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KAZHDAN-LUSZTIG POLYNOMIALS
FOR HERMITIAN SYMMETRIC SPACES

BRIAN D. BOE

ABSTRACT. A nonrecursive scheme is presented to compute the Kazhdan-
Lusztig polynomials associated to a classical Hermitian symmetric space, ex-
tending a result of Lascoux-Schiitzenberger for grassmannians. The polynomi-
als for the exceptional Hermitian domains are also tabulated. All the Kazhdan-
Lusztig polynomials considered are shown to be monic.

1. Introduction. A great deal of work has recently been accomplished con-
cerning the representation theory of groups of Hermitian type. In particular, the
structure of the holomorphically induced representations having regular integral
infinitesimal character is now quite well understood [2, 6, 8]. Results in this con-
text have proven to be significantly more tractable than in more general situations.
Thus it is reasonable to expect that there should be a simple way to compute
Kazhdan-Lusztig (K-L) polynomials for holomorphically induced modules. And, in
fact, Lascoux-Schiitzenberger [11] did discover a nonrecursive scheme to compute
these polynomials for SU(p,q). The aim of the present paper is to extend their
techniques to include the other “interesting” classical Hermitian symmetric cases.
(The meaning of the word “interesting” will be made clear below.)

(It should be pointed out that Enright-Shelton [8] have already obtained one
generalization of the work of [11]. Namely, they obtained the analogous simple
recursion formulas satisfied by the K-L polynomials, as well as a description of each
coefficient in terms of “chains” of positive roots. However, our aim is to obtain the
K-L polynomials as generating functions of certain labelled trees, in keeping with
the spirit of [11].)

The Hermitian symmetric pairs fall into five infinite families and two exceptional
cases, as enumerated in (1.1) below. The structure of the categories for HS.2 and
HS.4 is very simple, and has been known for some time [3]. In particular, there is a
very simple description of the K-L polynomials, which we include for completeness.
Similarly, the socle filtrations for HS.6 and HS.7 have now been worked out [6],
from which it is straightforward to deduce the K-L polynomials. The results of
these computations are also included in the present paper. As mentioned earlier,
the polynomials for HS.1 were described in [11]. Thus there remains only the
problem of their description in the cases HS.3 and HS.5. It is to this end that the
main portion of the paper is devoted. In the final section, we apply our results to
show that the K-L polynomials considered are all monic. And, in the cases HS.3
and HS.5, we identify those K-L polynomials having the maximum possible degree.
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2. Preliminaries. Let G be one of the groups in (1.1). Associated to a Cartan
decomposition of the complexified Lie algebra, g = €+ s, we obtain, in the usual
way, a parabolic subalgebra p = €+s*. Let At and A} denote compatible systems
of positive roots for g and €, respectively. Let p be one-half the sum of the positive
roots for g, W the Weyl group, and W¥ = {w € W|w='A} C A*}. We introduce
the Bruhat order on W for which the identity element is maximal. Then if M,
denotes the Verma module with highest weight wp—p, we have My, C M, & y < w.
The subset WX inherits a Bruhat order from W; moreover, the “arrow relations”
generating the order on WX in the Hermitian symmetric cases are generated by
stmple root reflections (on the right). We write

HS.7 E-

(2.1) y <, w means y = ws; and [(y) = [(w) + 1; here s; = sq,.

Finally, let Py, (u) be the Kazhdan-Lusztig polynomials:

(2.2) Pyw(u) =Y u'dimExt!® =% (M, L), yweW,
>0

where L., is the unique irreducible quotient of M,,.
Our aim is to compute Py ., for y,w € WK 1t is known that these polynomials
compute the formal characters of generalized Verma modules {4, 7]. Precisely, if
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Vi denotes the generalized Verma module for the pair (g, p) having highest weight
wp — p (w € WK), then

(2.3) chLy,= Y (-1)}®-)P, ,(1)chV,.
y<w,yeEWK

3. The case HS.3. Throughout this section, we will assume G = Sp(n,R).
The first step is to identify concretely the set W which is well known (cf. [9]). The
“a/8-notation” introduced by Lascoux-Schiitzenberger for SU(p,q) can be adapted
to the present context, as follows. View the elements of W as signed permutations

of (n,n—1,...,1). Then the elements of W¥ can be characterized as those elements
a = (an,an-1,...,a1) of W satisfying:
(3.1) An > A1 > -+ > ay.

To each such element g associate a word w = wpwy,—1 - - - w; in two symbols a and
[ by setting

(3.2) w; = B if +1¢ appears in @, w; = a if — ¢ appears in a.

