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A RANDOM GRAPH WITH
A SUBCRITICAL NUMBER OF EDGES

B. PITTEL

Abstract. A random graph Gn(prob(edge) = p) (p = c/n, 0 < c < 1) on

n labelled vertices is studied. There are obtained limiting distributions of the

following characteristics: the lengths of the longest cycle and the longest path,

the total size of unicyclic components, the number of cyclic vertices, the num-

ber of distinct component sizes, and the middle terms of the component-size

order sequence. For instance, it is proved that, with probability approach-

ing (1 — c)1/2 exp(YJ._ cJ'/2j) as n —* oo, the random graph does not have

a cycle of length > I. Another result is that, with probability approaching

1, the size of the i/th largest component either equals an integer closest to

alog(i>n/Vlog5/2n), a = a(c), b = 6(c), or is one less than this integer, pro-

vided that v —> oo and v = o(n/ log5/2 n).

1. Introduction, results, notes. In the papers [8, 9] Erdos and Renyi began

a systematic study of a random graph G(n, M). In this model, the sample space is

the set of all graphs on a vertex set V = {1,..., n} with exactly M edges, and it

is assumed that all such graphs are equally likely. There had been known another

model of a random graph in which the number of edges of a sample graph is not

fixed and a graph is assigned the probability

p'qtih1        (q>0, p>0, p + q = l),

if it has I edges. Following the accepted notations, we denote this model G(n,p).

Thus, the random graph G(n,p) has (does not have) an edge (i,j), i,j GV (i ^ j),

with probability p(q = 1-p), and all (£) events "there is an edge (i, j)n are mutually

independent. It was indicated in [9], however, that the asymptotic behavior of

these two models is essentially the same if p(2) = M, which means simply that the

average number of edges in G(n, p) is precisely M. Of course, it should be required,

in addition, that p depends on n in such a way that, with probability approaching 1

as n —► oo—in short, almost surely (a.s.)—the random number of edges in G(n,p)

is relatively close to its expected value. In many instances, this heuristic principle

can be rigorously justified and used to get statements about G(n,M) as direct

corollaries of the results for G(n,p), Bollobas [6], Pittel [14]. For example, it was

proven in [14] that, for every set A of graphs with M edges,

P(G(n,M)eA)=o(l)     if     P(G(n,p) <E A) = o[(qM)-ll2\,

(p(l) = M) and qM -> oo.
In [9], a particular attention was paid to a case when M = an, where a is a fixed

constant.  It was discovered that the asymptotic structure of the graph G(n, M)
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strongly depends on the value of a. Namely, for a < 1/2, a.s. all the vertices

belong to components which are trees, except a bounded, in probability, number of

vertices which belong to unicyclic components; furthermore the size of the largest

component is relatively close to Alogn, A = A(a). If a > 1/2, then a.s. G(n,M)

has a unique giant component whose size depends linearly on n. As for the rest of

the graph, it still consists of many tree-components with the largest one having size

fa A log n, and it may also have a bounded, in probability, number of vertices which

comprise unicyclic components, Bollobas [6]. Furthermore, Erdos and Renyi proved

in [9] that, at a critical point a = 1/2, the largest tree-component of G(n, M) has

a.s. a size of order n2/3, which is sandwiched between logn and n, the orders of

sizes of the largest components resp. for a < 1/2 and a > 1/2. Also, according to

Bollobas [6], the largest component is a.s. at most of order (logn)1/2?!2/3, thus not

much larger than the largest tree-component.

Now, the average number of edges in the random graph G(n,p) grows as an

if p ~ c/n, c — 2a. So, it should not come as a surprise that the above cited

statements have their analogues for the graph G(n,p), p = c/n, with the critical

value c = 1.

Our goal in this paper is to obtain the limiting distributions of several character-

istics of the graph G(n,p), p = c/n, in a subcritical range, that is for c < 1. Some

of our statements cover the supercritical range c > 1 as well (Lemmas 2, 5, (2.26),

(2.27)).
Specifically, we study (1) Wn, the length of the longest cycle, (by convention,

Wn = 0 if there are no cycles); (2) £Pn, the length of the longest path; (3) %

and l^n, respectively, the total number of vertices in the unicyclic components and

the total number of vertices forming the cycles in these components; (4) 3)n, the

number of all distinct component sizes; and (5) S^nv, the size of the i/th largest

component (v —► oo).

Note. Since c < 1, a.s. every component of G(n,p) is either a tree or unicyclic, so

that a.s. %/n is the total number of vertices which belong to the nontree components,

and ^n is the total length of all the cycles.

To formulate our results, we need a function t(x) which is the exponential gen-

erating function of a sequence {£(«:): k > 1}, where £(rc) is the total number of

rooted trees on k labelled vertices, that is t(x) = J2K>i xKt(rz)/rzl. It is well known

that t(/c) = ack_1 (Cayley), that the series converges for |a;| < e_1 and, for those

x's, t(x) is a solution of a transcendental equation

(1.1) r = xeT,

(see Moon [12], who attributes this result to Dziobek (1917), Polya (1937) and Bol

(1938)). Another related function used below is Th(x) = X)K>i xKt(n, H)/k\, where

t(K, h) is the total number of rooted trees with height < h. (The height of a rooted

tree is defined as the length of the longest path in the tree which begins at the

root.) Using a recurrence relation

rh+1(x) = xexp[Th(x)},    t0(x)=x,        h>0,

due to Riordan [18], we will prove that for every x e (0, e-1), there exists 7 = 7(2;)

such that

(1.2) Th(x)=r(x)-1Th(x)-[12T2h(x)/2(l-T(x))}(l + o(l)),        h^oo.
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So, let c < 1. We begin with

THEOREM 1.   For every fixed integer I > 2,

(a)

(1.3) P(^n<0-(l-c)1/2exp(]S^J,        n-oo,

whence, putting I = 2,

(b)

(1.4) P(G(n,p) does not have a cycle) —► (1 ■*- c)1/2 exp(c/2 + c2/4).

Note. The relation (1.4) was stated in [9] for the random graph G(n,M); how-

ever, a brief argument intended to prove it contained a gap which is very difficult,

in our opinion, to close. Our proof uses a different approach.

Next

THEOREM 2.   Given an integer d, define y by

d= (logn + y)/log(l/c).

If d —► oo, as n —► oo, in such a way that y is bounded, then

P(^n <d)- exp(-fc~y) -* 0;

here

(3 = f(l-c)/2c\    7 = 7(ce-c),

see (1.2).

Note. Thus, somewhat imprecisely,

&>n = {logn + &n)/\og{l/c),

where (£n is double exponentially distributed in the limit.

We should also notice that, for c > 1, the behavior of ^ and &n is strikingly

different: a.s. both of them are of magnitude n (Ajtai, Komlos, Szemeredi [1],

de la Vega [21], Bollobas [4], Bollobas, Fenner, Frieze [5]). On the other hand,

according to Bollobas [6, Chapter X], the diameter of the giant component of

G(n,p), p = c/n, c > 1, is a.s. relatively close to logcn provided that c is large

enough.

