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KAZHDAN-LUSZTIG POLYNOMIALS
FOR HERMITIAN SYMMETRIC SPACES

BRIAN D. BOE

ABSTRACT. A nonrecursive scheme is presented to compute the Kazhdan-

Lusztig polynomials associated to a classical Hermitian symmetric space, ex-

tending a result of Lascoux-Schutzenberger for grassmannians. The polynomi-

als for the exceptional Hermitian domains are also tabulated. All the Kazhdan-

Lusztig polynomials considered are shown to be monic.

1. Introduction. A great deal of work has recently been accomplished con-

cerning the representation theory of groups of Hermitian type. In particular, the

structure of the holomorphically induced representations having regular integral

infinitesimal character is now quite well understood [2, 6, 8]. Results in this con-

text have proven to be significantly more tractable than in more general situations.

Thus it is reasonable to expect that there should be a simple way to compute

Kazhdan-Lusztig (K-L) polynomials for holomorphically induced modules. And, in

fact, Lascoux-Schutzenberger [11] did discover a nonrecursive scheme to compute

these polynomials for SU(p, g). The aim of the present paper is to extend their

techniques to include the other "interesting" classical Hermitian symmetric cases.

(The meaning of the word "interesting" will be made clear below.)

(It should be pointed out that Enright-Shelton [8] have already obtained one

generalization of the work of [11]. Namely, they obtained the analogous simple

recursion formulas satisfied by the K-L polynomials, as well as a description of each

coefficient in terms of "chains" of positive roots. However, our aim is to obtain the

K-L polynomials as generating functions of certain labelled trees, in keeping with

the spirit of [11].)

The Hermitian symmetric pairs fall into five infinite families and two exceptional

cases, as enumerated in (1.1) below. The structure of the categories for HS.2 and

HS.4 is very simple, and has been known for some time [3]. In particular, there is a

very simple description of the K-L polynomials, which we include for completeness.

Similarly, the socle filtrations for HS.6 and HS.7 have now been worked out [6],

from which it is straightforward to deduce the K-L polynomials. The results of

these computations are also included in the present paper. As mentioned earlier,

the polynomials for HS.l were described in [11]. Thus there remains only the

problem of their description in the cases HS.3 and HS.5. It is to this end that the

main portion of the paper is devoted. In the final section, we apply our results to

show that the K-L polynomials considered are all monic. And, in the cases HS.3

and HS.5, we identify those K-L polynomials having the maximum possible degree.
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Label G Dynkin Diagram

HS.l     SU(p,a) •-•-o-•-•
12 p      p+q-2 p+q-l

(1.1)
HS.2     SO(2n+l) <>-•--«£»

12 n-l n

HS.3     Sp(n,R) •—•- • • ' -*&
12 n-l n

.n-l
HS.4     SO(2n) o—•- -<

12        n-2Nn

HS.5     SO*(2(n + l)) %-+--f
12        n-l \> n+l

T6HS.6    E6 o • i • •
12   3   4   5

T7
HS.7     E-j o •  •  *  •  •

12   3   4   5   6

2. Preliminaries. Let G be one of the groups in (1.1). Associated to a Cartan

decomposition of the complexified Lie algebra, 0 = fc + s, we obtain, in the usual

way, a parabolic subalgebra p = fc+s+. Let A+ and A+ denote compatible systems

of positive roots for g and fc, respectively. Let p be one-half the sum of the positive

roots for pj, W the Weyl group, and WK = {w E W|u>_1A+ C A+}. We introduce

the Bruhat order on W for which the identity element is maximal. Then if Mw

denotes the Verma module with highest weight wp—p, we have My C Mw o y <w.

The subset WK inherits a Bruhat order from W; moreover, the "arrow relations"

generating the order on WK in the Hermitian symmetric cases are generated by

simple root reflections (on the right). We write

(2.1) y —+ w means y = wsi and l(y) = l(w) + 1; here Sj = sai.

Finally, let Py<w(u) be the Kazhdan-Lusztig polynomials:

(2.2) Py,w(u) = ^uidimExt'(y)-'(w)-2,(My,Lu;),        y,wEW,

«>o

where Lw is the unique irreducible quotient of Mw.

Our aim is to compute Py,w for y,w E WK. It is known that these polynomials

compute the formal characters of generalized Verma modules [4, 7].  Precisely, if
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Vw denotes the generalized Verma module for the pair (g, p) having highest weight

wp — p (w E WK), then

(2.3) chLw=       Y      (-l)l{v)-lMPy,w(l)<bVy.

y<w, y£WK

3. The case HS.3. Throughout this section, we will assume G = Sp(n,R).

The first step is to identify concretely the set WK, which is well known (cf. [9]). The

"a/3-notation" introduced by Lascoux-Schutzenberger for SU(p, g) can be adapted

to the present context, as follows. View the elements of W as signed permutations

of (n, n—1,..., 1). Then the elements of WK can be characterized as those elements

a = (an,an-y,.. .,ay) oiW satisfying:

(3.1) an > an_i > ■■■ > ay.

To each such element a associate a word w = wnwn-y ■ ■ ■ wy in two symbols a and

0 by setting

(3.2) Wi = 0 if +i appears in a,    Wi = a if — i appears in a.

