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A CRITERION FOR THE BOUNDEDNESS OF SINGULAR

INTEGRALS ON HYPERSURFACES

STEPHEN W. SEMMES

Abstract. This paper gives geometric conditions on a hypersurface in R" so

that certain singular integrals on that hypersurface define bounded operators on

L2 . These singular integrals include the Cauchy integral operator in the sense

of Clifford analysis and in particular the double layer potential. For curves in

the plane, this condition is more general than the chord-arc condition but less

general than the Ahlfors-David condition. The main tool is the T(b) theorem

[DJS].

1. Introduction

We want to find conditions on ¿7-dimensional surfaces S^ in R + so that

singular integrals of the form

(1.1) Tf(x) = PV f k(x-y)f(y)dy   (xeS?)

are bounded on V(5^), where dy denotes surface measure on S?. Here k(x)

should be homogeneous of degree -d, odd, and smooth away from the origin.

The special case of k(x) = x^\x\ + arises in connection with the double layer

potential and the Cauchy kernel associated to Clifford analysis.

For simplicity, we assume throughout this paper that 5" is smooth, even that

J^U {00} is a connected smooth submanifold of Sd+X = R +1 U {00} , and that

S? is orientable, so that there is a smooth, nowhere vanishing normal vector

field n = n^ on 5?. Apparently, algebraic topology implies that R +l\9*

has exactly two components. (In fact, it also implies that orientability follows

from the other assumptions.) However, we are not making any other topological

assumptions on 5?. We do not require that 5? be homeomorphic to R ; for

example, S? is allowed to have handles. Of course, the estimates we get will

not depend on these a priori smoothness assumptions.

Analogous to the d - 1 situation, we shall assume that for some Tí > 0 and

all xeS? , R>0 we have

(1.2) Ti~V<|5Ä(;t)n^|<7i7?'/.
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Here BR(x) = {y: \x - y\ < R}, and |7¿| denotes the surface measure of

E ç Sr°. When d - 1 the lower estimate in ( 1.1 ) is automatic, but when d > 1

it is a restriction.

This assumption implies that S?, equipped with surface measure and the

Euclidean distance, is a space of homogeneous type, in the sense of Coifman

and Weiss. Thus the usual results of Calderon-Zygmund theory are present;

e.g., if T in (1.1) is bounded on V(5fi) for some p, then it is bounded for

all /?, 1 < p < oo, takes L°° into BMO, etc.

It is a well-known result of David [Dl] that, when d = 1 , (1.2) is sufficient

for the boundedness of T in ( 1.1 ) and also necessary if we take T to be the

Cauchy integral, for example. David has also observed that ( 1.2) is not sufficient

when d > 1. We shall give an extra condition that does the job.

Theorem 1. Assume that 5? satisfies the a priori assumptions above and also

(1.2). Assume also that S? satisfies the following condition:

(1.3) there is an A > 0 so that for each x E S? and R > 0 we can find

y , z E R + \5r° such that y , z live in different components of

Rd+x\S* , \y-x\ + \z-x\<AR,and BA_iR(y) and BA_IR(z)

are disjoint from 5?.

Then there is a C = C(A,K,d) so that if P(x) is an odd polynomial,

homogeneous of degree I, and k(x) = P(x)/\x\ + , then the operator T in

(1.1) is bounded on L (£") with norm at most C \\P\\LOO,sdy

Thus, if K(x) is odd, homogeneous of degree -d, and real-analytic away

from 0 with good enough radius of convergence on S (how good depending

on A, Tí, and d ), then T in ( 1.1 ) is bounded. Presumably k(x) should only

have to be smooth away from 0, but the proof will not give this.

Another condition on a surface S? for singular integrals to be bounded on

S? has been given by David [D2]. His condition and the one above are quite

different, and neither implies the other. When d = 1 , his condition reduces

to (1.2) (and his earlier result), which is more general than the theorem above.

Theorem 1 does imply the boundedness of the Cauchy integral on chord-arc

curves and would even allow the curves to smash into themselves in a "nontan-

gential" fashion. Long thin strips, or tubes, are bad for Theorem 1.

When d > 1 , the two conditions are harder to compare. David's condition

is better at letting the surface smash into itself, or cross itself, as in dimension

1. On the other hand, his condition is in terms of a parametrization satisfying

certain estimates, while the condition above is more intrinsic. For curves, one

can always take the arclength parametrization, while for surfaces one cannot in

general find a nice parametrization.

Condition (1.3) holds if one assumes that there is a homeomorphism h of R

onto S^ that is bilipschitz or even just quasisymmetric. This fact, due to Väisälä

[V], is proved using a compactness argument. (Of course, in the bilipschitz case
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one could control singular integrals using the method of rotations and the results

in [CDM].)