Turn now to the terms S?nv, v> 1, of the component-size order sequence. By a

theorem of Erdos and Renyi [9] (see also Bollobas [6, Chapter 6]), for every fixed

v > 1,

(1.5) ^I/ = Q-1[logn-§loglogn]+Op(l),

where a — c - 1 — logc, and Ov(l) stands for a random variable bounded in

probability as n —♦ oo.

Our next theorem characterizes the asymptotic behavior of the "middle" terms

S?nv, i.e., of those with (/-too.
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THEOREM 3.   Introduce a sequence

8nv = a-1 log(n<5/i/log5/2 n),        v > 1,

so that

Snu = Snl -a_1 log I/, V > 1,

w/iere

«5 = (27r)-1/2c-1(l-e-")-1a5/2.

If v —+ oo, v = o(n/log5'   n) (n —> oo), Men a.s. J^„ equals either (snu) or

(snu) — 1 ((x) denotes an integer closest to x).

Note. Comparing (1.5) and the last theorem, we can see that in,both cases

A<5^„ = 5?ni/ — sn„ is bounded in probability. A difference is that, for v fixed,

ASPnv has a double exponential distribution in the limit [9], while for v —► oo

the probable range of AS?nv consists of only two numbers. In fact, the argument

we use to prove this result yields also if, in addition, the fractional part of snv is

bounded away from both 0 and 1 then a.s. S?nv equals \snv\, the integer part of

Snu-   ((Snu) ~ 1 < [snu] < (snu)-)

Besides the individual terms of the sequence {S?ni/,v > 1}, one may also be

interested in its properties as a whole. One such a characteristic is 3ln, the number

of all distinct component sizes. The problem of determining the asymptotic be-

havior of 3ln is a particular instance of a more general problem for partition-type

combinatorial schemes posed by Wilf [22]. (His paper contains solutions of the

corresponding problems for cycles of a random permutation, and summands of a

random partition of a large integer.)

To formulate our result, it is necessary to introduce 3>n and 3!'n\ which are

respectively the number of all distinct sizes of tree-components and unicyclic com-

ponents. (Since c < 1, 3n — 3S'n + 3S'n' a.s. when n —► oo.) Let us also agree to

write Xn » Yn (Xn =*■ Y), n —► oo, if Xn,Yn € RK (Y € RK) are the random

vectors such that

E[exp(ivTXn)} - E[exp(ivTYn)} -► 0,    W e RK,

(E[exp(ivT Xn)} - E[exp(ivTY)}),

when n-» oo.   (The second relation holds, of course, iff Xn converges to Y in

distribution.)

THEOREM 4. Introduce Dn and dn, respectively the integer part and the frac-

tional part of o_1 log[a5/2n/c(27r)1/2 log5/2 n].  When n-nx>,

(i.6) (2>n-ain,aK)K{K,%Z);
here

oo oo

j=—oo j=3

e'nj G {0,1} for j < -1, e'nj € {-1,0} for j > 0, e'^ € {0,1}, j > 3, and all the

e 's are independent. More precisely,

P(e'nj = 0) = expHs-W'+fl],        j < -1,

(1.7) P(e'n] = -1) = exp[-ea(d"+»],        j > 0,

P(enj = 0) = exp[-u(j)(ce-y/jl],        j > 3,
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where u(j) is the total number of connected unicyclic graphs on j labelled vertices.

(According to Katz [11] and Renyi [16],

(1.8) u(j) = \J£(j)K?-«-\    u(j) ~ (tt/S)1/2^-1/2,        (i-oo).)

K = 3

Note. Since both W^ and ^" are bounded in probability, it follows from this

theorem that

3n = Dn + Op(l),        rwoo,

3% = 0P(1),        n - oo.

Clearly, the second relation should be expected since even the total number of all

unicyclic components is Ov(l). Far more interesting is the first relation; indeed, in

view of (1.5), it means that the total number of integers from 1 to S?n\ (the size of

the largest component), which are not component sizes, is bounded in probability.

(Another instance of a partition-type scheme with this property is the random

partition of an n-element set. Sachkov [19] proved that the size of the largest block

grows, in probability, as e log n when n —► oo. Quite recently, answering a question

posed by Wilf [22], Odlyzko and Richmond [13] proved that in probability, and

on average, the total number of distinct block sizes in the random partition is

asymptotic to elogn, too.)

It remains to consider % and % which are, as we remember, respectively the

total size of all unicyclic components and the total length of cycles in them.

THEOREM 5.  % =► %, Tn => T, where

E(zV) = f(c)/f[T(zce-c)},        \z\ < ea,

E(zv) = f(c)/f(zc),        \z\<c~\

and

(1.9) f(x) = (l-x)1/2exp(x/2 + x2/4),        \x\ < 1.
def

Moreover,

(1.10) E(K) - E(VK),    E(^nK) - E(^),        k > 1 (n - oo);

so, in particular,

E(&n) -» c2/2(l - c)2,    var(%) - c3(3 - c)/2(l - c)4        (n - oo),

£TO — c3/2(l - c),       var(^)^c3(3-c-c3)/2(l-c)2        (n — oo).

The formula for linin-.oo Ei^n) was obtained in [9]; one can also find in [9 and

6] the infinite series-type formulae for lim£'(^'n) and limvar(^n).

A final note. Presently, we are studying the limiting distributions for the critical

case when c = 1, or c approaches 1 as n —> oo. Among the results is the following:

P(G(n, 1/n) has a component which is neither a tree nor unicyclic)

— 1 - (2/3)1/2 = 0.183...

as n —* oo. (It is worth noticing that the limiting values of the corresponding

probability for c < 1 and c > 1 are 0 and 1 respectively.) It shows that G(n, 1/n)

is planar with probability bounded away from 0 as n —> oo, which was conjectured

by Erd8s and Renyi in [9] in an equivalent case of the graph G(n, M), M ~ n/2.
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2. Proofs.

PROOF OF THEOREM 1. Denote the number of all unicyclic connected graphs

on k (labelled) vertices, whose cycle has length more than /, by u(k,1) (k> l> 2).

Clearly, u(k, 2) = u(k) which is the number of all unicyclic connected graphs on k

vertices. It is known (Wright [23]) that, for \x\ < e-1,

(2-d       «w d=f £ ^ = iog[i - r(x)r'2 - iM - i!M;
K>3

here t(x) is the exponential generating function of the sequence {t(rz): k > 1},

t(rt) = kk_1 being the number of all rooted trees on k vertices. Extending Wright's

argument, we prove

LEMMA 1.   For \x\ < e_1,

s-^xku(k,1)
ui(x) =  >    -\—-

v  ' def *-"       k\
K>1

= log[l-r(x)}^2-±T-M.

