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ON JAMES' TYPE SPACES

ABDERRAZZAK SERSOURI

ABSTRACT. We study the spaces E which are isometric to their biduals E",

and satisfy dim(E** /E) < oo. We show that these spaces have several common

points with the usual James' space.

Our study leads to a kind of classification of these spaces and we show

that there are essentially four different basic structures for such spaces in the

complex case, and five in the real case.

Introduction. In this paper we investigate some geometric properties of the

Banach spaces E which are isometric to their biduals £""* and satisfy dim(E** / E) =

s < oo. This study was started in [S] where we considered the case 8=1.

In [V] Valdivia proved that if a Banach space E is such that dim(E**/E) =

s < oo, then E = H © G, where H is a reflexive space, and G is a separable space

(which satisfies dim(G**/G) = s).

Under the additional hypothesis that E is isometric to E** we give an explicit

construction of the spaces G and H appearing in Valdivia's decomposition. We

also prove (Theorem 2.1) that the space G we construct is isomorphic to G** and

has a Schauder basis.

The basis structure of G is made precise in Theorem 5.1 where we prove that G

has a shrinking basis (e„ )n>o,i<i<a such that the sequence (J2p=oeP )n>o,i<j<s

forms a boundedly complete basis of G, and such that all the basic sequences

(en )n>o> 1 < i < s, are neighborly. Hence by a result of Bellenot [B] all the

spaces G'-7' = sp[ek : n > 0] are isomorphic to their biduals G^'** and satisfy

dim[GW*7G^] = 1.
Unfortunately it is not clear whether or not we have G — ©^=1 C-^.

We investigate two other aspects of the geometry of the spaces E considered here.

We first ask whether the space G is isometric to G** and how such an isometry (if it

exists) can be related to the given isometry A between E and E**. More precisely

we study how far G±J- is from A(G), or dually, how far H = H1-1 is from A(H).

The answers to these problems are given in Proposition 3.1.

With respect to these distortion properties, results of Theorem 5.1 lead to a

classification of the spaces E considered here and assert that there are essentially

four different basic structures in the complex case, and five in the real case. This

will be illustrated by the examples we construct in §6.

The second geometrical aspect of the spaces E we consider is the behaviour of

the onto isometries on E (§4). The main consequence of this study is the intrinsic

character of all the (vector space) parameters we introduce. We prove that every

onto isometry I on E respects both G and H, and in the particular case when
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716 ABDERRAZZAK SERSOURI

s = 1, we have I\c = eldg for some unit scalar e (a similar result holds in the

general case, but it cannot be described easily). This implies in particular that the

spaces E for which E = G have only trivial isometries (this is the case for the usual

James' space J).

A nice application of the results we obtain is the following remark due to Bellenot

(personal communication):

There exists a separable Banach space (with a basis) E satisfying dim(E**/E) —

1, which is isomorphic to E** but not isometric to E** for any equivalent norm [B,

ex. 4.6].

ACKNOWLEDGMENT. The author is glad to thank Professor Bernard Maurey

for his precious help and his suggestions.

1. Notation and preliminaries. K will denote the scalar field R or C.

Let us first recall briefly the definitions of the w-dual of a Banach space, and of

the w-adjoint of an operator.

Let X be a Banach space and denote by in ' the canonical injection of X^n\ the

nth dual of X, into X<-n+2\ Then the w-dual X^ of X is the injective limit of the

sequence ((Xl2n\i[2*]))n>0.

Let T: X —> Y be an operator from X to V, and denote by T^ the nth-adjoint

of T. Then the w-adjoint T^ of T is the operator from X^ to Y^ which is the
injective limit of the following commutative diagram:

.[X] .[X]

X       *SU X *i* XW _    ... xM
r j, t" 1 r<4> i r<w> 1

y      -»       y"       —>       y(4)      -»   ■••       y(w>

AY] AY]

Let E be a Banach space which is isometric to E** and which satisfies dim(E**/E)

= s < oo and let A: E -+ E** be an onto isometry between £ and E**.

It is easy to check that A^ induces an onto isometry on E^ and that A-1*'")

induces an onto isometry on E*^uh Moreover we have

(A^)*\E.M = (A-1*^)-1    and    (A-U^)*\EM = (A^)"1.

(The spaces £(w) and E*^ are both isometric to subspaces of (E*^)* and of

(£("))* respectively.)

For convenience we will denote by s/ both of the isometries A^ and A_1*'w',

and the above two relations will be paraphrased by j/* = j/-1.

Now we are going to define a (nonexaustive) list of parameters which will be

constantly used throughout this paper.

Let Eq = E and Ei = E*. For every k e Z we define inductively the spaces Ek

byEk+2=sf(Ek).

Notice that Ek is a subspace of Ek+2 for every fc e Z, and that the spaces E2k

and E2i+i are in duality for every fc, / € Z, since they are subspaces of E^ and

Z5*(w) respectively.

Using these dualities, we define on Ek two topologies: u>k — a(Ek,Ek+i) and

u*k=a(Ek,Ek-i).

Let (fg )i<j<s be a basis of Ex in E^, and (£\3 )i<j<s be a basis of E*L in

E^.  For every fc S Z, and every j, 1 < j < s, we define inductively the vectors
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£[    € Ek by c^ij = £?(t;k)- We also introduce, for every fc G Z, the 1-column

vector 6-t(41),...,ds)).
For every fc G Z, we define two (s, s)-matrices Mk and Nk by

Mk = (&+!,«&) = ((^i,dJ)))i<i,,<„    Nk = -Mk+i'M-1.

(All the matrices Mk are invertible; see Lemma 1.1).

For every fc € Z and for every n > 0, we define the 1-column vector £^n =

'(§«- • • •' & by Zk,n = Ep=o NUk-2P- Notice that for every fc € Z, the vector

£}kn is in Ek for every n > 0, 1 < j < s.

For every fc € Z, n > 0, we introduce the spaces:

Gfc = §p[^22p:P>0,l<i<s],

Hk=f)Tki2p,    Xk=sp[^):l<j<s},
p>0

Xk,„=sp[£kj<l:l<j<s).

We will also consider the spaces F = f)k€Z ^k and F» = f]k€Z E2k+i-

The following lemma gathers some observations and elementary results which

will be used frequently in this paper.

LEMMA 1.1.   For every fc € Z, every n > 0, we have:

(i) Ek is the unique predual of Ek+i,

(ii) s/ : Ek —» Ek+2 is u>k — wk+2 continuous,

(iii) Ek = Ek-2 ® Xk, and more generally Ek = Ek-2n © (©p=o Xk-2P),

(iv) ZkJ)\Ek-3 = 0 for every j e [1, s],

(v) Mfc w invertible,

(vi) Mfc+2 = Mfc, and hence Nk+2 = Nk,

(vii) j/(|fc,n) = lk+2,n,

__ (viii) J^(Gfc) = Gfc+2, j/(#fc) - tffc+2, j*{Xk) = Xk+2, andtf(Xk,n) =

Xk+2,n,

(be) ̂ (F) =F, andjafff;) =F,.

PROOF, (i) and (ii) are consequences of a result of Godefroy [G].

All the other properties, except (v), are elementary and can be proved by induc-

tive arguments.

Let us prove (v). Using (i) and (iv), it is clear that the vectors (Ck+i)i<j<s f°rm

a basis of Ek_2, where the polar is taken in Ek+i.

If det(Mfc)  = 0, then there exist scalars (otj)i<j<s, not all zero, such that

J2j=i aj'(ffc+i)£fc ) = 0 f°r every i 6 [l,s] (since the rows of the matrix Mk

are not linearly independent). From (iii), we deduce that ^=1 <Xj(£k+i,x) = 0 for

every x € Ek, which is equivalent to Ej=i aj€k+i = 0 by (i). This means that the

vectors (£k+i)i<j<a are not linearly independent, which is a contradiction. Then

det(Mfc) 7^ 0 and hence Mk is invertible.    D

Another result which will be used very often in this paper is the following well-

known theorem.
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THE BIPOLAR THEOREM.   Let X be a Banach space, and Y be a subspace of X.

Then, ifY±J- denotes the bipolar ofY in X** we have: B(Y^) = B~(Yf{X"'X'\

where B(Y) and B(Y±±) are the unit balls of Y and Y-11- respectively.

2. The decomposition theorem. This part is essentially devoted to the proof

of the following theorem, which is the first main result of this paper:

THEOREM 2.1.   With our notations, we have for every fc G Z:

(i) Ek = Gk®Hk.

(ii) Hk is reflexive.

(iii) G/t is isomorphic to G*k , and d\m(G*k*/Gk) = s.

(iv) The vectors (Ck-2n)n>o,i<j<s form a shrinking basis of Gk.

(v) The vectors (£kn)n>o,i<j<s form a boundedly complete basis of Gk.

(vi) The Schauder decomposition Hk © ((Bn°=0Xk-2n) of Ek is monotone.

In particular Hk is 1-complemented with respect to the decomposition Ek = Hk®

Gk.
(vii) The Schauder decomposition ©^Lo^-2" °fGk is bimonotone.

The proof of this theorem will be decomposed into several lemmas. Its assertions

will be proved in Propositions 2.3, 2.10, 2.11, 2.12, and 2.13.

LEMMA 2.2. For every fc € Z, there exists a norm-one projection 7i>: Ek —*

Ek-2 such that irk(Ek) = Ek-2, and ker7Tfc = Xk.

PROOF. It is easy to see that if Ttk is constructed, we can take 7Tfc_2 = s/_1 o

7I> OS/   (resp.   7Tfc+2 = Sf OTTk Oj/"1).

The lemma is then proved since we can take for 7Tg : E^ —» E* (resp. 7T4 : E^ —>

£""") the canonical projection, whose kernel is E1- (resp. E*1-).    □

REMARK. Throughout this paper, the notation 7Tfc will always mean the projec-

tions described in Lemma 2.2.