Thus, the elements of WK consist of all possible words wnwn-y ■ ■ ■ wy in a and 0.

We shall also require an identification of w E WK as a path in Z x Z, starting at

the origin: each a factor in w corresponds to a segment (m,n) —» (m + l,n — 1),

and each 0 factor to a segment (m, n) —* (m + 1, n + 1). Then y < w in the Bruhat

order if and only if path(y) lies below path(ty).

Given any word x = xm • • -Xy in a and 0, define |x| = m, \x\a = #{f: Xj = a},

and similarly for \x\p.

The arrow relations on WK are given as follows (notation as in (2.1)):

for 1 < i < n — 1:     u = w'a0w",    w = w'0aw",    with \w'\ = i - 1;
(3.3) —    —

iori = n:     y = w'a,    w — w'0,    with [w'\ = n — 1.

From this, it is easy to deduce the length function on WK: for w = wn ■ ■ ■ Wy,

(3.4) l(w) = Y »"■

Notice that our conventions above imply that 0 > a. For future reference we

state the following lemma concerning "normalization" of K-L polynomials, which

follows easily from [10, 2.3g], and is proved in [8, 15.4a].

(3.5) LEMMA.   LeiG = Sp(n, R), and parametrize WK as above. Assume that

\y'\ = \w'\.

(a) Py'crTy",w'£cw" = Py'Tcry",w'£cw"   if <?,?,£,$ € {«,/?}, £ > ?.

(b) Py'ct,w'& = Py'/3,tu'/3-

In particular, if w = w'wy ■ ■ ■ wrw" with wy > ■ ■ ■ > wr, y = y'yy ■ ■ ■ yry" with

\y'\ = [w'\, and x = y'xy ■ ■ xry" with (xi,... ,xr) a permutation of (yy,... ,yr),

then PViW = Px,w Hence, for the purposes of computing PViW, we may assume that

y is normalized with respect to w; i.e.,

1. for each factor a0 in y, the corresponding factor in w is also a0; and,
(3.6)

2. if y ends in a, so does w.
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To define our generating functions, we require some additional terminology.

First, let Z be the smallest set of words in a and 0 satisfying the conditions:

1. the empty word is in Z;

(3.7) 2. if z E Z then az0 E Z,

3. Z is closed under concatenation.

Z is the center of the "cycle monoid" introduced by Lascoux-Schutzenberger. Note

that z E Z => \z[a = [z\p. If w = w'az0w" with z E Z, we say that the indicated

a and 0 constitute a linked a0-pair. If w = w'az with z E Z, we say that the

indicated a is a terminal a. (Note that w can contain at most one terminal a.)

If w = w'az2raz2r-ya- ■ ■ z^az2azyazo (r > 1, Zi € 2) we say that the indicated

a's constitute a linked aa-pair. (Note that w can contain several linked aa-pairs,

all occurring to the left of a terminal a.) In this way, all but at most one a in

the expansion for w is either a terminal a or part of a linked a/3-pair or a linked

aa-pair. If there is such an a unaccounted for we say that it is extra. (Note that

an extra a must be unique and must occur to the left of all the linked aa-pairs in

w.)

We now introduce a rooted, directed tree A(w) associated to each w E WK.

(By convention, the root of A(w) is at the top.) Each linked a/3-pair, aa-pair, and

terminal a corresponds to an edge in A(w). We shall refer to the edge associated

to a given linked a/?-pair as edge(a/3), etc. The attachment of edges is defined

inductively using the following rules. Let z denote an element of Z.

1. A(0w) — A(w). (In particular, A(0- ■ ■ 0) is the empty tree.)

2. To form A(zw), join the trees for A(z) and A(w) at their roots.

3. To form A(az0), attach an edge above the root of A(z).

(3.8) 4. To form A(az), attach an edge above the root of A(z).

5. To form A(azgw) (where the indicated a's form a linked aa-pair),

attach an edge above the root of A(zw).

6. A(aw) = A(w) if the indicated a is extra.

In addition, certain other information must be encoded along with the tree. First,

each edge corresponding to a terminal a or linked aa-pair should be marked with

a "plus" sign. Second, suppose w — w'z2r+yaz2ra- • • zyazo (as in the defini-

tion of linked aa-pair), with Zi E Z and r > 0 (and z2r+y positive and maxi-

mal). Set w" — az2ra ■ ■ ■ zyazo and z = Z2r+i, so that w = w'zw". Also write

z = xsxa_i •••Xy with Xi E Z such that Xi cannot be decomposed further into

a product of (nonempty) elements of Z (i = l,...,s). Then A(xi) contains a

unique "maximal edge," corresponding to a linked a/J-pair. And A(w") contains

a unique maximal edge, corresponding to a linked aa-pair or terminal a. View

A(xi) C A(w), A(w") C A(w). We say that the maximal edge of A(x,) (resp.

A(w")) immediately precedes the maximal edge of A(xj+i) (resp. A(xi)), 1 < i < s.

This relation can be indicated in A(w) by drawing a dotted arrow from each such

edge to the edge it immediately precedes. (See example below.)

