locus has class n2, we have

(3.2) M2 ~ rn, (J2 A2~l ■ c'(^) ■ ri) = *i.(ei(3&) • r,2) ■ A

= rn. (((2d - 2)77! + V2)   ril)-A= (2d - 2)A.
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Of course, we did not need any fancy machinery to tell us this. We know that in

the projective space P = PH°(lo, cf(d)) of polynomials of degree d in two variables

the subvariety of those with multiple roots—the zero locus of the discriminant

polynomial on P—is a hypersurface of degree 2d — 2. Since the map P^ —► P given

by restriction is a linear projection, it is likewise true that the subvariety of P^ of

curves having a multiple point of intersection with Iq is a hypersurface of degree

2d-2.
The case of M3 is handled similarly: for any point p0, the locus of curves having

contact of order at least three with a line through po will be the image in PN of

the intersection of ^s with the inverse image of the locus {(p, I) po E I}; since this

locus has class 772 we have

(3.3) M3 = iry. (j^A^a^-m)

= ti.(c2(^3) -772)   A

= Ti. (((dr/i • ((d - 2)ni + n2) + dny ■ ((d - 4)77! + 27?2)

+ ((d - 2)77! + n2) ■ ((d - 4)771 + 2772)) • 772) • A

= (3d2 - 6d)A

In the same vein, the class of the divisor TV3 of curves with a flex point lying on

a fixed line is given as

(3.4) N3~iry,(j2A3-l-ct(&3)-ny)

= iry.(c2(f&3) -ny)- A

= *1. (((dT?! ■ ((d - 2)77i + 772) + d7?i • ((d - 4)77! + 2t72)

+ ((d - 2)771 + 772) • ((d - 4)77! + 2t?2))   »?!)• A

= (6d - 6) A.

Finally, the divisor M4 is simply the image in PN of the locus 4'4; so that

(omitting the intermediate calculations) we have

(3.5) M4 ~ iry.(c3(f^4)) ■ A = (18d2 - 66d + 36) • A.

(b) Pullbacks of the divisors M and TV. We consider now what we get when we

pull back the divisors introduced above to the Severi variety W. In each case, we will

see that the support of the pullback is readily described, while the determination of

the multiplicities may require some work. (In each of the cases worked out below,

the existence of families of W as described follows either from an ad hoc argument

or from deformation theory as found e.g. in [Diaz-Harris]).

Consider first the divisor M2 of curves having a multiple point of intersection

with a fixed line L. Let C E W be in the pullback of M2, and let p be a multiple

point of intersection of C with L. Then either p is a smooth point of C—so that C

lies in the divisor TL C W—or p is a singular point of C, in which case C lies on

the divisor NL of curves singular somewhere along L. We thus have

(3.6) p*M2=aTL + PNL.

The coefficient a in this relation is more or less by definition 1. To find the

coefficient /?, we write down an arc in W meeting TVL transversely at a general
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point C, and determine the multiplicity of the pullback to this arc of the divisor

M2. In local coordinates (x,y) in the plane, let L be the line y = 0, let the node

of C lying on L be the origin x = y = 0, and say the local equation of the curve C

is fo(x,y) = x2 — y2 = 0. We can then take as our arc the family {Ct} given by

applying the translations (x,y) i-» (x,y + t) to the curve C, i.e., in local coordinates

ft(x,y)=x2-(y-t)2=0;

since the node of Ct is at (0, t) this arc will cross NL transversely at C = Cq.

To find the multiplicity of M2 at 0, we look at the inverse image in the product

PN x E of the arc {Ct}. We write a point in this inverse image as (ft, (p, I)), where

p is the point (a, b) and / the line (y — b) = m(x — a); t,a,b and m will serve as

coordinates in U near the point (fo, ((0,0), L)) (i.e., the point t = a = b = m = 0).

Since M2 is defined to be the image of the intersection of ty2 with the inverse image

from E of the cycle / = L, the intersection number of M2 with our arc will just be

the intersection multiplicity of $2 with this cycle at this point, and this is what

we shall find. To write down the equations of *, observe that in terms of the

coordinate u = x — a along the line /, we have

ft]l = (u + a)2-(mu + b-t)2

= (1 - m2) • u2 + (2a - 2mb + 2mt) -u+(a2 -b2 + 2bt - t2).

The equations of the locus $2 in U are then given by setting the coefficients of the

linear and constant terms of this polynomial in u equal to zero, i.e., in U the ideal

of $2 is given by

J*2 = (a - mb + mt, a2 - b2 + 2bt - t2).

On the other hand, the equations of the locus I = L are simply m = b — 0; and on

the surface they cut out in U, the ideal of *2 restricts to (a, t2). The intersection

multiplicity of *2 with the cycle I — Lin U, and hence the coefficient b in (3.6), is

thus 2; we have

(3.7) p*M2~TL + 2NL.

We look next at the pullback to the Severi variety of the divisor M3 of curves

having a point of intersection multiplicity 3 or more with a line of a fixed pencil.

Again, the support of this divisor is easy to describe: a curve C having such a point

of intersection with L must have either one branch with contact of order at least

3; two branches, at least one of which intersects L multiply; or three branches. If

we have a codimension one family of such curves in the Severi variety, it must be

a component of either FP, NP or TR, respectively; so that p*M3 will be a linear

combination of these three divisors. In fact, we claim that

(3.8) p*M3~FP + 3NP + 0TR.

Again, the coefficient of FP is one, more or less by definition. We will evaluate

the coefficient of TVP by the same set-up as above. Specifically, suppose the chosen

pencil is the pencil of vertical lines {y = A}, and let L be the line y = 0 as above.