An immediate consequence of this lemma is

PROPOSITION 2.3. For every fc G Z, the sequence (Xk^2n)n>o is a reverse

monotone Schauder decomposition ofGk.

The first key lemma of this paper is

LEMMA 2.4.   For every fc G Z, every n > 1, we have

(0 Ek-2n = ©p=0 ^fc+l-2p,

(ii) (®p=o Xk-2P)    = Ek-2n-i ® Xk+i,n,

where the polars are taken in Ek+i-

PROOF. This lemma is an easy consequence of a dimensional argument and the

following:

Claim. (lk+i,PMk-2q) = SpqNl+lMk, for every fc G Z, every p,q > 0.
Let us now prove the lemma by assuming the claim.

(i) By Lemma l.l(iv) it is clear that (0plg ^fc+i-2P) C Ek_2n, and the equality

holds since dimO^1 Afc+i_2p) = ns, EkL_2n = (Ek/Ek-2n)* (Lemma l.l(i)) and

hence dim(Ek_2n) = d\va(Ek/Ek-2n) = ns (Lemma l.l(iii)).
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(ii) Again by l.l(iv) we have £fc_2n_i c (©£=0 XJc_2p)-L, and using the claim

we see that Xk+\^n c (©pZg Xk-2p)±- The equality (ii) of Lemma 2.4 holds since:

(1) Ek-i-2n and Xk+iyU are in direct sum (Lemma 1.1 (iii)) and hence

codimEt+1[£fc_i_2„©Xfc+i,„] =dim   I @Xfc+i_2p J /Xk+i,n   = ns.
. \p=0 )

(2) (©p=o Xk-2py = Ek+il(®nvZl0 A,_2p)± and hence

/n-1 \-L

codim£t+1 I 0 Xk-2P j    = ns.

PROOF OF THE CLAIM. It is clear by 1.1 (iv) that (|fc+i,p,t£fc-2g) = 0 if q > p.

On the other hand for 0 < q < p, we have

{t^k+l,p,t^k-2q) = (^k+i^k+l-2q + ^k + i^k-l-2q,tik-2q)

= Nqk+1(Mk-2q + ^Vfc+i'Mfc_i_2,) = 0.

A similar computation will show that (£fc+i,p,0fc-2p) = Nk+lMk. This concludes

the proof of the claim and of Lemma 2.4.    □

As an immediate corollary we have the following useful result:

COROLLARY 2.5. For every fc G Z, every n > 0, we have Ek±2n = Ek-2n ffi

Xk+2,n, where the bipolar is taken in Ek+2.

REMARK. This corollary implies that Hk = f]n>0(Ek-2n-2 ffi Xk>n) for every

fc G Z. This equality is very useful and will be used frequently.

We are now going to prove the second key lemma of this paper.

LEMMA 2.6. For every fc G Z, every m,n > 0, every 1-row matrices ak+2p,

—m <p<n, and every vector x G Ek-2n-2 we have the following inequalities:

m m

(i) 22otk + 2p^k + 2p + Otk£k,n + X     <       ^   Otk+2p€k+2p+X    .

p=l p=—n

m m

(ii) 2jtYA:+2p£fc+2p +ak-2nNkn£kin + X     <       ^   C*fc+2p£fc + 2p + X    .

p=l p=—n

REMARK. Roughly speaking, the lemma asserts that, modulo the matrices Nk,

the norm of the vector ^fc ak£k +x decreases if we "propagate" (to the left or to the

right) any coefficient of its expansion. In particular the decomposition ©^L0 Xk-2n

satisfies a kind of neighborly property.

PROOF. Observe first that it suffices to prove the lemma for n = 1 (the other

parameters have to be arbitrary). For the other values of n, the lemma can be

proved by an easy inductive argument.

PROOF OF PART (i). For n = 1, the assertion will be proved by an inductive
argument on the value of m.
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Step 1. The case where m = 0:

Let ak, ak-2 be two 1-row matrices, and let x G Ek-4. Put e = ak^k +

c*k-2€k-2 + x, and assume that ||e|| = 1.

By Corollary 2.5 (and the bipolar theorem), choose an ultrafilter S? , matrices

^k-2,0 (P G ̂ ), and vectors xp G Ek-4 (/? G 9~) such that:

||Afc-2,/jCfc-a + i/sII < 1    for every /3 G ̂ ",

e = W*k-Yim.p&<?(Xk-2,p$k-2 + 1/3).

Let Afc-2 = lim^g^- Afc_2,/3 and 2? = wj£-lim^g^- a:^, and let us prove that Afc_2 =

ajt-2 - akNk. (The nets (Xk-2,p)(3£.<7, and (xp)p€y are bounded by Lemma 2.2,

and the basis properties of the vectors (€kl2)i<j<s-)

Indeed

(e/ffc-i) = <QA:6 + afc-26-2,tCit-i) = afcMfc+i +0^-2^^,

(e,'Cfc-i) = lim(Afc_2,/3c;fc-2,ta-i) = Xk-2tMk.

We then deduce that Afc_2 = ak-2-akNk, and hence z = afc£k-r-afc./Vfc£fc-2 + z.

Moreover

llxll < lim \\x0\\ < lim ||Afc_a,/9&t-2+z/j|| < 1,

which is the desired result. (The second inequality uses Lemma 2.2.)

Step 2.   The induction.   Suppose that Lemma 2.6(i) was proved for the value

rn — 1. Let us prove it for the value m (recall that n = 1).

Let e = X)p"=-i <*k+2ptk+2p + x, where (afc+2p)-i<P<m are matrices, and x G

Ek-4, and suppose that ||e|| = 1.

Choose an ultrafilter 9~, matrices Xk+2P)p (-1 < p <m—l,0 G tf) and vectors

X/3 G Ek-4 such that:

m — l

^2 Afc+2p,/?0c+2p + Z/3   <1    for every /? G &,

p=-i

e = wfc+2m" J™   I    ]T   Afc+2pi/3^fc+2p + Xp 1 .

Let Afc+2p = lim^g.y Ak+2p,/?, for -1 < p < m - 1, and x = w£+2m-lim^g.^ x0,

and let us compute these limits.

For every p, -1 <p < m — 1, we have (putting Afc+2m = 0):

ak+2p+2Mk+i + ak+2ptMk = (e,lCk+i+2p) = Xk+2p+2Mk+1 + Xk+2p Mk-

It is easily seen that these equalities imply

Xk+2p = «fc+2p - ctk+2mN™~v,     for every p, -1 < p < m - 1,

and hence x = x + 53£L-i afc+2m^rr_P^+2p.
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Now using the inductive hypothesis we obtain

m

/] <*k+2ptk+2p + ttfc^fc + OckNkZk-2 + X

p=l

m-1

=    z2 Afc+2p£fc+2p + Afc^fc + AfcA^fc^_2 + x

p=i
m-l

< lim    ^2 Xk+2Pi0£k+2p + Xktp£k + XktpNk€k-2 + xp
0e9r   P=i

m-l

< lim     )2 Xk+2Pip^k+2p + X0   < 1.

p=-i

This concludes the proof of the inductive argument, and hence the proof of part

0).
PROOF OF PART (ii). Let e = ^JJL-i afc+2p6:+2p+z, where ak+2p are matrices,

and x G Ek-4, and choose a norm one vector / G £'fc+2m+i which normalizes the

vector
m

e'= YlQk+2p£k+2p + ak-2Nk1Zk + ak-2tk-2 + x    (i.e. (f,e') = ||e'||).

p=i

The vector / has a decomposition / — Y^=-i ak+i+2q£k+\+2q + y, where

(*k+i+2q, -1 < q < m, are matrices, and y G Ek-z- Using the orthogonality

relations (Lemma 2.4(H)), and the result of part (i), we obtain

He'll = (e',f)
I m

= ( 5Z Q*+2pffc+2p + ak-2Nk 1(£k + Nk£k-2) + x;
\p=l

m \

^2 ^+1+296+1+29 +y)
9=-l /

I ™
= \ YL ak+2pik+2V + ak-2Nk 1(£k + Nk£k-2) + x;

\p=i

\
22ak+l+2q€k+l+2q + afc+l(£fc+l + Nk+i£k-i) +y)

9=1 /

/    m

= (   ^2   ak+2ptk+2p + X\
\p=-l

m \

22 Qfc+i+29Cfc+i+29 + afc(ffc+i + Nk+i£k-i) + y\
9=1 /

m

^ llell ■    ^2 ak+l+2qtk+l+2q + Ofc(6+l + Nk+ltk-l) + V
9=1 I

<||e||.    n
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The first important consequence of the above lemma is

COROLLARY 2.7. For every fc G Z, n > 0, we have \\a£k\\ = ||a£fcin|| for every

1-row matrix a. In particular ||£fc   || = \\£k n\\ for every j G [l,s].

PROOF. ||affc|| > ||a|fc,n|| by 2.6(i) ["shift" the a-coefficient of $k], and ||a|fc,n||

> \\atk\\ by 2.6(h) ["shift" the 0-coefficient of &-2n-a]-

The particular case is obtained using the equalities £k3n = ctj£k>n, where the

exj's are the 1-row matrices {S%j)i<i<a-    n

DEFINITION 2.8. Let W be a nontrivial ultrafilter on N. For every fc G Z,

every j G [1, s] we define vectors wk , and (s, s)-matrices crk and the spaces Wk in

the following way:

(<rktk+2)U) +w^ =UZ+2-\im/kJtl

Wk = sp[wkj): l<j<s}.

REMARKS, (i) These definitions make sense in view of Corollary 2.7.

(ii) We will see later that (£kl2n)n>o,i<]<s is a shrinking basis of Gk. Then the

vectors wk    and the matrices ok do not depend on the choice of ^.

(iii) The spaces Wk and the matrices ok will play an important role in the study

of the distortion properties of the space Hk and Gk with respect to sf (Proposition

3.1) and in the classification of the space E considered in this paper (§5).