Thus, the elements of WX consist of all possible words wpw,_1 ---w; in a and B.
We shall also require an identification of w € WX as a path in Z x Z, starting at
the origin: each a factor in w corresponds to a segment (m,n) — (m+ 1,n — 1),
and each S factor to a segment (m,n) — (m+1,n+1). Then y < w in the Bruhat
order if and only if path(y) lies below path(w).

Given any word z = Z,, ---Z; in @ and 3, define |z| = m, |z|o = #{¢: z; = a},
and similarly for |z|g.

The arrow relations on W¥ are given as follows (notation as in (2.1)):
for1<i<n-1: y=v'efu’, w=w'fow”, withw|=1i-1;

3.3
(3:3) fori=n: y=va, w=u'g, with|v|=n-1

From this, it is easy to deduce the length function on W¥X: for w = w, - - - wy,

(3.4) w)= Y i

Notice that our conventions above imply that 8 > a. For future reference we
state the following lemma concerning “normalization” of K-L polynomials, which
follows easily from (10, 2.3g], and is proved in [8, 15.4a].

(3.5) LEMMA. Let G = Sp(n,R), and parametrize WX as above. Assume that
ly'| = |w'|.

(a) Py’ary“.w’egw” = Py'ray”,w’fgw” ifo,7,6,¢ € {a, ,B}r £>5.

(b) Pyowp = Pypuwp-

In particular, if w = w'w; - - wpw” with wy > - > wy, y = y'y1 - - - yry” with
ly'| = |v'|, and z = y'z; - - - z,y” with (z4,...,2,) a permutation of (y1,...,¥r),
then Py ., = Pz . Hence, for the purposes of computing P, ,,, we may assume that
y is normalized with respect to w; i.e.,

1. for each factor af in y, the corresponding factor in w is also af3; and,

(3.6)

2. if y ends in a, so does w.
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To define our generating functions, we require some additional terminology.
First, let Z be the smallest set of words in o and § satisfying the conditions:

1. the empty word is in Z;
8.7 2.if z € Z then azf € Z;
3. Z is closed under concatenation.

Z is the center of the “cycle monoid” introduced by Lascoux-Schiitzenberger. Note
that 2 € Z = |2|o = |2|p. If w = w'azfw” with z € Z, we say that the indicated
o and S constitute a linked afS-pair. If w = w'az with z € Z, we say that the
indicated « is a terminal o. (Note that w can contain at most one terminal a.)
If w=waze,azer—10a- - 23029021029 (r > 1, 2; € Z) we say that the indicated
o’s constitute a linked aa-pair. (Note that w can contain several linked ace-pairs,
all occurring to the left of a terminal @.) In this way, all but at most one o in
the expansion for w is either a terminal a or part of a linked af-pair or a linked
ac-pair. If there is such an o unaccounted for we say that it is eztra. (Note that
an extra a must be unique and must occur to the left of all the linked aa-pairs in

We now introduce a rooted, directed tree A(w) associated to each w € W¥.
(By convention, the root of A(w) is at the top.) Each linked af3-pair, ac-pair, and
terminal a corresponds to an edge in A(w). We shall refer to the edge associated
to a given linked af-pair as edge(af), etc. The attachment of edges is defined
inductively using the following rules. Let z denote an element of Z.

1. A(fw) = A(w). (In particular, A(8--- ) is the empty tree.)
. To form A(zw), join the trees for A(z) and A(w) at their roots.
. To form A(azf3), attach an edge above the root of A(z).

. To form A(az), attach an edge above the root of A(z).
. To form A(azaw) (where the indicated a’s form a linked aa-pair),

(3.8)

(S

attach an edge above the root of A(zw).
6. A(qw) = A(w) if the indicated « is extra.

In addition, certain other information must be encoded along with the tree. First,
each edge corresponding to a terminal o or linked aa-pair should be marked with
a “plus” sign. Second, suppose w = w'zg,41Q22,0 - 21029 (as in the defini-
tion of linked ao-pair), with z; € Z and r > 0 (and 22,41 positive and maxi-
mal). Set w” = azgra--- 21020 and z = 29,41, S0 that w = w'2zw”. Also write
2 = TgTg—1---Z1 wWith z; € Z such that z; cannot be decomposed further into
a product of (nonempty) elements of Z (¢ = 1,...,8). Then A(z;) contains a
unique “maximal edge,” corresponding to a linked af-pair. And A(w") contains
a unique maximal edge, corresponding to a linked ao-pair or terminal . View
A(z;) C A(w), A(w") C A(w). We say that the maximal edge of A(z;) (resp.
A(w")) immediately precedes the maximal edge of A(z;+1) (resp. A(z1)),1<i<s.
This relation can be indicated in A(w) by drawing a dotted arrow from each such
edge to the edge it immediately precedes. (See example below.)