We want to write down an arc in W meeting TVP transversely at a general point C;

we can suppose that the curve C is given locally as x(y — x2) and take our arc in
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W to be one obtained simply by applying the family of shears (x, y) —► (x, y - tx)

to the curve C. The local equations of the family {Ct} will then be

ft(x,y) = x(y-tx-x2);

since the tangent lines to this family of curves at their common node x — y = 0

cross the line in P2 corresponding to the given pencil transversely, the arc {Ct}

in W will be transverse to TVP.

As before, we go to the inverse image of our arc in PN x E; choosing coordinates

as in the previous example, we can write

ft\t = (u + a) • (mu + b — t(u + a) — (u + a)2)

= -u3 + (m - t - 3a) ■ u2 + (b - 2ta - 3a2 + am) -u + (ab- a2t - a3),

so that the local equations of $3 are

m — t — 3a = b — 2ta — 3a2 + am = ab — a2t — a3 = 0.

The equation of the pencil {y — X}, meanwhile, is just m = 0; solving, we have

t=-3a;    6=-3a2.

In other words, the intersection of ^3 with the locus m = 0 in the inverse image

of our arc lies on the smooth curve defined by the equations m = 0, t = —3a and

b = —3a2, and in terms of the local coordinate a on that curve has equations a3 = 0.

The intersection multiplicity of our arc with M3 is thus 3.

For the coefficient of TR in (3.8), we choose an arc in W transverse to a general

point of TR: take, for example,

ft(x,y) = (x2-y2)-(x-t)

We get

ft\t = ((« + a)2 - (mu + b)2) -(u + a-t)

= (1 - m2) ■ u3 + ((1 - m2)(a - t) + (2a - 2mb)) ■ u2

+ ((2a - 2mb)(a - t) + a2 - b2)u + (a2 - b2)(a - t),

and after restricting to the locus m = 0 we have the set of equations for #3:

3o-* = 0, 3a2 - b2 - 2at = 0, (a2 - b2)(a - t) =0.

Restricting further to the smooth surface with equation t — 3a, we find the ideal

of *3 is generated by 3a2 — b2 and a(a2 — b2); since these are the equations of

curves with an ordinary node and an ordinary triple point with no pairwise tangent

branches, their intersection number—and correspondingly the coefficient of TR in

(3.8)—is 6.
Next, consider the pullback to W of the divisor M4. As usual, the components

of the locus of curves C EW having a point p of intersection multiplicity 4 or more

with a line L may be broken up according to the number of branches of a general

curve in each component at p, and their individual intersection numbers with L:

we could have one branch, which would then be a hyperflex; we could have two

branches, each tangent to L (i.e., a tacnode); two branches, one with contact of

order three (i.e., a flecnode); or three branches, one tangent (i.e., a triple point).
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Lastly, C may actually contain L, i.e., lie in Ao,i - p*M4 is thus a linear combination

of the divisors HF, TN, FN, TR and A0,i; we claim that in fact

(3.9) p*M4 = HF + 6TTV + 4PTV + 36T.R + (4d - 12)A0,i-

We will work out explicitly only the coefficients of TTV, FTV and TR here. The

coefficient of Ao,i we know only by comparing coefficients in the formula (4.22) of

the next chapter; we do not know of a way of computing it directly.

We begin with the coefficient of TTV; as usual, we start by writing down an arc

in W transverse to TTV:

ft(x, y) = (y-x2+ t)(y + x2 - t) = y2 - x4 + 2tx2 - t2

(the existence of such a family is guaranteed by the fact that W dominates the

equigeneric locus of the versal deformation space of the tacnode of Co). Next, we

restrict to a general line / and expand around a general point on /:

ft\i = (mu + b)2 -(u + a)4 + 2t(u + a)2 - t2

= - u4 - 4a ■ u3 + (m2 - 6a2 + 2t) ■ u2

+ (2mb - 4a3 + 4at) -u + (b2 - a4 + 2ta2 - t2).

The ideal of ^4 in the local ring at the point m = a = b = t — 0 is generated by

the relations

4a = 0,        m2 - 6a2 + 2t = 0,

2mb - 4a3 + 4at = 0,    and    b2 - a4 + 2ta2 - t2 = 0.

To find the multiplicity of their intersection, we solve them: from the first equa-

tion, a = 0; and then from the second we have t = —m2/2. In terms of the

coordinates rn and b on the smooth surface cut out by the first two equations, then,

the last two equations read

2mb = 0   and   b2 - m4/4 = 0.

The first of these describes of course the two coordinate axes; the second a curve

with two branches at the origin, both simply tangent to the m-axis, and hence hav-

ing intersection number 3 with the first curve. The total multiplicity of intersection

of our arc {Ct} with the divisor p*M4 at t — 0—and hence the coefficient of TTV

in (3.9)—is thus 6.

To do the coefficient of PTV, we choose a family in W transverse to FTV: for

example,

ft(x, y) = x(y - x3 + tx2) = xy - x4 + tx3.

(The fact that there exists an arc in W with this local equation follows from the

fact that the cube of the maximal ideal at the node (0,0) of Co imposes indepen-

dent conditions on curves of degree d satisfying the adjoint conditions at the other

singularities of Co.) Restricting to the line x = u + a, y = mu + b as above, we find

ft]l = - u4 + (-4a + t)-u3 + (m- &a2 + 3at) ■ u2

+ (ma + b-4a3 + 3ta2) ■ u + (ab - a4 + ta3).
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Solving in sequence the equations we get by setting all but the highest coefficient

of the quartic in u equal to zero, we find that the ideal of V4 is generated by the

relations

t = 4a,        m = -6a2,        6 =-2a3,        a4 = 0.