3=1       J

PROOF. First of all,

K

«(*,/) =   J2 2"10-l)!F(K,i),
y=i+i

where F(k,j) is the total number of forests of j rooted trees on k vertices, because

2~l(j — 1)\ is the number of ways for the roots of j trees to form an unoriented

cycle. Second,

F(K,j) = U\r^Klf[t-^-,
S=l    Ks'

where the sum is taken over j-tuples (aci, ...,re,-) such that «i > 1,...,«j > 1 and

ki + ■ ■ ■ + Kj = k. Subsequently,

F(rz,j) = (K[/j\)coeSx. [t>{x)],

or

«(«»*)        V-  „    ~    lTJ(x)}
=   £ coeff,.—

3=1+1 J

a       v^ T>{X)= coeffx. 2^ -57-.

and

i>J     J        j>i     J        j=i     J

= log[l-r(x)]-1/2-^^.    D

j=i      J



A RANDOM GRAPH WITH A SUBCRITICAL NUMBER OF EDGES 57

Next

LEMMA 2. Let c ^ 1; introduce the random variable Xni which is the total

number of unicyclic components of the graph G(n,p), p — c/n, whose cycle contains

more than I vertices. Xni converges in distribution, and in terms of all moments,

to a Poisson distributed random variable with parameter A (in short, Xni => P(A)),

where

A = iog(i-tr1/2-£g,

3=1    J

and f is the only root of the equation re~r = ce~c subject to restriction t < 1. In

particular,

PCK <m) = P(Xn = 0) - e~x = (1 - f)-1/2 exp I £ g    .

Theorem 1 will follow at once since f = c for c < 1.

PROOF OF LEMMA 2. Since (Xnl)r = Xni(Xnl - 1) • • • (Xnl - r + 1) is the
total number of ways to select r components in question with order and without

replacement, we have

E[(Xnl)r] = W.   " . )f[u(ia,l)pi-q^-i-+^-i-^

(2.2) V«i-W.=1
.      Y[     0-w/2        (fl=l-p).

l<s#s'<r

Here

(• ... ■ ) = n!/ ] 1ls!'      ir+1 = n ~*' J' = J'i + • ■ • + *v.

and the sum is taken over all tuples (i\,..., ir) such that is > I (1 < s < r). Since

similar relations will appear again later, let us explain (2.2) in detail. First,

(. ".)\ll   •trJ

is the number of ways to select (with order) r disjoint sets of vertices having cardi-

nalities ii,... ,ir, and ir+i is the number of the remaining vertices. Second,

r

s=l

is the probability that each of the first r subsets of vertices induces a unicyclic

connected subgraph of G(n,p) whose cycle is of length > /. Third,

r

TTg(n-t,)t. .        TT        g-ui,'/2 - g«.v/2

s=l l<s#s'<r l<s^s'<r + l

is the probability that all (r + 1) induced subgraphs are isolated.

If we show that E[(Xni)r] -► Ar, r > 1, it will follow that Xnl S P(X), since Ar

is the rth factorial moment of P(\). The argument we suggest uses some ideas of
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the proof of a theorem in [6, Chapter V, §2]. Break up the sum in (2.2) into the

sums E' and E" taken over r-tuples (i\,...,ir) such that maxi<s<ris < n\ and

maxi<s<ris > rii respectively; here ni = [n1/3]. Consider first £'. Denoting its

common term by C(ii,... ,ir), we have

(2.3) C(n,...,ir)=   f[(ce-cy°^±   (l + 0(n-1/*)),
.3=1 V        .

because

(n.". J={n)i/ nis!=(ni/ n *A v+°(j'2/")),

9(i|)-<.+(n-t.)i, = (1 _ c/n)m8(1 + Qtfjn)) = e~c(l + Otf/n)),

and

g-W/2 = 1 + 0(t-2/n).

l<s#s'<r

Hence, setting x = ce_c,

(2.4) S'=[E^]'(i + o(„-V3„

^[u,(x)]r = Ar       (n->oo).

It remains to prove that E" —> 0 as n —► oo. According to (1.8),

(2.5) u(j,l)<u(j) = 0(j>)       0'-°°)-

Introduce

(2.6) E"=     £     C(i!,...,ir),
maxi,>ni

where C(-) is defined like C(-) except that each factor u(ia, I) is replaced by i1/. By

(2.3), it suffices to prove that E" —► 0 when n —► oo.

To this end, notice that if maxis = n% then (cf. (2.3))

C(zi,...,ir)=(flX^f-)(l + 0(n-^))
(2.7) ^s=1     8'    '

= 0[(xnin^1/n1!)l^:i»=ni>1]

<bpni,        p = ece~c, b>0.

Here p < 1 since c ^ 1. Furthermore, for a fixed v € (1,... ,r),

C(ii,..., iv + 1,..., ir)/C(ii ,...,iv,...,ir)

,2 8,        = \(n ~ i)l(iu + l)][(iu + l)l"+1 Allb?"-1"-2]    II *~ *'

= (1 + l/tuY"p(n - i)qn~1-2

< {ep(n-i)exp[-p(n-i)]}(l-c/n)_2 < (1 - c/n)~2 < (l-2c/n)_1.
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Combining (2.7) and (2.8) we get: if maxi<s<ri's > ni then

c(n,...,ir)<bp^ n (i--j
s: ia>ni

sv-n(i-?)
s=l   x

^bpVflU-^)   \        Pi€{p,l).
8=1   V "   '

Hence,

(2.9)    E"<bPT e n^-D^-w^'-o
«1, ...,»r>OS=l   v '

(n —► oo).    D

Theorem 1 is proved.

TVote. While proving Lemma 2, we showed, in particular, that for c < 1

(2.10) E(Xn2) -»log(l - c)-1/2 - (c/2 + c2/4),

where Xn2 is the total number of all unicyclic components of G(n,p). On the other

hand, the expected number of all cycles in G(n,p) is clearly (cf. [9])

(2.1D   £sWL   2   J      &2k

= log(l-c)-1/2-(c/2 + c2/4)        (n->oo).

Combination of (2.10) and (2.11) provides an alternative proof of a known fact

(see Introduction) that, for c < 1, a.s. every component of G(n,p) is either a tree

or unicyclic. In fact, it shows also that the probability of this event is at least

1- const n~w, Viy < 1.

Next,

PROOF OF THEOREM 2. First (Lemmas 3, 4), we obtain some results regarding

asymptotic enumeration of trees with given height and diameter. Second (Lemma

5), we prove that the number of the tree-components of the graph G(n,p), c ^ 1,

whose diameter exceeds a certain value, is asymptotically Poisson distributed. In

case c < 1, it implies Theorem 2.

Let t°(K,h) (t(n,h)) denote the total number of rooted trees on re vertices of

height — h (< h). Let T°(re, d) (T(rz,d)) denote the total number of unrooted trees

on re vertices of diameter = d (> d). Introduce the exponential generating functions

Tn)(x),Th(x),T2(x) and Td(x) for these four sequences.

