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ON JAMES’ TYPE SPACES

ABDERRAZZAK SERSOURI

ABSTRACT. We study the spaces E which are isometric to their biduals E**,
and satisfy dim(E** /E) < co. We show that these spaces have several common
points with the usual James’ space.

Our study leads to a kind of classification of these spaces and we show
that there are essentially four different basic structures for such spaces in the
complex case, and five in the real case.

Introduction. In this paper we investigate some geometric properties of the
Banach spaces E which are isometric to their biduals E** and satisfy dim(E**/E) =
8 < 0o. This study was started in [S] where we considered the case s = 1.

In [V] Valdivia proved that if a Banach space E is such that dim(E**/E) =
s < 00, then E = H @ G, where H is a reflexive space, and G is a separable space
(which satisfies dim(G**/G) = s).

Under the additional hypothesis that E is isometric to E** we give an explicit
construction of the spaces G and H appearing in Valdivia’s decomposition. We
also prove (Theorem 2.1) that the space G we construct is isomorphic to G** and
has a Schauder basis.

The basis structure of G is made precise in Theorem 5.1 where we prove that G

has a shrinking basis (’)n>0.1<;<s such that the sequence (Xr=o e,(,j))nzo,lstS

forms a boundedly complete basis of G, and such that all the basic sequences
(esf )),,20, 1 < j < s, are neighborly. Hence by a result of Bellenot [B] all the
spaces GU) = sp[el!): n > 0] are isomorphic to their biduals GW** and satisfy
dim[GU)**/GU)] = 1.

Unfortunately it is not clear whether or not we have G = @‘;:1 GY),

We investigate two other aspects of the geometry of the spaces E considered here.
We first ask whether the space G is isometric to G** and how such an isometry (if it
exists) can be related to the given isometry A between E and E**. More precisely
we study how far G+ is from A(G), or dually, how far H = H++ is from A(H).
The answers to these problems are given in Proposition 3.1.

With respect to these distortion properties, results of Theorem 5.1 lead to a
classification of the spaces E considered here and assert that there are essentially
four different basic structures in the complex case, and five in the real case. This
will be illustrated by the examples we construct in §6.

The second geometrical aspect of the spaces E we consider is the behaviour of
the onto isometries on E (§4). The main consequence of this study is the intrinsic
character of all the (vector space) parameters we introduce. We prove that every
onto isometry I on E respects both G and H, and in the particular case when
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716 ABDERRAZZAK SERSOURI

s = 1, we have I|g = €ldg for some unit scalar € (a similar result holds in the
general case, but it cannot be described easily). This implies in particular that the
spaces E for which E' = G have only trivial isometries (this is the case for the usual
James’ space J).

A nice application of the results we obtain is the following remark due to Bellenot
(personal communication):

There exists a separable Banach space (with a basis) F satisfying dim(E**/E) =
1, which is isomorphic to £** but not isometric to E** for any equivalent norm [B,
ex. 4.6].

ACKNOWLEDGMENT. The author is glad to thank Professor Bernard Maurey
for his precious help and his suggestions.

1. Notation and preliminaries. K will denote the scalar field R or C.

Let us first recall briefly the definitions of the w-dual of a Banach space, and of
the w-adjoint of an operator.

Let X be a Banach space and denote by iLX] the canonical injection of X ()| the
nth dual of X, into X(**2), Then the w-dual X(“) of X is the injective limit of the

(2n) ;1X]

sequence ((X'*™ 75 "))n>0.

Let T: X — Y be an operator from X to Y, and denote by T(") the nth-adjoint

of T. Then the w-adjoint T“) of T is the operator from X(“) to Y (@) which is the
injective limit of the following commutative diagram:

i([)xl i1X]

X N X 2, X4 - ... X (w)
T T** | T | T(W) |
Y — y** — y 4) - ... y (@)
g e

Let E be a Banach space which is isometric to E** and which satisfies dim(E**/E)
=s< oo and let A: E — E** be an onto isometry between E and E**.

It is easy to check that A(“) induces an onto isometry on E(“) and that A=1*(«)
induces an onto isometry on E*(“). Moreover we have

(A(w))* ) = (A—lt(w))—l and (A—lt(w))tIE(w) — (A(w))_l.

(The spaces E(“) and E*(“) are both isometric to subspaces of (E*(“))* and of
(E@)* respectively.)

For convenience we will denote by % both of the isometries A(“) and A~1*(«),
and the above two relations will be paraphrased by &/ * = & ~1,

Now we are going to define a (nonexaustive) list of parameters which will be
constantly used throughout this paper.

Let Eo = E and F; = E*. For every k € Z we define inductively the spaces E}
by Ext2 = & (E).

Notice that Fj is a subspace of Ejo for every k € Z, and that the spaces Eqx
and Eq4; are in duality for every k,l € Z, since they are subspaces of E(“) and
E*(@) respectively.

Using these dualities, we define on Ej two topologies: wx = o(Ek, Fx+1) and
wg = 0(Ey, Ex-1). '

Let (£9))1<,<s be a basis of E+ in E®), and (¢{);<;<, be a basis of E*L in
E® . For every k € Z, and every j, 1 < j < s, we define inductively the vectors
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f,(cj ) e Ey by 6,(6{22 = (5,({ )). We also introduce, for every k € Z, the 1-column

vector &g = ‘(5,(:), el 6,(08)).
For every k € Z, we define two (s, s)-matrices My and Ny by

My = (Eks1, k) = ((E;(ci)q, €M) 1<ii<er N = —Myy1 'M; L

(All the matrices My are invertible; see Lemma 1.1). )
For every k € Z and for every n > 0, we define the 1-column vector &, =

(5,(61,)1, ey E(s)) by km = > n=0 Vi Ek—2p. Notice that for every k € Z, the vector

E isin Ey foreveryn >0,1<j5<s.
For every k € Z, n > 0, we introduce the spaces:

Gk =5p[€,,: P> 0,1 <5< 5],

He= () Extyy Xe=sple):1<5 <],
p>0

X = sp[f(]) 1<j5<s)

We will also consider the spaces F' = (\;cz E2k and F. = (V,cz Eok41.
The following lemma gathers some observations and elementary results which
will be used frequently in this paper.

LEMMA 1.1. For every k € Z, every n > 0, we have:

(i) Ex is the unique predual of Exy,

(i) & : Ex — Egy2 18 wy — wi,, continuous,

(iii) Ex = Ex—2 ® Xk, and more generally E, = Ex_on, ® (@:;8 Xk—2p),

(iv) (J)IEI: s =0 for every j € [1, 5],

(v) My is invertible,

(vi) Mk+2 = Mk, and hence Ngy2 = Ny,

(vil)  (En) = Exsam, )
_ (vili) & (Gk) = Gita, & (Hk) = Hiy2, (X)) = Xiy2, and & (Xgp) =
Xk+2,n,

(ix) & (F)=F, and & (F.) = F,

PROOF. (i) and (ii) are consequences of a result of Godefroy [G].

All the other properties, except (v), are elementary and can be proved by induc-
tive arguments.

Let us prove (v). Using (i) and (iv), it is clear that the vectors (6,(0{21)195 s form
a basis of E._,, where the polar is taken in Eg;.

If det(My) = 0, then there exist scalars (o;)i1<j<s, Dot all zero, such that

la,(f,(cj_zl, (’)) = 0 for every ¢ € [1,s] (since the rows of the matrix M

are not linearly independent). From (iii), we deduce that E;___l aj(§,(c’21, z) =0 for
every z € Ej, which is equivalent to E;= 1 ajﬁ,(cQI = 0 by (i). This means that the
vectors ({,(c’_z 1)1<;5<s are not linearly independent, which is a contradiction. Then
det(Mk) # 0 and hence My is invertible. O

Another result which will be used very often in this paper is the following well-
known theorem.
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THE BIPOLAR THEOREM. Let X be a Banach space, and 'Y be a subspace of X .
Then, if Y14 denotes the bipolar of Y in X** we have: B(Y++) = B(Y) X,
where B(Y) and B(Y++) are the unit balls of Y and Y+ respectively.

2. The decomposition theorem. This part is essentially devoted to the proof
of the following theorem, which is the first main result of this paper:

THEOREM 2.1. With our notations, we have for every k € Z:
(i) Ex = G © Hy.

(ii) Hy s reflexive.

(iii) Gk s tsomorphic to G*, and dim(Gy*/Gi) = s.

(iv) The vectors (E](cj_)Qn)nZO,ISjgs form a shrinking basis of Gy.

(v) The vectors (é,(c{,)l)nzo,lstS form a boundedly complete basis of G.
(vi) The Schauder decomposition Hy & (@, —, Xk-2n) of Ex is monotone.
In particular Hy 1s 1-complemented with respect to the decomposition Ey, = Hy ®
Gk.
(vil) The Schauder decomposition @,y Xk—2n of Gk is bimonotone.

The proof of this theorem will be decomposed into several lemmas. Its assertions
will be proved in Propositions 2.3, 2.10, 2.11, 2.12, and 2.13.

LEMMA 2.2. For every k € Z, there exists a norm-one projection mg: Ex —
Ey_o such that m(Ex) = Ex_2, and ker m, = X.

PROOF. It is easy to see that if 74 is constructed, we can take mx_o = & "l o
Tk 0 (resp. Tgyo =& ompo L 1),

The lemma is then proved since we can take for 73: E() — E* (resp. m4: E(*) —
E**) the canonical projection, whose kernel is E+ (resp. E*1). O

REMARK. Throughout this paper, the notation 7 will always mean the projec-
tions described in Lemma 2.2.