The multiplicity of this point, and hence the coefficient of FTV in (3.9), is thus 4.

Finally, to find the coefficient of TR, we introduce the family {Cf} given by

ft(x,y) = (x2-y2)-(y-x2+t)

which is transverse to TR at fo, and whose existence is assured by the fact that W

dominates the equigeneric locus of the versal deformation space of the triple point

of Co- We have then

Ft\i = ((1 - m2)u2 + 2(a - mb)u + (a2 - b2)) ■ (-u2 + (m- 2a)u + (b - a2 + t))

= -(1 - m2) ■ u4 + (-2(a - mb) + (1 - m2)(m - 2a)) ■ u3

+ (-(a2 - b2) + 2(a - mb)(m - 2a) + (1 - m2)(b - a2 + t)) ■ u2

+ (2(a - mb)(b -a2+t) + (a2 - b2)(m - 2a)) -u+(a2 - b2)(b - a2 + t).

For notation, let Gi be the divisor in U defined by the coefficient of ul in this

polynomial. To calculate the intersection number GoGyG2G3, we introduce the

divisors E' = (a-b), E" = (a + b), Fy = E' + E", F2 = (-a2+b + t), F3 = (a + mb),

and F4 = (m — 2a). It is not hard to see that the divisors F2,F3, F4 and either E'

or E" intersect transversely, so that the intersection number FyF2F3F4 = 2. We

have then

Go = Fy + F2

and since Gy = F2 + F3 modFi, and Gi = Pi + F4 modP2, we have

CoGi = 2FyF2 + FyF3 + P2P4-

Similarly, we arrive at

GoGiG2 = 3PiP2P3 + 3FyF2F4

and

GoGyG2G3 = 0FyF2F3F4 = 12.

Finally, since the line L is one of three lines having intersection number 4 with the

curve C given by fo, the total multiplicity of the divisor p*M4 on our arc is 36.

Lastly, the pullback of TV3 to W: it is not hard to see that a codimension one

locus of curves C € W having intersection number three or more with a line at some

point of a line L must consist of curves either (a) having a genuine flex somewhere

on L, i.e., lying in FL; (b) having a node somewhere on L, i.e., lying in TVL; or (c)

containing a line, i.e., lying in Ao,i- In fact, we have

(3.10) p*N3=FL + 6NL + A0,y.

We will omit the verification of the multiplicities, out of a combination of consider-

ation for the reader and plain laziness (actually, we omit only the verification of the

coefficient of TVL, since the coefficient of FL is 1 by definition and the coefficient

of Ao,i comes only from comparison of the above formula for p*TV3 with formulas

(4.3), (4.14) and (4.15)).
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4. Further computations of divisor classes. In this chapter we will make

some further computations of classes of the divisors introduced in §1, combining all

the various techniques we have at our disposal. We will derive some of these classes

several times over, a duplication that will allow us to verify that the coefficients of

A given in formulas (1.1)—(1.3) are correct.

The techniques that we will use fall roughly into three categories. First, we

can describe all the loci we will be dealing with as degeneracy loci associated to

some map of vector bundles, and apply Porteous' formula or a specialization to

find its class, as in §2 above. Second, we have the relations obtained in the last

chapter. Third, we have various techniques relating to the characteristic classes of

the loci themselves: we have the adjunction formula in several guises, as well as the

Riemann-Hurwitz formula for branched covers and the double point formula.

(a) Nodes. We begin by computing the class of the divisor TV c ff of points

lying over assigned nodes of the images of their fibers. Probably the simplest way

to do this is via the double point formula: since TV is just the double point locus of

the map tp, we have

"w/w = <P*us/w®(f(-N) = <p*(ujP2xW/w(S))®cf(-N)

~(d-3)-D + ir*A-N,

from which we deduce that

(4.1) TV~(d-3)-£»-w + 7r*A

(To give a more concrete version of this argument, we can write down a meromorphic

global section of the relative dualizing sheaf: let x and y be euclidean coordinates

in the plane P2, and A = (Xy,..., Ajv) euclidean coordinates on PN, and set

*     dx
V = tp -;—

V dfx/dy
We see that the zeroes and poles of * consist of a zero of order d - 3 along the

line at oo in P2, a simple pole along the divisor TV, and a simple zero along the

hyperplane at oo in P^; formula (4.1) follows.

(b) Nodes II. We can also calculate the class of TV in the manner of §2, as

follows. We will use the notation of §2; in particular, recall that ff} is the fiber

product ff xw ff of ff with itself over W, and that ^i,i) is the bundle over ff2

whose fiber at a point (p, q) is the space of sections of £?cl^c(—p — <})■ We have

a natural evaluation map from the trivial bundle 1? = H°(P2,cf(l)) ®cf<% to the

bundle ^1,1), and the closure $ of the locus of pairs (p, q) of distinct points of a

fiber of 7r: ff —* W mapping to the same point of P2 will just be the locus in ff}

where this map fails to have rank 2. The class of $ is then given as the second

Segre class of the bundle <^i,i), and so we have

[*]-.ci(^i,i))a-Ca(^i.i))

= D\ + D\ + 2Dy    D2-UJy A12 - 4Dy ■ A12 - Dy ■ D2 + Dy ■ Ai2

= D\ + D\ + Dy ■ D2 - UJy ■ A12 - 3£>i • Ai2.

Now, 7Ti. D2 = 0, while iry,D2 = it* A and fty.Dy D2 = dD; so the pushforward

of [*] to ff is

(4.2) [N] = iru[<I>} = (d-3)D-uj + iT*A

as we had previously calculated.
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Note further that we did not have to exclude from this calculation the inverse

image of A, since the sheaf ^1,1) will fail to be a locally free sheaf with fiber as

specified above only over a codimension 2 locus in ff, namely the locus of points

singular in their fibers. The formula (4.1) is thus established over all of ff by this

computation.