Condition (1.3) is natural geometrically from the point of view of harmonic

analysis. It says that R + and S? x R are similar in the sense that S?c has

Whitney cubes of roughly the same size in roughly the same places in each of

them. Of course, this correspondence of Whitney cubes is not as strong as it is

when there is a global quasiconformal mapping on R +1 that maps R onto

&.

We shall prove Theorem 1 using the T(b) theorem [DJS]. There is a problem,

though, and we must generalize the T(b) theorem, which we do in §3. Modulo

this, the theorem is proved in §2.

The use of the T(b) theorem in this context is both natural and frustrating.

The T'b) theorem permits one to estimate singular integrals without first ob-

taining an intimate knowledge of the geometry of the surface. It would be very

interesting to have a proof of Theorem 1 in the spirit of the good- X arguments

of David [Dl, D2], or at least something more geometric, but it is not at all

clear how.

It would also be interesting to prove harmonic measure estimates in this

context. For example, suppose that D ç R + is an NTA domain, in the sense

of Jerison and Kenig [JK], and that dD satisfies the assumptions of Theorem

1. Is it true that harmonic measure is Ax equivalent to surface measure when

properly localized? When d = 1, this reduces to Lavrentiev's theorem. If 5?

is the bilipschitz (or quasisymmetric) image of R , this is true. This problem

is closely related to the preceding one. In both cases you would like somehow

to reduce to the known results for Lipschitz graphs by good- k type arguments.

Alternatively, one could hope to use Theorem 1 to get harmonic measure

estimates, in the same spirit as solving the Dirichlet problem on Lipschitz do-

mains by layer potentials. The idea would be to show that any / e BMO(y)

could be written as, say, g + ReC(h), where g , h E L°°(5^) and C denotes

the Clifford-Cauchy integral (discussed later).

A closely related problem is to show that if F is Clifford-analytic in D and is

the Cauchy integral of its boundary values, and if F* denotes the nontangential

maximal function of F, then \\F*\\LHy) < C\\F\\LH^y If & = Rd , this is

well known. (See Stein and Weiss [SW, Chapter 6].) If 5? is a Lipschitz graph

with small constant, one can prove this using the standard argument and the

fact that the harmonic measure is close to surface measure. The corresponding

result for Lp(Sfi), 1 < p < oo, instead of L1 , is not hard to obtain, using

the Cauchy integral formula and (1.3). When d = 1 , one can use factorization

(obtained via conformai mapping) to reduce from p — 1 to p - 2 . For general

Lipschitz graphs in higher dimensions, this result is not known. The methods

of Uchiyama [U] does not seem to apply easily.
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2. The proof of Theorem 1

It turns out that Clifford algebras and the associated Cauchy kernel provide

a useful algebraic setup for proving Theorem 1, so we first review these topics.

See [BDS] for details.

Let ^,(R) denote the Clifford algebra over R with n generators ex , ... ,en

and an identity e0, defined by the relations e¡ = -eQ and eiej = -e¡e¡, i / j,

i, j > 0. When n = 1 this gives the complex numbers, while for n = 2

quaternions come out. In general, you get an algebra with dimension 2" . If

x E span{e0,e,.<?„}, x = Y%=oxiei> set x* = -Vo ~ ¿Z"=\xiei-  Then

xx* = x*x - \\x\\2 and in particular

x~x =x7||x||2,        ||x_1|| = 11x11"'.

Define two differential operators DL and DR on Clifford-valued functions

by DLf = \Zeidf/dxi and DRf = E(df/dxi)e¡. When n = I, these two
operators reduce to d . Define D*L and DR by D*Lf = e0df/dx0-Y^nxe¡■df/dxi

and similarly for DR . Then DLD*L = D*LDL = A, and the same for DR .

Solutions of DJ = 0 (DRf = 0) are called left (right) Clifford analytic.

They are harmonic, hence real analytic.

There is an associated Cauchy kernel

E(x) = x* /\x\

except for a multiplicative constant. This is the fundamental solution of DL

and DR, as one can easily compute. There is also a corresponding Cauchy

integral formula. A special case of that formula is the following. Let D be a

bounded domain with smooth boundary, and let n(x) denote the outward unit

normal. We can view n(x) as an element of Cd(R) by identifying R + with

span{e0 ,ex , ... ,ed}. Then

....        f E(x-y)n(y)dy= f n(y)E(x - y)dy = 0   if x ERd+x\D ,
(¿■l) JdD JdD

= a   if x E D ,

where a = a(n) ^ 0 arises because we have been dropping multiplicative con-

stants.