An immediate consequence of this lemma is

PROPOSITION 2.3. For every k € Z, the sequence (Xk—_2n)n>0 1S @ reverse
monotone Schauder decomposition of Gy.

The first key lemma of this paper is

LEMMA 2.4. For every k € Z, everyn > 1, we have
() EkL 2n = @1;—1 Xk+1—2pr
@,, =0 Xk 2p =Ex_2n—1® Xk+1.ny
where the polars are taken in Ey4,.

PROOF. This lemma is an easy consequence of a dimensional argument and the
following:

Claim. (€k+1,p, €k—2q) = bpgNE, | My, for every k € Z, every p,q > 0.

Let us now prove the lemma by assuming the claim.

(i) By Lemma 1.1(iv) it is clear that (@;;g Xkt+1-2p) C Ef_,,, and the equality
holds since dim(€D)— Xk+1-2p) = 18, Ei_5,, = (Ex/Ek—-2n)" (Lemma 1.1(i)) and
hence dim(E_,,,) = dim(Ex/Ex—_2,) = ns (Lemma 1.1(iii)).
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(ii) Again by 1.1(iv) we have Ei_on1C (®p_0 Xk—2p)*, and using the claim
we see that Xpy1,, C (®p 0 ) Xi_2p)L. The equality (ii) of Lemma 2.4 holds since:
(1) Ex_1_2n and X1, are in direct sum (Lemma 1.1(iii)) and hence

codimg, , , [Ex—1-2n ® Xk+1,n] = dim {(@ Xk+1_2p) /Xk+l,n] =ns.
p=0

(2) (®p o ' X %) = Ek+1/(@:;3 Xk—2p)* and hence

n—1 1
codimg, ,, @ Xk—2p | =ms.

p=0

PROOF OF THE CLAIM. It is clear by 1.1(iv) that (€x41p, €k—2q) = 0 if ¢ > p.
On the other hand for 0 < ¢ < p, we have

(€101 *€k-20) = (N1 Ekvi-20 + NE1 Ek1-2q, “Ek-2)
= N{, 1 (Mk—2q + Nicy1"M—1-24) = 0.

A similar computation will show that (Ek+ 1,0y Ek—2p) = Np +1 M. This concludes
the proof of the claim and of Lemma 2.4. O
As an immediate corollary we have the following useful result:

COROLLARY 2.5. For every k € Z, every n > 0, we have EY, = Ex_2, ®
)Z'k+2'n, where the bipolar is taken in Ex 2.

REMARK. This corollary implies that Hy = nnZO(Ek_Qn_2 &) f(k,n) for every
k € Z. This equality is very useful and will be used frequently.
We are now going to prove the second key lemma of this paper.

LEMMA 2.6. For every k € Z, every m,n > 0, every 1-row matrices Ok42p,
—-m < p < n, and every vector z € Ex_o,_o we have the following inequalities:

(i) Z Ak+2plk+2p +Z|| -

p=—n

Y kiaprizp + Okbkn + T
p=1

m
(ii) D okropbrsnp + 3.

p=-n

Z Okt2p€ict2p + Qk—2n N "Ekn + T
p=1

REMARK. Roughly speaking, the lemma asserts that, modulo the matrices N,
the norm of the vector ), ax€x+z decreases if we “propagate” (to the left or to the
right) any coefficient of its expansion. In particular the decomposition D Xk—2n
satisfies a kind of neighborly property.

PROOF. Observe first that it suffices to prove the lemma for n = 1 (the other
parameters have to be arbitrary). For the other values of n, the lemma can be
proved by an easy inductive argument.

PROOF OF PART (i). For n = 1, the assertion will be proved by an inductive
argument on the value of m.
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Step 1. The case where m = 0:

Let ax, ax_o be two l-row matrices, and let £ € Ex_4. Put e = oxéx +
ak—2€k—2 + z, and assume that |le|| = 1.

By Corollary 2.5 (and the bipolar theorem), choose an ultrafilter #, matrices
Me—2.5 (B € F), and vectors z3 € Ex_4 (8 € F ) such that:

[Ak—2,88k—2 + 2]l < 1 for every B € F,
e = wi-limge s (Ak—2,88k—2 + 7).

Let A\x_2 = limges Ak—2,3 and T = wi-limgc 5 T, and let us prove that Ao =
akg—2 — axNi. (The nets (Ak—2,8)pes, and (zg)gecs are bounded by Lemma 2.2,
and the basis properties of the vectors (£7)5)1< <)

Indeed

(e, €k—1) = (kbk + ak—28k—2, Ek—1) = AcMp41 + ax—2 "My,
t : t t
e, €k—1) = lim (Ag— _9y €k—1) = Ag—2 "M.

(€,"€k—-1) ﬁe.7< k—-2,86k—2, €k—1) = Ak—2 "M

We then deduce that \p_o = ax_g —ax Nk, and hence T = ox €k +ax Npék—2+z.
Moreover

Z|| < lim ||zg|| € lim [|Ax— _o+z8| L1,
Izl ﬁeyll sl ﬂegll k—2,8Ek—2 + 5|

which is the desired result. (The second inequality uses Lemma 2.2.)

Step 2. The induction. Suppose that Lemma 2.6(i) was proved for the value
m — 1. Let us prove it for the value m (recall that n = 1).

Let e = EZ;_I ak+2p€k+2p + T, where (ax42p)—1<p<m are matrices, and z €
E_4, and suppose that |le|| = 1.

Choose an ultrafilter &, matrices Ag42p,8 (-1 <p<m—1,8€.F) and vectors
23 € Ex_4 such that:

m—1

Z Ak+2p,88k+2p + 28
p=-—1

m—1
€= Wtam" ;len,;, ( Z AMe+2p,8Ek+2p T xﬁ) :
7,52

<1 forevery €%,

Let Agt2p = limge s Aky2p.8, for =1 <p <m —1, and T = wy9p,- limpey 23,
and let us compute these limits.
For every p, —1 < p < m — 1, we have (putting Ag42m = 0):
QkyapraMicr1 + Qkrap "Mk = (€, Ekpr42p) = Met2p+2Mit1 + Akr2p’ Mi.
It is easily seen that these equalities imply

Ak+2p = Qk2p — ak+2mN]2n_pa for every p, -1 <p<m -1,

andhence T=2+) 7", aktamNy "Ek+2p-



ON JAMES’ TYPE SPACES 721
Now using the inductive hypothesis we obtain

m
> aktopbiap + okk + e Nibr—z +2
p=1

m-—1

Y Aerapbiap + Aele + AeNebe—2 +3
p=1

m—1

< lim Z Ak+2p,88k+2p + Ak,8Ek + Ak, s Nkk-2 + T8
p=1

BeF

m—1

Z Ak+2p.88k+2p + 2
p=-1

< lim <1

BeF

This concludes the proof of the inductive argument, and hence the proof of part

(@).

PROOF OF PART (ii). Lete = Z;,"____l Qk+2pEk+2p+T, Where a4 op are matrices,
and z € Ex_4, and choose a norm one vector f € Eg4opm4+1 Which normalizes the
vector

m
e = Z Cktopbhtap + ak—2Np 16k + ak—2&k—2 +z (e (f,€) =|€])).
p=1

The vector f has a decomposition f = E;"__._lak+1+2q£k+1+2q + y, where
Qk+1+2¢> —1 < ¢ < m, are matrices, and y € Ex_3. Using the orthogonality
relations (Lemma 2.4(ii)), and the result of part (i), we obtain

lle'll = (¢', f)

m
<Z aky2p€krap + k-2 Ng (€ + Nir—2) + 2;
p=1

m
Y Gkt1+20€kt142g + !/>

q=-1

m
= <Z okt2p€ktap + k-2 N 1 (€x + Nbe—2) + 7;
p=1

m
Z ak+1+2¢€k+1+2¢ + k+1(Ek+1 + Nep18k—1) + y>
q=1

m
= < Y- akizpbrrap +3;

p=—1

m
Y kt1tagbkt142q + @k(€ke1 + Nep1€ro1) + !l>
9=1

m
> kr142g€ks142¢ + 0k (Eks1 + Nis1&e—1) +¥
q=1

Slell- o

<llell -
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The first important consequence of the above lemma is

COROLLARY 2.7. For every k € Z, n > 0, we have ||ax|| = ||ak.n|| for every
1-row matriz a. In particular ||§(’)|| = Hf(’) || for every j € [1,s].

PROOF. ||ak|| > ||e€k.n|l by 2.6(i) [“shift” the a-coefficient of &, and ||k n||
> ||a€k|| by 2.6(ii) [“shift” the 0-coefficient of x—_2n—2].

The particular case is obtained using the equalities 5,(31)1 = o5 §k,n, where the
a;’s are the 1-row matrices (6;;)1<i<s. O

DEFINITION 2.8. Let % be a nontrivial ultrafilter on N. For every k € Z,
every j € [1, s] we define vectors w,(c’ ), and (s, s)-matrices o and the spaces Wy, in
the following way:

w,(c]) = wj- hm {kn,

(0k€k+2)(’) + w(’) = w;“-}lg% £,
Wi = splwy): 1< 5 <],

REMARKS. (i) These definitions make sense in view of Corollary 2.7.

(ii) We will see later that (f,(cj_) on)n>0,1<;<s is a shrinking basis of G. Then the
vectors w,(c] ) and the matrices o do not depend on the choice of Z'.