Suppose y,w € WX y < w. Each “minimal edge” of A(w) corresponds either to
a factor af in w (called a trough of path(w)), or to a terminal o at the right end
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of w (called a half-trough). The capacity of a trough (or half-trough) is defined to
be one-half the vertical distance from the bottom of the trough to path(y). That
is, if w = w'afw” and y = y'ory” with |y| = |v'|, 0,7 € {a, B}, then the capacity
of edge(af) is

cap(af) = |y'ola — [w'eq.

And if w = w'a and y = y'o, then the capacity of edge(a) is

cap(a@) = |yla — |wla-

The capacity of w with respect to y is the collection of capacities of all the minimal
edges of w. These integers can be attached to the ends of the corresponding edges
of A(w); denote by A(w/y) the tree equipped with these capacities.

(3.9) EXAMPLE. Put
w = Paafaoacacaffafa, y=aaacaccacfoafa.

The linked pairs and terminal & in w can be indicated with parentheses:

w = fa(af)a)(aa)(a(aB)f)(af)(w).

A labelling v of the diagram A(w/y) is a labelling of each edge with a nonnegative
integer, subject to the following restrictions.
(3.10)

1. The label on each minimal edge is less than or equal to its capacity.

2. The integers are nonincreasing from bottom to top.

3. The integer attached to any edge equipped with a “plus” sign must be even.

4. If the label on an edge is less than or equal to the labels on all “preceding”
edges, then the former must be even.

The weight |v| of a labelling v is the sum of the labels on all the edges.
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The generating function of the tree A(w/y), y < w, is the polynomial Qy ., (u) =
3" ul?l, where the sum is taken over all labellings v of A(w/y). We define Q, ., (u) =
0ify £ w.

(3.11) EXAMPLE. Let w = Bf(aa)(a(aB)f)(a), y = acaaaafac. Then
A(w/y) and its allowed labellings are as follows.

2 0 0 0 0
2 2 2 2 0 2 0 2 0 2
2 2 2 1 0
0 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0 0
2 2 2 1 1 0

Hence

Quuw) =+l +ut +ud +u? +ut +ud + P+l tu+1
=u® +ub +2ut + 203 + 30 +u+1.

Note the presence of

but the absence of
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Similarly, in Example (3.9), allowed labellings include

or

(3.12) REMARK. It is clear that the polynomials @ ., satisfy the “normalization
conditions” of (3.5): the indicated changes in y do not change any of the capacities.
Hence, for computing @y ., we may also assume y is normalized with respect to w
(cf. 3.6).

We can now state our main theorem in the case HS.3.

(3.13) THEOREM. Let G = Sp(n,R), and let Qy ., (u) be the polynomial de-
fined above. Then Qy w(u) = Py y(u) for all y,w € Wk,

The proof will depend on the following recursion relations satisfied by the poly-
nomials Qy -

(3.14) PROPOSITION. (a) Lety =y'afy”’, w = w'afuw” (|y'| = |v'|), and put
¢ =|y'|a — |w'|a (the capacity of the distinguished minimal edge). Then

—_— (4
nyw = Qy’ﬁay”,w'aﬂw” + u leyu’wl.wu.

(b) Let y = y'oa, w=w'ra, 0,7 € {a, B}, and put ¢ = |y|a — |w|o (the capacity
of the distinguished minimal edge). Then

Q _ Qy’oﬁ,w'ra + Uch’,w', c even,
w =
v Qy'aﬁ,w"ra, ¢ odd.

PROOF OF (3.13). Let us assume the recursion relations of (3.14). We claim
that these are precisely the relations of [8, Theorem 15.4] satisfied by the K-L
polynomials. For y normalized with respect to w, the latter relations expressed in
our notation are as follows. (Note that Enright-Shelton use the opposite Bruhat
order to ours.)

(i) Pyapywapuw: = Pypay wapw + u Pyys wwr
where 2r = [I(y) — I(y'y")] — [l(w) — {(w'w"));
(3'15) (ii) Py’aa,w'ra =Py oBwra + uTPy’,w’ if Iyla = |wla (mod 2)
where 2r = [I(y) - U(y')] - [{(w) — (w')];
(i) Pyoawra = Pyopwra if |yla # [wla (mod 2).

Thus to prove the claim, it remains to check that r = ¢. But in case (i), it follows
from (3.4) that

Iy aBy") = 1'y") = (V"] + 2) + 21|
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and similarly for w. Thus
2r = 2(|y'|a — |w']a) = 2¢.
In case (ii),
l(y) = U(y') =1+ 2650 +2|y'|a (Kronecker delta),
and similarly for w. Thus
2r =2[(|¢/la + boa) — (|0']a + 6ra)] = 2(|yla — |wla) = 2e.
That Qy,w = Py, now follows by induction on the rank n, and induction on

(y) = l(w). Q.E.D.