In the following lemma we will summarize some properties of the vectors wk

and the matrices ok. For convenience we will introduce the 1-column vector Wk =
'(«£>,...,«£>).

LEMMA 2.9.   For every fc G Z, we have the following:

(i) w[3) G Hk for every j G [l,s],

(ii) wk+2 =Si?(wk) andak+2 - ak,

(iii) Ok+iM^o-k = Mfc.

In particular the matrix ak is invertible, and NkO~k = CkNk-

(iv) wk = (ls + NkOk)lk,n + Nkwk-2n-2 for every n > 0. (ls denotes the

identity (s,s)-matrix.)

In particular (wk^^k+i) = *^fc - 0kMk+i-

PROOF, (i) It is clear that £k'n G Ek-2m-2 ffi Xk,m for every m <n. Hence by

/ ■•> -=-ul
definition wk   G f)m>1 Ek-2m-2 ffi Xk,m     = Hk since all the spaces Ek-2m-2 ®

Xk,m are w^-closed (see Corollary 2.5).

(ii) This is an easy consequence of Lemma l.l(ii)—(vii).
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(iii) We will compute the scalar product matrix (wk+i^Wk) in two different

ways:

(wk+i^Wk) = limdfc+i.n/^fc)
n&i

= lim lim (\k+i,n,x(lk,m ~°~kik+2))

= -iMk+iOk + lim (&+!,„,'&,„)

= -tMfc+i'tTfc+-Mfc,

(tyfc+i/wfc) = lim(tufe+i,'(|/fc,n -Okik+2))
Tigs'

= lim lim (lk+\,m - <7fc+i£fc+3,'(£*,„ - Ok£,k+2))
n&fm&t

= Ok+iM^o-k - 'Affc+iVfc.

By comparing these two results we deduce that d^iMtVn = M^. Since the matrix

Mk is invertible, this implies (det<7fc+i)(det<Tfc) = 1, and in particular that ak is

invertible.

We also have

-akNk = crk+2Mk+itMk1 = Affc+i'tffc+i'M*"1

= Mk+i^o-k+iMk)-1 = Mk+i^Mk'a-1)-1

= -Nk<rk.

(iv) It suffices to prove that wk = (ls + Nkak)(k + Nkwk-2.

wk = wk- lim £kn = u*k- lim (ffc + Nk£k-.2,n-i)
n&/ n&U

= (ls + Nkok)Zk + Nkwk-2.

In particular we have

(ttffc.'Cfc+i) = (l* + crfciVfc)(6,'efc+i) =tMfc-<7fcMfc+i.

Lemma 2.9 is then proved.    P

We are now able to start the proof of Theorem 2.1. We first introduce the

following notation:

NOTATION. By Lemma 1.1 (iii) and Lemma 2.2, there exists for every x G Ek

(and every fc G Z) a sequence (pk,n(x))n>o 0I" 1-row matrices such that

n

x = Y2 Pk,P(x)tk-2p + 7Tfc_2n o • ■ • o 7Tfc_2 o 7rfc(x)    for every n > 0.

p=0

(Using the orthogonality relations we see that pk,n(x) = (x,t£fc+i,„)t./V^1tM^~1.)

By Lemma 2.6(ii) we have

\\Pk,n(x)Nkn£k<n + 7rfc_2„ O • • • O 7Tfc_2 O 7Tfc(x)|| < ||x||

for every x G Ek and every n > 0.

So, we can define on Ek a linear operator Pk by

n

Pk(x) = w*k- lim x + pk,n(x)Nkn£k,n - ]T Pk,p(x)£,k-2P ■
n€   L p=0



724 ABDERRAZZAK SERSOURI

PROPOSITION 2.10. The operator Pk is a norm one projection on Hk and

satisfies ker Pk = Gk.

PROOF. It is clear that ||Pfc|| < 1, and by an argument similar to the one we

used in proving that wk G Hk, it can be seen that Pk(Ek) c Hk.

It is easy to check that for every h G Hk and every n > 0, we have h =

P-k,o(h)£k,n+irk-2n o • • ■ o7rA_2 oTfc(fc). This implies that pk,n(h) = pkfi(h)N^ for

every n > 0, and hence Pk(h) = h.

Altogether the above observations imply that Pk is a norm one projection, and

that Pk(Ek) = Hk.

It remains to prove that keri\ = Gk.

By Proposition 2.3, every g G Gk satisfies g = Y^o P-k,p(g)€k-2p with norm

convergence for the series, and by Lemma 2.6(h) we have

oo oo

Pk,n(g)Nkn^k,n+  J2 Pk,p(g)ik-2P  <   ^2Pk,P(g)tk-2p ■
p=n+l p=n

This implies that Pk(g) — 0, and hence Gk C kerPjt-

To prove the converse inclusion we will need the following claim:

Claim. For every x G Ek, there exists a 1-row matrix ~pk(x) such that ~pk(x) =

limn€j5/ pk<n(x)Nkn (the limit holds in Ks).

Assuming the claim, let us continue the proof of the proposition. Let x G Ek be

such that Pk(x) = 0, which is equivalent to

n

X = U*k- lim     -pk,n(x)Nknf;k}n + Yl Pk,p(x)£k-2p    ■
net/ *—!.

L p=o J

This implies, using the claim, that for every matrix A we have

n

x + Xwk = u*k- lim   (X-pk(x))£kin + y2Pk,p(x)^k-2p   ■
net/ —'L p=o J

Now since (ft - tyfci'^/t+i) = o-kMk+x is invertible there exists a matrix X(x)

such that

(x + X(x)wk, ^fc+i) = (Pk,o(x) - Pk(x) + X~(x))(£k, 'ffc+i)

and then

n

x + X(x)wk = Wfc- lim    (X(x) - Jl(x))£kin + Y"* pk,P(x)£k-2P   ■
n€*" —:

L p=i J

(This choice of the matrix A allows us to take weak convergence instead of weak*

convergence!!) and in particular x + X(x)wk G Gk (since the vectors which appear

inside the limit are all in Gk).

Finally 0 = Pk(x + X(x)wk) — X(x)wk, and hence x G Gk.
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PROOF OF THE CLAIM. It suffices to prove that the sequence (pk,n(x)Nkn)n>o

is bounded in Ks. Indeed

\\pk,n(x)Nkn^k\\ = \\pk,n(x)Nkn^n\\        (by Corollary 2.7)

n

^   Y2l*i<Ax)Zk-2p (by Lemma 2.6(h))
p=0

< 2||x|| (by Lemma 2.2).

The boundedness of the sequence (pktn(x)Nkn)n>o now follows from the basis

properties of the vectors (£k  )i<j<a-

This finishes the proof of the claim and of Proposition 2.10.    □

PROPOSITION 2.11. The Schauder decomposition Hk ffi (©£°=0 Xk-2n) of Ek

is monotone (for every fc G Z).

PROOF. Hk ® (©^L0A"/t_2n) is a Schauder decomposition of Ek since

©^Lo Xk-2n is a Schauder decomposition of Gk (Proposition 2.3) and since Ek =

Hk®Gk.

To prove that this decomposition is monotone we will use the fact that Gk-i C

Hk, where the polar is taken in Ek+\ (since Lemma 2.4(h) implies Gk = Hk+i,

and hence H^ =Gkl±1).

Let e = h + Ylp=o a*-2p£/t-2p (e G Ek, and h G Hk). Choose a norm one vector

/ G Ek+i which normalizes e, and let / = £9=0 a*:+i-29^fc+i-29 + y, for some

y G Ek-2n-5, be a decomposition of /. Then using the orthogonality relations we

obtain

\\e\\ = (e,f)

= ( e, 2jafc+l-29C:fc + l-29 + C*k-2n-l((ik-2n-l + Nk+lik-2n~z) + y)

I n+\

= ( h + ^2 ak-2p€k-2P;
\ p=0

2_^Ctk+l-2q£,k+l-2q + Ctk-2n-l (£fc-2n-l + Nk+i £,k-2n-z) + y)

9=0 /

n+1

<   h + ^2 ak-2p^k-2P       (by Lemma 2.6(i)).    D

p=0

The statements of Propositions 2.3, 2.10 and 2.11 are nothing but the assertions

(i), (vi), (vii) of Theorem 2.1. We now turn to the proof of 2.1 (ii)-(iii).

PROPOSITION 2.12. For every fc G Z, the space Gk is isomorphic to G" and

satisfies dim(G*.*/Gk) = s. This implies in particular that the space Hk is reflexive.

PROOF. Since the matrix ak is invertible and the vectors (Ck+2)i<j<s are lin-

early independent, the vectors ((o-k^k+2)^)i<j<a are linearly independent, and
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hence the vectors (wk + (0-fc6c+2)(j))i<j<s are also linearly independent and be-

long to Gj}+2 \ Gk-

Then s < dim(G*k*/Gk) < dim(E*k*/Ek) = s.

On the other hand, Lemma 2.4(h) implies that Gk — Hk+1, hence G*. =

Ek+i/G^ « Gfc+i (Proposition 2.10), and then G" sa Gk+2 = Gk.

Now since Ek = Hk®Gk we have dim(E*k*/Ek) = dim(H*k*/Hk)+dim(Gk*/Gk),
which implies clearly that Hk is reflexive.    □

We are now going to prove the assertions (iv) and (v) of Theorem 2.1.

PROPOSITION 2.13. For every fc G Z, the sequence (£kl2n)n>o,i<j<s is a

shrinking (Schauder) basis of Gk, and the sequence (Ck n)n>o,i<j<s is a boundedly

complete basis of Gk-

PROOF, (i) Since all the bases (£*_an)i<i<« of Xk-2n (fc is fixed, and n > 0

is free) are isometrically equivalent it is sufficient to prove that ©^L0^fc-2n is a

shrinking Schauder decomposition of Gk-

We have seen before that G*k ss Gk+\, and it is easily seen that the restriction

map gives such an isomorphism (i.e. Tk: Gk+i —* Gk: Tk(g) = g\Gk)-

Let Tlk,n: Gk —* Gk be the natural projections on Gk with ranks Xk-2n, and let

us prove that the projections (II*. „)n>o induce a Schauder decomposition of G*., or

equivalently that the projections (Tk1UlnTk)n>o induce a Schauder decomposition

of Gfc+i.