(c) Nodes on a line. We look next at the divisor TVL of curves having an assigned

node on a given line L c P2. The class of TVL follows immediately from (4.1): the

locus of curves with a node along the line L is just the image in W of the intersection

r\*L fl TV; since 7T maps this intersection onto its image with degree 2, we have

(4.3) TVL = 7r„(£> • TV)/2 = nm(D ■ ((d -3)D-uj + ir*A))/2

= 7r,((d - 3)L>2 - D • «)/2 + d-A/2

2 2

(d) Cusps II. There is an alternate way to calculate the class of the divisor CU,

and one that allows us to determine the coefficients of the boundary components

A at the same time. This is to look at the map tp: ff —> W xP2, and to observe

that CU is just the image in W of the locus of points in ff where the differential

dtp fails to have maximal rank 2. By Porteous' formula, then,

CU = 7rt([77*c(eVVxp2)/C(e^)]2 = irt({^c(eP2)ir*c(ew)/c(ew)}2).

From the exact sequence

0 —► ir'Qw —* fig* —* <*>&/w <g> J*g —► 0

(where 8 is the locus of singular points of fiber in ff) we see that

c(e^)=ir'c(ew)-(l-uj+[6}),

so that

ir*c(Qw)/c(e^) = 1 + uj + uj2 - [8].

Thus

(4.4) CU = 7r,([(I + 3L> + 3L>2) -(1+uj + uj2- [$])]„)

= irt(3D2 + 3Duj + uj2 - [8])

= 3A + 3B + C -A.

Observe that we have now verified formula (1.1) over all ofW.

(e) Tangent to a line. We look next at the class of the divisor TL C Z of curves

tangent to a fixed line L (precisely, we mean the closure of the locus of curves C

with a smooth point pE C tangent to L; in particular, we do not mean to include

the divisor TVL of curves with a node somewhere along L). We can find its class,

modulo the boundary components A, in straightforward fashion: the line L is the

zero locus of a section a E H°(P2,cf(l)), which in turn defines by evaluation a

section a of the bundle 9\2\ introduced in §2 whose fiber over a point p Eff will

be the space of sections of .Sc/.2c(-2p). The locus 0 C ff of points of tangency

of the curves in W with L will be the zero locus of this section of &(2), and the

divisor TL the image of © in W. We recall from §2 that

c(^2)) = (l + £>)-(l + £> + w),



GEOMETRY OF THE SEVERI VARIETY 25

so that c2 (&[2)) — D2 + D  ui and

(4.5) TL~it,(D2+Duj)=A + B

modulo the boundary components A.

(f) Tangent to a line II. There is another approach to computing the class of TL,

and one that allows us to determine the coefficients of the boundary components

A as well. This is by observing that the divisor TL is just the branch divisor of the

map from ?7_1(L) to W, and using the adjunction formula to determine the class

of the ramification divisor of this map. Since n~l(L) ~ D, the adjunction formula

gives us

(4.6) TL ~ 7r„((D • (D + uj))) = ir*(D2 +Duj) = A + B.

(g) Tangent to a line III. A third way to calculate the class of TL is to use the

formulas of the preceding chapter. Specifically, we have seen that the divisor M2

in P2 of curves having a multiple point of intersection with L is a hypersurface

of degree 2d — 2; its pullback to the Severi variety W is thus a divisor of class

(2d — 2) • A. But we also saw in the last chapter that this pullback is just the sum

of the divisors TL and 2 • TVL; we have accordingly

(4.7) TL~(2d-2)-A-2-NL~A + B.

(h) Tangent to a pencil. Next, we fix a point p E P2 and let T C ff be the

closure of the locus of points q such that the tangent line to the image 77(C) of the

fiber of 7T through q passes through p. The standard way of finding the class of the

divisor T is to view the pencil of lines through p as a two-dimensional subspace

V of H°(P2,cf(l)) and looking at the corresponding map from the trivial bundle

W = V <g» (9<g to the bundle &(2\ • T will then be the locus where this map fails to

be an isomorphism, and so

(4.8) T-01(^2)) = 2D+ uj.

Note that in the above computation, we did not actually have to exclude the

boundary A, since the sheaf &(2\ will fail to be a well defined, locally free sheaf

only in codimension 2. Thus this formula is in fact valid over all of ff.

(i) Tangent to a pencil II. Another way to evaluate the class of the divisor T

on ff is to view T as the ramification divisor of the map ff —<■ W x P1 defined

by composing tp with projection from the point p in each fiber of W x P2. (This

projection map is course only a rational map, since it fails to be well defined at

points of 77-1(p); but since this locus has codimension 2 and we are concerned with

a divisor class on ff this should not bother us.) By Riemann-Hurwitz, then, we

have

(4.9) T = Cy(uj^/W) - Cy(uJWxpl/W) = w + 2D,

as before.

(j) Nodes tangent to a pencil. One consequence of the calculation of [T] is that we

can describe the divisor TVP on W, where TVP is the closure of the locus of curves

C such that the tangent line to a branch of 77(C) at a node passes through a given

point p E P2. This would be just the image in W of the intersection of the locus

T of points where the tangent line to 77(C) at q passes through p with the locus
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TV of points lying over nodes, except for one thing: T and TV also intersect in the

locus of points lying over cusps (a local computation shows that this intersection

is transverse). Now, we have

7T,(P ■ TV) ~ irt((uj + 2D) ■ ((d -3)D-uj + ir*A))

= 7r,((2d - 6)D2 + (d - o)ujD - uj2 + (uj + 2D) ■ it*A)

= (2d - 6)4 + (d - 5)B - C + (2d +2g- 2)A

= (4d +2g- 8) A + (d-5)B-C

and hence

(4.10) NP~ir,(F-N)-CU

= (4d + 2g- 11)A + (d- 8)B -2C + A.