To prove Theorem 1, we wish to use the T(b) theorem with b = n where

n = ny is a smooth choice of unit normal on 5?. To be able to apply T(b),

we need to show that n satisfies a certain noncancellation condition. This is

discussed in detail in §3. By Theorem 3.7, it is enough to show that there is

a C > 0 so that for any given x E S? and 7? > 0 we can find a real-valued

function r\ on 5? such that supprç ç BCR(x),  WtjW^ < CR~  ,  ||rç||Upl <

CTrrf"',and \f^nt]dx\ > C~x .

Fix x e y and R > 0. Let y, z be as in (1.3), and set ß(w) =

E(w - y) - E(w - z). From (2.1) (and a limiting argument) we get that

/   ß(w)n(w)dw



BOUNDEDNESS OF SINGULAR INTEGRALS ON HYPERSURFACES 505

We cannot take r\ — ß, because ß is not real valued or compactly supported.

However, because of (1.2) and because ß decays at oo like |x|~ ~ , we can cut

ß off far enough out so that | ¡y ß(w)n(w) dw\ is still at least a/2. Although

ß is not real valued, we can write ß = J2eißi, so that for some i, | / ßtn\ >

a/2(d + 1). Take r\ to be this ßi (cut off at oo, of course).

Thus, by Theorem 3.7 we can apply the T(b) theorem with b = n . In other

words, if we are given a weakly defined linear operator acting on Clifford-valued

functions and if T is associated to a standard kernel and is weakly bounded,

then T is bounded on L2(S") if T(n) and T'(n) lie in BMO. (See [DJS] for

precise definitions.)

Because the Clifford algebras are not commutative, we must be careful about

defining Tl(n). For clarity of exposition we assume that T is defined by

integration against a (Clifford-valued) kernel:

Tf(x)= [ k(x,y)f(y)dy,       xeS".
Jy

Then we define T' by

T'f(x)= [ f(y)k(y,x)dy,       xeS?.
Jy

This is not quite the same as the definition of transpose in the matrix-valued

case given in [DJS].

In all the examples we shall work with, the kernel of T will satisfy the

standard estimates and also k(x , y) = -k(y , x). As in the scalar case, this last

property takes care of weak boundedness. Thus we shall only need to compute
T(n) and Tl(n).

Let us first take T to be the Cauchy integral, i.e.,

Tf(x) = PV [ E(x-y)f(y)dy.
Jy

From (2.1) we get that T(n) = 0 and T'(n) = 0 in the sense of BMO. Thus

T is bounded in L2(R).

This implies Theorem 1 in the case where the degree of the polynomial is 1.

We do the general case by induction. We first need a lemma.

Lemma 2.2. Suppose that kQ(x) and k(x) are Clifford valued, smooth, odd,

and homogeneous of degree -d. Let T and T0 be the corresponding singular

integrals on S? defined by (1.1). Suppose that

DL(k(x)) = DR(k(x)) = ¿*o(x).       x * 0,

for some j, 0 < j < d. If T0 is bounded on L (S"), then so is T.

First recall that if U is a nice domain, / and g are nice Clifford-valued

functions on U, and n is the outward-pointing unit normal on dU, then

/  fngdy= f{(DRf)g + f(DLg)}dx.
JdU Ju

(See[BDS, p. 52].)
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Let us use this to compute T(n). Take U to be the component of Rrf+1\^

that n does not point into. Formally, we have for x E S? that

T(n)(x) = PV j k(x - y)n(y) dy

=  f DR(k(x - y)) dy= f ^-(k0(x - y)) dy
Ju Ju 0yj

= PV f k0(x - y)nj(y) dy = T0(n.)(x),       n = £ e}ny

The second to last equality comes from Green's theorem. Since n] E L°° and

T0 is bounded, TQ(n¡) E BMO.

The preceding calculation is not correct; if you do it rigorously, you will

pick up ¿-functions at the singularity x . However, this will only add an L°°

function to the computation of T(n).

Thus T(n) e BMO, and similarly Tl(n) E BMO. By the T(B) theorem,

T is bounded on L (S?), which proves the lemma.

Let us finish the proof of Theorem 1. Assume that Theorem 1 is known for

polynomials of degree < / for some /, and we want to prove it for degree

= /. Let P(x) be odd and homogeneous of degree /. We may also assume

that P(x) is harmonic, by standard facts about spherical harmonics. (See [S,

Chapter 3, §3].)
There is a constant ß{ = ßt(d) such that

(P(xy\xf+'f = ß,p(c:)/\c\'+l-

See [S, p.   73],  In Stein's notation, ßl - y¡ , .  Do not forget that we are in

Rrf+,,not Rd.