(iii) The spaces Wy and the matrices o will play an important role in the study
of the distortion properties of the space Hy and Gy with respect to & (Proposition
3.1) and in the classification of the space E considered in this paper (§5).

(7)

In the following lemma we will summarize some properties of the vectors w,;
and the matrices o;. For convenience we will introduce the 1-column vector wy =

..., wl).

LEMMA 2.9. For every k € Z, we have the following:

(i) w,(cj) € Hy for every j € (1,s],

(ii) Wi+2 =M(wk) and Ok+4+2 = Ok,

(ili) ok+1 Mitox = M.

In particular the matriz oy s invertible, and Nyox = o Nk.

(iv) wx = (15 + Nkok)ék,n + N}wg—2n—2 for every n > 0. (1, denotes the
identity (s, s)-matriz.)

In particular (w, €k+1) = "Mk — 0, Micy 1.

PROOF. (i) It is clear that 5(7) € Er_om_2 @Xk m for every m < n. Hence by

-

W
definition wk] (S ﬂmzl Ei om—2® Xk,m f = Hy, since all the spaces Ex_o/,—2 @
Xi.m are wi-closed (see Corollary 2.5).
(ii) This is an easy consequence of Lemma 1.1(ii)—(vii).
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(iii) We will compute the scalar product matrix (wk41,‘wk) in two different
ways:

(’wk+latwk> = lim <£k+l,nat'wk>

= lim hm (€k+1 s (Ekm — OkEit2))
neY m

= —th+1 ok + im (Exr1.m, kon)
nevy

= —'Mpy1'ok + My,
(We41, wi) = lin}/(wk-(-lat(fk,n — 0k€k+2))
= lim lim <§k+1 m — Ok41€k+3, (Ekm — OkEkt2))
neX me
= ox+1Mi'ok — ' Mii1tok.
By comparing these two results we deduce that k41 Mk‘ox = M. Since the matrix
M;. is invertible, this implies (det ok+1)(detox) = 1, and in particular that oy is

invertible.
We also have

—0k Nk = Okp2Mip 1 MZ! = Miyitoi "M !
= Mir1'(0ks1Mi) ™! = Mgy (Mito )™
= —dek.
(iv) It suffices to prove that wg = (15 + Nkok)€x + Nywr—2.
we = wi- lim €k = wi- lim (€k + Nkfk—2.n—
k= wie- lim Een = Wi nef/(fk k€k—2.n-1)
= (1s + Nkok) €k + Nw—2.
In particular we have
(We, *€k+1) = (Ls + 0k Ni)(€k, *Eks1) = "Mk — 0k My
Lemma 2.9 is then proved. 0O
We are now able to start the proof of Theorem 2.1. We first introduce the
following notation:

NOTATION. By Lemma 1.1(iii) and Lemma 2.2, there exists for every z € Ej
(and every k € Z) a sequence (uk,n(Z))n>0 of 1-row matrices such that

T = Z Likp(Z)€k—2p + Thk—2n © - - 0 Tg_g 0 Mk(x) for every n > 0.
p=0

(Using the orthogonality relations we see that ug () = (z,*€x11.0)' Ny TEMY)
By Lemma 2.6(ii) we have
l|tkn (2) NG ™ € + Tk—2n © - - 0 T 0 ()| < ]

for every z € Ex and every n > 0.
So, we can define on Ej a linear operator P, by

Pk(z) = wk hm T+ p, n( )N &k n Z ll'k,p Ek 2p|-
p=0
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PROPOSITION 2.10. The operator P 13 a norm one projection on Hy and
satisfies ker P, = G.

PROOF. It is clear that ||Px|| < 1, and by an argument similar to the one we
used in proving that wy € Hy, it can be seen that Py (Ex) C H.

It is easy to check that for every h € H) and every n > 0, we have h =
Nk,o(h)ék,n + Mk—2n 0 --0Mk_g 0 T(k). This implies that pi (k) = pr,o(h)NZ for
every n > 0, and hence Py(h) = h.

Altogether the above observations imply that Pk is a norm one projection, and
that Py(Ex) = Hg.

It remains to prove that ker P, = Gy.

By Proposition 2.3, every g € G satisfies g = Y2 pik,p(9)Ek—2p With norm
convergence for the series, and by Lemma 2.6(ii) we have

Zl"k,p )€k—2p

1k n(9) Ny "€k + Z k,p(9)Ek—2p
p=n+1l

This implies that Pe(g) = 0, and hence G C ker Py.

To prove the converse inclusion we will need the following claim:

Claim. For every z € Ej, there exists a 1-row matrix fi,(z) such that i, (z) =
limpey pkn(z)Ng ™ (the limit holds in K°).

Assuming the claim, let us continue the proof of the proposition. Let z € E) be
such that Pg(z) = 0, which is equivalent to

= w;' 71116n11/ |:_l"k,n( )N fk nt Zoﬂk,p Ek 2p] .
This implies, using the claim, that for every matrix A we have

n
T+ Awg = wk- hm [(/\ Ok (2)) €k m + Z /tk,p(a:)fk_g,,] .
p=0

Now since (€x — wk,*€k+1) = 0xMk41 is invertible there exists a matrix Az)
such that

(z + M@)wk, "€1) = (k0(z) — B () + A(2))(€k, €kt 1)
and then

T+ AMz)wk = wi- }tlelg [(X(z) — 7(2)) €k + Z /‘k,p(z)gk—Qp] .

p=1

(This choice of the matrix A allows us to take weak convergence instead of weak®
convergence!!) and in particular z + A(z)wx € Gk (since the vectors which appear
inside the limit are all in Gg).

Finally 0 = Px(z 4+ A(z)wk) = X(z)wk, and hence z € Gk.
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PROOF OF THE CLAIM. It suffices to prove that the sequence (pk,n(Z)Ng ™ )n>0
is bounded in K°. Indeed

lltkn (2) N ™ €|l = lltiin ()N ™ Ekinll - (by Corollary 2.7)

Z Hk,p (z) Ek—Zp

p=0
<2||z|l (by Lemma 2.2).

< (by Lemma 2.6(ii))

The boundedness of the sequence (pk,n(2) N ™)n>0 now follows from the basis

properties of the vectors (f,(cj ))15 j<s-
This finishes the proof of the claim and of Proposition 2.10. O

PROPOSITION 2.11. The Schauder decomposition Hi & (Pr o Xk—2n) of Ex
s monotone (for every k € Z).

PROOF. H; & (@;'f:o Xk—2n) is a Schauder decomposition of Ejy since
@Dy Xk—-2n is a Schauder decomposition of G (Proposition 2.3) and since Eyx =
Hi & Gg.

To prove that this decomposition is monotone we will use the fact that Gx—; C
Hit, where the polar is taken in Ej4; (since Lemma 2.4(ii) implies G = Hi41,
and hence Hif = G+2).

Lete=h+ Z;zo ak—2p€k—2p (€ € Ex, and h € Hi). Choose a norm one vector
f € Eg4; which normalizes e, and let f = Z;’_Ig Ok+1-2¢€k+1-2¢ + ¥y, for some
y € Ex_an—5, be a decomposition of f. Then using the orthogonality relations we
obtain

llell = (e, f)

n
= <e, > oks1-2¢€k+1-2¢ + Ok—2n—1(Ek—2n—1 + Niy1€k—2n—3) + y>
9=0

n+1
= <h + ) ok_2ple—2p;

p=0

n
Y oks1-20€k+1-2¢ + k—2n—1(Ek—2n—1 + Nk41k—2n-3) + Z/>
q=0
n+1
h+ Y ak_2pe—2p
p=0

< (by Lemma 2.6(1)). O

The statements of Propositions 2.3, 2.10 and 2.11 arc nothing but the assertions
(1), (vi), (vii) of Theorem 2.1. We now turn to the proof of 2.1(ii)-(iii).

PROPOSITION 2.12. For every k € Z. the space Gy 1s isomorphic to G;* and
satisfies dim(Gy* /Gk) = s. This implies in particular that the space Hy is reflexive.

PROOF. Since the matrix oy is invertible and the vectors ({,(6{22)15158 are lin-
early independent, the vectors ((0x€k+2)"?))1<;<s are linearly independent, and
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hence the vectors (w,(cj )+ (0k€k+2)9))1<j<s are also linearly independent and be-

long to Gp*** \ G.

Then s < dim(G}*/Gy) < dim(E}*/Ex) = s.

On the other hand, Lemma 2.4(ii) implies that Gi‘ = Hg4i1, hence G =
Er41/Gi ~ Gi41 (Proposition 2.10), and then G}* ~ Gi42 = Gk.

Now since Ex = Hx®Gy we have dim(E*/Ey) = dim(H* /H)+dim(G;* /Gk),
which implies clearly that Hy is reflexive. O

We are now going to prove the assertions (iv) and (v) of Theorem 2.1.

PROPOSITION 2.13. For every k € Z, the sequence (5,(3_)2"),,20,15]-53 s a

shrinking (Schauder) basis of Gy, and the sequence (E’E{L)nzo,lsj'gs 13 a boundedly
complete basis of Gi.

PROOF. (i) Since all the bases (E,(CJ_)%)lS]-SS of Xx_2n (k is fixed, and n > 0
is free) are isometrically equivalent it is sufficient to prove that EB;':’:O Xk-2n is a
shrinking Schauder decomposition of G.

We have seen before that G} ~ Gk41, and it is easily seen that the restriction
map gives such an isomorphism (i.e. Tx: Gr+1 — Gx: Tk(9) = glc.)-

Let Ik n: Gk — Gy be the natural projections on Gy with ranks Xx_2n, and let
us prove that the projections (Il ,,)n>0 induce a Schauder decomposition of G, or
equivalently that the projections (T} ! I} ,Tk)n>o0 induce a Schauder decomposition
of Gk+1.