(3.16) LEMMA. Lety,w € WX withy < w. In each case (a)—(e) below, A(w)
has a distinguished minimal edge (indicated by underlining the corresponding factor
in w). Assume that if w = w'afw” then y = y'afy” with |y'| = |w'|, and if
w=w'a then y = y'a. Let ¢ be the capacity of the distinguished minimal edge. Let
z denote a nonempty element of Z.

(a) Letw =---zaf---. Then z contains a factor a; B such that cap(a1 1) <c.
(b) Let w = ---za. Then z contains a factor a1 B such that cap(a1f1) < c.

(c) Let w=---azBa. Then z contains a factor a;B1 such that cap(a1f:1) < c.
(d) Letw = - - - azaq. Then z contains a factor o1 By such that cap(ai61) < c+1.
(e) Letw = - - afzag - - -, where o 18 either a terminal o or the left member of a

linked ace pair. Then z contains a factor a1 81 such that cap(a1 1) < c. Moreover,
edge(a181) lies below (or is) an edge which immediately precedes edge(af).

PROOF. For (a)-(d), observe that 2 = ---a; 610 - . Considering the paths of
w and of y (and recalling that the factor in y corresponding to the underlined « in
w is also @), it is clear that the capacity of the a;fB;-trough is at most ¢ in cases
(a)-(c), and at most ¢ + 1 in case (d).

For (e), observe that z = aa---a10;1---. As above, cap(a;161) < c. Also,
writing 2 = z,---x; as in the definition of “immediate predecessor,” it is obvious
that a;8; occurs in z,. Hence edge(a;81) lies below (or is) the top edge of A(zs),
which immediately precedes edge(a3). Q.E.D.

PROOF OF (3.14). Given a minimal edge of A(w/y) having capacity ¢, the
labellings of A(w/y) split into two families, according to whether the label on this
minimal edge is < ¢ or = ¢. Evidently the first family has generating function
given by the first term on the right-hand side of each recursion relation in (3.14).
Thus we must show that the generating function, say Q.(u), of the second family,
is equal to the second term (if present) in the recursion relations.

For the proof, it will be convenient to have a generalization of the notion of
capacity to nonminimal edges of A(w/y). If edge(u) is such an edge, define its
capacity, cap(u), to be its largest allowed label in any labelling of A(w/y). Also,
denote by A’ the tree A(w'w") (resp. A(w')) in case (a) (resp. (b)). Then A’ is
obtained from A(w) by removing the distinguished minimal edge. If edge(v) is
any other edge of A(w), we must show that cap(y) = cap’(¥) (the capacity of
edge(t) when viewed in A’), and that any parity restrictions on the labels assigned
to edge(¢)) are the same in A’ as in A(w).

Notice first that, in case (b) when ¢ is odd, the second family is empty, since the
label on an edge corresponding to a terminal o must be even.



KAZHDAN-LUSZTIG POLYNOMIALS 287

Now assume we are in case (b) with ¢ even. It is clearly sufficient to consider
edges immediately above, or preceded by, the terminal o edge. Suppose first that
w=---ar1zb1a, 2 € Z (so w =---a1z). Then edge(a; 1), which is immediately
preceded by edge(a), becomes a terminal o edge in A’. If 2 is the empty word,
then cap(a; ;1) = cap’(a1) < ¢. Otherwise, Lemma 3.16 implies that cap(a;1 /1) =
cap’(a1) < c¢. Thus in all labellings contributing to Q., the label on edge(a1f:) is
less than or equal to the label on the terminal o edge, hence must be even. Also,
if the label on any edge preceded by edge(a) is less than or equal to all labels
preceding it ezcept perhaps that of edge(c), then in particular it is < cap(aifi),
hence it is in fact < ¢. This takes care of any edges preceded by the terminal «
edge.

Next suppose that w = - - - a3 2’ agz0. If 2z is not empty, then again (3.16) implies
that cap(ajaz) = cap’(ajae) < c. Similarly, if z is empty, then cap(ajas) =
cap’(a;) < ¢+ 1 (use the lemma if 2’ is not empty).‘But ¢+ 1 is odd, so any label
on this edge in A’ must still be < ¢. This takes care of any edge above the terminal
a edge, and completes the proof of (b).

Finally assume we are in case (a). Here we must examine the effect of removing
edge(af) on: (i) af edges above it; (ii) a terminal o edge above it; (iii) edges which
it precedes or is preceded by; and (iv) an ao edge above it. We treat each of these
in turn.

Case (i). w="---ajzafz'f -, so that edge(a; A1) is attached above edge(a3).
If z is not empty, then it follows from Lemma 3.16 that cap(a;81) = cap’(c161) < c.
Otherwise, cap(a;8;) = cap’(a161) = c.