Since Gk+i = sp[Xk+i,n- n > 0], the above-mentioned result will be proved if

we show that Tk1UknTk(Gk+i) = Xk+i!n. Let us prove this.

(nfc)„Tfc(ffc+1]p),t^fc_2,) = (Tkdk+l^^k^Ctk^q))

=  (£k+l,p,6nq   £k-2n)

= 6ng6npNj?+1Mk

= i^np^k+l,n,   £k-2q)-

This implies that T^Hl nTk(£k+i,P) = 6np€k+i,n, which is the desired result.

Now by [LT] this means that the projections (Ilfc,n)n>o induce a shrinking Schauder

decompositoin of Gk, and hence the basis (Ckl2n)n>o,i<j<s of Gk is shrinking.

(ii) By the preceding computations the sequence (Xkyn)n>r> is a boundedly com-

plete decomposition of Gk [LT]. Since all the bases (£k n)i<j<s of ^fc,n (k is fixed,

and n > 0 is free) are isometrically equivalent (Corollary 2.7), we deduce that the

sequence (ikn)n>o,i<j<.i forms a boundedly complete basis of Gk.

This proves Proposition 2.13, and concludes the proof of Theorem 2.1.

3. Regularity properties. We have seen in Proposition 2.12 that the spaces

Gk are isomorphic to G*.*, and it is quite natural to ask whether Gk is isometric to

Gk*, and how such an isometry is related to j/.

Since Gkx (the bipolar is taken in Ek+2) is a natural isometric copy of G",

we will ask whether we have G^-1 = s/(Gk). Similarly we will ask whether Hk =

tf(Hk).



ON JAMES' TYPE SPACES 727

The answer to these problems (which are dual to each other) is given by the

following proposition. We will use the spaces Fk defined by F2k = F, and F2k+i =

F,.

PROPOSITION 3.1.   For every fc G Z, we have:

(i) dim(Wk) + dim[(Gfc+2 D G^-L)/Gfc] = s. In particular G^x =si(Gk) if and

onlyifWk = {0}.
(ii) dim(Wfc+i) = dim(Hk/Fk). In particular Hk = sf(Hk) if and only if

Wk+i = {0}.

PROOF, (i) Since G£x n Gk+2 =Gk®{gG G±x : g = q(H2},

dim[(Gfc+2 nGx±)/Gfc] = dim[{a G Ks: a£k+2 G G±J-}].

But a£k+2 G G^1- if and only if aak1Wk — 0. Indeed, by definition

"(£fc+2 + o-k1Wk) G G^x for every matrix q, so a£k+i G G±J- implies aak1wk G

Gk, and since aak1wk G Hk we deduce that aak1wk = 0. The converse implication

is trivial. Hence

dim[(Gfc+2 n GkL±)/Gk] = dim[{a G Ks: aa^wk = 0}]

= dim[{/? G Ks : 0wk = 0}]

= s — diraWk-

If Wk = {0}, the above equality implies that Gkx — Gk+2 = s/(Gk), since

dim(Gfc+2/Gfc) = dim(Gfc-L/Gfc) = s. The converse implication is trivial.

(ii) To prove the second assertion of Proposition 3.1, we need the following

lemma:

LEMMA 3.2.   For every k G Z we have

(i)^ = Hfcn|n;,1ker(^'1)],

(ii) (wg, - e&) € Hx for every j G [1, s).

Let us continue the proof of the proposition assuming the lemma.

dim(Bk/Fk) = dim(sp[^il/ffc : 1 < j <*])

= dwa(sp[wkJl1\Hk:l<j<s])

= dim(Wk+i)

since u^, G Hk+i = G£, and Ek = Gk®Hk.

Notice now that stf(Hk) = Hk if and only if Hk = Fk. Indeed stf(Hk) = Hk

implies Hk c Ek^2n for every n > 0, and hence Hk — Fk (since Fk C Hk). The

converse implication is trivial. Then by the above equality s/(Hk) = Hk if and

only if Wk+1 = {0}.

PROOF OF LEMMA 3.2. (i) We will use the notation pk,n(x) introduced in the

proof of Proposition 2.10.

We have seen that every h G Hk satisfies h — pk,o(h)£k,n + ^k-2n o ■ ■ ■ o Trk-2 o

nk(h) for every n > 0, and that pk,o(h) = (/i/ffc+iJ'M^"1.

Then such an h G Hk is in Fk if and only if pk,o(h) = 0 (since the vectors

£fc,n are linearly independent) which is equivalent to (/i,'£fc+i) = 0, i.e.:   h G
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This proves (i) since Fk C Hk.

(ii) We have seen before that Gk-i c Hk. The conclusion of the lemma holds

since Hk  is u£+1-closed, and since

4+i - eJSi = w*+i- lim (iVfc_i6-i,n)(j).

This concludes the proof of Lemma 3.2, and of Proposition 3.1.    □

We conclude this section with the following result, which is in the same spirit of

ideas as Lemma 3.2:

LEMMA 3.3. For every fc G Z we have Wk+i = (Gk ffi Fk)x, where the polar is

taken in Ek+\.

PROOF. Suppose that we have proved that Wk+1 c (Fk ffi Gk)1, and let us

prove that the equality holds.

Indeed since Fk C Hk and (Gk ffi Fk)1 = (Ek/Gk ffi Fk)* we have

dim(Fk ffi Gk)1- = dim(Gfc ffi Hk/Gk ffi Fk) = dim(Hk/Fk) = d\m(Wk+1).

To prove that Wk+i C (Fk®Gk)± it suffices to show that tw^x G (Fk®Gk)±

for every j G [l,s].

We have seen before that w[+i G Hk+i — Gk. On the other hand wk^ G Fk

since eKi G i^ (Lemma 3.2(i)) and (wjg, - egi) e *k c **"•
This concludes the proof of Lemma 3.3.    D

4. Structure of the onto isometries. Theorem 4.1 will describe the structure

of the onto isometries on E. Its main application is Theorem 4.5 which asserts that

the "space parameters" corresponding to E are intrinsic.

Let I: E —> E be an onto isometry of E, and let 7(w) and /_1*(w) be the onto

isometries induced by I and 7_1* on E^ and £■*(") respectively.

We will denote by ^f both of these two isometries. Observe that we have J* =

J^-1 (in the sense that (/(w))*|£.Cw, = (J-»*(w))-i and (71(w)*)*l*<-> = (Z^))"1)

and (S-1)* = J*'. (Notice that J^_1 coincides with the "isometry" which corre-

sponds to I"1.)

THEOREM 4.1. With our notations, for every fc G Z, and every n > 0, we

have:

(i) J^ respects the spaces Ek,Gk,Hk,Xk,Xk^n,Wk,F and F*, where the expres-

sion "J" respects Z "means" J(Z) = Z".

(ii) If kk is the (s,s)-matrix such that^f(£,k) — A.k£k then

(a) Afc+iMfc'A/t = Mk,

(b) A*+2 = NkAkNj^1 and Ak+2 - a^kkCk,

(c) *f(lk,n) = Afc£fc,n andJr(wk) = Akwk-

REMARK. The relation (ii)(a) implies (detA^+i) • (detAfc) = 1, hence all the

matrices A* are invertible. This is not surprising since the Afc's are the matrices

associated to the isometries ^\xk-

The key lemma in the proof of Theorem 3.1 is the following result [G].
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LEMMA 4.2. Let X be a Banach space such that X* 'pi1. Then every onto

isometry of X* is(j*-uj* continuous.

Applying the above result twice, we see that for every onto isometry I of E,

there exists an onto isometry J of E such that J** = AIA-1. If we denote by ^f

the "isometry" corresponding to J, the above equation implies ^ = s/J^sf-1 and

S = stf-1/^ (in the sense that jM = A^I^(A^)-1, etc.).

We will also need the following elementary result:

LEMMA 4.3. If T: X —* Y is an onto isomorphism, and if Z is a subspace of

Y, thenT*(Z-L) = [T-1(Z)]-L.

Proof of theorem 4.1.
Proof ofJr(Ek) = Ek. We will prove this by induction on fc.

It is clear that <f(Ek) — Ek for every fc > 0. (Ek = E^: the usual dual of

order fc.)
Suppose now that we have proved that for some fc, JF(Ek) = Ek for every onto

isometry I of E.

Then S(Ek-2) =*f-1JW(Ek-2) =*f-1Jr(Ek) =*/'-1(Ek) = Ek_2.

Proof ofJr(F) = F and S{F.) = F».

S(F) =s(p\E2k\ = f) S(E2k) = F.
Vfcez       /      kez

The argument is similar for F*.

Proof ofJr(Xk) = Xk and S(Gk) - Gk. By Lemma 2.4 we have Xk = Ek*£,

then by applying Lemma 4.3 to the isometry ^f~x: Ek-\ —► Ek-\, we obtain

S(Xk) = (Jr-1)*(<E|) = [J?(Ek-3)\^» = Xk.

Now since Gk = sp(Xfc_2n) we deduce that *f(Gk) — Gk.

Proof ofAk+iMklAk = Mk and Ak+2 = NkAkN^1.

Mk = (a+i, Ja) = (-y*^^k+i)^k)

= (^(a+o^ra)) = (Afc+iefc+i.*(A*efc)>
= Ak+iMkAk.

Applying the above relation twice we obtain

Afc+2 = AWA^jM"^ = Mk+i^Mk'A-'M-'r'M^ = NkAkN,1.

Proof of\f(Xk,n) = XktU and ^(£k,n) — Ak£ktn. An easy inductive argument

shows that Ak-2n — NknAkNg for every n > 0.