Since Gg41 = ﬁ[f(k.u,n: n > 0], the above-mentioned result will be proved if
we show that Tk“ll'[,‘;,nTk(GkH) = )~(k+1,n. Let us prove this.

(0} o\ Te(Ekt10), k—2g) = (Tk(Ek41,), M n (“k—24))

( k+l,p,6‘nq gk 2n)
5nq6nka+1 Mk

( npgk+l,na tfk—'.’q)‘

This implies that T‘IH,‘; nTk(ék+1 p) = n,,ék.,.l n, Which is the desired result.
Now by [LT] this means that the projections (l'I,c n)n>0 induce a shrinking Schauder
decompositoin of G/, and hence the basis (ék 2,,)n>0 1<j<s of Gk is shrinking.

(ii) By the preceding computations the sequence (Xk,n)nZO is a boundedly com-
plete decomposition of G [LT]. Since all the bases (é,(cf,)‘)lstS of Xk,n (k is fixed,
and n > 0 is free) are isometrically equivalent (Corollary 2.7), we deduce that the
sequence (é,(c],,),)nzo,lgjgs forms a boundedly complete basis of G.

This proves Proposition 2.13, and concludes the proof of Theorem 2.1.

3. Regularity properties. We have seen in Proposition 2.12 that the spaces
Gk are isomorphic to G;*, and it is quite natural to ask whether G is isometric to

%", and how such an 1sometry is related to &7 .

Since G+ (the bipolar is taken in Ek42) is a natural isometric copy of G}*
we will ask whether we have G+ = & (Gk). Similarly we will ask whether Hy =
& (Hy).
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The answer to these problems (which are dual to each other) is given by the
following proposition. We will use the spaces Fy defined by Fox = F, and Faxy1 =
F..

PROPOSITION 3.1. For every k € Z, we have:
(i) dim(W) + dim[(Gk+2 N GE+)/Gk] = s. In particular G+ = & (Gy) if and
only if Wi = {0}.
(i) dim(Wky1) = dim(Hg/Fx). In particular Hy = & (Hi) if and only if
Wk+1 = {0}
PROOF. (i) Since Gx* NGyy2 = Ge ® {g € G&1: g = a2},
dim[(Gx42 NGr1)/Gk] = dim[{e € K*: aéky2 € Gi 1}

But afkr2 € Git if and only if aoy'wx = 0. Indeed, by definition
o(Eky2 + 05 'wi) € G for every matrix @, so aék1 € G implies ao, 'wy €
G, and since a0y, Lwi € Hy we deduce that oo, Lwi = 0. The converse implication
is trivial. Hence

dim{(Gx+2 N GE+)/Gi] = dim[{a € K®: a0y wi = 0}]
= dim[{8 € K*: fwy = 0}]
= s — dim Wy.

If Wy = {0}, the above equality implies that G+ = Git+2 = & (Gk), since
dim(Gg+2/Gk) = dim(G¢+ /Gx) = s. The converse implication is trivial.

(ii) To prove the second assertion of Proposition 3.1, we need the following
lemma:

LEMMA 3.2. For every k € Z we have
(i) Fi = Hi 0 [N, ker(€),)],
(ii) (w,(f_z1 - 51(321) € Hit for every j € [1, ).
Let us continue the proof of the proposition assuming the lemma.
dim(H/Fy) = dim(spl€(), lr,: 1 < 5 < s])
= dim(splw(}, |, : 1< j < s)
= dim(Wi+1)

since w,ﬁ’ll € Hi+1 = G, and E; = Gy © Hy.

Notice now that &/ (Hi) = Hj if and only if Hiy = F. Indeed & (Hy) = Hy
implies Hx C Eg_2, for every n > 0, and hence Hy = Fy (since Fx, C Hy). The
converse implication is trivial. Then by the above equality & (Hx) = Hj if and
only if Wi, = {0}.

PROOF OF LEMMA 3.2. (i) We will use the notation i »(z) introduced in the
proof of Proposition 2.10.

We have seen that every h € Hy satisfies h = ,uk‘o(h)ék,n + Tk—2n O+ OMk_g O
mk(h) for every n > 0, and that pko(h) = (h, k1)t M, L.

Then such an h € Hi is in Fy if and only if pgo(h) = 0 (since the vectors
£k.n are linearly independent) which is equivalent to (h,*€k+1) = 0, i.e: h €

i1 ker(f,(ch).
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This proves (i) since Fx C Hy.

(ii) We have seen before that Gx—; C Hi. The conclusion of the lemma holds
since Hj is wj_ ,-closed, and since
wl(gi)-l - fl(cizl = wl:+l'71ti€n?1/(Nk—1€~k—l,n)(j)~
This concludes the proof of Lemma 3.2, and of Proposition 3.1. 0O

We conclude this section with the following result, which is in the same spirit of
ideas as Lemma 3.2:

LEMMA 3.3. For every k € Z we have Wy, = (Gx ® Fx)*, where the polar is
taken in Exy,.

PROOF. Suppose that we have proved that Wiy, C (Fx @ Gx)*, and let us
prove that the equality holds.
Indeed since Fy C Hy and (Gi @ Fi)* = (Ex/Gx @ Fi)* we have

dim(Fy ® Gx)* = dim(Gx ® Hy/Gx ® Fi) = dim(Hy/Fi) = dim(Wi41).

To prove that Wiy C (Fr ® Gi)* it suffices to show that w,(cj+)l € (Fr ® Gi)*
for every j € [1, ).

We have seen before that w\’), € Hg41 = G. On the other hand wl!), € F¢
since E,(izl € F{} (Lemma 3.2(i)) and (w,(cﬂzl - 5,(3_21) € Hit C F-.

This concludes the proof of Lemma 3.3. O

4. Structure of the onto isometries. Theorem 4.1 will describe the structure
of the onto isometries on E. Its main application is Theorem 4.5 which asserts that
the “space parameters” corresponding to E are intrinsic.

Let I: E — E be an onto isometry of E, and let I(“) and I=1*(“) be the onto
isometries induced by I and I~!* on E(+) and E*() respectively.

We will denote by .# both of these two isometries. Observe that we have .#* =
# 1 (in the sense that (I“))*|g.) = (I71*“))~! and (71(“')*)*|E<v) = (I@)~1)
and (F~1)* = #. (Notice that .# ! coincides with the “isometry” which corre-
sponds to 71.)

THEOREM 4.1. With our notations, for every k € Z, and every n > 0, we
have:

(i) F respects the spaces Ek,Gk,Hk,Xk,f(k,n,Wk,F and F,, where the expres-
ston “F respects Z “means” F(Z)=2Z".

(1i) If Ag is the (s, s)-matriz such that F (&) = Axk then

(a) Ak+1 MitAx = My,

(b) Akt2 = NkAeNg ' and Ay = of 'Agor,

(¢) F (Ekn) = Akin and F (wi) = Agwy.

REMARK. The relation (ii)(a) implies (det Ax4+1) - (det Ax) = 1, hence all the
matrices A are invertible. This is not surprising since the Ax’s are the matrices
associated to the isometries .7 |x, .

The key lemma in the proof of Theorem 3.1 is the following result [G].
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LEMMA 4.2. Let X be a Banach space such that X* 2 I'. Then every onto
tsometry of X* is w*-w* continuous.

Applying the above result twice, we see that for every onto isometry I of E,
there exists an onto isometry J of E such that J** = AIA~!. If we denote by £
the “isometry” corresponding to J, the above equation implies ., = &% ~! and
F =/~ &/ (in the sense that J®) = AW [(@)(4(W)~1 etc.).

We will also need the following elementary result:

LEMMA 4.3. IfT: X — Y is an onto isomorphism, and if Z is a subspace of
Y, then T*(Z+) = [T~} (2)]*.

PROOF OF THEOREM 4.1.

Proof of 7 (Ex) = Ex. We will prove this by induction on k.

It is clear that ¥ (Ex) = Ej for every k > 0. (Ex = E®). the usual dual of
order k.)

Suppose now that we have proved that for some k, .7 (Ex) = Ej for every onto
isometry I of E.

Then 7 (Be—s) = & "1 (Bys) =/ 71 (B) = f ~!(Bx) = Bros

Proof of #(F)=F and F(F,) =

=7 (ﬂ E%) =) F(Ex)=F
kEZ keZ
The argument is similar for F*.
Proof of 7 (Xi) = Xi and # (Gi) = Gi. By Lemma 2.4 we have Xy = E, %%,
then by applying Lemma 4.3 to the isometry ¥ ~': Ex_; — Ei_;, we obtain
F(Xe) = (F ) (By53) = |7 (Beg)]* 5 = X

Now since Gy = 5p(Xk—_2r) we deduce that 7 (Gx) = Gk
Proof OfAk.HMktAk = M and Agy2 = NkAka_l.

Mp = (Ekt1, 6k) = (F*F (Ek41), k)
= (F (Ek+1),F (&) = (Ak418k+1, " (Akér))
= Ag+1 MitA.