Case (ii). w = --- ajzaf2’, so that edge(c;) is attached above edge(af). As in
case (i), we find that cap(a;) = cap’(a;) < ec.

Case (iii). Assume that the a3 edge in question is preceded by at least one edge.
We claim that one of these preceding edges, say edge(u), has capacity < ¢ (in both
A and A’). Suppose we have shown this. Then ¢ 3 an allowed label on edge(a3) in
A(w/y). (For if ¢ is < the labels on all edges preceding edge(a/3), then the label on
edge(u) must be both = ¢ and < the labels on all edges preceding it, forcing ¢ to
be even.) Moreover, if edge(1) is preceded by edge(af3), then the label on edge(%)
is < all preceding labels in A(w/y) if and only if it is < all preceding labels in A’.

To prove the claim, write w = - - - afzaze,022,—1 - - @29az10z9 (r > 0). If 2 is
nonempty, then the edge immediately preceding edge(aS) has capacity < ¢, by the
lemma. Otherwise, if some 2; is nonempty for 1 < 7 < 2r, the aa-edge preceding
edge(af) has capacity < ¢. Otherwise, the terminal o edge has capacity < c, again
forcing the aa- (or terminal a-) edge preceding edge(af) to have capacity < c.

Case (iv). Let w = - - - @ 29,0029, 1 - - - 23022021029 (r > 1), where the linked
af-pair in question is either part of z3,_; or of 2,. In the former case, edge(af3)
has predecessors, and the argument in case (iii) applies to show that one of these
predecessors has capacity < ¢ (and lies below edge(ajaz)). So assume we are
in the latter case; say w = ---aj2af2’azz9,—1---. If z or 2’ is nonempty, then
(3.16) implies that cap(ajas) = cap’(aja2) < ¢. Otherwise, an argument as in
case (iii) shows that some minimal edge (besides the distinguished o3-edge) below
edge(a;a2) has capacity < c.

This completes the proof of the proposition. Q.E.D.
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4. The case HS.5. In this section, assume G = SO*(2(n + 1)). Here WX
consists of decreasing signed permutations of (n+1,n, ..., 1) having an even number
of minus signs. We associate to such a signed permutation a word of length n + 1
in o and B by the rule (3.2). But clearly the rightmost symbol is redundant (since
there must be an even number of o’s), so we may drop it. We may therefore
parametrize W exactly as in the case HS.3. There is a slight change in the arrow
relations: w'a — w'( corresponds to i = n if |w'|, is odd but to 7 = n + 1 if |w'|q
is even (notation as in (2.1) and (3.3)).

For y < w in WX, define A(w), A(w/y), and Qy(u) exactly as in the case
HS.3. Then the recursion relations of (3.14) hold in HS.5. But the Enright-Shelton
relations (3.15) also characterize the P, ,, for HS.5. (Here, the formula in (3.15(iii))
arises not from a parity difference on the long simple root wall, but rather from
the fact that ys, € WX while ws,+; € WX (or vice versa) when c is odd; cf. the
remarks in the previous paragraph.) Hence the same proof gives

(4.1) THEOREM. Let G = SO*(2(n + 1)), and let Qy,. be the polynomial
defined above for y,w € WK. Then Qy . (u) = Py yw(u). :

5. The cases HS.2, HS.4. Assume that G = SO(n,R). In this case there
are simple closed form descriptions of the K-L polynomials. They can be proved
using Deodhar’s recursion formulas [7, Proposition 3.9], or from the known socle
filtrations of the generalized Verma modules [3]; cf. the remarks in §6 below.

(5.1) PROPOSITION. (a) Let G = SO(2n+1,R). Then WX is a simple chain,
and Py, (u) =1 for ally < w in WX (and Py (u) =0 otherwise).

(b) Let G = SO(2n,R). Parametrize the partially ordered set WX as in [5,
(4.3)]: WX = {w;|1 < ¢ < 2n}, with w; < wj for alli < j ezcept that wp, and wpi1
are incomparable. Then

O, wy $ wy,
Py,w;(u) =9 14+w ™1 n4+2<j<2n-1,1<i<2n—7,
1, otherwise. .