Suppose y,w E WK, y <w. Each "minimal edge" of A(w) corresponds either to

a factor a0 in w (called a trough of path(tu)), or to a  terminal a at the right end
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of w (called a half-trough). The capacity of a trough (or half-trough) is defined to

be one-half the vertical distance from the bottom of the trough to path(y). That

is, if w = w'a0w" and y = y'ary" with [y'\ = \w'[, a,r E {a,0}, then the capacity

of edge(a/?) is

cap(a/3) = |y'er|a — |w'a|a.

And if w = w'a and y = y'cr, then the capacity of edge(a) is

cap(a) = \y\a - \w\a.

The capacity of w with respect to y is the collection of capacities of all the minimal

edges of w. These integers can be attached to the ends of the corresponding edges

of A(w); denote by A(w/y) the tree equipped with these capacities.

(3.9) Example. Put

w = 0aa0aaaaa00a0a,    y = aaaaaaaaa0aa0a.

The linked pairs and terminal a in w can be indicated with parentheses:

w = 0(a(a0)a)(aa)(a(a0)0)(a0)(a).

VX /V ,.,  x A(w/y) +
X ^ X Path(w) >

X     X /

path(y) N.       ? (3)   ©

A labelling v oi the diagram A(w/y) is a labelling of each edge with a nonnegative

integer, subject to the following restrictions.

(3.10)
1. The label on each minimal edge is less than or equal to its capacity.

2. The integers are nonincreasing from bottom to top.

3. The integer attached to any edge equipped with a "plus" sign must be even.

4. If the label on an edge is less than or equal to the labels on all "preceding"

edges, then the former must be even.

The weight [v\ of a labelling v is the sum of the labels on all the edges.
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The generating function of the tree A(w/y), y < w, is the polynomial Qy,w(u) =

X)u'v', where the sum is taken over all labellings v of A(w/y). We define QVtW(u) —

0 if y ^ w.

(3.11) EXAMPLE. Let w = 00(aa)(a(a0)0)(a), y = aaaaaa0aa. Then

A(w/y) and its allowed labellings are as follows.

X I2       1°       1°       1°       1°
XV 2/^2      2/X^      o/X2      o/si      oA^

To To To To To To
2/\0       i/\o      o/\o      i/xo      o/\o      o/\o

Hence

Qy,w(u) = U8 + U6 + UA + U3 + U2 + U4 + U3 + U2 + U2 + U + 1

= u8 + u6 + 2u4 + 2u3 + 3u2 + u + 1.

Note the presence of

fi
but the absence of

fi'
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Similarly, in Example (3.9), allowed labellings include

0 0 0 0

Vo Vo Vo Vo/   u        and      /     u but not        /   u        or /   u

2 2 2 2

(3.12) REMARK. It is clear that the polynomials Qy,w satisfy the "normalization

conditions" of (3.5): the indicated changes in y do not change any of the capacities.

Hence, for computing QVtW, we may also assume y is normalized with respect to w

(cf. 3.6).
We can now state our main theorem in the case HS.3.

(3.13) THEOREM. Let G — Sp(n,R), and let Qy,w(u) be the polynomial de-
fined above. Then QViW(u) = Py>w(u) for all y,w E Wk.

The proof will depend on the following recursion relations satisfied by the poly-

nomials Qy,w-

(3.14) PROPOSITION, (a) Let y = y'a0y", w = w'a0w" (\y'[ - \w'\), and put
c — \y'[a — [w'\a (the capacity of the distinguished minimal edge).  Then

tyy,w — *vy'&oty" ,w'ctfiw"   i  U tyyty",w'w"•

(b) Let y = y'era, w — w'ra, o,t E {a,0}, and put c = \y\a — [w\a (the capacity

of the distinguished minimal edge). Then

r-\       _ J ^sy'a^,w'Tct + ^ ^cy',w',    c even,

V'W      \ Qy'a0,w'r a,     c odd.

PROOF OF (3.13). Let us assume the recursion relations of (3.14). We claim

that these are precisely the relations of [8, Theorem 15.4] satisfied by the K-L

polynomials. For y normalized with respect to w, the latter relations expressed in

our notation are as follows. (Note that Enright-Shelton use the opposite Bruhat

order to ours.)

Iv      ■*:y'ct0y",w'a0w" = Py'fiay" ,w'a0w" "f" u  Py'y",w'w"

where 2r = [l(y) - l(y'y")\ - [l(w) - l(w'w")\;

(3.15)      (ii)    Py'cra,w'Ta = Py'o-0,w'Ta + uTPy<,w>    if \y\a = \w\a   (mod 2)

where 2r = [l(y) - l(y')\ - [l(w) - l(w')};

(iii)     Py'crcw'Tct = Py'r,f3,w'Ta     if Ma ^ \w\a    (mod 2).

Thus to prove the claim, it remains to check that r = c. But in case (i), it follows

from (3.4) that

l(y'a0y")-l(y'y") = (\y"\+2) + 2\y'\a,
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and similarly for w. Thus

2r = 2(\y'\a-\w'\a) = 2c.

In case (ii),

Kv) ~ Kv') = I + 2So-a + 2[y'[Q    (Kronecker delta),

and similarly for w. Thus

2r = 2[(\y'\a + 6aa) - ([w'[a + 8Ta)\ = 2(\y\a - \w\a) = 2c.