Then

S(lk,n)=S (XXa-2p)  = J2 NPkS(tik-2p)
\p=0 /        p=0

fl

= 2J Nk^k-2p€k-2p - Afc|fc,n.
p=0

This relation implies in particular that ^(Xk^n) — Xktn-
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Proof of Jr(Hk) = Hk.

J?(Hk) = JF     fl (£*-2n-2 © *k,n)     =   f| ^ (Ek-2n-2 © **,»)
n>0 n>0

=   f| [S{Ek-2n-2) ®^(Xk,n)\ = Hk.
n>0

Proof of ^fiyVk) = Wk and J^(wk) = AkWk-   We will use the fact that the

operator y: Ek —► Ek is w*.-w*. continuous (Lemma 4.2).

Then

Jf(wk) = -f[u*k- lim |fc,n] = w*.- lim J^(^k,n) = Akwk.

In particular we have J^(Wk) = Wk-

Proof of Ak+2 = o-k1Akak. By an argument similar to above we obtain

0fcAfc+2&fc+2 + AfcU>fc = y(ak^,k+2 + wk) = Ak(o-k(,k+2 + wk)

and hence o-kAk+2ik+2 — Ako-k^k+2-

Since the vectors (Ck+2)i<j<s are linearly independent we deduce that akAk+2 =

AkCk-

This concludes the proof of Theorem 4.1.    □

An immediate consequence of Theorem 4.1 is

COROLLARY 4.4. Let E be such that dimE**/E = 1, and E = GQ. Then

every onto isometry of E is trivial (i.e. I — eld^, |e| = 1).

PROOF. All the matrices Afc are reduced to scalars, which then must satisfy

|Afc| = 1. On the other hand by Theorem 4.1 we have A2k = Ao for every fc G Z,

and since E — Go, this implies that I = Ar, ■ Id#.    □

REMARK. We will see later that the James' space J satisfies the assumptions of

the corollary. Hence it has only trivial onto isometries. This is also the case for its

dual space J*.

REMARK. We will see later (Theorem 5.1) that we can assume that Nq = Ni —

ls. Hence, if the space E is such that E = Go, every onto isometry I on E satisfies

7(^o° an£-2n) = So° anA£~2n for some square matrix A.

As an application of Theorem 4.1 we are going to show that all the spaces defined

before are intrinsic, in the sense that they not depend neither on the choice of the

isometry A, nor on the choice of the bases (£3 )i<j<s and (£4 )i<j<s of Ex and

E*x respectively.

THEOREM 4.5. The spaces Ek,Gk,Hk,Xk,Xk,n,Wk,F and F* are all intrin-

sic.

PROOF. Assume that we have proved that the spaces Ek are intrinsic. Then all

the others are also intrinsic. Indeed:

The Hks, F,F„ are intrinsic by their definitions.

The Xk's are intrinsic since Xk = Ekf£; hence this is also the case for the Gfc's.

The WVs are intrinsic since Wk = (Gk-i ffi Fk-i)±Ei'.

The Xk,nS are intrinsic since Xk,n = (Id£t -^k-2n o • • • o 7rfc_2 o -Kk) (Ek_2nh_2)

and since the projections nk are intrinsic.
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Let us prove now that the spaces Ek are intrinsic.

It is clear (by their definitions) that the spaces Ek depend at most on the isometry

A.
Let A and B be two isometries, and let us denote by Ek ' and Ek ' the spaces

corresponding to A and B respectively.

It is clear that E[kA) = EkB) for every fc > 0.

Assume now that we have proved that Ek ' = Ek ' for some fc. Then by

applying Theorem 4.1 to the isometry I = B~xA we obtain Ek\ — ̂ ~1(Ek ') =

^-^E{kA)) = ^-^(E^l) = E[AJ2, since it is easy to check that J = gg^stf.

This concludes the proof of Theorem 4.5.

5. Reduction of the parameters and classification. The following theorem

is our second main result. It will allow us to "classify" the spaces E considered in

this paper.

THEOREM 5.1. It is possible to choose the isometry A: E —* E** and the

bases (£3 )i<j<9, and (£4 )i<j<s in such a way that the corresponding parameters

satisfy:
(i) Mk = ( —l)fcls, and hence Nk = ls, for every fc G Z.

(ii) <7o = ^ffi (l! _°i)      Jn the complex case, and

a0 = a®(-)     °XC®(C0SiPl    -Sin^W.ffi(C0S^    -Sin^
\—l    —1) \sin^i      cos£>i  J ysin^d     cos^d /

in the real case, where a is a diagonal unitary matrix, and fi ^ 0 [tt] for 1 < i < d.

Moreover C\ = to~Q~l.

(iii) dim Wk = Card{j G [1, s]: w[]) ^ 0}, for every fc G Z.

Let us first make precise the meaning of the notations used in the theorem.

For every natural number n, ln denotes the (n, n)-identity matrix.

If R and T are two square matrices, R®T denotes the square matrix (JJ),

and i?®n denotes the matrix R® ■ ■ ■ ® R n-times.

REMARK. In the case when 7V0 = N\ = ls, it is quite natural to consider

the spaces Gk = sp[£k22n: n > 0]. Unfortunately we were not able to decide

whether or not we have Gk = ©J=i Gk . The interest of the spaces Gk comes

from the fact that they satisfy Gkj)** « Gkj), and dim(G^)**/G^)) = 1. Indeed,

by Theorem 2.1(iv)-(v) and Lemma 2.6, the sequence (t}kl2n)n>o is a bimonotone,

neighborly, and shrinking basis of Gk and its summing sequence (J2p=o ffc-2p)«>o

is a boundedly complete basis of Gk  ; hence by [B] we have

G?" = G« ffi K • (wk + Okik+2)^ « C/jf ffi K ■ #>a =. <#>.

Proofs of (ii) and (iii) are purely algebraic.  They will make use of the following

norm-one operators irk: Ek —► Ek defined by

%k(x) = u*k- lim 7rk-2n o ■ ■ • o 7Tfc_2 ° 7Tfc(a;).
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We will use the following properties of the operators rrk:

LEMMA 5.2.   For every fc G Z, we have

(i) ■kk(wk) = -crkNkwk,

(ii) 7Tfc(x) = Pk(x) - (x^Wk+iYM^Wk for every x G Ek.

PROOF, (i) By Lemma 2.9(iv) we have

Trk(wk) = Wfc- lim [wk - (10 + o-kNk)(ik,n] = -o-kNkwk.

(ii) We have seen before that for every h G Hk we have h = (h, t^k+i)tMk1^k,n +

ftk-2n0' • -°^k-20^k(h). Then by taking w*.-limits we obtain h - (h,t£lk+i)tMk1wk

+ *k(h).

Since nk(Gk) = {0}, and by 3.2(h) and 3.3, the above equality is equivalent to

irk(x) = Pk(x) - (x^Wk+iYM^Wk for every x G Ek.    D

Another ingredient in the proof of Theorem 5.1 is the change of bases formulas

(with respect to a fixed isometry A: E —> E**).

Let C and G* be two invertible (s, s)-matrices, and consider the new bases £3

and £4 defined by £3 = G»£3 and £4 = G&.

It is easy to check that the parameters corresponding to £3 and £4 satisfy

f (i) ft = Ck^k, (ii) M'k = Gfc+iMfc'Gfc,

(*) j  ("i) K = CkNkCk\    (iv) i'k>n = Ckik,n,

{ (v) w'k ^ Ckwk, (vi) o-'k = CkO-kC^1,

where we have put G2jt = C and C2k+i = Ct for every fc G Z.

PROOF OF THEOREM 5.1.

Proof of (i). The proof will be divided in two steps. In the first one we will

prove the existence of an isometry A: E —> E** for which JV0 = Ai = ls. In the

second step we will show that by a suitable change of bases we may assume that

the above-mentioned isometry satisfies Mo = —Mi = ls.

Step 1. Assume that we have proved that there exists an isometry A: E —► E**

for which JV0 = Ai - ls.

If we take G = ls and C, = M^1, the change of bases formulas (*) imply that

Mo" = -Mi = ls.

Step 2. Let A: E —* E** be a given onto isometry between E and E**. We are
(Ft\ (Fi\

going to construct a new isometry B: E —> E** for which Nq     = N{     = is.

For every x G E, define

n / n—1 \"

J(x) = w*,-lim   ^/z0,p(a;)A0-1£_2p+J/"1 [x-^1 Po,p(x)Z-2p}   ,
n^ LP=o V    P=o /.

n-1 / y

J(x) = <Jo-lim    y2p-o,p(x)N0£-2p-£f \x-y2Po,p(x)Z-2p\   ,
Lp=0 \ p=0 / .

where the vectors ^k denote those corresponding to the isometry A.



ON JAMES' TYPE SPACES 733

Let us show first that these definitions make sense. Indeed, using Lemma 2.6 we

obtain

n

IMI =    Yl ll0,p(x)^-2p + T-2n o ■ ■ • o 7T_2 O 7T0(x)
p=0

n

^     Y /UO,p(z)A0~1£_2p+2 + M0,n(z)£-2n + ""-2n O • • • O 7T_2 O TT0(x)

p=0

n / n—1 \

=     YfioAX)N0~1£-2p+2 +  [X-J2^°^X^-2p)
p=0 \ p=0 /

n / n-1 \

=  J2>loAx)No~1Z-2p + rf~1   z~X^o,p£-2p     •
p=0 V p=0 /

This shows that I is well defined, and that ||/|| < 1.

Similarly, using Lemma 2.6 again and Lemma 2.2 (for the last inequality) we

obtain

n

IMI -     Y ^0,p(z)£-2p + 7T-2n O • • • O 7T_2 O 7T0(x)

p=0

n-1

>   Mo,o(z)£o + Y P>o,p(x)no$-2p-2 + 7T-2n o ■ • ■ o 7r_2 o 7r0(x)

p=0

n—\ I n \

=   Po,o(x)i2 + Yl Po,p(x)N0£-2p + srf I x - Y P-o,p(x)£-2P J
p=0 V p=0 /

« /    A A.

p=0 V p=0 /

Hence J is well defined and satisfies || J|| < 1.