According to Riordan [18] (see also Renyi and Szekeres [17], Moon [12]),

(2.12) rh+1(x) =xexp[Th(x)],    t0(x) = x.

Riordan also proved in [18] that

(2 13) T2(x) = [rl(x)\2/2,     if d = 2/1 + 1,

= ^(x)-rh_1(x)r°_1(x),     ifd=2h.
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The strikingly beautiful relation (2.12) follows from an observation that every

rooted tree of height < h + 1 is obtained by taking several rooted trees of height

< h and joining their roots to a new vertex. As for (2.13), its derivation is based

on the following. For d = 2h +1, there exists an obvious one-to-one correspondence

between <9^°, the set of all trees of diameter = d, and the set of all unordered pairs

of rooted trees each of height = h. For d = 2h, there is a one-to-one correspondence

between ^° and the set of all rooted trees of height = h such that there are at

least two edges adjacent to the root which lead to vertices located at distance h

from the root.

There does not seem to exist a reasonably explicit formula for rn(x). However,

in case x € (0,e_1), it is possible to derive a sharp asymptotic formula for r/j(x)

(h —► oo), expressed—in the main—through powers of t(x), the exponential gener-

ating function of all rooted trees. (In [17], a much more delicate analysis is done in

case x —► e_1 as h —► oo, in order to obtain the limiting distribution of the height

of the random tree.)

LEMMA 3.   For every x € (0, e_1), there exists 7 = 7(x) > 0 such that

(2.14)      rh(x)=r(x)-7r'l(x)-[72r2''(x)/2(l-r(x))][l + 0(l)],        h -»00.

Note. A cruder formula

Th(x)=T(x)-1Tk(x)[l + 0(l)]

follows directly from a general result due to Koenigs and Kneser (see Szekeres [20]).

PROOF OF  LEMMA 3.   Set rh = t - /„, h > 0; clearly f0 — t - x e (0,r).

According to (1.1), (2.12),

(2 15] fh+i = r - xexp(r - fh)=T- xeTexp(-fh)

( '    ' =r[l-exp(-A)],        h>0,

so, in particular, fn e (0, r) for all h > 0. Subsequently,

(h/rh)[l - exp(-fh)}/fh < fh+i/rh+1 < fh/rh;

thus, by the right inequality, there exists 7 = 7(x) = lim/,-^ fh/rh and, by the

left inequality, 7 > 0 because

[1 - exp(-/fc)]//„ = 1 + 0(fh) = 1 + 0(rh)

and r < 1 for x < e_1.

Set fh = ^rh + gh; by definition of 7, y/, = o(rh) as h —<■ 00. Using (2.15) again

(bootstrapping!), after simple manipulations we get: for every e > 0 there exists

h(e) such that, for h > h(e),

T9h ~ (72r2h+1/2)(l + e)< 9h+i < rgh - (72r2h+1/2)(l - e).

Therefore, by induction, for hi > h> h(e),

9h/rh - [l2rh/2(l - r)](l - rh'~h)(l + s) < gh,/rh'

<9h/rh-[l2rh/2(l-T)}(l-Th'-h)(l-e).

Since 9h'/Th' —* 0 as h! —* 00, the last double inequality implies that, for every

e>0,

(2.16) yh = [72r2V2(l-r)](l + 0(£)), h -> 00.
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This finishes the proof, because

Th(x)=r(x)-7Th(x)-gh(x).    0

Using the estimate (2.14), we can now prove

LEMMA 4.   For every x € (0, e~l),

(2.17) Td(x) = [72rd-3(x)(l-r(x))/2](l + 0(l)),        d-oo.

PROOF, (i) According to (2.13), for re > h,

2/C+l K       , \2 K—1

E  T? = E {n   2       + EKnfi -n)-.nh-n-i)1
j=2/i+l i = fc i=/i

K   r2_   - r2

= tk - t/j + E-o-+ Tk^Tk ~ Tk~^

l=h

= rK-Th + (rl_x + r2)/2 - TKTK-i\

subsequently,

(2.18) T2fe+1 = lim     E   T° = r-Th + Th-\~T -
K—>00       *—' J ^

j=2h+l

Likewise,

(2.19) T2h = t - rh_i - (t^_! + r2)/2 + rft_1rh_2.

(ii) The relation (2.17) follows—after a straightforward computation—from Lemma

3 and (2.18), (2.19).    □

Now, back to the random graph G(n,p).

LEMMA 5. Let c ^ 1. Given an integer d, denote the total number of the tree

components of G(n,p) of diameter > d byYn. Define a number y by

d= (logn + y)/log(l/f),

where fe~T = ce~c and f < 1.   If d —>■ oo, when n —► oo, in such a way that y is

bounded, then Yn ss P(An), where

\n = tf(l-f)/2cf3]e-y,        7 = 7(ce-c).

Let us demonstrate how Theorem 2 follows from this lemma. If c < 1, then

the total number of vertices which belong to the nontree components of G(n,p)

is bounded in probability. Recalling that £Pn is the length of the longest path in

G(n,p), we obtain then

P(&n >d) = P(&n >d,Yn>0)+ P(&n > d,Yn = 0)

= P(rn>0) + o(l)

= 1 - exp(-A„) + o(l),        An = [72(1 - c)/2c4]e-y

(f — c for c < 1).
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PROOF OF LEMMA 5. Similarly to (2.2),

E[(Yn)r] = E(■ n ■)nn^y-y^-^-1^"-^
(2.20) Vl' "•'Wa=i

n a'ui"'^
l<s^s'<r

where is > d, 1 < s < r. (A tree with i vertices has (i — 1) edges.) Let again

E', E" be the partial sums of the sum in (2.20) over the regions maxs ia < n\ and

maxs is > n\ respectively. Then (cf. (2.4)) we have

(221) E'=bE   ̂ 1'\l + 0(n-^)),        x = ce-.
.     i=d+l

Using Lemma 4, an obvious estimate T(i,d) < t(i) < ix, and also that ece~c < 1,

we write

n   ^   xlT(i,d)      /n\ „, , .      __ /    v^ x,i,\

i=d+l \    i>n\ /

= [(n/c)72fd-3(l - f)/2](l + o(l)) + o(l) = An + 0(1),

whence

E' = A;(l + o(l))).

As for E", comparing (2.2) and (2.20) yields an estimate E" = 0(nrE"), where E"

is defined by (2.6). Therefore, see (2.9),

E" = 0(n2rp?l)=o(l),        n^oo.

Thus,

£;[(F„)r] = E' + E" = A;(l + 0(l)),        r>l,

which implies the statement.    □

Theorem 2 is proven.

Now, contrary to the listing of the theorem in Introduction, we proceed with

the proof of Theorem 3, since—by methods used—it is closely related to the proofs

above.