That QVtW — Py,w now follows by induction on the rank n, and induction on

l(y)-l(w)'  Q.E.D.

(3.16) LEMMA. Let y,w E WK with y <w. In each case (a)-(e) below, A(w)

has a distinguished minimal edge (indicated by underlining the corresponding factor

in w). Assume that if w = w'a0w" then y = y'a0y" with \y'\ = \w'\, and if

w — w'a then y = y'a. Let c be the capacity of the distinguished minimal edge. Let

z denote a nonempty element of Z.

(a) Let w = ■ ■ ■ za0 ■ ■ ■. Then z contains a factor ay0y such that cap(ay0y) < c.

(b) Let w = • • • za.  Then z contains a factor ay0y such that cap(ai/3i) < c.

(c) Let w = • ■ ■ az0a.  Then z contains a factor ai/3i such that cap(ai/?i) < c.

(d) Letw = ■ ■ -azaa. Thenz contains a factor ay0y such that cap(ay0y) < c+1.

(e) Let w = • • • a0zao ■■•, where ao is either a terminal a or the left member of a

linked aa pair. Then z contains a factor ay0y such that cap(ai/?i) < c. Moreover,

edge(ai/?i) lies below (or is) an edge which immediately precedes edge(a/3).

PROOF. For (a)-(d), observe that z = ■ ■ ■ ay0y0- ■ ■ 0. Considering the paths of

w and of y (and recalling that the factor in y corresponding to the underlined a in

w is also a), it is clear that the capacity of the ai/?i-trough is at most c in cases

(a)-(c), and at most c + 1 in case (d).

For (e), observe that z = aa- ■ ■ ay0y ■ ■ ■. As above, cap(«i/?i) < c. Also,

writing z — xs ■ • • X\ as in the definition of "immediate predecessor," it is obvious

that ay0y occurs in xs. Hence edge(ai/?i) lies below (or is) the top edge of A(xs),

which immediately precedes edge(a/3).    Q.E.D.

PROOF OF (3.14). Given a minimal edge of A(w/y) having capacity c, the

labellings of A(w/y) split into two families, according to whether the label on this

minimal edge is < c or = c. Evidently the first family has generating function

given by the first term on the right-hand side of each recursion relation in (3.14).

Thus we must show that the generating function, say Qc(u), of the second family,

is equal to the second term (if present) in the recursion relations.

For the proof, it will be convenient to have a generalization of the notion of

capacity to nonminimal edges of A(w/y). If edge(p) is such an edge, define its

capacity, cap(p), to be its largest allowed label in any labelling of A(w/y). Also,

denote by A' the tree A(w'w") (resp. A(w')) in case (a) (resp. (b)). Then A' is

obtained from A(w) by removing the distinguished minimal edge. If edge(t/>) is

any other edge of A(w), we must show that cap(t/>) = cap'(^) (the capacity of

edge(V>) when viewed in A'), and that any parity restrictions on the labels assigned

to edge(^) are the same in A' as in A(w).

Notice first that, in case (b) when c is odd, the second family is empty, since the

label on an edge corresponding to a terminal a must be even.
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Now assume we are in case (b) with c even. It is clearly sufficient to consider

edges immediately above, or preceded by, the terminal a edge. Suppose first that

w = ■ ■ ■ ayz0ya, z E Z (so w' = • ■ • aiz). Then edge(ai/?i), which is immediately

preceded by edge (a), becomes a terminal a edge in A'. If z is the empty word,

then cap(ai/?i) = cap'(ai) < c. Otherwise, Lemma 3.16 implies that cap(ai/?i) =

cap'(ai) < c. Thus in all labellings contributing to Qc, the label on edge(ay0y) is

less than or equal to the label on the terminal a edge, hence must be even. Also,

if the label on any edge preceded by edge(a) is less than or equal to all labels

preceding it except perhaps that of edge(a), then in particular it is < cap(ai/3i),

hence it is in fact < c. This takes care of any edges preceded by the terminal a

edge.

Next suppose that w = ■ ■ ■ ayz'a2za. If z is not empty, then again (3.16) implies

that cap(aia2) = cap'(aia2) < c. Similarly, if z is empty, then cap(aya2) =

cap'(ai) < c + 1 (use the lemma if z' is not empty). But c + 1 is odd, so any label

on this edge in A' must still be < c. This takes care of any edge above the terminal

a edge, and completes the proof of (b).

Finally assume we are in case (a). Here we must examine the effect of removing

edge(a0) on: (i) a0 edges above it; (ii) a terminal a edge above it; (iii) edges which

it precedes or is preceded by; and (iv) an aa edge above it. We treat each of these

in turn.

Case (i). w — ■ ■ ■ ayza0z'0y • ■ • , so that edge(ay0y) is attached above edge(a0).

If z is not empty, then it follows from Lemma 3.16 that cap(ai/?i) = cap'(ai/?i) < c.

Otherwise, cap(ay0y) = cap'(ai/?i) = c.

Case (ii). w = ■ ■ ■ ayza0z', so that edge(ai) is attached above edge(a/?). As in

case (i), we find that cap(ai) = cap'(ai) < c.

Case (iii). Assume that the a0 edge in question is preceded by at least one edge.