8. The cases HS.6, HS.7. The K-L polynomials in the exceptional cases can
be obtained as follows. Let Sy ., (u) be the polynomials which invert (2.3); i.e. such
that

(6.1) chVw= D Syw(l)chLy.
y<w,yeWX

Also let 0 = Vi(w)41 C Vn(w).c .-+ C Vg =V, be the socle filtration of V,, with
ith layer V;/Vi+1 (0 <4 < n(w)). It follows from [4 and 6] that

n(w)

(6.2) Syw(@) = 3 ali,y,w)ult®@-H=)=/2,
1=0

where a(?,y,w) is the multiplicity of L, in the ith layer of V,,. But these multi-
plicities are known [6, Tables 7.1, 7.2]. Thus the polynomials Sy ., are known. The
matrices (Sy,w(u)) were inverted (using a symbolic manipulation computer

program) to obtain the matrices of K-L polynomials. Space considerations have
necessitated replacing each polynomial (except for 0 and 1) with a single symbol
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TABLE 3. Kazhdan-Lusztig polynomials for E;

0123 456 7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27

O OB QSRSES TPt Bodved Ot et Ot Ot i OO~ OOO0OO0OO0O0OO0OO0OOOO0OO0OO0OOOOOOOO0OCOOOOOO
EOL L DO O r ODrt st vt rt rd et rt O Pt rt O M i O OO~ O O0O0O0OO0O0O0O0OCOOOO0O0O0O0OC0O0O0O0O0OCOCOOCDODOOO
B O O MO MO B M Bod vt ot vod vt vk ot et et e O OOOOOO0OO0OO0COO0OOO0OOOOOOCOOOOOOOOOOOO
DTt vt e e e e et e O N OO OO~ OO N OO0OO0O0OO0O00O0OO0OO0OOOO0OO0OO0OOOO0OO0OCO0O0OOOODOODOOOO
-~ O OBOEO RIS DBrdrd IO O mOmMOOO0O0O0O0O0O0O0O0O0O0O0OO0OCO0OOOOOOCOODO0OOODOOD0O0OO
VOOV RBBBBBrd Brd st rd rd st od Pl 7l = = O OO OO0OOO0OO0OO0ODO0OO0OOOOOO0OO0OO0COOOOOO0OC0OCOODOOOOO
Yt 4t (D O O Ot Dot et Il I O OO M OO~ OO0OO0OOCOOOOO0OO0OO0OOO0COOOOOOOOOOCO0DOOOOCOCOOOO
B Q00U RBABBN At St st et et et Ot = O~ OO OCOO0COOOO0OO0O0OO0O0O0OOO0OO0OO0OOO0OOOOO0OOOCOOOOOOOO
BB RS DD Dt vt A A P Pt e T O I O~ OOO0OO0O0O0OO0OOODO0OO0OO0OO0OOOO0OO0CO0COO0OOCOOCO0OOOOOODOODOOO
WO VO®®E®BABet St et O OO ~OOOOOOOOOOODOO0OO0O0OO0OOOO0OO0OO0OOOO0O OO0 OOOOODOO0OO
MO B DDAt A N T OO M OOO0O0O0O0O0O0CO0OOO0OO0O0OO0OOO0OOO0OO0OOCOOOOOODOOO0O00OO0OOC
Pt e T O O MO MOO OO0 O0O0O0O0OO0O0O0O0OO0O0O0OO0O0OO0OO0O0OO0OO0O0OOO0O0OOODODOO0O0OO0O0OO
OO O rtrt vt vt vl 7t Pt P O M OO MO OOOO0OO0OO0OO0ODO0OO0OOCOOO0OO0OOOO0OOOOOOOOOOOO0O0OO0OOCO0OCOO
O O @ ARSIt vt vt ok ot Pt e O OO OO OO0OO0OOO0OOODODO0OOO0COO0OOOOOOOOOOOOOOOOOOCOOOOCDOOCO
Nttt T O T OO MO OO0 0000000000000 0O0OOO0OOOO0OO0O0OOOOOOOODOD0ODO0OCOOOOO
OO0 OAABAA Attt O~ OO0 O0OO0CO0OO0OO0O0OO0O0O0OO0OO0COO0OO0OO0OOOOOOOO0OOOOOOOOOOO0OOO0OOCO
VOt st et et O~ O~ OO0 000000000000 OOOO0OOO0OOOCOCOOOCOOOOOOO0OOODOOO0OOOOOO
BB ISRttt =" O~ OOO0OO0OO0CO0OO0O0OO0COOOO0OO0OODOO0OO0OO0OOO0OOOO0OOOOOOOOOOOOO0OODODOOCOCCO
DO Ottt O~ OO0 0000000000000 OOOO0OOOOO0OOOOOOODOOODODODODOO0O0OO0OO0OCO
HE et OO OO0OO0OO0O0OO0OO0COO0O0OO00O0OO0O0O0OOOOOOOO0OOOOOCOOOOOOOOOODODOOODODODOOO
BRRBBt "t 1t OOO0OO0OO0OO0COO OO OO0 OO0O0OTCOOOOO0OOCOOCOCOOOOOOOODOODOODO0OO0OOOC0OOO
e O OO 0000000000000 O0COOCOO0OOOOCOCO0OOOOO0COOOCOOOOOODODODOOODOOOOOO
ettt et OO0 OO0 0000000000000 OO0O0OOOOOOCOOOCOOO0OOOODO0OOODOODO0O0OOODOOOO
ettt OO0 00000000000 OOCO0O0OO0OOO0OO0OO0COOOOOOOOO0OO0OCOOOO0OOODODOO0O0OOOOO
OO O O0OO0OO0OO0OO0O0OO0O OO0 O0OO0OO0O0OO0O0OO0O0OO0OOOO0OOO0OOOOOO0O0OOOOOOOO0O0OOO0OOODOOOO
HEH A OOOOOCOO0OOOOOO0OO0OOO0OO0O0O0O0O0OO0OO0O0OO0OOO0OOO0OOOOOOOOOCOOOOODODOODODOOOOO
[aRoR=R-R=N-N=N=j NNl NNl -NoN-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-R-N-N-N-N-N NN NN ]
HOOOOO0OOO0OO0COOOOOCOOOOO0OO0O0O0OOO0OOOO0OOOOOOCOOOOOOOOOOODOOO0OODOO0OO0O0OOO0OO