Let Uns and Vna denote the total number of unicyclic components of order = s,

and the total number of unicyclic components whose cycle is of length = s, s > 3.

Obviously,
n n

% = EsC/«- ^ = EsF—
s=3 s=3

Erdos and Renyi [9] proved that, for c € (0, oo),

E((Uns)K)^pKs,        re>l, s>3,

where

ps = (ce~c)su(s)/s\,        s > 3,
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which implies that Una =>• P(ps)- (To be precise, they dealt with the random graph

G(n,M).) By computing the joint factorial moments of Uns, s > 3, Bollobas [6]

proved that actually

(Un3, ...,UnK)=> (P(p3),..., P(pK)),        re > 3,

where the Poisson variables are independent. By a natural extension of the argu-

ment in the proof of Lemma 2, it is possible to estimate the joint factorial moments

of Vna, s > 3, as well. The result is that, for c ^ 1,

(Vn3, ...,VnK)=> (P(«*), ■ • •,PK)),        k > 3,

where

„ = „;(.«-) = £ "*">'/ "••",    «>3,
r>s

and u°(r, s) is the total number of all connected unicyclic graphs with a cycle of

length = s. Let us notice at once that, see Lemma 1,

us = u°a(ce~c) = ua-i(ce~c) - ua(ce~c) = rs(ce~c)/2s,        s > 3,

(cf. [9, Theorem 3a; 6, Chapter IV, Corollary 9]). Therefore,

K K

def *—' def *—'
s=3 3=3

where the random variables ^(re) and ^(re) are such that

(2.22) E(z^) = exp \± (**"'>'»(«> - £ ^^ j ,
.3=3 ' 3 = 3

(2.23) E(z^) = zxp\±^^-±^\.
1.3=3 s=3 J

Suppose that c / 1. Then ce_c < c-1, and it follows from (2.1) and (2.22), (2.23)

that, for |z| < (ece~c)~1,

(2.24) lim E(z*W) = f(f)/f[r(zce-c)},

(2.25) jim J<;(z^«>) = /(f)//(*f),        f = r(ce-c),

see (1.9) for /(•).
We want to show that, for |z| = 1,

(2.26) lim E{z*~) = /(f)//[r(zce-c)] = E(z^),
n—>oo def

(2-27) lim E(z*>) = f(f)/f(zf) = E(zr).
n—>oo def

Consider (2.27), for instance. Since Ei^Q = 0(1), see (2.32) in the sequel,

(2.28) P(^(re)/^)<P(%>re)<£(%)/re = 0(re-1),        n > 1.

Further,

(2 29)       |jE(2%) " WWC*)! < \E(z^ - z%«)| + \E{JW) - E(zT^)\

+ \E(z^)-f(f)/f(zf)\,
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where, by (2.28),

\E(z^ - «*M)| < 2P(^(re) *%) = 0(k-1).

So, given e > 0, we can choose re so large that the sum of the first and the last

terms on the right side of (2.29) is less than e. Letting n —» oo, we get then

lim sup \E{zv«) - f(f)/f(zf) \<s,    Ve > 0.
n

So (2.27) holds true.

In view of (2.26) and (2.27), we conclude that % => %, ^ => 'V.

Finally, to show that actually % 3- %, ^ => T^, we need only to prove

(2.30) E(K) = 0(1),    E(^) = 0(1),        n -+ oo, re > 1,

and it suffices to consider the moments of %, because ^4 > ?£.

First of all,

(2.31) E((%n)K) = (n)KPnK,

where PnK is the probability that some fixed re vertices, say 1,2,..., re, belong to the

unicyclic components of G(n,p). How to compute PnK? For a given partition 31

of {1,..., re} into the disjoint subsets R\,... ,Ri, let Pn(3l) denote the probability

that the elements of each Rj, 1 < j < I, belong to the same unicyclic component;

then

pnK = ^2pn(m-
31

As for Pn(3l), denoting |i?s| by aa, 1 < s < r, we have

pn{&)= e (n~K)fiu(ia)p^q^-^n-i^ n «~w/a.

^s — Js T ^s-

So, arguing as in the proof of Lemma 2, we get

Pn(&) = (1 + 0(n-^)) f[ E (^) u(ia)p*°e-^
s=lj,>0 Vj8-y

=(1+0(„-./s))n-n[EterM)'.
3=1    i>a,

Therefore, by (2.31),

(2.32)     ^£((%u=En[EferM) <0O.
31  3=1  \i>a,    v SJ

This, of course, implies (2.30), since

where a(K,j) are the Stirling numbers of the second kind, Berge [3].    □
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Theorem 3 follows now from (2.26), (2.27) and (2.30), because f = c for c < 1.

Note. The relations (2.26), (2.27) could have also been obtained by algebraic

arguments directly from (2.32), and a similar formula for \\mE((cPn)K). Would the

reader try to do it? We have chosen the present derivation as far more transparent

probabilistically.

To prove the remaining theorems, we need a more powerful tool.

For two given sets of nonnegative integers j = {jr: 1 < r < n} and re =

{ks : 3 < s < n} satisfying

(2.33) E r3r + E SKs = n'
r 3

introduce the event An(j, re) on which the graph G(n,p) has jr tree-components of

size r (1 < r < n), and res unicyclic components of size s (3 < s < n).  (On this

event, G(n,p) has obviously no components besides those listed above.) Denoting

the probability of An(j, re) by Pn(j, re), we have

(2-34)

Pn(j,K) = n\Y[ [pr-1gGH'-1>t,(r)/r!]* IjA U \psqPu(s)/s\\  ' Ls\

■qn2'2Y[(q-r2/2rY[^/2)K^

r s

where t»(r) = rr~2 is the total number of unrooted trees on r vertices, and u(s) is

the total number of connected unicyclic graphs on s vertices. Indeed,

n\/Y[(r\)j'jr\-Y[(s\)K°rza\
r s

is the total number of ways to partition the set of n vertices into the blocks of two

types, so that there are jr first-type blocks of size r and res second-type blocks of

size s(l<r<n, 3<s<n). Further, the product of all the remaining factors

in (2.34) is the probability that each of the correspondent subgraphs of G(n,p)

is either a tree-component, if it is induced by a first-type block, or a unicyclic

component otherwise. (Cf. the derivativon of (2.2).) Combining factors and using

(2.23), we can simplify (2.34) to

(2.35) Pn(j,re) =un]l[(q/p)U(r)/r\y'/jr\]l[u(a)/8l}K'/Kal,
r s

where

(2.36) un = n\pnqn^n-3)/2.

Note. Not too surprisingly perhaps, there is a strong semblance between (2.35)

and the counting formulae in the graph and partition-type problems, Berge [3],

Harary and Palmer [10].