We claim that one of these preceding edges, say edge(p), has capacity < c (in both

A and A'). Suppose we have shown this. Then c is an allowed label on edge(a/3) in

A(w/y). (For if c is < the labels on all edges preceding edge(a/J), then the label on

edge(p) must be both = c and < the labels on all edges preceding it, forcing c to

be even.) Moreover, if edge(^) is preceded by edge(a/?), then the label on edge(V>)

is < all preceding labels in A(w/y) if and only if it is < all preceding labels in A'.

To prove the claim, write w = • • • a0zaz2raz2r-y ■ ■ ■ az2azyazo (r > 0). If z is

nonempty, then the edge immediately preceding edge(a/?) has capacity < c, by the

lemma. Otherwise, if some Zi is nonempty for 1 < i < 2r, the aa-edge preceding

edge(a/?) has capacity < c. Otherwise, the terminal a edge has capacity < c, again

forcing the aa- (or terminal a-) edge preceding edge(a0) to have capacity < c.

Case (iv). Let w = • • • ayz2ra2z2r-ya • • ■ z^az2azyazo (r > 1), where the linked

a/?-pair in question is either part of z2r-y or of Z2r- In the former case, edge(a0)

has predecessors, and the argument in case (iii) applies to show that one of these

predecessors has capacity < c (and lies below edge(aia2)). So assume we are

in the latter case; say w — • ■ ■ ayza0z'a2z2r-y ■ ■ ■. If z or z' is nonempty, then

(3.16) implies that cap(aia2) = cap'(aia2) < c. Otherwise, an argument as in

case (iii) shows that some minimal edge (besides the distinguished a/?-edge) below

edge(aia2) has capacity < c.

This completes the proof of the proposition.    Q.E.D.
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4. The case HS.5. In this section, assume G = SO*(2(n + 1)). Here WK

consists of decreasing signed permutations of (n+l, n,..., 1) having an even number

of minus signs. We associate to such a signed permutation a word of length n + l

in a and 0 by the rule (3.2). But clearly the rightmost symbol is redundant (since

there must be an even number of a's), so we may drop it. We may therefore

parametrize WK exactly as in the case HS.3. There is a slight change in the arrow

relations: w'a —* w'0 corresponds to i = n if \w'\a is odd but to i = n + 1 if \w'\a

is even (notation as in (2.1) and (3.3)).

For y < w in WK, define A(w), A(w/y), and Qy,w(u) exactly as in the case

HS.3. Then the recursion relations of (3.14) hold in HS.5. But the Enright-Shelton

relations (3.15) also characterize the Py,w for HS.5. (Here, the formula in (3.15(iii))

arises not from a parity difference on the long simple root wall, but rather from

the fact that ysn E WK while wsn+y E WK (or vice versa) when c is odd; cf. the

remarks in the previous paragraph.) Hence the same proof gives

(4.1) THEOREM. Let G = SO*(2(n + 1)), and let Qy>w be the polynomial

defined above for y,w EWK.  Then Qy%w(u) = PViW(u).

5. The cases HS.2, HS.4. Assume that G = SO(n, R). In this case there

are simple closed form descriptions of the K-L polynomials. They can be proved

using Deodhar's recursion formulas [7, Proposition 3.9], or from the known socle

filtrations of the generalized Verma modules [3]; cf. the remarks in §6 below.

(5.1) PROPOSITION. (a) Let G = SO(2n +1, R). Then WK is a simple chain,

and PVtW(u) = 1 for all y < w in WK (and Py<w(u) = 0 otherwise).

(b) Let G — SO(2n, R). Parametrize the partially ordered set WK as in [5,

(4.3)]: WK = {wi[l < i < 2n}, with Wi < Wj for all i < j except that wn and wn+y

are incomparable.  Then

!0, wi ^ Wj,1 + n'-"'1,    n + 2 < j < 2n - 1, 1 < * < 2n - j,
1, otherwise.

6. The cases HS.6, HS.7. The K-L polynomials in the exceptional cases can

be obtained as follows. Let Sy<w(u) be the polynomials which invert (2.3); i.e. such

that

(6.1) chV„,=       Y      Sy,w(l)chLy.
y<w,y€WK

Also let 0 = Vnrw)+1 C Vn'w) C • • ■ C V0 = Vw be the socle filtration of Vw with

ith layer Vi/Vi+y (0 < i < n(w)). It follows from [4 and 6] that

n{w)

(6.2) Sy,w(u) = Y a(i,y,w)u^-1^-^2,
i=0

where a(i,y,w) is the multiplicity of Ly in the ith layer of Vw.  But these multi-

plicities are known [6, Tables 7.1, 7.2]. Thus the polynomials Sy<w are known. The