OmANNTVNOCOWAO=ANNT VO 00N - [ne) ) \O I~ 00 [ ) NOVSOAOD =AM [7a)
SoanI e X 2RSS CERNBARAHNI RS RASILIILESRIRAAAR]



291

KAZHDAN-LUSZTIG POLYNOMIALS

TABLE 3. Kazhdan-Lusztig polynomials for E7 (continued)
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when reproducing these matrices. The identifications employed are given in Table
1. The K-L polynomials for Eg and E; are given in Tables 2 and 3, respectively.
There, P, ,, is the entry in the row indexed by y and the column indexed by w; we
use the indexing for W defined in [1, 2, or 6]. (See note added in proof.)

7. Applications. In this section, we apply the above results to determine
certain coefficients of the Kazhdan-Lusztig polynomials for Hermitian symmetric
spaces. We first show that the leading coefficient of Py, (u) is always 1 (if y <
w). For y < w, it is known [10] that P, ,(u) is a polynomial of degree at most
(Il(y) — l(w) — 1)/2. Define u(y,w) to be the coefficient of this term of highest
possible degree when y < w, and 0 otherwise. We determine, for G = Sp(n,R) or
SO*(2n), the pairs y < w for which u(y, w) # 0 (and hence = 1, by the first result).

(7.1) PROPOSITION. Let G be one of the groups in (1.1), g its complexified
Lie algebra, and p the associated parabolic subalgebra (cf. §2). Let y,w € WK with
y < w. Then the leading coefficient of Py ., (u) is 1.

PROOF. This was observed for G = SU(p, ¢) by Lascoux-Schiitzenberger in [11].
For G = SO(n,R) the result is clear from Proposition 5.1, and for G exceptional,
it follows by inspection of Table 1.

Since the K-L polynomials for SO*(2(n + 1)) and for Sp(n,R) are identical,
we may assume that G = Sp(n,R). Now every edge of the tree A(w/y) can be
(independently) labelled with its “capacity,” except possibly certain edges having
both odd capacity and predecessors (cf. (3.10)). We claim, nevertheless, that there
is a unique labelling v having maximal weight |v|, and hence that P, ,,(u) = ul*l+
lower degree terms. Define v by labelling the edges of A(w/y) from bottom to top,
assigning labels to preceding edges before succeeding edges, and giving each edge
the largest label allowed by (3.10). It is clear that |v| is maximal. We must show
that there is no other labelling v' with |v’| = |v|. There are three possible ways this
might fail.

Case (i). v' is obtained from v by decreasing the label on some “initial edge” (one
having no predecessors) by two, thereby allowing the labels on two succeeding edges
to increase by one. Denote the capacity of the initial edge (which must correspond
to a terminal a or an aa-pair in w) by ¢g, and the capacities of the other two edges
by ¢; and cp (with edge “0” preceding edge “1” preceding edge “2”). Without loss
of generality, we may assume cg is even. The hypothesis implies that ¢; and c
must both be odd, and the relevant labels in v are ¢g, ¢; — 1, and ¢ca — 1. The
corresponding labels in v’ are ¢cg — 2, ¢; and c;. We conclude that ¢; < ¢p and
c2 < ¢y — 1, while ¢; > ¢g — 2 and ¢z > ¢;. This is a contradiction.