Basically, two reasons make (2.35) instrumental in the arguments below. First,

for c < 1—which is assumed in the rest of the paper—the components of G(n, p)

are either trees or unicyclic with probability > 1 — constn~w (Vw < 1), whence

(2.37) EP"(^»-1 = °(n_U;)'    Vw<L
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Second, we know the exponential generating functions u(x) of {u(s): s > 3}, see

(2.1), and r,(x) of {U(r): r > 1} (Moon [12]):

(2.38) r,(x)=r(x)-7-2(x)/2,        |z| < e_1.

After these preparations, we are ready for

Proof of Theorem 3.

LEMMA 6. Suppose that c < 1. For a given integer m, introduce the random

variable Znm which is the total number of the tree-components of order > m. Denote

E(Znm) by\nm. Ifm —► oo, Anm —► oo whenn —► oo, then (Znm-Xnm)/Xnm => Z,

where Z is normal with 0 mean and unit variance.

Notes. (1) Let Z^m denote the total number of the tree components of or-

der = m. Erdos and Renyi [9] proved, for c/ 1, that Znm & P(A„m), Z^m ss

P(Xnm) (Xnm = E(Z®m)), provided that m —► oo so fast that Anm—and automat-

ically A°m—remains bounded. (This happens iff

m = a-1 (logn - |loglogn)+0(1),        n —» oo.

Therefore, under conditions of Lemma 6,

(2.39) m <af1 log n

for large enough n.)

(2) From a general theorem due to Barbour [2], it follows that, in terms of the

total variation, the distribution of Z^m is close to that of P(Xnm) provided only that

m —> oo. In light of these results, we see that our assertion could be anticipated:

after all, P(A) is asymptotically normal, with mean and variance both equal A when

A —► oo. However, the argument we suggest below works only for c < 1, and we

can only conjecture that the statement remains true for c > 1 as well.
1 /2

PROOF OF LEMMA 6. Let z — exp(iv/Xnm), v e (-00,00). Since Znm =

Ylr=mJr on tne event An(j,K,), we have (see (2.35) and (2.37))
n n

(2-40) ^t\ 3=1

= o(l)+bJnRnm(z),

where 8(r) = 0 (S(r) = 1) for r < m (r > m). Let |x| < e_1; using (2.33) we are

led to

{"!l £ *•.*,„,(*) -1+e e n IWp)zl'<'r,"-(r>/r"" ■ n ^^
n>l n>l ],k r=l Jr' s=l s'

-»♦      e     n^-n^
l<l0i+«i) + 2(j2 + K2)-<oor>l   JT        3>1

= JT exp (ff/p)^(r)«.(r)| jj exp \x^\

r>l •- '        J s>l    ^   '  J

= exp [h(x, z)\.
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By Cauchy integral formula, it follows from (2.41) that, for a positively oriented

circle of radius p < e~1 in the x-plane,

Rnm(z) = (27TI)-1   f X~{n+l) exp[h(x, z))dx
(2.42) Jc

= (2ir)'1 / exp\H(x,z)](ix)~1dx;
Jc

here, (see (2.38) and (2.41)),

(2.43)

H(x,z) = (-) n(x) + -(z -1)Y xrU(r)/r\ + u(x) - nlogx

VP/ P rTrn

- (j) h«) - ̂ l+(j) ('-^e^+•(«)-•>*«.
\f /   I J \y / r>m

and log x is the principal branch of the logarithmic function.

Let us use the saddle-point method to estimate the contour integral in (2.42).

To this purpose, set p = pn = \xn\ where xn is a root of the equation Hx(x, z) = 0

in the domain |x| < e_1. According to (1.1), (2.1),

rx = eT/(l-r),    ux=r2eT/2(l-T)2,

so explicitly

Hx(x,z) = c_1(n — c)eT — n/x

(2.44) _i, w       „s v^ x*-1^-1 tV
1       J +c  1(n-C)^-l)E^T— + 2(T3^ = 0-

r>m *■ '

Since z — 1 —>0, n-^oo and I^r>mxr_1rr_1/r! is bounded—uniformly over

m > 1—in every closed disk |x| < p (p < e_1), it is natural to look first for a root

of an approximate equation

(2.45) e-VM -1"1 = 0       (|x| < e"1).

But this equation does have a root x = ce~c because c < 1! (Recall that r(ce~c) = c

for c < 1.) Further,

(2.46) (rVW-x-'fU/Oi

so, with the help of the implicit function theorem, we get: there exists a root xn of

(2.44) such that

xn — x — o(l),        n-»oo.

Since pn = |xn| < e_1 and pn is bounded away from e_1, we can obtain from (2.44)

c-V(*») _ x-i = 0(X-nl2p^mm-l/m\ + n-1),

or, by (2.46),

(2-47) xn - x = 0(X-^2p^mm-l/m\ + n"1).

Some easy bootstrapping transforms (2.47) into

(2.48) xn - x = 0(X-^2xmmm-1/m\ + n"1).



68 B. PITTEL

To simplify the last estimate further, notice that

xnm = E (ny-y-yiH;-iHi(«-y).
j>i

So, acting as in the proof of Lemma 2, but with n\ = [n1/5], and introducing

(2.49) anm = c~ln E ^~,

we have

(2.50) Xnm = (1 + 0(n-3/5))anm = anm + o(ai£) = anm + o(A^),

because Anm —► oo, Anm < n. Also, by Stirling's formula,

/.       ,-w -1    v*       (ex)J
anm = (l+o(l))c  inE^ra

(2.51) iSm \
= (l + o(l))n(o-eQmm5/2)-1,

a = c-l-logc,    o- = (2tt)1/2c(1 - e~a),

(cf. [9]). A combination of (2.48)^(2.51) yields

(2.52) xn-x = 0(mXl/2/n) = 0(n"1/2e-Qm/2),

or, writing x„ = pnel6", 0n e (—7r,7r],

(2.53) \pn-x\,\6n\ = o(n-ll2e-aml2).

Getting back to (2.42), let us substitute x = pne%6', 0 € (—tt, 7t], and break the

contour integral into two integrals over the arcs Ci and C2, such that \6\ < n~5/12

and |0| > n~5/12 respectively.

(a) A direct computation based on (2.50)-(2.53) shows that

Hxx(x, z) = n/x2(l - c) + 0(n7/i2), |fl| < n-5/i2

So, for these 0's, by (2.44),

. H(x, z) = #(x„, z) + Hx(xn, z)(x - x„) + Hxx(x, z)(x - xn)2/2

= H(xn,z)-[n/(l-c)](0-en)2/2 + O(n-1/4),

where x = pnet$, \Q\ < n-5/12. Furthermore, by (2.45) and (2.52), we have

H(xn, z) = H(x, z) + Hx(x, z)(xn - x) + 0(n|xn - x|2)

= H(x,z) + 0(m2Xnm/n)=H(x,z)+o(e-am).