Claim. JI = IJ = Id^, hence both J and J are isometries of E, and are inverse

to each other.

Assume that we have proved the claim, and prove that the isometry B —

AI:E^ E** satisfies N^B) = n[B) = ls.

Recall that the vectors £k ' are constructed starting from fixed bases £3 and £4,

i.e.: £3 = £3, and Q = £4. Now applying Theorem 4.1 to the isometry J we

obtain

£f)=^-1(£4)=,^-1(£4) = A2J)£2

= AoA07)A0-1£2 = Ao£2

since it is clear that A0 is equal to the matrix of *f\x0-

Then

M<B) = <tfVtf») = M0<Ao,    Mi^ = (£f V£iB)> = Mi,
N^ = -M^mD-1 = ls,    ^i(B) = -W1)-1 = 1»-
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PROOF OF THE CLAIM. It is clear that for every g G G0 we have: 1(g) =

Er=o/io,n(ff)A0_1£_2n and J(g) = J2n°=o Po,n(g)N0Z-2n with norm convergence

for the series. Then both / and J respect Go and satisfy JI\g0 = H\G0 = Wg0-

Let us prove now that / and J also respect Hq.

We have seen before that every h G Hq satisfies h = Po,o(h)£o,n + 7r-2« o • • • o

?T_2 o TTo(h) for every n > 0. Then 1(h) is given by

1(h) = wg- lim[^o,0(ft)^0"1&.n+^"1('»-«),o(A)&.n-i)],
n&/

and a similar argument as in 2.9(i) gives 1(h) G Hq.   We prove similarly that

J {Ho) C Hq.
To prove the claim it is now enough to prove that JI\h0 = H\h0 = Id//0, since

E = Go ffi Hq. To do this we need to compute, for every h G Hq, the expressions

of 1(h) and J(h).

(1) /(/») =w0- lim[/io,oWA0-1£o,„+J/-1(/i-uo,o(^)£o,rl-i)]

= w0*- lim[no,o(/i)A0-1£0+J/-1(/i)]
n€W

= Mo,o(^)A0-1£o+Ja/-1(/i).

(2) J(h) = u*Q- lim[u0,o(/i)A0£o,„-i +^(A-/io,oWlo,n)]

= w5-lim[-/i0,o(/i)£2+J/(/i)]

= 7T2[j/(fc) - Po.oCOfcl] = 7T2OS/(h).

Hence JI(h) = 7T2 o j/[/xo,o(^)A0_1£o + J/-1(/i)] = /i, and one can also check

that IJ(h) = A.
This concludes the proof of the claim and of part (i) of Theorem 5.1.

From now on, we will always suppose that the isometry A: E —► E**, and the

bases £3 and £4 are chosen in such a way that Mk = (—l^ls for every fc G Z.

To preserve this property, all the forthcoming change of bases will be done only

with matrices C and G* which satisfy CJC = ls.

Proof of 5.1(h).
1st case: the complex case. Without loss of generality (by doing a suitable

change of bases if necessary) we can assume that tJo is a Jordan matrix, i.e.: <to =

Pi ffi P2 © • • • ffi Pr where each Pj, 1 < j < r, is a square matrix of the form

('■ VIA1. \   V
Pj = xi [v" • •. N  -

o\'- '•
vi—a • 11;

[We use the fact oq is invertible, i.e.   X3 ^ 0, to obtain this special form for the

matrices pj] Hence 01 — ta^1 (Lemma 2.9(iii) satisfies cti = tp^1 ffi tp21 ffi •■ - ffi

We are now going to prove that for every j, 1 < j < r, we have |Aj| = 1

and rank(pj) < 2.  This will be proved only by using the fact that the sequences
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(nk(wk  ))n>o are bounded for every fc G Z, 1 < j < s, and the formulas nk(wk) =

-crkwk, and (u^'ffc+i) = (-l)fc(ls+<?*:).

Since all these formulas are "decomposable" it suffices to consider the case when

-Hi^^J-
The general case follows by an obvious "block" argument.

Now we want to show that in this particular case we have |A| = 1, gq is of rank

at most equal to 2, and that the equality holds only if A = —1.

(1) Case when rank (o-q) = 1. In this case we have ttq(w0 ') = (—X)uWq and

tt?(w{1)) = (-X-1)nw[1).

Since the sequences (ttq(wq   ))n>o and (n"(w[   ))„>o are bounded, we have

(|A| < 1 or w{01] = 0)    and    (|A| > 1 or w[1] = 0).

So if w{01] ̂ 0 and w[1] / 0, we have |A| = 1.

On the other hand we have A = -1 if Wq    = 0 or w\    = 0. Indeed:

w01] = 0 implies 0 = (w^, £xx)) = 1 + A,    and

w{1] = 0 implies 0 = (w[1], £^) = -(1 + A"1).

This shows that we have always |A| = 1.

(2) Case when rank (cto) = s > 2. Easy computations show that we have

^oU1]) = ("A)n41)>    ^MS)) = (-A"1)^^,

«S(i4,,) = R"k1)+4J1].
and

*?(«i-1,) = (-A-1n«i-1»-m^'>].

An argument similar to the above shows that |A| = 1. And using the boundedness

of (ttq (w0 ))n>o we deduce that w0 — 0, and hence A = —1, since (w0 , £j ') =

1 + X.
We have also w[    = 0 by the boundedness of (n"(w\s~   ))„>o-

If we assume that rank (oo) — s > 3, an easy computation leads to ttq (w0 ') =

nw0 ' +w0 ' (we use that w0 ' — 0, and A = —1); this implies that w0 = 0, which

is a contradiction since (w0 ', £J ') = (ls + ct0)(2,i) = —1.

Let us recapitulate what we have proved. If

(l- ^A

vJK^iij
then only the following cases hold:

(1) rank(ero) = 1 and |A| = 1.

(2) rank(fTo) = 2 and A = -1. In this case we have w^ = 0, w02) ̂  0, w[1] / 0,

and w{2) = 0.
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This proves 5.1 (ii) in the complex case.

2nd case: the real case. The arguments will be similar to the ones used in the

complex case.

By a suitable bases change we can assume that gq = Pi ® ' ■ ' ® Pr ® i"i ffi • • • ffi rt,

where each matrix pi, 1 < i < r, is of the form

(\       ^\

Ai     1-.   '•.

J°^*-l'l;
and each matrix Ti, 1 < i < t is of the form

fRfa) V    0   |\

Rfri) ' • • . \l
Pi    j.       ' . • . >

J "^    R{<Pi)  'R(fi)j

where

Ri!Pi)=(™Vi    -****),
\ sm ipt      cos <pi  j

and pt is a real scalar. The angles <pi must satisfy <pi ̂  0 [tt], since the t^'s are the

Jordan matrices corresponding to the pure complex eigenvalues of the matrix ao.

As in the complex case it suffices to consider the case when oq is a "p-matrix",

which was done before, and the case when o~q is a "r-matrix", which is the remaining

case.

We are going to prove that if oq is a "r-matrix", then we have necessarily o~q =

R(<p) for some <p (satisfying <p ̂  0 [tt]).

(1) Case when rank (cq) = 2. In this case we have

«(-*)« ($)-<-<■)■ ($)

and

This implies that we have (|p| < 1 or Wq = w02' = 0) and (|p| > 1 or w[ ' =

w{2) = 0).

But we cannot have w0 = 0, since if it were the case we would have 0 =

(wq , £j ) = —ps'mip, and this equality implies <p = 0 [7r] (since p ^ 0) which was

excluded. Similarly we cannot have w[    — 0.

So we have |p| = 1, and hence a0 = R(<p) for some <p (since —R(<p) = R(<p + tt)).

Observe that in this case we have dim Wo = 2, since if not, we would have

0 = det((u;o,t£4)) = 2(1 +cos£>) which is impossible. A similar argument gives

dimlVi =2.
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(2) Case when rank (00) = 2s > 4. We are going to prove that this case cannot

hold. If it were the case, easy computations would lead to

and

«<-»,» ($)-<-*>•[»($)+(:S)/
An argument similar to the above shows that |w| = 1, and w0 ^ 0. But the

boundedness of

HDL
implies that Wq ' = 0, which is a contradiction.

This proves 5.1(h) in the real case.

PROOF OF 5.1 (hi). We will give the proof only in the complex case. In the
real case the proof is exactly the same.

Let
(-1    0 \®c

<-o = (-la)©^©[ _j    _,)      ,

where a is a diagonal unitary (b, 6)-matrix whose diagonal terms are all different

from — 1.

The first result we are going to prove is:

Claim 1: If cr0 has the form described before, then every fc G Z:

dim Wk = Card{> G [a + 1, s]: w[j) ^ 0} + dim sp[wk3): 1 < j < a}.

PROOF. Let a be a 1-row matrix such that awo = 0. Lemma 2.9(iv) implies

that a(ls +fJ0)£o = 0, and since the vectors (£q )i<j<s are linearly independent,

this implies a(ls + oq) = 0.

Using the special form of the matrix oq, we deduce that a(-a+3^ = 0 for every

j G [1, b] and a(°-+b+2j) _ 0 for every y e [^ c]; and hence Y?j=1 a^w0j) - 0 (since

w(a+b+2j-l) _ Q f()r eyery ^ e j1)(;j^

This shows that dunsp^^': a+■ 1 < j < s] = Card{j G [a + 1, s]: iu0j) 7^ 0}

and that the spaces sp[t/;0-": a + 1 < j < s] and sp[wo : 1 < 3 < a] are linearly

independent.

This proves the claim for the even indices. A similar argument holds for the odd

indices.