Applying the above relation twice we obtain
Ak+2 = Mip " A d My = Micd (Mt A MTY) TIME = Nihe Ny

Proof ojf(Xk,,,) = Xk,n and f({k,n) = Akfk,,.‘ An easy inductive argument
shows that Ax_s, = N_"Ax N} for every n > 0.
Then

F (€kn) = (ZN €k 2,,) =) NP F (Ek-2p)

p=0 p=0

n
= Z N,fAk—2p€k—2p = Akék,n-
p=0

This relation implies in particular that & (Xkn) = X kon-
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Proof of # (Hy) = Hg.

j(Hk) = f ﬂ (Ek—2n—2 & Xk,n) = n f(Ek—2n—2 @ Xk,n)

n>0 n>0

= [ |F (Ex-2n—2) ® F (Xx.n)] = H.
n>0
Proof of & (Wy) = Wi and S (wx) = Agwg. We will use the fact that the
operator £ : By — Ej is wi-wj continuous (Lemma 4.2).
Then _ _
I (wi) = F [wg- im &k pn] = wi- im F (€k n) = Awi.
ne# nex

In particular we have % (W) = Wy.
Proof of A2 = O‘;IAkO‘k. By an argument similar to above we obtain

OkMkt28kt+2 + Agwk = F (0k€kt2 + wk) = Ak(0kEkt2 + wi)
and hence oxAk428k+2 = AkOki+2-
Since the vectors ({,(0132)15 j<s are linearly independent we deduce that oxAx42 =
Akak.
This concludes the proof of Theorem 4.1. O
An immediate consequence of Theorem 4.1 is

COROLLARY 4.4. Let E be such that dim E**/E = 1, and E = Go. Then
every onto isometry of E is trivial (i.e. I = ¢ldg, |e| =1).

PROOF. All the matrices Ay are reduced to scalars, which then must satisfy
[Ak] = 1. On the other hand by Theorem 4.1 we have Ay = Ag for every k € Z,
and since F = Gy, this implies that I = Ag-Idg. O

REMARK. We will see later that the James’ space J satisfies the assumptions of
the corollary. Hence it has only trivial onto isometries. This is also the case for its
dual space J*.

REMARK. We will see later (Theorem 5.1) that we can assume that No = N; =
1,. Hence, if the space E is such that F = Gy, every onto isometry I on E satisfies
I(Zg° an€_an) = 2o anA€_s, for some square matrix A.

As an application of Theorem 4.1 we are going to show that all the spaces defined
before are intrinsic, in the sense that they not depend neither on the choice of the
isometry A, nor on the choice of the bases (£7));<;<, and (£{))1<;<s of E* and
E*+ respectively.

THEOREM 4.5. The spaces Ek,Gk,Hk,Xk,f(k,n,Wk,F and F, are all intrin-
sic.

PROOF. Assume that we have proved that the spaces Ej are intrinsic. Then all
the others are also intrinsic. Indeed:

The Hy's, F, F, are intrinsic by their definitions.

The X}’s are intrinsic since Xy = E,'CL_E;, hence this is also the case for the Gy ’s.
The Wy’s are intrinsic since Wy = (Gr—1 ® Fx—1)1 5.

The Xk,n’s are intrinsic since Xk,n = (Idg, —Tk—2n 0O Mk_2 0 k) (Ekl_l;i"_Q)
and since the projections 7 are intrinsic.
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Let us prove now that the spaces Ej are intrinsic.

It is clear (by their definitions) that the spaces E depend at most on the isometry
A.

Let A and B be two isometries, and let us denote by E(A) and E,(CB) the spaces
corresponding to A and B respectlvely

It is clear that E(A) E; (B) for every k > 0.

Assume now that we have proved that E(A) = E(B) for some k. Then by
applying Theorem 4.1 to the isometry I = B~ 1A we obtain E(B) ZB ‘I(E,(CB)) =
B- (E,(CA)) =%~ IM(E,(CAQ) E,(CA)Q, since it is easy to check that ¥ = &1« .

This concludes the proof of Theorem 4.5.

5. Reduction of the parameters and classification. The following theorem
is our second main result. It will allow us to “classify” the spaces F considered in
this paper.

THEOREM 5.1. It is posstble to choose the isometry A: E — E** and the

bases (§§f ))15 j<s, and (Eflj ))13 j<s in such a way that the corresponding parameters
satisfy:
( ) Mk = (=1)*1,, and hence Ny = 1, for every k € Z.

(-1k1
=ze (71 ° )®° in the complex case, and

— -1 0\* cos —sin cos —sin

G0=0® (—1 —1) ® (singl1 cosgoSOl1 ) ® 9 (sinz;i cosgoid)
in the real case, where T is a diagonal unitary matriz, and p; Z0 [r] for 1 <i < d.
Moreover 0, = tog .

(ili) dim Wy = Card{j € [1, s]: w,(c’) # 0}, for every k € Z.

Let us first make precise the meaning of the notations used in the theorem.

For every natural number n, 1,, denotes the (n,n)-identity matrix.

If R and T are two square matrices, R @ T denotes the square matrix (g g),
and R®" denotes the matrix R &® - - - ® R n-times.

REMARK. In the case when Ny = N; = 1, it is quite natural to consider
the spaces chj ) = E[f,(cj_)zn: n > 0]. Unfortunately we were not able to decide

whether or not we have Gx = @;_, chj ). The interest of the spaces chj ) comes
from the fact that they satisfy chj)** ~ chj), and dim(G}cj)**/chj)) = 1. Indeed,
by Theorem 2.1(iv)—(v) and Lemma 2.6, the sequence (E,(CJ_) 2n)n>0 is a bimonotone,
neighborly, and shrinking basis of G(j ) and its summing sequence (Z;::o £ ,(c’_) 2p)n>0
is a boundedly complete basis of G(’ ): hence by [B] we have

Gl(cj)u G(J) oK - ('wk +0'k§k+2)(1) ~ G(J) oK - 6(]) = G;cj).

Proofs of (ii) and (iii) are purely algebraic. They will make use of the following
norm-one operators 7y : Er — Ej defined by

i (T) = wy- 1111&1/ Mk—2n © -+ O Mk—o © Tk ().
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We will use the following properties of the operators #:

LEMMA 5.2. For every k € Z, we have
(i) #x(wk) = —okNwy,
(il) #k(z) = Pe(z) — (2, 'wis1) My 'wi for every x € E.

PROOF. (i) By Lemma 2.9(iv) we have

T (Wk) = wg- rl;ienflllwk ~ (1 4 0k Nk)€k.n] = —0k Nxwg.

(i) We have seen before that for every h € Hy we have h = (h, ‘§k+1)‘M,:1§~k,n+
Tk—2n0" - -omk_g0mk(h). Then by taking wy-limits we obtain h = (h,*€c+1)t My "wi
+ #g(h).

Since #x(Gk) = {0}, and by 3.2(ii) and 3.3, the above equality is equivalent to
1(z) = Pi(z) — (2, twi1) My 'wy for every z € Ex. O

Another ingredient in the proof of Theorem 5.1 is the change of bases formulas
(with respect to a fixed isometry A: E — E**).

Let C and C. be two invertible (s, s)-matrices, and consider the new bases £
and ¢} defined by &5 = C.&3 and & = C&4.

It is easy to check that the parameters corresponding to £ and & satisfy

(1) €;c = Ckska (
(%) (iii) N} = CkNkCY,
(

(v) wi = Crwg,

i1) My, = Cr41Mi'Ck,
iV) é;c,n = Ckék,ﬂ’
vi) o}, = Ckaka’l,

where we have put Cor = C and Car4; = C. for every k € Z.

PROOF OF THEOREM 5.1.

Proof of (i). The proof will be divided in two steps. In the first one we will
prove the existence of an isometry A: E — E** for which Ng = N; = 1,. In the
second step we will show that by a suitable change of bases we may assume that
the above-mentioned isometry satisfies My = —M; = 1,.

Step 1. Assume that we have proved that there exists an isometry A: E — E**
for which Ng = N; = 1,.

If we take C = 1, and C. = My ', the change of bases formulas (*) imply that
My=-M{=1,.

Step 2. Let A: E — E** be a given onto isometry between E and E**. We are
going to construct a new isometry B: E — E** for which NéB) = NI(B) = 1.

For every z € E, define

n n—1
I(z) = wp- lim [E po,p(2)Ng *€-2p + & 7 (z -3 uo,p(x)6—2p>] ,
p=0

p=0

n-—1 n
J(z) = wp- lim [Z 0,p(z) No&_2p — (z -3 uo,p(z)e-zp)] :
p=0

p=0

where the vectors & denote those corresponding to the isometry A.
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Let us show first that these definitions make sense. Indeed, using Lemma 2.6 we
obtain

llzll = Z po,p(T)é—2p + T_2p 0 -+ 0 T_g 0 Mo(x)
p=0

n
D 10.p(z)NG  €_2p12 + Hon (T)€—2n + T_3n 0 -+~ 0 T_3 0 o (2)

>
p=0
n—1
= Z/‘O,p No §—2pt2 + (93 - Zﬂo,p x)§—2p)
p=0
= Z/‘OYP(Z)NO_IE—M +7! (""‘ - Z l‘o,pf—zp)
p=0 p=0

This shows that I is well defined, and that ||I|| < 1.
Similarly, using Lemma 2.6 again and Lemma 2.2 (for the last inequality) we
obtain

n
Izl = |3 sop(2)€-2p + T_2m 0+ 0 m_3 0 mo(2)

p=0
n—1
> |lpo,0(z)é0+ Y Hop(z)No€—2p—2 + T_2n 0+ 0 T_3 0 mo(x)
p=0
n—1
= |l1o,0(z)€2 + Z to,p(T)Nob-2p + & (93 - Z Ho p(z)€—2p)
p=0 p=0

n—1 n
2 Z Ho,p(z)No&—2p + & (37 - E Mo,p($)€—2p)

p=0 p=0

Hence J is well defined and satisfies ||J|| < 1.