matrices (Sy,w(u)) were inverted (using a symbolic manipulation computer

program) to obtain the matrices of K-L polynomials.   Space considerations have

necessitated replacing each polynomial (except for 0 and 1) with a single symbol



TABLE 1. Key for Tables 2, 3

a u + 1 w u4 + 2u3 + 2u2 + 2u + 1
b u2 + 1 x u5 + u3 + u2 + u + 1

c u2 + u +1 y u5 + u4 + u3 + u2 + u + 1

d u3 + 1 z u5 + u4 + u3 + 2u2 + u + 1

e u3 + u + 1 A u5 + 2u4 + 2u3 + 2u2 + 2u + 1

f u3 + u2 + 1 B u6 + u3 + u2 + 1
g u3 + u2 + u + 1 C u6 + 2u3 + u2 + u + 1

- D u6 + u4 + u3 + u2 + 1
h u2 + 2u + 1 E u6 + 2u4 + 2u3 + u2 + u + 1

i u3 + 2u2 + 2u + 1 F u6 + u5 + 2u4 + u3 + 2u2 + u + 1

j u4 + 1 G u7 + u4 + u3 +1

k u4 + u + 1 H u7 + u4 + u3 + u2 + 1

m u4 + u2 + 1 j u7 + 2u4 + u3 + u + 1

n u4 + u2 + u + 1 K u7 + u5 + u4 + u3 + u2 + u + 1

p u4 + 2u2 + u + 1 L u7 + u6 + u4 + 2u3 + u2 + u + 1

q u4 + u3 + 1 M u8 + u4 + 1

r u4 + u3 + u+l N u8 + u4 + u+l

s u4 + u3 + u2 + 1 p u8 + u4 + u2 + u + 1

t U4 + U3 + U2 + U + 1 Q U8 + U4 + U3 + U2 + U + 1

v u4 + 2u3 + U2 + U + 1 R u8 + 2u4 + u3 + u2 + u + 1

TABLE 2. Kazhdan-Lusztig polynomials for Eq

0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Ollllllalbadclebagcfgdbegfdl

lOlllllalbalclabaccbglbegfdl

2001111allalalalaccbclbagfdl

30001 111 111 la lalaaabclbacfdl

40000 10101 llalalaaalall a cfdl

50000011111111 lllaabclbacbdl

60000001011111 lllaalallacbdl

70 0.0 0 000101010 111. aabclbacbll

80000000010111 llllllallaabdl

90000000001010  lllaalallacbll

10 0000000000101  lOllllllllabdl

11 00000000000101 111 llallaa bij

12 00000000000010010101011abdl

13 8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 a b 1 1

14 00000000000000101  1  lal  laal  1  1

15 0000000000000001010101  labl  1

16 00000000000000001111111alll

17 0000000000000000010101  lal  1  1

18 000000000000000000 1  1  1  1  1  1  1  1  1

19 000000000000000000010111111

2000000000000000000000101  1  1  1  1

21 000000000000000000000101  1 1 1

22 00000000000000000000001  1  1 1 1

23 000000000000000000000001 1 1 1

240000000000000000000000001 1 1

25 00000000000000000000000001  1

26 000000000000000000000000001
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TABLE 3. Kazhdan-Lusztig polynomials for E-j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27

Olllllllalbadcjeblkganfctdgmr
lOllllllalbadcleblagacfcgdgbe
20011 lllalbalclablacacbcglgbe
30001111allalalallacacbcclcba
4000011111111alallaaaabaclcba
5000001010111alallaaaalaalala
600000011111111liiialabaclcba
7000000010111111llialalaalala
8000000001010101 lOlalabaclcba
900000000010 llllllllllllalala

10 000000000010101 lOlalalaalala
11 0000000000010110111111111111
12 00000000000010ll0111111alala
13 0000000000000100110110110111
14 0000000000000010011111111111
ISOOOOOOOOOOOOOOOlOOlOlllalala
16 0000000000000000100100100100
17 00000000000000000101 101 101 1 1
18 000000000000000000101 1 1 1 1 1 1 1
19 0000000000000000000100100100
20 00000000000000000000101 101 1 1
21 000000000000000000000101 1 11 1
22 0000000000000000000000100100
23 0000000000000000000000010111
240000000000000000000000001001
25 0000000000000000000000000100
26 0000000000000000000000000010
27 0000000000000000000000000001
28 0000000000000000000000000000
29 0000000000000000000000000000
30 0000000000000000000000000000
31 0000000000000000000000000000
32 0000000000000000000000000000
33 00000000000000 00000000000000
3400000000000000 00000000000000
35 00000000000000 00000000000000
36 00000000000000 00000000000000
37 00000000000000 00000000000000
38 00000000000000 00000000000000
39 00000000000000 00000000000000
40 00000000000000 00000000000000
41 00000000000000 00000000000000
42 00000000000000 00000000000000
43 00000000000000 00000000000000
4400000000000000 00000000000000
45 0000000000000000000000000000
46 0000000000000000000000000000
47 0000000000000000000000000000
48 0000000000000000000000000000
49. 0000000000000000000000000000
50 0000000000000000000000000000
51 0000000000000000000000000000
52 0000000000000000000000000000
53 0000000000000000000000000000
540000000000000000000000000000
55 0000000000000000000000000000
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TABLE 3. Kazhdan-Lusztig polynomials for Er (continued)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Ot tymADyEGFJMBKNLPHQdRrmyDGMl
It t gmAfyEdFJ lBKNLPHQdRrmyDGj 1
2gtgmwfyvdFrlBKaLPHQdRrmyDqj 1
3gcgmwfyvdzrlBxaLcHQdRrmysqj 1
4 g c c m i fnvdzrlBxaCcHgdRrmtsqj 1