The proof of 5.1(iii) will be complete if we prove the following:

Claim 2. It is possible to choose the bases £3 and £4 in such a way that oq

keeps the special form described above and such that dunsp^^ . 1 < 3 < a] =

Card{j G [1, o]: w{k3] ̂ 0} for every fc G Z.
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To prove this claim we will need the following lemma:

LEMMA 5.3. If o~q has the form described above then, for every fc G Z, and

every x G Ek we have ^2"=i(x,wk^_1)wk    = 0.

PROOF. Applying Lemma 5.2(h) and an easy inductive argument we obtain that

*Z(x) = Pk(x) - (-l)k(x,twk+1) (E(-^)P) w<<

(use the fact that (Pk(x),twk+i) = (x, twk+i): Lemma 3.3).

Now using the special form of the matrix oq and nullity properties of the vectors

wk    for j > a + b, the above equation can be written

n?(x) = Pk(x) - (-l)kJ2(xA3li)   £(-Mi,j))P   wj0
j=i Lp=o

a

= pk(x)-(-i)k nj2(xA3lM3)
>=1

+   V  (x wij) ^-(-^O'J))"    0)
+     ^   <*'%+!>       l+ak(j,j)      ^        ■

This implies the desired result, since the sequence (?rJJ(x))n>o is bounded.    □

PROOF OF CLAIM 2. This claim will be proved in two steps.

Step 1. Without loss of generality we can assume that (w03 )i<j<ao ls a maximal

linearly independent subsystem of (wq  )i<j<a- Then there exists a matrix To such

that(wiQ1+a°\...,w{Qa)) = (w{Q1\...,wi0ao))TQ.

Let

C=(l^~~,-)®l*-a    (and G.^G"1).
\   J-0      la-ao /

If we define the new bases £3 and £4 by £3 = G» £3 and £4 = G£4 it is easy to check

that we have <r0 = o~q, w'0 ' = w0J' for every j G [l,ao], and Wq = 0 for every

j G [a0 + l,a].

Step 2. By the preceding step, we can suppose without loss of generality that

the vectors (w^ )i<j<ao are linearly independent and that w0 — 0 for every

3 G [a0 + l,a].

By Lemma 5.3, for every i€£.i,we have J2°j= 1 (x, Wq ')w_l = 0, and by linear

independence and since (E-i)* = E0, the above equations imply that w_{ = 0,

and hence w[3' = 0, for every j G [l,a0].

Without loss of generality we can also assume that (w\a 3 )i<j<ai is a maxi-

mal linearly independent subsystem of (w\J )i<j<a- Then there exists a matrix Ti

such that

(w[1+ao),...,w[a-ai)) = (w[a+1-a,),...,w[a))Ti.

Let

C. = lao®( la-°0P-ai    '^ \ ffi ls_a    (and G = tGr1)-
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If we consider the new bases £3 = G* £3 and £4 = C£4 it is easy to check that we

have o'q = ao, w'q3' = Wq    for every j G [l,o], w'{3   — 0 for every j G [l,a — 01],

and w'i    = w[3' for every j G [a + 1 - ai,a\.

This concludes the proof of Claim 2 and of Theorem 5.1.    □

In view of Theorem 5.1 it is quite natural to consider the following definitions.

DEFINITION 5.4 The real case: Let E be a real Banach space which is isometric

to its bidual E**. We will say that E is of type (s; ao, ai, 6, c, d) if d\m(E**/E) = s,

and if, after the reduction of the parameters we have:

(i)
/-l    0 \®c

0O = (-la)©ff©[      j     _j)       ®R(<Pl)®---®R(<Pd),

where a is a diagonal unitary (b, 6)-matrix not having -1 as an eigenvalue, and

ipi ^ 0 [tt] for every i G [l,d|.

(ii) w03  = 0 for every j G [ao + 1, a], and w[3' = 0 for every j G [1, a — ai}.

In the complex case we define similarly the spaces of type (s;ao,a\,b,c) [the

parameter d disappears].

Examples of each type, both in the real and the complex case, could be con-

structed (by suitable direct sums) if we construct examples of spaces of special

types. To make this more precise let us introduce the following terminology:

DEFINITION 5.5 Let E be a Banach space which is isometric to its bidual E**.

We will say that:

(1) E is of type (I) if dim(E**/E) = 1, and if w^ = 0, and w{1] = 0. (In this
case we have 00 = —1.)

(2) E is of type (II0) (resp. of type (II,)) if dim(E**/E) = 1 and if w01] ̂  0,

and w[    = 0 (resp. w0    = 0, and w[ ' / 0). (In this case we have also ao = -1).

(3) E is of type (III) if dim(E**/E) = 1, and if ao ^ —!• (In this case we have

w£' 7* 0, and w[1] / 0.)

(4) E is of type (IV) if dim(E**/E) = 2, and if a0 = (l\ ^). (In this case we

" have w01} = 0, w{02] ̂  0, w[1] ^ 0, and w[2) - 0.)

(5) (In the real case only) E is of type (V) if d\m(E**/E) = 2 and if er0 =

(s°n£ ~coin/) for some P^OW. (In this case we have dim Wo = dimWi = 2.)

It is now clear that by direct sums we can produce examples of any type if we

can construct examples of the above special types. This will be the subject of the

next section.

REMARK. It is easy to see that E is of type (I) [resp. (Ill), (IV), (V)] if and

only if E* is of the same type, and that E is of type (II0) [resp. (II1)] if and only

if E* is of type (II,) [resp. (II0)].

6. Examples. In what we have done before, we have imposed no normalization

conditions on the vectors £k . We are going to prove that these restrictions hold

automatically in the case s = 1.

Recall that we always assume that the parameters have been reduced (so that

they satisfy Theorem 5.1).

LEMMA 6.1.   In the case s = 1 we have

(i)Max(|l + ao!,l)<||£o|H|£i||<2,

(") H£oll • ||6 II = 1 if wo = 0 and wx = 0.



740 ABDERRAZZAK SERSOURI

PROOF, (i) Since (£1, £0) = 1 we have ||£0|| • ||£i|| > 1.

To see that ||£o||-||£i|| > |l+ao| recall that we have ||wo|| < ||£o|| and ||wi|| < ||£i||

(Corollary 2.7).   Then by Lemmas 2.9 and 3.2, we have |1 + <xq\ = \(wo,wi)\ <

UoW-Hil
On the other hand, for every e > 0, let a£o + x_2, x_2 G E-2, be a norm one

vector such that a = (o£0 + x_2,£i) > (1 - e)||£i||, then (1 - £)||£i|| • ||£o|| <

||a£o|| < 2 by Lemma 2.2, and since e > 0 is arbitrary we have ||£0|| • ||£i|| < 2.

(ii) If two = 0 and Wi = 0, we have H2k = F and H2k+i = Ft for every fc G Z.

By Theorem 2.1(v), there exists /, G F* such that ||/» + ||£o||£i|| = 1 (indeed

if /* + J2n°=o Q!-i-2n£-i-2n + ||£o||£i is a norm one supporting vector of £0, then

/* + ||£o||£i also supports £o, and hence has to be of norm one), and there exists

f eF such that ||/+ ||£i||£2|| = 1.

By Lemma 2.6 we have ||/+||£i||(£2 + £o)|| < 1, and by Lemma 2.2 ||/+ ||£i||£o||
< I-

Then

l(/. + ||£o||£i,/ + ||£i||£2)| = !</.,/) - ||£o|| • 116111 < 1
and

K/. + ll£o||£i,/ + ll£i||£o)l = |{/.,/) + ll£oll ■ II6III < I-
These two inequalities lead clearly to ||£o|| • ||£i|| = 1.    D

In all the following examples we exhibit an isometry A for which Mk = (—l)fcls.

(We leave the verification to the reader.)

Unfortunately we were not able to produce examples of type (IV).

EXAMPLE 6.2. Spaces of type (I). We are going to show that the spaces vp are

of type (I) for every p, 1 < p < oo. (v2 is the usual James space usually denoted

by J.)
Let us first recall the definitions of the space vp [J, LT].

For 1 < p < oo and a sequence of scalars (an)„>o, let

r fc-i iVp

(*)        ll("n)||»p = 5i7T       Sup |o!nt-ano|p + £|Q;n.+1-a„,|p

0<no<-<nt

(ll(Qn)lkP < oo => limn=00Q„ exists) .

The spaces vp are defined by

Vp = {K)n>0 G C0: ||(«n)||t»p < 00}

equipped with the norm given by (*).

Since the natural basis of vp is bimonotone and shrinking for every p e]l, oo[, its

bidual (i>p)** is given by

(«°r = {(an)„>o:||K)lk<oo}

equipped with the norm

ll("n)||j;* = Sup ||(a0, «i,..., aAT,0,0, ...)||„p.
P N
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With this norm, v° is isometric to (vp)**, and the isometry A: vp —* (vp)** is

given by

A(a0,ai,Q!2,...) = ("i -a0,a2 -ao,...).

To compute A*, we need some information on (vp)* and (vp)^3\

If (a0,«!,...) G (v°)*, then Yln°=i an exists.   Indeed, if (<5„)„>o denotes the

natural basis of v®, and (S*)n>o the corresponding biorthogonal system (which is

a basis of (v°)* since (6n)n>o is shrinking), then

M j  m m       \ M

Ya"   =    \Y "n*5"' Yl 6n )    ~     Y anSn    ■
n=N \n = N n=N      I n=N

This implies that Yln°=o an exists.

Every element of (vp)^ can be represented as a sequence (a*,, a\,.. .;&), where

(a*,, a*,...) G (vp)*. Such an element acts on (vp)** as follows

oo

((aQ,a\,.. .;&);(a0,ai,...)) = V o„a* + a lim an.
*—' n=oo
n=0

With this convention an easy computation leads to

oo

A*(otQ,a\,...;a) = (-a- Y an>ao>aii ■ ■ ■ )■

n=0

Now it is easy to check that we can take £2 = - J2n°=o ̂ " (tne convergence

holds in the w*-sense). Indeed if e* = (a*,,a*,...) G (u°)* (i.e.: a = 0), then

(A*(e*),ZZotn)=0.
With this choice of £2, and by the definition of A. it is easily seen that £_2n = <5n

for every n > 0. This shows that G0 = vp, and then H0 = {0}. Hence Hi = Gq =

{0}, and then Gi = (w0)*.