(k) Flexes. Consider next the divisor F on ff of points lying over flexes of the

corresponding plane curves. To determine the class of this divisor, we set up the

bundle ^3) on ff, whose fiber over a point p Eff will be the space of sections of

S'cI■2'c(—3p); we will then have a map tp: <§T —> f^~,^ defined by evaluation, and

the divisor of flexes will just be the locus where tp is singular. Its class is thus the

first Chern class of the bundle f?\$y. To compute this class, observe that we have a

filtration of ^3) given by the successive quotients

•^3) -► ̂ (2) -* 9^1) -* 0,

where &(k} is the bundle with fiber .Sc/.2c(—fcp) at p. The successive quotients

of this filtration are Sf, S? ® uj, and 2? ® uj2, so that

(4.11) F~cy(&l3)) = 3D + 3uj,

modulo the boundary A.

As before, note that we did not actually have to exclude the boundary A in this

computation, since the sheaf &(3\ will fail to be a well defined, locally free sheaf

only codimension 2. There is, however, one slight hitch in this case: over a point of

the boundary component A0,i—that is, when the fiber C of ff is reducible, with

one component Co mapping to a line and the other component Ci to a nodal plane

curve of degree d — 1 and genus g—the determinant of tp will vanish identically

along Co- To see to what order it vanishes along Co, observe that as we approach

the nodal curve, a total of 3 flexes of the nearby smooth curves tend toward the

node; the locus F will consist of a single smooth arc simply tangent to the branch

of the node lying on Ci and covering W with degree 3 (cf. [Eisenbud-Harris 2]).

In particular, we see that the intersection number of F with Co is exactly 1. Now,

if we write

F = 3D + 3w - mA0,i

(recall that Ao,i is the union of the components of fibers over A0,i mapping to

lines) then the intersection number of F with Co is

(F ■ Co) = 3(D ■ C0) + 3(uj ■ Co) - m(A0,i • C0) = m

from which of course we conclude that m = 1, i.e., that

(4.12) F~3L> + 3w-Ao,i.
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(1) Flecnodes. The above calculation allows us to determine as well the class

of the divisor PTV c W of curves possessing a flecnode, that is, a node at which

one of the branches is a flex point. To do this, consider the intersection of the

locus F with the divisor TV. This intersection will have two components: the locus

of points lying over flecnodes of the corresponding plane curves, and the locus of

points lying over cusps. Moreover, the latter occurs with multiplicity two, since

both the divisors F and TV are ramified along the locus of points lying over cusps

(in the case of TV, this is just the local picture given in §1; for the description of F

near CU, see [Eisenbud-Harris 1]). Since we have

N~(d-S)-D-w + ir*A.

this gives us

(4.13) FN ~ir,(F-N)-2CU

= jr.((3D + 3uj- A0,i) • ((d - 3)D - uj + ir*A))

-0A-0B-2C + 2A

= 3(d - 3)A + ((3(d - 3) - 3)B - 3C + 3dA + 3(2g - 2)A

- (d - 3)A0,i - A0,i -6A-0B-2C + 2A

= (6d + 0g- 21)A + (3d - 18)5 - 5C + 2A - (d - 2)A0,i.

(m) Flexes on a line. We can also use the computation of the class of the divisor

F of flexes to describe the divisor FL C W of curves having a flex point on a fixed

line L C P2: FL will just be the image of the intersection of the divisor 77*L ~ D

with the locus F, so that we have

(4.14) FL~ir„(FL-D)

= ir*(3D2 +3ujD-~AoaD)

= 3A + 3B- A0,i.

(n) Flexes on a line II. As usual, an alternate approach to determining the class

of the divisor FL is to look at the divisor TV3 on P^ consisting of curves with a

flex along the line L, and describe its restriction to W. What we saw in the last

chapter is that TV3 pulls back to the divisor FL, plus six times the divisor TVL, plus

the divisor Ao,i- We thus have

(6d - 6)A ~ FL + 6 • TVL + A0,i,

so that

(4.15) FL ~ (6d - 0)A - 3(2d - 3)A + 3B- A0,i

= 3A + 3B- A0,i.

(o) Flex lines in a pencil. The divisor we will look at is the closure FP of the

locus of curves C that have contact of order 3 or more with a line of a fixed pencil,

at a smooth point of C. As in the case of the divisor FL above, there are several

ways to approach this; in the end, comparing the results will allow us to determine

the coefficient of the boundary component A in the divisor TR.

The standard way to determine the class of FP is, as in the case of the divisor

T discussed in (4h) above, to introduce the trivial subbundle t£' C & coming from
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the subspace V C H°(P2,cf(l)) corresponding to the given pencil, and look at the

bundle map tp: i?' —» SF^ given by evaluation. FP will then be the locus where

the map tp fails to have rank 2, from which we conclude (using information from

§4(k) above) that

(4.16) PP~7rt(C2(^3))

= 7rt(3£»2-l-6u;L>-i-2w2)

= 3A + OB + 2C,

modulo the boundary components A.