Likewise,

(2.56) H(pn,z)=H(x,z) + o(e-am),

which will be needed later. By (2.54) and (2.55),

[   = exp[#(x,z) + o(e-am)]
JCi

(2-57) ■/ exp[-n(^-^n)2/2(l-c)+0(n-1/4)]^
J|9|<n-Vi2

= exp[#(x,z)][27r(l-c)/n]1/2(l + o(l)),        n -> oo.
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(b) Turn now to |0| > n~5/12. We have, see (2.43) and (2.56),

Re[tf(x, z) - H(x, z)\ = Re[H(x, z) - H(pn, z)) + o(e-am)

= (q/p)Re[n(x) -n(pn)}

+ O j n\z - 1| E ^--\ei6r - !| ) + o(e~am).

Here

(g/p)Re[n(x) - n(pn)} < (q/p)pn(cos0 - l) < -Xm62 < -Xm1/&

and (\et8r - 1| < r|0|)

-i- - ii E *HFV - n = »i« - !i i*i E ̂ r"
r>m r>m

= O I n|z - 1| |c?| E ^j- ) = O(mA^|0|) = 0(„Va|tf|).

But
n0a/n1/2|*l = n1/29 > n1'12 -► oo        (|0| > n"5/12),

so

Re[H(x, z) - H(x, z)\ < -x2n1/6,        Xi > X2 > 0.

Subsequently,

(2.58) I /  \=0(\ exp[H(x, z)\ exp(-X2n1/6)|) = o( f   ),
\Jc2\ \ -ICi J

see (2.57).

In view of (2.40), (2.57) and (2.58), we arrive at

(2.59) E(zz™) = o(l) + wn(2Tr)-1[27r(l - c)/n}^2 exp[#(x, z)](l + o(l)).

In this relation, by (2.36) and Stirling's formula for n!,

(2.60) ujn = (27rn)1/2(c/e)nexp(-cn/2 + 3c/2-c2/4 + 0(n-1)).

Furthermore, by (2.1), (2.38),

(2.61) H(x, z) = (q/p)(c - c2/2) - nlog(ce-c) + log(l - c)~1/2 - c/2 -c2/4 + AH,

where (z = exp(iv/Xnm))

AH=(«)(z-l)Y,^
VP/ kn       H

(2.62) = (1 - c/n)anm[exp(™/A^) - 1]

= anm{iv/Xl/2 - v2/2Xnm + 0(X~V2)} + 0(anm/n)

= iv[Xn/2 + o(l))-v2/2 + o(l),

(see (2.49)-(2.51)).   Putting together the relations (2.59)-(2.62), we are able to

conclude, after numerous cancellations, that, for every v € (-00,00),

E[exp(ivZnm/Xn/2)} = o(l) + exp(ivXn£ - v2/2 + o(l)),        n - 00.



70 B. PITTEL

1 /2
This implies that (Znm — Xnm)/Anm converges in distribution to a standard normal

variable.    □

With the help of this lemma, we can now quickly finish the proof of Theorem 3.

So, suppose v —► oo, v = o(n/log5'2 n), and set

sni/ = o-1log(ntf/i/log6/an),        6 = a5/2a~\

(see (2.51) for o).  It is sufficient to show that J^, the order of the i/th. largest

free-component a.s. equals either (s„„), or (snv) - 1; recall that (snv) is an integer

closest tO Snu-

Introduce mi = (snu) + 1, so that A = n%i — sn„ > 1/2. Obviously, mi —► oo

and, by (2.50) and (2.51),

A„mi=(l + o(l))I/e-aA<i.e-a/3.

Therefore,

P(Snu >mi) = P(Znmi >»)< P(Znmi > ea/3A„mi) - 0,        n - oo,

since, by Lemma 6, Znmi/\nmi   -» 1 in probability.    Similarly, setting m2  =

(snu) - lj we have A = m2 - snu < -1/2; so

A„m2 = (l + o(l))^e-QA>^/3

and

P(Jnu > ma) = P(Znm, > v) > P(Znm2 > e~a/3Xnm2) - 1,        n ^ oo.

Theorem 3 is proven. Finally,

PROOF OF THEOREM 4. We confine ourselves to proving only that

(2.63) 3n-Dn& K,        n - oo,

since the proof of (1.6) is very much the same, albeit rather cumbersome notation-

ally.
According to (1.7), logE(z^n) is bounded as n —► oo for every z € (0, oo). Using

a limit theorem due to Curtiss [7], we can assert then that (2.63) will be proved if

we demonstrate that

(2.64) E(z^~Dn) - E(z^)-^ 0,        n —oo,

for every z S (a,a-1), where 0 < a < 1.   A little reflection shows that, more

generally, it would suffice to prove (2.64) for every z € (a, b), where 0 < a < b.

LEMMA 7. For a given m, let 3nm denote the total number of distinct orders

<m of the tree-components of the graph G(n,p), and let

^nm        / , anj'

j<m

see (1.7) for the precise definition of the independent binary variables e'    (—oo <

j < oo). Introduce ni = [n1/6].

For every z e (zi, 1), where z\ = max(e~a/2,1/2) and a = c—1 -logc, we have

(2.65) £(**»»i-D")-£?(**»)-»0,        n^oc.
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Before proving this lemma, let us show how it implies (2.64) for every z €

(z\/2,l). Define

Wn(z) = ^-D»,    Wnni(z) = z®»»r-D»,

and let /„ be the indicator of the event {Wn(z) ^ Wnni (z)}. Obviously, Wnni (z) >

Wn(z), and a.s. these random variables are equal, because (c < 1!) a.s. G(n,p) does

not have a component of order > ni. Since VF2(z) = Wn(z2), and z2 € (z\, 1), we

have

0 < E[Wnni (z) - Wn(z)\ < E[InWnni (z)}

< P"2(In = l)E^2[W2ni(z)} = o(E1/2[Wnni(z2)})

= o(Ell2[(z2f«\) + o(l) = o(l),        n -» oo.

(We have used the fact that ^' is bounded in probability.)

PROOF OF LEMMA 7. Fix an integer m > 0. On the event An(j, re), see (2.33),

&nm = E 9rUr);
r<m

here gT(l) = 0 for r > m, I > 0, and if r < m, then gr(l) = 0 for / = 0 and gr(l) = 1

for I > 0. So, using again (2.35), (2.37) and also the fact that z < 1, we obtain

similarly to (2.40) and (2.41):

(2.66) E(z3'^) = 0(n-3li)+wnSnm(z),

where

Snm(z) = coeSxn Y[ {1 + z[exp(/r(x)) - 1]} ■ exp    E fr'(x) + u(x)

^   '     ) r<m Lr'>m

= coeffxn Tm(x,z),

and

(2.68) fr(x) = (q/p)xTU(r)/r\,        r > 1,

(cf. Wilf [22, Equation 7]). Hence, for m = ni,

(2.69) £(**»».) = 0(n~3/4) + wnSn(z),    Sn(z) = (2m)-1 [ x^n+^T(x,z)dx;
Jc

here T(x,z) = Tni(x,z) and C is again a circle of radius p < e_1. Set x = pe%B,

0 € (-7r,7r] and, as in the proof of Lemma 6, break the integral in two integrals,

over Ci = {x = pe'9, \$\ < n~5/12} and over C2 = C\Cj.