Clavm. JI = IJ = 1dg, hence both I and J are isometries of E, and are inverse
to each other.

Assume that we have proved the clalm, and prove that the isometry B =

Al: E — E** satisfies N(B) N(B) 1,.
Recall that the vectors £ (B) are constructed starting from fixed bases ¢3 and &4,

ie.: S(B) = €3, and E(B) = &4. Now applying Theorem 4.1 to the isometry J we
obtain

&P =B 1(ey) = &) = A,
= NoAS) Ny 1e; = Nog,

since it is clear that Np is equal to the matrix of J#|x,.
Then

B B
MEP = (P, 4By = MytNg, MP = (P, 4e(B)y =
N = M) = 1, N = ) =,
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PROOF OF THE CLAIM. It is clear that for every g € Gy we have: I(g) =
Ym0 Ho,n(9)Ng 1€-2n and J(g) = 372 pon(g)No€—2n With norm convergence
for the series. Then both I and J respect G and satisfy J1|g, = IJ|g, = Idg,-

Let us prove now that I and J also respect Hy.

We have seen before that every h € Hy satisfies h = Mo,o(h)éo,n +T_gp0-+-0
m_g oo (h) for every n > 0. Then I(h) is given by

I(h) = wp- iglg/[ﬂo,o(h)No_léo,n +& " (h = poo(h)€on-1)],

and a similar argument as in 2.9(i) gives I(h) € Hy. We prove similarly that
J(Ho) C Hp.

To prove the claim it is now enough to prove that JI|g, = IJjg, = Idy,, since
E = Gy ® Hy. To do this we need to compute, for every h € Hy, the expressions
of I(h) and J(h).

(1) I(h) = wg- lim [uo,0(R)Ng *€o,n +o ~(h = oo (h)éo,n-1)]
= wp- ’llg[/to,o(h)No_lﬁo + 71 (h)]

= po,o(h)Ng ' &+ 71 (h).

(2) J(h) = wp- iierf}/[ﬂO,O(h)NOEO,n——l +& (h — po,o(R)€o,n)]
= wp- '{ielg[—ﬂo,o(h)fz + & (h)]
= mo[# (h) — po,0(h)&2] = w3 0 (h).

Hence JI(h) = g o & [uo,0(h) Ny €0 + & ~*(h)] = h, and one can also check
that IJ(h) = h.

This concludes the proof of the claim and of part (i) of Theorem 5.1.

From now on, we will always suppose that the isometry A: E — E**, and the
bases &3 and &4 are chosen in such a way that My = (—1)*1, for every k € Z.

To preserve this property, all the forthcoming change of bases will be done only
with matrices C and C, which satisfy C.'C = 1,.

PROOF OF 5.1(ii).

1st case: the complex case. Without loss of generality (by doing a suitable
change of bases if necessary) we can assume that o¢ is a Jordan matrix, i.e.: o9 =
p1 D p2 @ - D p, where each p;, 1 < j <r,is a square matrix of the form

L,
1 -

Pr =2 li
11

[We use the fact op is invertible, i.e. A; # 0, to obtain this special form for the
matrices p;.] Hence oy = toy ! (Lemma 2.9(iii) satisfies o1 = il @ip @@
t 1
pr)-

We are now going to prove that for every j, 1 < j < r, we have [A;| = 1
and rank(p;) < 2. This will be proved only by using the fact that the sequences
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(fr;c‘(w,(cj)))nzo are bounded for every k € Z, 1 < 7 < s, and the formulas 7 (wx) =
—O Wk, and (wk,‘fk.,.l) = (—l)k(ls +0'k)-
Since all these formulas are “decomposable” it suffices to consider the case when

oo =AM\ E ]
0 :.1°1

The general case follows by an obvious “block” argument.

Now we want to show that in this particular case we have |A| = 1, o9 is of rank
at most equal to 2, and that the equality holds only if A = —1.

(1) Case when rank (0p) = 1. In this case we have 7‘1’3(10((,1)) = (—/\)"w(()l) and
i (wi) = (-A~1)mwfV.

Since the sequences (7% (w{"))n>0 and (#7(w{"))n>0 are bounded, we have
(Al <torw =0) and (|A|>1orw{" =0).

So if w") # 0 and w{" # 0, we have |A| = 1.
On the other hand we have A = —1 if w(()l) =0 or wi") = 0. Indeed:

w(()l) =0 implies 0 = (w((,l), Eﬁl)) =14+, and
wi?) = 0 implies 0 = (w{", &)y = —1 4+ A7Y).

This shows that we have always |A| = 1.
(2) Case when rank (0g) = s > 2. Easy computations show that we have

w5 (ws?) = ()"l ) = (A7) wf?,
w3 (w§®) = (=X nwf? + ),
and
™) = (A7) ™ - nug).
An argument similar to the above shows that |A| = 1. And using the boundedness

of (1?6‘(1082)))"20 we deduce that w(()l) =0, and hence A = —1, since (wt(,l), §1)) =

1+ A

We have also w{”) = 0 by the boundedness of (77 (w{*™"))n0.

If we assume that rank (og) = s > 3, an easy computation leads to 7§ (w(()s)) =
nw(()2) +w((,3) (we use that w(()l) =0, and A = —1); this implies that w((,2) = 0, which
is a contradiction since (wg‘)), §§1)) = (1, +00)(2,1) = —1L.

Let us recapitulate what we have proved. If

| A : l
o=t . )
[k 11
then only the following cases hold:
(1) rank(op) =1 and |A| = 1.

(2) rank(og) = 2 and A = —1. In this case we have 'wél) =0, w(()z) #0, wgl) #0,
and wfz) =0.
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This proves 5.1(ii) in the complex case.

2nd case: the real case. The arguments will be similar to the ones used in the
complex case.

By a suitable bases change we can assume that 69 = p1® - ®p, ®T1 B - D 1y,
where each matrix p;, 1 <1 <, is of the form

1 ]
A1 ;
lk’-l 1
and each matrix 7;, 1 <7 <t is of the form

(i) < :I
I;(Zt)

.

m ' R(sO) R(p)

R(gi) = (cosgo,' —singoz-) ’

1

where

sinp; cosp;

and y; is a real scalar. The angles p; must satisfy p; # 0 [r], since the 7;’s are the
Jordan matrices corresponding to the pure complex eigenvalues of the matrix og.

As in the complex case it suffices to consider the case when o is a “p-matrix”,
which was done before, and the case when oy is a “r-matrix”, which is the remaining
case.

We are going to prove that if oo is a “r-matrix”, then we have necessarily op =
R(p) for some ¢ (satisfying ¢ # 0 [7]).

(1) Case when rank (0¢) = 2. In this case we have

R . w(()l) w(()l)
—nY) T = (—u)"
(o (20 ) = (15
and
on (w1 iy (@)
Rl (M) ) = oy (M)
w,y Wy

This implies that we have (|u| < 1 or w(()l) = w(()z) =0) and (|u| > 1 or wgl)
2 _ ).

(
wy

But we cannot have w(()l) = 0, since if it were the case we would have 0 =
(w(()l), 552)) = —pusin g, and this equality implies ¢ = 0 [] (since u # 0) which was
excluded. Similarly we cannot have w§l) =0.

So we have |u| = 1, and hence oo = R(p) for some o (since —R(p) = R(p+)).

Observe that in this case we have dimWy = 2, since if not, we would have
0 = det((wo, €4)) = 2(1 + cosp) which is impossible. A similar argument gives
dim W1 =2.
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(2) Case when rank (0¢) = 2s > 4. We are going to prove that this case cannot
hold. If it were the case, easy computations would lead to

e (1)
R(—np)igy (()2) = (—u)" (2)
Wo

w(Zs—l) (2s 1)
R(ngo)fr{‘ ! (29) = (_”—l)n (23)
wy

R(—np)7g (3%3;) = (—p)" [ ( E;;) + ( Ej; )]

An argument similar to the above shows that |u| = 1, and wol) # 0. But the

boundedness of
(3)
An
(55 (2tn))
n>0

implies that w( ) = 0, which is a contradiction.

This proves 5.1(ii) in the real case.

PROOF OF 5.1(iii). We will give the proof only in the complex case. In the
real case the proof is exactly the same.

Let ®
_ (-1 0)\°*°
a()z(_la)@U@(__l _1) y

where 7 is a diagonal unitary (b, b)-matrix whose diagonal terms are all different
from —1.

The first result we are going to prove is:

Claim 1: If 0 has the form described before, then every k € Z:

and

dim W = Card{j € [a + 1, s]: w,(cj) #0} +dimsp[w(J) 1<j<a

PROOF. Let a be a 1-row matrix such that awo = 0. Lemma 2.9(iv) implies
that a(1, + 09)& = 0, and since the vectors (E(gj ))1958 are linearly independent,
this implies a(1, + 0¢) = 0.

Using the special form of the matrix op, we deduce that a(2+7) = 0 for every

J € [1,b] and ale+5+23) = 0 for every j € [1, ¢, and hence Z -1 a")w ) =0 (since

(a+b+21 1 — 0 for every j € [1,c]).

ThlS shows that dlmsp[w(’) a+1<j<s= Card{] €la+1,s: w(’) # 0}
and that the spaces sp[w(J ia+1< J < 8] and sp[w0 1 < j < a] are linearly
independent.

This proves the claim for the even indices. A similar argument holds for the odd
indices.