(p) Flex lines in a pencil II. A second approach to the class of FP is to look at

the branching of the divisor Tinff over W. For any fiber C of 7r, the composition

of the map 77: C —► P2 with the projection to a line from a point p 6 P2 will

have exactly 2d + 2g — 2 simple ramification points, unless either C is singular, or

C contains p, or C has a flex passing through p. The branch divisor BRt of the

covering ir: T —> W thus consists of the sum of multiples of the divisors A, A and

FP; and it is not hard to see the multiplicity in all three cases is one. On the other

hand, by the adjunction formula the class of the ramification divisor of T over W

is just the restriction to T of the sum T + uj; so that BRt has class

BRT ~ n.(T ■ (T + uj))

= irm((uj + 2D) ■ (2uj + 2D))

= 4A + 6B + 2C.

We thus have

(4.17) FP~BRt- A- A-3A + 6B + 2C- A.

(q) Flex lines in a pencil III. There is a third way to evaluate the class of FP,

which is to consider the pullback to W of the locus M3 C PN of curves of degree

d having a point of intersection multiplicity 3 or more with a line L of the given

pencil. We have seen that the restriction of M3 to W is the linear combination

FP + 3TVP + OTR; thus

(3d2 - Od)A ~ FP + 3TVP + 6TP

and so

(4.18) FP ~ (3d2 - Od)A - 3TVP - OTR

= (3d2 - Od)A - 3((4d + 2g- U)A + (d - 8)B -2C + A)

- 6(((d2 - 6d + 8)/2 -g + l)A-(d- 6)B/2 + 2C/3 - A/3)

= 3A + 6B + 2C-A.

We observe that, comparing this third computation on the class of FP with the

second, we deduce that the coefficient of A in the formula (1.3) for the class ofTR

is correct.

(r) Hyperflexes. The calculations above also allow us to determine the class of

the divisor HF C Z of curves with a hyperflex. Observe first that this can be done

modulo the boundary components A in the standard way: away from the boundary

A, we introduce the vector bundle ^4) on ff whose fiber at a point p lying on the

fiber C of 7T is the space of sections of .2c/.5c(—4p); we have a natural evaluation
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map tp: JT —► ^4), and the locus O of hyperflexes will be the locus where tp has

rank 2. We compute, in the same manner as in §4(k) above, that

c(9r{4)) = (1+ D)(l + D + w)(l + D + 2w)(l + D + 3w)

= 1 + (4£> + 6w) + (6D2 + 18Duj + llu2) + ■■■

and so

[©] - c2(^4)) = (6L>2 + 18Duj + IIuj2).

Pushing forward to W, we find that

(4.19) HF -6,4 + 185 + HC

modulo the boundary components A.

(s) Hyperflexes II. The reader will not be overly surprised at this point to hear

that there is another way of calculating the class of HF. We consider the curve

F C ff introduced above, and try to determine the class of the branch divisor BRF

of F over W. We can do this in two ways: first, since we know the class of F on

ff, we can use the adjunction formula. We have

F ~ 3D + 3w - A0,i

and so

(4.20) BRf = tt*(F-(F + uj))

= tt.((3D + 3uj - A0,i) • (3D + 4w - A0,i))

= 9A + 21B + 12C.

On the other hand, we know from our local pictures exactly where and how

F ramifies over W. To begin with, it is unramified over a general point of the

divisors TTV and TR. Next, when a node of a plane curve turns into a cusp, we see

[Eisenbud-Harris 1] that two flexes come into the cusp and are simply ramified.

Over a point of A the situation is more complicated. Excluding for the moment the

component A0,i of A, the picture is this: a total of six flexes of the nearby smooth

curves will approach the node, comprising two smooth arcs. Each arc will be simply

tangent to one of the branches of the fiber C over A, hence will have intersection

number 3 with C, hence will be a three-sheeted cover of W totally ramified over A,

as depicted in Figure 6 (see [Cukierman] for an analysis of this situation). The

situation is different only for the boundary component Ao,i; here, only three flexes

approaches the node, forming a single smooth arc simply tangent to the component

Ci and hence totally ramified of degree 3 over Ao,i- finally, the divisor F will be

simply ramified along the locus of hyperflexes.

In sum, we see from this description that the branch divisor of F over W is

BRF ~CU + HF + 6(A - A0,i) + 2A0,i-

Thus

(4.21) HF ~ BRF -CU-6A + 4A0,i
~ (9,4 + 21B + 12C) - (3A + 3D + C - A) - 6A + 4A0,i

~ 0A + 18B + 11C - 5A + 4A0,i •



30 STEVEN DIAZ AND JOE HARRIS

branches of PL ^---^^""iNJ     r1 ^J-^"""^

(each one is a 3- j        \ j /    /       ,/

sheeted cover of W /      j    Y      /      /

ramified over A - Ao,i)       j       f /J \\\

\ po \     \

Figure 6

(t) Hyperflexes III. There is yet a third way to determine the class of HF (at

least modulo Ao,i), by restricting to the Severi variety the divisor M4 of curves in

P2 that have a point of intersection multiplicity 4 with some line. Recall that we

have

M4 = HF + 6TTV + 4PTV + 36TR + (4d - 12)A0,i

(in fact, we determined in §3(b) only the first four coefficients; the coefficient of Ao,i

will follow from the computation below) while, on the other hand, we know that

the restriction to W of the divisor M4 is linearly equivalent to (18d2 — 78d+ 36) • A.

Thus

(4.22) HF ~ (18d2 - 66d + 30)A - 6TTV - 4FN - 36TR - (4d - 12)A0,i

~ (18d2 - 66d + 30)A - (4d - 12) A0,i

- 36(((d2 - 6d + 8)/2 -g+l)A-(d- 0)B/2 + 2C/3 - A/3)

- 6((3(d - 3) + 2g - 2)A + (d - 9)5 - 5C/2 + 3A/2)

- 4((6d + Og - 21)A + (3d - 18)5 - 5C + 2A - (d - 2)A0,i)

= OA + 185 + 11C - 5A + 4A0,i.