Case (ii). v’ is obtained from v by decreasing the label on some initial edge by
two, thereby allowing the labels on one succeeding edge and one higher edge to
increase by one. In this case, the higher edge must correspond to an ao-pair in
w, and must lie above both the other two edges. Denote by co the capacity of the
initial edge, and by ¢; that of the succeeding edge. We may assume cg is even, and
as in case (i), ¢; must be odd. In fact, it follows as above that ¢; = ¢o — 1. The
relevant labels in v must be ¢cg, ¢c; — 1, and ¢; — 1; and in v’, ¢g — 2, ¢; and c¢;.
But since ¢; = ¢g — 1 > ¢g — 2, this contradicts the requirement that the labels be
nonincreasing from bottom to top.
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Case (iii). v' is obtained from v by decreasing the label on some noninitial edge
by one, thereby allowing the label on some succeeding edge to increase by one.
Denote by c; the capacity of the preceding edge, and by c, that of the succeeding
edge. Then c; must be odd, and the labels on edge “1” and edge “2” (respectively)
are: ¢ and ca — 1 in v; ¢ — 1 and ¢2 in v'. On the other hand, we claim that
the label (c2) on edge “1” in v must be less than or equal to the labels on all
edges preceding it. If not, then the label on edge “2” in v would not be forced
to be co — 1, but could also be cz. In particular, c; must be even (by (3.10)), a
contradiction. Q.E.D.

(7.2) PROPOSITION. Let G = Sp(n,R) or SO*(2(n + 1)). For y,w € WX
u(y, w) # 0 if and only if one of the following holds:
(i) w=w'Bzow", y = w'azfw” with z € Z,;
(il) w = w'Bz, y = w'az with z € Z; or
(iii) w = w'B2B2', y = w'azaz' with z € Z, and 2’ consisting entirely of linked
af-pairs, inked aa-pairs, and ezxactly one terminal c.
If any of these conditions hold, then u(y,w) = 1.

PROOF. The last statement will follow from the first and Proposition 7.1.

Note that if u(y,w) # 0 and I(y) — {(w) > 1, it follows from Lemma 3.5 that y
is normalized with respect to w (cf. (3.6)). We proceed in steps to obtain from the
pair (y,w) a “reduced pair” (y*¢¢,wred).

Step 1. If possible, choose a factor af in y, so that y = y'afy”, w = v’ afw”,
for some ', y", w’, w” with |y’'| = |w'|]. Let ¢ be the capacity of the corresponding
minimal edge. Then by (3.14), deg Py, = ¢ + deg Py/y» . And by the proof
of (3.13), 2¢ = [I(y) — l(w)] — [I(¥'y"") — l(w'w")]. Thus u(y,w) # 0 if and only if
u(y'y”, w'w”) # 0. In particular, y'y” must be normalized with respect to w'w"”
(unless their lengths differ by 1).

Continue to remove adjacent factors af3, eventually arriving at a pair (y°, w®)
with u(y°, wP) # 0, such that either y° contains no factor a3, or else y° does contain
an af factor and [(y°) — {(w®) = 1. In the latter case, we must have y° = z’afz",
w® = 2/ Baz" for some ', 2, and thus y, w are as in case (i).

Step 2. Assume I(y°) — {(w®) > 1, and suppose y° ends in a. Then y° = uoa,
w® = vro for some u, v with |u| = |v|. Let ¢ be the capacity of the terminal o edge.
Then by (3.14), ¢ must be even, and deg Py ., = ¢ + deg P, ,. Again, the proof of
(3.13) implies that 2¢c = [I(y) — l(w)] — [I(u) — I(v)]. Hence u(y°,w®) # 0 if and
only if u(u,v) # 0. If u ends in o, then 0 = o, since by assumption y° contains no
af factors. If, in addition, I(u) — I(v) > 1, then 7 = ¢, otherwise the capacity of
the terminal o edge of A(v/u) would be odd.

Repeat Step 2, and continue in this fashion. Eventually one arrives at a pair
yed < w'd with p(y™d,w®d) # 0 such that y™*¢ contains no af factors, and
either ¥4 does not end in a, or else y**¢ does end in « and I(y*®%) — [(w™?) = 1.
In the former case, y™®4 = 843 -- 3, forcing w'®d = BB---f, hence y = w. But
this contradicts u(y,w) # 0. So we must be in the latter case, with y**¢ = za,
w® = 1z for some z. This leads to two possibilities for (y,w): either y = w'az,
w = w'Pz with z € Z; or y = wazaz', w = w'B2r2', with z € Z and 2’ as in Case
(iii). The first possibility is just Case (ii). In the second situation, we must have
T = f3, for otherwise the next-to-last application of Step 2 would be applied to the
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pair (zaaa, zfac) with terminal o capacity = 1, which is impossible. Thus we are
in case (iii). Q.E.D.
NOTE ADDED IN PROOF. Since this paper was written, the K-L polynomials

for

the Hermitian symmetric Eg and E7 have been independently checked, using a

computer program written by the author and based on the recursion relations of
Deodhar [7].

10.

11.
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