The proof of 5.1(iii) will be complete if we prove the following:
Claim 2. 1t is possible to choose the bases £3 and &4 in such a way that o
keeps the special form described above and such that dim sp[w(’ )i1< j<al=

Card{j € [1,a]: w{?) # 0} for every k € Z.
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To prove this claim we will need the following lemma:

LEMMA 5.3. If o9 has the form described above then, for every k € Z, and

every = € Ex we have 3°5_, (z, w,(cj_zl)’w,(c]) 0.

PROOF. Applying Lemma 5.2(ii) and an easy inductive argument we obtain that

n—1
1 (z) = Pi(z) - (=1)*(z, *wet1) (E(—Uk)”) Wi
p=0
(use the fact that (Pg(z), 'wk+1) = (z, wk41): Lemma 3.3).
Now using the special form of the matrix o¢ and nullity properties of the vectors
w,(cJ ) for J > a+b, the above equation can be written

a+b n—1
iR(z) = Pe(z) — (-1)* Z(x w,(c’_zl) [Z(—Uk(j,j))p] w?

Jj=1 p=0

= Pi(z) - (- nE T, wk+l ywd

(0 y1= (=0k(5, )" ()
+ z,w —_—w
‘_;H k) 1+0k(5,5) *
This implies the desired result, since the sequence (#¢(z))n>0 is bounded. O
PROOF OF CLAIM 2. This claim will be proved in two steps.
Step 1. Without loss of generality we can assume that (w{’ ))ISJ‘SGO is a maximal
linearly independent subsystem of (wo ))1< j<a- Then there exists a matrix Ty such

that (w{'**, ..., wl®) = @, ..., wF)T,.

Let
1o, | ©
C= 1,- dC.='C™).
(tTO la ao) ® e (an )
If we define the new bases £; and &} by &3 = C.&; and & = C¢4 it is easy to check
that we have o, = 0o, wa(’) = w((,J) for every j € [1,a0], and wO]) = 0 for every
J €lao +1,a].

Step 2. By the preceding step, we can suppose without loss of generality that
the vectors (w(() ))1<]<a0 are linearly independent and that 'w(J ) = 0 for every
S [ao + 1, a].

By Lemma, 5.3, for every £ € E_;, we have Zap ( ()

z, Wy )w(j) =0, and by linear

independence and since (E_;)* = Ey, the above equations imply that w(J ) = 0,
and hence w =0, for every j € [1,a0]. '
Without loss of generality we can also assume that (w; (a+1-j )) 1<j<a, IS a maxi-

mal linearly independent subsystem of ( wy )15 j<a- Then there exists a matrix T}
such that

(e, wft7®) = @, w7

Yo Wy
Let

Co =14 @ <1a-ao—a1 | -1y

_to—1
0 | ™ )EBIS-G (and C =°C; ).
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If we consider the new bases & = C.¢&3 and & = C¢&, it is easy to check that we

have of = 09, w(')(j) = w((,j) for every 5 € [1,a], w'l(j) = 0 for every j € [1,a — a4],
and w}?) = w{? for every j € [a + 1 — ay,4].

This concludes the proof of Claim 2 and of Theorem 5.1. 0O

In view of Theorem 5.1 it is quite natural to consider the following definitions.

DEFINITION 5.4 The real case: Let E be a real Banach space which is isometric
to its bidual E**. We will say that E is of type (s;ao,a1,b,¢,d) if dim(E**/E) = s,
and if, after the reduction of the parameters we have:

(i)

-1 0\*
w0=(-10070 (1} °) @REenooRMw.).

where 7 is a diagonal unitary (b,b)-matrix not having —1 as an eigenvalue, and
i #0 [r] for every 7 € [1,d].

(i) w§) = 0 for every j € [ao + 1,4}, and w{’) = 0 for every j € [1,a — a;].

In the complex case we define similarly the spaces of type (s;ao,a1,b,c) [the
parameter d disappears].

Examples of each type, both in the real and the complex case, could be con-
structed (by suitable direct sums) if we construct examples of spaces of special
types. To make this more precise let us introduce the following terminology:

DEFINITION 5.5 Let E be a Banach space which is isometric to its bidual E**.
We will say that:

(1) E is of type (I) if dim(E**/E) = 1, and if w{" =0, and w{") = 0. (In this
case we have op = —1.)

(2) E is of type (Ilo) (resp. of type (II)) if dim(E**/E) = 1 and if w{" # 0,
and wﬁl) =0 (resp. wf(,l) =0, and wgl) # 0). (In this case we have also 09 = —1).

(3) E is of type (III) if dim(E**/E) =1, and if 09 # —1. (In this case we have
w #0, and wi" #0.)

(4) E is of type (IV) if dim(E**/E) =2, and if 0o = (Z} °/). (In this case we

* have w((,l) =0, w((f) #0, wgl) # 0, and wf") =0.)

(5) (In the real case only) E is of type (V) if dim(E**/E) = 2 and if 09 =
(g’;’: o pv:) for some ¢ # 0 [7]. (In this case we have dim Wy = dimW; = 2.)

It is now clear that by direct sums we can produce examples of any type if we
can construct examples of the above special types. This will be the subject of the
next section.

REMARK. It is easy to see that E is of type (I) [resp. (III), (IV), (V)] if and
only if E* is of the same type, and that E is of type (Ilp) [resp. (II;)] if and only
if E* is of type (II;) [resp. (IIp)].

6. Examples. In what we have done before, we have imposed no normalization

conditions on the vectors E,(cj ). We are going to prove that these restrictions hold
automatically in the case s = 1.

Recall that we always assume that the parameters have been reduced (so that
they satisfy Theorem 5.1).

LEMMA 6.1. In the case s =1 we have
(i) Max(|1 + aol,1) < [|&oll - ||&1]l £ 2,

(ii) éoll - &xll = 1 &f wo = 0 and wy = 0.
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PROOF. (i) Since (£1, &) = 1 we have ||&]| - ||&1]] > 1.

To see that ||&l|-[|1]| > |1400]| recall that we have [jwol| < ||€o|l and [|lw: || < ||€1]|
(Corollary 2.7). Then by Lemmas 2.9 and 3.2, we have |1 + og| = |(wo,w;)| <
léoll - €2l

On the other hand, for every € > 0, let aég + -3, T_2 € E_2, be a norm one
vector such that o = (ao +2-2,&1) = (1 — €)||&l], then (1 — e)||&]l - [Iéoll <
llaoll £ 2 by Lemma 2.2, and since € > 0 is arbitrary we have ||&]| - ||&1]] < 2.

(ii) If wo = 0 and w; = 0, we have Hox = F and Hoky; = F., for every k € Z.

By Theorem 2.1(v), there exists f. € F. such that ||f. + [|&]|€1]] = 1 (indeed
if fo+ Y oprg@—1-2n€—1-2n + ||&0]|€1 is @ norm one supporting vector of &y, then
[« + ||€0l|€1 also supports £y, and hence has to be of norm one), and there exists
f € F such that || f + ||&1]|&2]l = 1.

By Lemma 2.6 we have |[f + €1 (€2 +€o) || < 1, and by Lemma 2.2 || + ||&1 |l
<1

Then

I(fe + [1oll€r, £+ &) = [{fe, £) = ol - &alll £ 1
and

[{f« + [1€0lI€1, f + I€0ll€0)] = [{Fus ) + 1ol - €l < 1.

These two inequalities lead clearly to ||l - ||€1]| =1. O

In all the following examples we exhibit an isometry A for which My = (—=1)¥1,.
(We leave the verification to the reader.)

Unfortunately we were not able to produce examples of type (IV).

EXAMPLE 6.2. Spaces of type (I). We are going to show that the spaces v are

D
of type (I) for every p, 1 < p < 0o. (v9 is the usual James space usually denoted

by J.)
Let us first recall the definitions of the space vQ [J, LT].
For 1 < p < 0o and a sequence of scalars (oy)n>0, let

) k-1 1/p
) el =575 Sup |lan, = @nolP + D lan,y, — an,l?
2U/P 430 ;
0<no <<y =0

(Il(an)llv, < 00 = limp=oo ap exists) .
The spaces v) are defined by

Ug = {(an)n>0 € co: [|(an)]lv, < oo}

equipped with the norm given by (x).
Since the natural basis of vg is bimonotone and shrinking for every p €|1, 00|, its
bidual (vg)** is given by

(v9)" = {(@n)nz0: l(@n)lls, < oo}
equipped with the norm

l(en)lls, = Sxp|l(a0,a1,...,aN,O,O,‘..)||1,p.
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With this norm, v9 is isometric to (v9)**, and the isometry A: vd — (v9)** is
given by
A(ao,al,ag,...) = (a1 — Qqp, Q2 —ao,...).
To compute A*, we need some information on (v3)* and (v9)®).
If (ag,03,...) € (v)*, then Y7 | oy exists. Indeed, if (6,)n>0 denotes the
natural basis of vg, and (6;;)n>0 the corresponding biorthogonal system (which is
a basis of (vg)* since (6n)n>0 is shrinking), then

M M M M
Y anl= <Z andn, > 5n> <Y ane:
n=N n=N n=N n=N

This implies that > ; o}, exists.

Every element of (vg)(3) can be represented as a sequence (o), af, . . . ; &), where
ay,al,...) € (v2)*. Such an element acts on (v2)** as follows

0 Q1 b P

[o o}
((ag,ai,...;8); (a0, 01,...)) = Zana; +d'3i=r§°a,,.
n=0

With this convention an easy computation leads to

oo
A*(og,01,...;6) = (—& — Z an,0g, 01, ... ).
n=0
Now it is easy to check that we can take & = —) 6, (the convergence

holds in the w*-sense). Indeed if e* = (ag,07,...) € (v9)* (i.e.: & = 0), then
(A*(€*), Xoprgbn) =0.