(u) The branch divisor of TV. The last divisor we shall consider is the branch

locus BRn of the covering 7r: TV —► W. We will be able to find its class in two

different ways, which in turn will allow us to deduce the coefficient of the boundary

components A in the formula (1.2) for the class of TTV.

The first approach to describing BR^ is by the adjunction formula: we have

(4.23) BRN = irt(N ■ (N + uj))

= 7r,(((d - 3)D - w + ttM) • ((d - 3)D + ir*A))

= 7r,((d - 3)2D2 - (d - 3)o;D + ((2d - 6)D - w)tt*A)

= ((d - 3)2 + (2d - 6)d - (2<7 - 2))A - (d - 3)5

= (3d2 - 12d + 9 - (2a - 2)) A - (d - 3)5.

(v) The branch divisor of TV II. The other way we have of evaluating the class

of BRn is by direct examination: we can explicitly describe the divisor BRn as a

linear combination of the divisors studied so far. Specifically, a curve 77(C) € W

will have fewer than 8 distinct assigned nodes if and only if it has either a tacnode

or a triple point, and there will be fewer than 28 points of C lying over these nodes

if and only if one of them is a cusp; so that BRn must be a linear combination
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of the divisors CU, TN and TR. From the local descriptions given in §1 above,

we see that TV is simply ramified over CU, has two simple ramification points over

TTV, and has three nodes lying over a point of TR; thus

(4.24) BRN ~ OTR + 2TTV + CU

~ 6((d2 - 6d + 8)/2 -g + l)A-(d- 6)5/2 + 2C/3 - A/3)

+ 2((3(d - 3) + 2g - 2)A + (d- 9)5 - 5C/2 + 3A/2)

+ 3A + 3B + C -A

= ((3d2 - 12d + 9) - (2g - 2))A - (d - 3)5

as before. Again, since we have already verified the coefficients of A in formulas

(1.1) and (1.3) for the classes of CU and TR, this establishes the coefficient of A

in the formula (1.2) for TTV, and completes our proof of these formulas.

(w) Pullbacks of divisors from the Hilbert scheme. As we defined it in §1, the

Severi variety W lives in the product of P^ with the Hilbert scheme %? of sub-

schemes of dimension zero and degree 8 in P2. We can ask, then, whether there

are any interesting new divisor classes among those pulled back to W from %f.

The answer is no. The Picard group of %? is generated by two classes: there is

the class a of the locus of subschemes whose support intersects a line L C P2 (that

is, the image in ^ of the intersection of the universal subscheme in %* x P2 with

the pullback %? x L of L), and the class ft oi the locus of nonreduced subschemes

(cf. [Ellingsrud-Stromme]). The pullbacks of these classes to W are clear: a

pulls back to the divisor TVL, while /? pulls back to the branch divisor BRjt of TV

over W. From the local picture of the locus TV given is §1, then, we have

(4.25) $*a ~ (2d - 3)4/2 - 5/2,        and       $*/J~TTV + 4TP

(the coefficient 4 of TR in this last equation comes from the fact that the locus of

nodes has a spatial triple point, as shown in Figure 5).

5. The canonical class of the Severi variety. In this section we will consider

a collection of vector bundles living on the Severi variety W, which we may call

the adjoint bundles. These are simply the bundles En on W whose fiber at a point

C E W is just the adjoint series of degree n on the plane curve C with respect

to its assigned singularities, that is, the vector space of polynomials of degree n

satisfying the adjoint conditions of C at the assigned singularities. Officially, it

may be defined in terms of the spaces and maps of the diagram on page 6 as the

direct image 7Tj. (ir2cfPi.(d) <8>Jjr), where 7Ti, 7r2 are the projection maps on P2 x Z.

As we will see below this bundle, modulo the subbundle with fiber at C the space

of polynomials vanishing on C, can also be characterized as the pushforward, from

the universal curve ff —+ W of arithmetic genus g over W, of the line bundle

w <8>J£'n~d+3 <8>ir*cf(—A). Each characterization of En give us a way of calculating

its Chern classes, at least when n > d - 3, and we carry this out here.

One of the bundles En is of particular interest: by virtue of the description

[Diaz-Harris] of the tangent space to the space of equigeneric deformations of a

plane curve singularity, the bundle Ed is closely related to the tangent bundle of

the Severi variety itself. In the latter half of this chapter, we will describe that

relationship, and use it to determine the canonical class of W.
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(a) Classes of the adjoint bundles via Riemann-Roch. To begin with, the classes

of the bundle En are readily calculated for n > d - 3 by the Grothendieck-Riemann-

Roch formula. First, we have the formula

w = (d-3)-D-TV + 7rM

established above ((4.1)). Next, recall that the curves of degree n satisfying the

adjoint conditions at a subset of the singularities of a reduced plane curve of degree

d cut out the complete linear series 0Jc(n — d + 3) on the normalization C of the

curve at those singularities. It follows that we have for any n a surjection

En -» (1T*(UJW/W ®&n-d+3))®CfW(-A).

The kernel Fn of this map is the bundle whose fiber at every point C E W is just the

space of polynomials of degree n vanishing on the curve C; it is thus a tensor product

of the trivial bundle H°(P2,cf(n - d)) with the line bundle cfw(-A). The Chern

class of En®cf(A) is thus the Chern class of the direct image ?r*(a;g> /W ®2fn~d+3);

in particular we have

Ci(En) = cy(ir,(uj&/w ®5fn-d+3)) - rank(5n) • A.