5 a c c 1 i fnvdzrlBxaCcfgdt rbtsqj 1

6gccmibngdprlbxaCcHgdtemtsqj 1
7 a c c 1 ibngdprlbxaCcfgdgebtsqj 1
8gccmibnglpalbcagcmgl temtsqj 1

9acalhbagdprlbxagcfcdgebgsqj 1
lOaccl ibnglpalbcagcbglgebtsqj 1
llalalhbagdcrlbeagafcdgebgfqj 1

12acalhbaglpalbcaccbclgebgsqj 1
13 1 lalababdcdlbelgafcdgebgfdj 1
14alalhbaglcalbaacabclgebgfqj 1

15acalhlaalcallcaccbclcabgsqj 1
16 1101a0ab0cd0belgafcdgebgfdll
17 11alabablcllbalcabclgebgfdjl
18alalhlaalaal    laacabclcabgfqj    1
19 1101a0ab0cl0balcabclgebgfdll
20 1 lalal al lal 1 lalcabclcabgfdj 1
21alllallalaallaaaabalcabcfqjl
221101a0al0al01alcabclcabgfdll
23 1 1 1 1 1 1 1 1 1 a 1 1 1 a 1 a a b a 1 c a b c f d j 1
24 0110allalaallaaaalalaalcfqjl
251 101101 lOalOlalaabalcabcfdll
26. 101111 11 1111 11 lalbalcabcbdjl
27 0 1 1 0 1 1 1 1 1 a 1 1 1 a 1 a a 1 a 1 a a 1 c f d j I
28 1001 101101 1011 lalbalcabcbdll
29 010010110al01alaalalaalcfdll
30 001011111111111allalaalcbdjl
310001001001001l0albalcabcblll
32 00001011011011 lallalaalcbdll
33 00000101111111 llllllaalabdjl
340000001001001l0allalaalcblll
35 00000001011011  llllllaalabdll

36 00000000101101 lllllllllabdjl
37 0000000001001l011111aalablll
38 00000000001001 lllllllllabdll
39 00000000000100 lOlOlOlllabdj 1
40 00000000000010 0101 llaalallll
41 00000000000001 Ollllllllablll
42 00000000000000 1010101 1 labdll
43 00000000000000010111111allll
4400000000000000001010111ablll
45 0000000000000000010111111111
46 00000000000000    0000101    1    1   al 1 1 1
47 00000000000000    0000010101    1 1 1 1
48 00000000000000    00-0000   1    1    1    1    1 1 1 1
49 00000000000000    0000000101    1 1 1 1
50 00000000000000 00000000 1 1 1 1 1 1
51000000000000000000000001   1 1 1 1
52 00000000000000   0000000000   1    1   1    1
53 00000000000000000000000001 1 1
54000000000000000000000000001 1
55   0000000000000000000000000001
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when reproducing these matrices. The identifications employed are given in Table

1. The K-L polynomials for E6 and E7 are given in Tables 2 and 3, respectively.

There, Py,w is the entry in the row indexed by y and the column indexed by w; we

use the indexing for WK defined in [1, 2, or 6]. (See note added in proof.)

7. Applications. In this section, we apply the above results to determine

certain coefficients of the Kazhdan-Lusztig polynomials for Hermitian symmetric

spaces. We first show that the leading coefficient of PVtW(u) is always 1 (if y <

w). For y < w, it is known [10] that PyiW(u) is a polynomial of degree at most

(l(y) — l(w) — l)/2. Define p(y,w) to be the coefficient of this term of highest

possible degree when y < w, and 0 otherwise. We determine, for G = Sp(n, R) or

SO*(2n), the pairs y < w for which p(y, w) ^ 0 (and hence = 1, by the first result).

(7.1) PROPOSITION. Let G be one of the groups in (1.1), 9 its complexified

Lie algebra, andp the associated parabolic subalgebra (cf. §2). Let y,w E WK with

y <w.  Then the leading coefficient of PVtW(u) is 1.

PROOF. This was observed for G = SU(p, g) by Lascoux-Schutzenberger in [11].

For G = SO(n, R) the result is clear from Proposition 5.1, and for G exceptional,

it follows by inspection of Table 1.

Since the K-L polynomials for SO*(2(n + 1)) and for Sp(n,R) are identical,

we may assume that G = Sp(n,R). Now every edge of the tree A(w/y) can be

(independently) labelled with its "capacity," except possibly certain edges having

both odd capacity and predecessors (cf. (3.10)). We claim, nevertheless, that there

is a unique labelling v having maximal weight [v[, and hence that Py,w(u) = v)v^ +

lower degree terms. Define v by labelling the edges of A(w/y) from bottom to top,

assigning labels to preceding edges before succeeding edges, and giving each edge

the largest label allowed by (3.10). It is clear that \v\ is maximal. We must show

that there is no other labelling v' with \v'[ — \v\. There are three possible ways this

might fail.

Case (i). v' is obtained from v by decreasing the label on some "initial edge" (one

having no predecessors) by two, thereby allowing the labels on two succeeding edges

to increase by one. Denote the capacity of the initial edge (which must correspond

to a terminal a or an aa-pair in w) by Co, and the capacities of the other two edges

by ci and c2 (with edge "0" preceding edge "1" preceding edge "2"). Without loss

of generality, we may assume Co is even. The hypothesis implies that ci and C2

must both be odd, and the relevant labels in v are Co, ci — 1, and c2 — 1. The

corresponding labels in v' are cq — 2, ci and C2- We conclude that ci < cq and

c2 < cy — 1, while ci > Co — 2 and C2 > cy. This is a contradiction.