With this choice of £2, and by the definition of A, it is easily seen that £_o, = 6,
for every n > 0. This shows that Gg = vg, and then Hy = {0}. Hence H; = G(J)' =
{0}, and then Gy = (v9)*.

This concludes the proof of the fact that the spaces vg, 1 < p < o0, are of type

(M.

EXAMPLE 6.3.: Spaces of type (Ilp) and (II;). Notice first that it suffices to
construct examples of type (IIp). Examples of type (II;) are then obtained by
taking the duals of the first ones.

For spaces of type (II) we have to consider the parameter § = ||&|| - ||€1]| which
belongs to [1,2].

Let 6 € [1,2], and consider on the space K @ v the norm given by

1
1(9500,01,--.)1 = Max { 700,01, luyiSup 15 — .

If (6n)n>0 is the natural basis of v9, and if v = (1;0,0, ... ), it is not difficult to
see that the sequence (v,69,61,...) is a monotone shrinking basis of K @ v9. Then
the bidual norm on (K @ v9)** is given by

1(B; g, ay,y .. )™ = Sxp l(8; a0, - .., an,0,0,...)]|
With this norm the space K & vg is isometric to its bidual, and the isometry is

given by
A(ﬂ;007a13023"') = (IB_ Qp; 1 — (g, 2 — aOv"‘)'
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Reproducing the computations of Example 6.2, we get
oo
A* (B ap,01,...;6) = (ﬂ*;—d A Za;‘l,a{,,a;,...) .
n=0

This shows that we can take £3 = (0;0,0,...;—1) and & =v — Y >, 6,. Then
€_on = 0p and &1_9n = 6, — 6,;_, for every n > 0 (we have put 6*;, = 0). This
leads to 09 = —1 (= 01), Go = p[bn: n > 0], G; =5p[6%: n > 0], wo = v, and
thenw; =0, Ho=F =K v, Hi =Gg =K -v*, and F, = {0}.

Let us prove now that ||&]| - ||€1]| = 6 (notice that (&, &) = 1).

[Iéoll = Max(1, 3) = 1.

€11l = Sup{|evo]: [|(8; a0, 11, .. )|| £ 1}
= Sup{|ao|: ||(8; @0,0,0,...)| < 1}
= Sup{|ao|: Max(|B],|8 — aol, glaol) < 1}
= Min(2,6) = 46.

EXAMPLE 6.4. Spaces of type (III). In this case the parameter 6 = ||&]| - ||€1]|
has to satisfy Max(1, |1 + 0¢]) < 6 < 2. We will give examples for all the possible
values of oy and 6 except for the cases (§ = 2,00 # 1) and (6§ =1, |1+ 0p| < 1).

Let o be a scalar of modulus one, ¢ # —1, and p €]1,00[. On K@vg we consider
a norm defined by

”(ﬂu ap,Qq,y ... )”
k—1 l/P
= Sup (B +any) +0(8+an )l + > o, — on,IP
0<no<-<ng =0

If (6n)n>0 is the natural basis of vg and if v = (1;0,0,...) the sequence (v, 8g, 61, - .)
is a monotone shrinking basis of K @ v3. Then the bidual norm on (K & v9)** is
given by

1(B; ag,a1,.. )™ = S]l\l{p |(8; a0, - - an,0,0,...)]|

With this norm the space K & vg is isometric to its bidual and the isometry is
given by
A(ﬁa Qp, 01, 02, .. )
+(1+0 oo+ (1+0
_(_ﬂ+ao;a Lot (d+0)8 oot )ﬂ,...).

1 , 02
(o4 (o4 o

We have also

* 1 . d .
A* (B ag,0],...56) = (—ﬂ—+ :a (a+2an);

g n=0
N N DR < P
_?-1-; a+Zan N 79N 2P I
n=0
This shows that we can take £3 = (0;0,0,...;1) and §2=—V+E:°=06n. Then

1
— l/‘+—6*,
&1 50
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and for every n > 0,

1 * *
E-1-2n = ;( n+1 — 6p), and E_on = 0bp.
This implies 0 = 0, wo = ov, w; = —(1 +0)v* /0,
1
Gozﬁ[é‘ninZO], Gl=@[6;+ +0’l/‘:n20 s

Hy=K-v, H=K-v*, F={0}, and F.={0}.
Let us show now that 6 = [|&o| - [|€1]] = Max(|1 + of; 2%/7).
ll€oll = Max(]1 + o[;2'/7),
l€1]l = Sup{|(1 + 0)B + aol: [|(8; 20,0, ...)|| < 1}
= Sup{|(1 + )8 + ap:
Sup(|1 + o[P|B]7; |1 + a|P|B + ao|?; |(1 4 0)B + aol? + |aol?] < 1}
=1.

EXAMPLE 6.5. Spaces of type (V). The example we give is formally identical
to the above one. We have only to replace o by the matrix

o= (322 o).

sinp cosp

For a,b € R, let |(¢)|? = a% + b2, and define on the space R? @ vJ ® 1§ a norm
by

1083 20, 01, )| = Sup [l(ﬂ +a0) + (12 + R(9)) (8 + an, ) [?

0<no< - <nk

k—1 1/2
+ Z |ani+l - anilz]
—o

where we have put

1
a=(3 ) 4=(2). me o (4)

The isometry A is given formally by the same expression as in the above example,
and we can check that oo = R(p).

EXAMPLE 6.6. In this example we will construct a type (I) space E for which
the decomposition E = Gy @ Hy is not bicontractive.

Let (w)o<i<L be scalars satisfying Zf:o uw; = 0, and define the scalars (u;)i>0
by periodicity: ujyp41 = u;.

On the space K @ v§ we define a norm by

183 @0, a1, .. )| = Max{®p,u((a0, 01, .- .)); (a0, @1, - )lloe }

where

®5u((a0,a1,...)) = Sup
k>0
0<no<--<ny

L
B= urpiom,
1=0
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One can check that the operator A: K@ J — (K @ J)** defined by

A(B;a0,01,09,...) = (a1 —ap, a2 — ag, . ..)

is an onto isometry.

Reproducing the computations of Example 6.2, we can see that E is of type
(I) and characterize its parameters: Go = §p[6,: n > 0], G; = §p(é;,n > 0],
Hy=F=K-v,and HH=F, =K -v*.

For u = (2,-1,2,-3), and o = (1,—1,1,0,0,...), we have —6 < 213=0 Uk+100n,

7. (The extreme values —6 and 7 are attained.)

Then [|(0;1,-1,1,0,...)|| = 7, and ||(3;1,-1,1,0,...)|| = 4&; hence the decom-
position E = Go & Hy is not bicontractive.

Finally, we will describe some isometric properties of type (I) spaces. We first
have to recall some definitions (see [Gr] for details).

Let P be an n-dimensional Choquet simplex, and let Sp = P—P = {z—y: z,y €
P}. The set Sp has exactly 2(n + 1)-simplectic faces of dimension (n — 1). We
define the set S;* to be the intersection of the 2(n + 1) half spaces containing S,
and which are supported by the above-mentioned faces.

A symmetric convex set K is said to be a Leichtweiss compact if Sp C K C Sp*
for some Choquet simplex P.

THEOREM 6.7. Let E be a type (I) space. Then for every k € Z, every n > 0,
the unit ball of the space sp(€k—2p: 0 < p < n] ts a Leichtweiss compact.

PROOF. Notice first that in view of Lemma 6.1 we can assume that ||&] =
l€1]l = 1. For convenience we put &, —; = 0 for every k € Z.

For the Choquet simplex P = cv[ék,p: —1 < p < nj, it is easy to check that
S, = cv[fk,,, - Ek,q: —1 < p,q < n], and that the tz-dimens{onal simplectic faces of
S} are the faces £F;, —1 < j < n, where Fj = =&k +¢v[ékp: —1<p#j<n]

To prove the theorem it suffices now to prove that the faces Fj, —1 < j < n, are
in the unit sphere of sp[€x—2p: 0 < p < n].

By Corollary 2.7, for —1 < p # j < n, we have ||k, — € pll = 1. Hence it
remains only to prove that

- 1 LI
—Eeg+ = O &kl =1,
n+1 pe1

P#£]

for every —1 < j < n. We distinguish two cases:
j=-1

n

=Y _(n+1-p)ék-2

p=0

> [l(n+ 1l = n + 1.
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0<j<n
n+12> (n + 2)€~k,j - Z Ek,p
p=0
J n
=3 (p+D&k-2p— > (n+1-p)ék2p
p=0 p=5+1
J n
> <€k—2j—1a Y o+ 1)k-zp— Y, (n+1- P)Ek—2p>
p=0 p=5+1

=n+1.

This concludes the proof of the theorem. 0O

REMARK. Leichtweiss’ compacts are exactly the unit balls of finite dimensional
spaces with some extremal properties. Let us recall one of them.

For an n-dimensional Banach space X, we define p(X) as the smallest constant
K so that for every Banach space Y containing X and satisfying dim(Y/X) = 1,
there exists a projection P: Y — X, with |P|| < K.

It is known that p(X) < 2n/(n + 1), and that p(X) = 2n/(n + 1) if and only if
the unit ball of X is a Leichtweiss compact.

We refer to [Gr] for other extremal properties which are connected to Leichtweiss’
compacts.
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