Now suppose that n > d — 3.In this case, the bundle uj%>/w ® =g"n-d+3 has no

higher direct images (or, in the case n = d - 3, a trivial one by relative duality),

and the rank of En is (n +1) (n + 2)/2 - 6. Setting m = n — d + 3, by Grothendieck-

Riemann-Roch we have

(5.1)cy(irt(ujw/w®5fn-d+3))

= [ir*(Td(ff/W)-ch(ujtf/w ®Sfm))]y

= [tt,((1 - w/2 + (uj2 + 8)/12) ■ (1 + (uj + mD) + (uj + mD)2/2))}y

= 7T,((w + mD)2/2 - (u + mD) ■ uj/2 + (uj2 + 6)/12)

= (m2/2) ■ A + (m/2) • 5 + C/12 + A/12.

Thus

(5.2)    cy(En) = (m2/2 - (n + l)(n + 2)/2 + 8) ■ A + (m/2) ■ B + C/12 + A/12.

(b) Classes of the adjoint bundles via adjoint series. There is also an extrinsic

approach to this computation. Suppose we have a flat family of zero-dimensional

subschemes of P2 over a base Z—in other words, a subscheme fi C P2 x Z, flat

over Z. let 8 be the degree of fi over Z, and let D be the pullback to fi of the

class of line in P2. Suppose moreover that for all z E Z the fiber fi^ C P2 imposes

independent conditions on curves of degree n, and let En be the vector bundle on

Z whose fiber at z E Z is the space of polynomials of degree n vanishing on fi^.

To determine the Chern class of the bundle En let 7Ti and 7r2 denote the projection

maps on P2 x Z, so that the exact sequence

0 -► Jn ® ir*yCf(n) — 7r*^(n) -» CfQ ® ir*yCf(n) -+ 0

pushes forward to give an exact sequence

0 - En - Cfz ® 5°(P2,^(n)) -» (7r2).(<*h ® <cf(n)) - 0.
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From this we may calculate

cy(En) = -cy((n2)t(cfn®ir*yCf(n)))

= -7r2,(ch(^h ® 7rl<f (n)) • Td(U/Z))

= -7r2.((fi-7iD) + [R]/2)

= -n -*».(() •£) + Br/2

where R = cy(uci/z) 1S the ramification divisor and Br the branch divisor, i.e., its

image in Z. In our present circumstances, where Z = W is the Severi variety and

fi = TV C P2 x Z the locus of assigned nodes, tt2* (fi ■ D) = (2d - 3) A/2 - 5/2, and

we see by the local pictures of 5 around cusps, tacnodes and triple points that

5 ~ TTV + 4Ti?

so that

(5.3) cy(En) = -n((2d - 3)A/2 - 5/2) + TTV/2 + 2TR

= \(-2n(2d - 3)A + 2nB + 6(d - 3)A + 4(g - 1)A

+ 2(d - 9)5 - 5C + 3A + 4(d2 - 6d + 8)A - 8(g - T)A

- 4(d - 6)5 + 16C/3 - 8A/3)

= (-nd + 3n/2 + d2 - 9d/2 + 7/2 - (g - 1))A

+ (n/2 - d/2 + 3/2)5 + C/12 + A/12,

which agrees with our earlier computation, given the relation g = (d—l)(d—2)/2—8.

Another way to interpret this approach is via the description given in the last

chapter of the pullbacks of divisor classes from the Hilbert scheme %?: it is well

known (cf. [Ellingsrud-Stromme]) that the bundle En on %? has Chern class

—no. + P/2; pulling back to W and using formulas (4.25) we get the formula (5.3).

(c) The canonical class of the Severi variety. As we indicated, the bundle Ed

in particular can be related to the tangent bundle of W. In general, if X C P"

is any smooth fc-dimensional subvariety of projective space, we have the associated

projective Gauss map

7: X^G(k,n)

sending each point p E X to the projective tangent plane ^(p) = TP(X) =P'cP".

Let S be the universal subbundle on the Grassmannian G(fc,n); the Euler sequence

0 — cf -* cf(l)n+1 -» ePn -» 0

for the tangent bundle to Pn pulls back to X to give the sequence

(5.4) 0 — Cf -► 7*S ® cf(l) -> Qx -+ 0.

Observe that the definition of the Gauss map makes sense, and this last sequence

holds, for any immersion p: X —» Pn of a smooth variety into projective space; we

conclude in particular that the canonical class

KX = Cy(1*S*®ptCf(-l)).

In our present circumstances, of course, the map from W to PN fails to be an

immersion along the locus CU. The Gauss map is still regular, however, since

the limiting position of the projective tangent plane Tc(V) to the Severi variety
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V c PN as C approaches a cuspidal curve C0 will always be the adjoint series of

degree d; and the pullback 7*5 of the universal subbundle is just the bundle Ed.

The difference lies in the sequence (5.1): the pullback to W of a regular vector field

on V may have a simple pole along V in the direction of the (one-dimensional)

kernel of a*. Dually, the pullback map on 1-forms is not surjective, but maps into

the subsheaf of fi1 of forms vanishing on ker(p»); since the cokernel of the map is

a sheaf of rank 1 supported on CU we have

Kw = Cl(7*5* ® p*cf(-l)) + CU.

In our present circumstance, the pullback 7*S is just the bundle Ed introduced

above, and by (5.1) this gives us

Kw = -cy(Ed®cfw(A)) + CU

= -(9/2) • A - (3/2) • 5 - C/12 - A/12 + CU

= -(3/2)A + (3/2)5 + (11/12)C - (13/12)A.
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