Case (ii). v' is obtained from v by decreasing the label on some initial edge by

two, thereby allowing the labels on one succeeding edge and one higher edge to

increase by one. In this case, the higher edge must correspond to an aa-pair in

w, and must lie above both the other two edges. Denote by cq the capacity of the

initial edge, and by ci that of the succeeding edge. We may assume Co is even, and

as in case (i), ci must be odd. In fact, it follows as above that ci = Co — 1. The

relevant labels in v must be cq, cy — 1, and ci — 1; and in v', Co — 2, Ci and cy.

But since ci = Co — 1 > Co — 2, this contradicts the requirement that the labels be

nonincreasing from bottom to top.
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Case (iii). v' is obtained from v by decreasing the label on some noninitial edge

by one, thereby allowing the label on some succeeding edge to increase by one.

Denote by ci the capacity of the preceding edge, and by c2 that of the succeeding

edge. Then C2 must be odd, and the labels on edge "1" and edge "2" (respectively)

are: C2 and c2 — 1 in v; c2 — 1 and C2 in v'. On the other hand, we claim that

the label (c2) on edge "1" in v must be less than or equal to the labels on all

edges preceding it. If not, then the label on edge "2" in v would not be forced

to be C2 — 1, but could also be C2. In particular, c2 must be even (by (3.10)), a

contradiction.    Q.E.D.

(7.2)   PROPOSITION.   Let G = Sp(n,R) or SO*(2(n+ 1)).   For y,w E WK

p(y, w) 7^ 0 if and only if one of the following holds:

(i) w = w'0zaw", y = w'az0w" with z E Z;

(ii) w = w'0z, y = w'az with z E Z; or

(iii) w = w'0z0z', y — w'azaz' with z E Z, and z' consisting entirely of linked

a0-pairs, linked aa-pairs, and exactly one terminal a.

If any of these conditions hold, then p(y,w) = 1.

PROOF. The last statement will follow from the first and Proposition 7.1.

Note that if p(y,w) ^ 0 and l(y) — l(w) > L it follows from Lemma 3.5 that y

is normalized with respect to w (cf. (3.6)). We proceed in steps to obtain from the

pair (y,w) a "reduced pair" (yred,wied).

Step 1. If possible, choose a factor a/3 in y, so that y = y'a0y", w = w'a0w",

for some y', y", w', w" with \y'\ = \w'\. Let c be the capacity of the corresponding

minimal edge. Then by (3.14), degPyzW = c + deg Py>yn,wiw». And by the proof

of (3.13), 2c = [l(y) - l(w)\ - [l(y'y") - l(w'v/% Thus p(y,w) ^ 0 if and only if

p(y'y",w'w") ^ 0. In particular, y'y" must be normalized with respect to w'w"

(unless their lengths differ by 1).

Continue to remove adjacent factors a0, eventually arriving at a pair (y°,w°)

with p(y°, w°) ^ 0, such that either y° contains no factor a0, or else y° does contain

an a0 factor and l(y°) - l(w°) = 1. In the latter case, we must have y° = x'a0x",

w° = x'0ax" for some x', x", and thus y, w are as in case (i).

Step 2. Assume l(y°) — l(w°) > 1, and suppose y° ends in a. Then y° = uaa,

w° = vra for some u, v with |u| = |«|. Let c be the capacity of the terminal a edge.

Then by (3.14), c must be even, and deg PytW = c + degPu,„. Again, the proof of

(3.13) implies that 2c = [l(y) - l(w)] - [l(u) - l(v)}. Hence p(y°,w°) ^ 0 if and

only if p(u, v) ^ 0. If u ends in a, then a = a, since by assumption y° contains no

a0 factors. If, in addition, l(u) — l(v) > 1, then r = a, otherwise the capacity of

the terminal a edge of A(v/u) would be odd.

Repeat Step 2, and continue in this fashion. Eventually one arrives at a pair

yred < wied with p(yied, wied) ^ 0 such that yred contains no a0 factors, and

either yied does not end in a, or else yied does end in a and l(yTed) — l(wTed) = 1.

In the former case, yied = 00 ■ ■ ■ 0, forcing wied = 00 ■ ■ ■ 0, hence y = w. But

this contradicts p(y,w) ^ 0. So we must be in the latter case, with yied = xa,

wred — x0 for some x. This leads to two possibilities for (y,w): either y = w'az,

w — w'0z with z E Z; or y — w'azaz', w = w'0ztz', with z E Z and z' as in Case

(iii). The first possibility is just Case (ii). In the second situation, we must have

t = 0, for otherwise the next-to-last application of Step 2 would be applied to the
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pair (xaaa, x0aa) with terminal a capacity = 1, which is impossible. Thus we are

in case (iii).    Q.E.D.
NOTE ADDED IN PROOF. Since this paper was written, the K-L polynomials

for the Hermitian symmetric Ee and Ej have been independently checked, using a

computer program written by the author and based on the recursion relations of

Deodhar [7].
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