This concludes the proof of the fact that the spaces vp\ I < p < 00, are of type

(I)-
EXAMPLE 6.3.: Spaces of type (II0) and (Hi). Notice first that it suffices to

construct examples of type (II0). Examples of type (Hi) are then obtained by

taking the duals of the first ones.

For spaces of type (II) we have to consider the parameter 0 = ||£0|| • ||£i|| which

belongs to [1,2].

Let 0 G [1,2], and consider on the space K ffi v2 the norm given by

||(/9;ao,ai,...)|| = Max|^||(o0lo1,...)lk;&«>|j9-On|J.

If (6n)n>o is the natural basis of v%, and if v = (1;0,0,...), it is not difficult to

see that the sequence (v, <50,61,...) is a monotone shrinking basis of K ffi v2. Then

the bidual norm on (K ®v2)** is given by

||(/?; ft0,Oi,. • OH" - Sup ||(/3; o0,... ,aN,0,0,.. .)\\.
N

With this norm the space K ffi v2 is isometric to its bidual, and the isometry is

given by

A(0;ao,ai,a2,...) = (/? - a0;Qi -00,^2 -«o, •••)•
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Reproducing the computations of Example 6.2, we get

A*(P*,a*Q,a\,...;a)= I /?*; -d - /?* - J2 <^l,a\,... J .
V n=0 /

This shows that we can take £3 = (0; 0,0,...; -1) and £2 = u — J2n°=o ̂«- Then

£_2n = <5„ and £i_2n = 6* - 6*_t for every n > 0 (we have put 6* j = 0). This

leads to ao = —1 (= o\), Gq — sp[(5„: n > 0], Gi = sp[<5*: n > 0], wo = v, and

then wi = 0, H0 = F = K • v, Hi = G^ = K • v*, and F, = {0}.

Let us prove now that ||£o|| ■ ||£i|| = 0 (notice that (£1, £0) = 1).

||£o|| = Max(l,i) = l.

||£i||=Sup{|a0|: ||(/?;a0)ai,...)|| < 1}

= Sup{|a0|: ||(/3;a0,0,0,...)||<l}

= Sup{|a0|: Max(|/3|, \0 - a0\, $\a0\) < 1}

= Min(2,0) = 0.

EXAMPLE 6.4. Spaces of type (III). In this case the parameter 0 = ||£o|| • ||£i||

has to satisfy Max(l, |1 + ctoI) < 6 < 2. We will give examples for all the possible

values of <7o and 0 except for the cases (0 = 2,ao ^ 1) and (0 = 1, |1 + cto| < 1).

Let a be a scalar of modulus one, a / — 1, and p g]1, 00[. On Kffivp1 we consider

a norm defined by

||(^;ao,«i,...)||

fc-i i1/P

Sup |(/? + Q„0)+a(/? + a„t)|p +V|Q„,+ 1 -a„,r
fc^° ^0

0<no<---<nk

If (<5n)ra>o is the natural basis of vp and if v = (1;0,0,...) the sequence (y,bo,b\,...)

is a monotone shrinking basis of K ffi vp. Then the bidual norm on (K ffi vp)*m is

given by

||(/?; a0, ai,.. • )||" = Sup \\(P; a0,..., aN,0,0,... )||.
N

With this norm the space K ffi 7;° is isometric to its bidual and the isometry is

given by

A(/3;a0,ai,a2,...)

(   p + a0 a0 + (l+a)f3 aQ + (l+a)f3       \
=-;ai H-,a2 H-,...    .

V        a o a J

We have also

Ktsr-,os.a;,...sa). (~ + L^1 (* + £>:);

-f+K4+£€S),*"!'"-)-
This shows that we can take £3 = (0; 0,0,...; 1) and £2 = -v + J2n=o ^n- Then

,        l + o-   .  ,   1,,
£1 =-v  + -<50,

a a
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and for every n > 0,

£-i-2n = -(b~n+i ~ Sn)i    and    £_2n = a6n.
a

This implies a0 = a, Wq = av, w^ = -(1 + a)v*/a,

Gq = sp[<5„: n > 0],    Gi = sp  6* +-v*: n > 0   ,
a

H0 = K-is,    H!=K-i/*,    F = {0},    and    F. = {0}.

Let us show now that 0 = ||£0|| ■ ||£i|| = Max(|l + a|;21/p).

l^o^Maxdl + al^1^),

||ft|| = Sup{Kl + ff)l9 + ao|:||G9;ao,Ol...)||<l}

= Sup{|(l + a)/? + a0|:

Sup[|l + a|p|/?|p; |1 + a|p|/? + a0\p; |(1 + a)/? + a0|p + |ao|p] < 1}

= 1.

EXAMPLE 6.5. Spaces of type (V). The example we give is formally identical

to the above one. We have only to replace a by the matrix

R{ip)=(™V    -sin<p\
v ysin^j     cosip J

For a, b G R, let \(l)\2 = a2 + 62, and define on the space ~R? ®v2®v2 & norm

by

||(/?;ao,ai,...)||=       Sup |(/? + a0) + (12 + £(*>))(/?+ a„J|2
A:

0<no<-<nt  L

fc-1 I1/2

+ 53la«.+ . _a«.|2
i=0

where we have put

The isometry j4 is given formally by the same expression as in the above example,

and we can check that ao = R(<p).

EXAMPLE 6.6. In this example we will construct a type (I) space E for which

the decomposition E = Go ffi Ho is not bicontractive.

Let (ui)o<i<l be scalars satisfying J2i=ou' = 0' and define the scalars (ui)'>o

by periodicity: ui+L+i = ut.

On the space K ffi v% we define a norm by

||(/?; ao, c*i,... )|| = Max{$0tU((ao, a,,...)); ||(a0, "i, • • • )lk)

where
L

$0,u((ao,ai,...))=       Sup        pl-y~]uk+ian,  ■
k>0 f^Q

0<no<-<nL
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One can check that the operator A: K ffi J —> (K ffi J)** defined by

A(/3;a0,ai,a2,...) = (/?;ai -a0,a2 - a0, ■■■)

is an onto isometry.

Reproducing the computations of Example 6.2, we can see that E is of type

(I) and characterize its parameters: Go = sp[<5„: n > 0], Gi = sp[<5*,n > 0],

H0 = F = K • v, and #, = F, = K ■ v*.

For u = (2,-1,2,-3), and a = (1,-1,1,0,0,...), we have -6 < ]Cf=oufc+'am
< 7. (The extreme values —6 and 7 are attained.)

Then ||(0; 1, -1,1,0,... )|| = 7, and ||(§; 1, -1,1,0,... )|| = f; hence the decom-
position E — Go ffi Ho is not bicontractive.

Finally, we will describe some isometric properties of type (I) spaces. We first

have to recall some definitions (see [Gr] for details).

Let P be an n-dimensional Choquet simplex, and let Sp = P — P= {x — y: x, y G

P}. The set Sp has exactly 2(n + l)-simplectic faces of dimension (n — 1). We

define the set S** to be the intersection of the 2(n + 1) half spaces containing 5*

and which are supported by the above-mentioned faces.

A symmetric convex set K is said to be a Leichtweiss compact if Sp C K C Sp*

for some Choquet simplex P.

THEOREM 6.7. Let E be a type (I) space. Then for every fc G Z, every n > 0,

the unit ball of the space sp[£fc_2p: 0 < p < n] is a Leichtweiss compact.

PROOF. Notice first that in view of Lemma 6.1 we can assume that ||£o|| =

||£i|| = 1. For convenience we put £fc,_i = 0 for every fc G Z.

For the Choquet simplex P = cv[£fciP: — 1 < p < n], it is easy to check that

Sp = cv[£fc,p — £fci9: — 1 < p, q < n], and that the n-dimensional simplectic faces of

Sp are the faces ±Fj, -1 < j <n, where Fj = -£fcj + cv[£k,p:  - 1 < p ^ j < n}.

To prove the theorem it suffices now to prove that the faces Fj, — 1 < j < n, are

in the unit sphere of sp[£k_2P: 0 < p < n).

By Corollary 2.7, for -1 < p ^ j < n, we have \\£kj — £/t,p|| = 1- Hence it

remains only to prove that

1        "
~*fcJ + nTT ^ ^fc'p   = h

p=-i
Pitj

for every -1 < j < n. We distinguish two cases:

j = -1:

n n

(n + l)>   ]T£fc)P   =   ^(n+l-p)£fc_2p   > ||(n + l)£fe|| = n + 1.

p=0 p=0
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0 < j < n:

n

n + l>   (n + 2)Zk,j-YZk>P
p=0

j n

=    J^(P+l)£fc-2p-    Y   (n + 1-P)tk-2p
p=o p=j+i

>    ( £fc-2j-l,X^(P+l)£/c-2p-    Y   (n + l ~ P)tk-2p)
\ P=0 P=J+1 /

= n+ 1.

This concludes the proof of the theorem.    □

REMARK. Leichtweiss' compacts are exactly the unit balls of finite dimensional

spaces with some extremal properties. Let us recall one of them.

For an n-dimensional Banach space X, we define p(X) as the smallest constant

K so that for every Banach space Y containing X and satisfying dim(Y/X) = 1,

there exists a projection P: V-*!, with ||P|| < K.

It is known that p(X) < 2n/(n + 1), and that p(X) — 2n/(n + 1) if and only if

the unit ball of A" is a Leichtweiss compact.

We refer to [Gr] for other extremal properties which are connected to Leichtweiss'

compacts.
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