(a) |0| < n-5/12. In this case, for every r < ni (= [n1/6]), and large enough n,

Re(xr) = pr cos(r0) > pT cos(nj • n~5/12) > pr/2,

so

(2.70) |exp(/r(x))| = exp(Re/r(x)) > exp[/r(p)/2] > 1.

Further, notice that

1 + z{efr  _1)= efr{l _ (1 _ ,)(1 _ g-/r)] (/?.  = /r(x))j
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where, by (2.70) and z > 1/2,

(2.71) |(l-z)(l-e-'')|<2(l-z) <i.

Subsequently, see (2.67)-(2.69),

(2.72) (2m)-1 [   x-{n+1)T(x,z)dx=(2ir)-1 f exp(K(x,z))(ix)~1dx,

where

(2.73) K(x,z) = (q/p)r»(x) + u(x) - nlogx + L(x,z),

(2.74) L(x, z)=J2 lo«[l - (l ~ *)(* - e_/r)l'
r<t>i

and there is used the principal branch of the logarithmic function, see (2.71).

Choose p a positive real root of Kx(x,z) — 0, that is (see (2.73)),

(2.75) Kx(x,z) = c~ (n — c)eT — n/x + ux + Lx(x,z) = 0.

To prove that (2.75) has a root p which is close to x = ce_c, consider x e (pi,p2),

where 0 < pi < x < p2 < e"1. By (2.68), (2.71) and (2.74), rather crudely

\lx(x, Z)\ < (i - z)(2z -1)-1 e *-'-/;    (/; =dJ^)
r<n,

(2-76) < (i - z)(2z - irvr1 E re~frfr
r<n\

< (1 - z)(2z - lJ-Vr1^"1^ = 0(n1/3)        (fe~f < e"1).

Also ux — 0(1); so using (2.46) again, we obtain: there exists a root p 6 (pi,p2)

such that

p = x + O^n1'3) = x + 0(n~2'3).

Furthermore, arguing as in (2.76) and applying (2.70), we can easily show that for

|0| <n"5/12,

\Lxx(x, z)\ = O ( E r2e-S>'2fr (fr = fr(p))

\r<nr J

= 0(n\)=0(n1l2),

or, uxx = 0(1),

Kxx(x,z) = n/x2(l - c) + 0(n7'12).

Since Kx(p,z) = 0, we have then (cf. (2.54)-(2.56)):

K(x, z) = K(p, z) - [n/(l - c)]02/2 + O^'1'4),

(2.77) K(p,z) = K(x, z) + [((TV - l/x)n + 0(n^3)](p - x) + O^1'4)

= K(x,z)+0(n-x'4).

Thus, see (2.67),

(2.78) (27TZ)-1 f   x-{n+1)T(x,z)dx=[2irn/(l-c)}-1/2exp(K(x,z))(l+o(l)).
JCt
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(b) $ > n~5/12. To estimate the integral over C2, we need the following inter-

esting inequality (cf. [15, Equation Al]): for z > 1/2,

(2.79) |1 + z(ey - 1)| < exp[(Re2/ - \y\)/2]\l + z(e^ - 1)].

(We will prove it later.) Now, for 0's in question

Re/i(x) - |/!(x)| = (q/p)p(cos9 - 1) < -Xn92 < -Xn1/6.

According to (2.67) and (2.68), we have then

\x~nT(x,z)\ < exp(-Xn1/6/2)p-"r(p,z) = exp[X(p,z) - Xn1/6/2]

<exp[X(x,z)-xn1/6/3],

see (2.77). Thus, by (2.78),

(2m)-1 [   x"(n+1)T(x,z)dx =0(exp[K(x,z)-xn1/6/3])-of /   V
JC2 V JCi  J

and we conclude that

r r  2™  "T1/2
(2.80) (2-Ki)'1 I  x~{n+1)T(x,z)dx=   --r exp(if(x,z))(l+o(l)).

Jc LU _ c).

(c) It remains to evaluate K(x, z). Since T(ce"c) = c, by (2.1), (2.38) and (2.73),

we get

(2 81) K{i'Z) = C_1(n " C)(C ~~ c2/2) + l0g(1 " C)_1/2

- (c/2 + c2/4) - nlog(ce-c) + L(x, z),

so turn now to L(x,z). Recalling that Dn = [sn], where

sn = a-1 log[a5/2n/c(27r)1/2 log5/2 n],        a = c - 1 - log c

(thence Dn = o(ni)), we can write

L(x,z)= E1°g[1-(1-2)(1-e_/r)]

r<n\

£-1 Zs /-—/ i        Z-^2
r<Dn      Dn<r<m

Here

Ej=-C)nlogz+ E logle-V' + fT-e-'-)],
r<D„

and, for every fixed j — Dn- r,

fr = c-\n - c)xrU(r)/r\ ~ c^n^Tr)"1/2^5/2^)'

~ c-1(27r)-1/2n£>-5/2exp[-a(Dn - j))

~ [c-1(27r)-1/2ns-5/2exp(-asn)]exp[Q(dn +j)]        (dn = s„ - [sn])

~exp[a(dn +j)].

So,

(2.82)    E1^£,«1°g2: + Elog[2:"1P^ + (1-P^)]+0(1)'        n-oo,

pnj = exp{-exp{a(dn+j)}}.
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Similarly,

(2-83) E2 = Elo8[P"J' + <l ~ P»i)] + °(!)'        n ->(X)-

Collecting together (2.80)-(2.83), we obtain

(2m)-1 f x~{n+1)T(x,z)dx
Jc

~ (27rn)_1/2(e/c)n exp[nc/2 - 3c/2 + c2/4]

• ZD" Yl \0g\pnj + 2(1 - Pnj)] J] log^"^ + (1 - Pnj)]-
j<0 j>0

Thus finally, by (2.60) and (2.69),

£?(*»--.)=zd» n iog[pnj-+*(i - Pni)]

Yl loglz-'pnj + (1 - p„,)](l + o(l)) + 0(n"3/4).

This leads to (2.64), since Dn ~ a-1 logn and z > e_a/2.

Let us prove the inequality (2.79). We have

1 + z(ey - 1) = ze"/2[e^2 + z'^l - z)e~yl2] = zey,2^Cjy1,

]>0

where

Cj = [i + z-\i - z)(-iyyvj\ > [i-^Hi-g)]/^ > 0)

since z > 1/2. Therefore,

|1 + z(ey - 1)| < zexp(Rej//2) EcjW

= exP[2^],exp(J|i)E^

= exp[(Rey - \y\)/2][l + z(e^ - 1)].   D

Theorem 4 is proved.

Note. Again, our proof relies heavily on the condition c < 1, but it seems

plausible that Theorem 4 holds true for c > 1 as well.
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