As is well known, a consequence of homogeneity is that

„     1 ̂      d  „     ^ 1 d2     „
¿2xtfí7p = £*/*,;l Z^   ¡ax        z-'   ' i 1(1- l)dx,dx.  '

I ' IJ 'il

Set
P   =_J_d—P

»    l(l-i)dxtdXj   '

so that P is still harmonic but homogeneous of degree 1-2. Thus

ß^iPu^m1'1^ = puM/\x\'-2+d.

Let T¡¡ denote the operator defined on 5? via (1.1) and this last kernel. By

the induction hypothesis, 7V is bounded on L (5?).

Set Í = Eioi,*,, C = tQeQ - Ef-i *iei. and define fcy W by

ßl(CiimPii(C)/\Z\'+l) = ku(x).
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Thus k¡j(x) is Clifford valued, homogeneous of degree —d, and odd. The ey

component of its Fourier transform is ßfifijP^)^-1'1 , so that P(x)/\x\ +

is built up out of pieces of the kt, 's, by construction.

Moreover, for x / 0,

W*)) = rMM*>> = ̂ |;(r^)-

Indeed, one can compute the derivatives as distributions by using the Fourier

transform. These global distributional derivatives will differ from the deriva-

tives away from the origin only by ¿-masses at the origin.

It follows now from Lemma 2.2 and the induction hypothesis that the opera-

tors defined by the kernels k¡• and (1.1) are bounded on L (S?). From this we

get that the operator corresponding to P(x) is bounded. One can check that at

each stage we picked up only constants that do not depend on /, and hence we

get an estimate in C  in Theorem 1.

This completes the proof of Theorem 1.

One can also prove area function estimates for Clifford-analytic functions on

R +x\9* using the square function estimates from [DJS]. We omit the details.

3. AN EXTENSION OF THE T(b)  THEOREM

To apply the T(b) theorem, we have to show that b satisfies a nonoscillation

condition. In fact, there are two nonoscillation conditions, para-accretivity and

pseudo-accretivity. The second works on spaces of homogeneous type, while the

first is only known to work on R" . This is the problem. In proving Theorem 1,

we need to use the para-accretive case on our surface S?, and the arguments in

[DJS] do not go over to this setting. To fix this we shall show that para-accretive

implies pseudo-accretive, even on a space of homogeneous type, assuming one

is open-minded about the definition of pseudo-accretivity.

Let us be more precise. For convenience we assume that the underlying space

is a surface 5? as in Theorem 1, although everything we do goes over to spaces

of homogeneous type.

A sequence of functions {pk(x, y)}kx>=_00 on S" x S' will be called an ap-

proximation to the identity if the following properties hold, for some C > 0,

a>0:

(3.1) pk(x,y) = 0   if |jc - y\ > C2~k ;

(3.2) \\pk\\00<C2kd;

(3.3) \pk(x, y) - pk(x, y')\ < C2k{d+a)\y - y'\a ;

(3.4) \pk(x,y)-pk(x ,y)\<C2k(d+a)\x-x'\a;    and

(3.5) /  pk(x,y)dy = I =      pk(x,y)dx.
Jy Jy

It is not hard to construct approximations to the identity—see [DJS].
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A bounded function b on S? is called pseudo-accretive if there is an ap-

proximation to the identity {pk} such that sup¿ IK-P^)-1^ < o°, where we

set

PkHx)= f pk(x,y)b(y)dy.
Jy

We say that b is para-accretive if there are constants C > 0, a > 0 so that

for any x E S? and 7? > 0 we can find a function r\ — r\  R on S? such that

supprç Ç BCR(x), IM!,,. < CTT^ , \\n\\Lipa < CR-d~a , and

>C~\(3.6) /" n(y)b(y)dy
\Jy

Clearly, if b is pseudo-accretive, then b is para-accretive. Conversely, it is

shown in [DJS] that if b is para-accretive and & = R then there is a sequence

of functions pk suchthat IK-f^o)-1!^ is uniformly bounded and pk satisfies

(3.1), (3.2), (3.3), and (3.5), and instead of (3.4) one has that for each fixed y ,

pk(-, y) is constant on dyadic cubes of length 2~ . This substitute for (2.4)

should be thought of as a smoothness condition still. (Observe, for example,

that if Q is a cube, then V%q is a perfectly nice measure.) This condition is

good enough so that the arguments that work in the pseudo-accretive case still

work just as well.

This approach to para-accretivity does not work on a general surface 5? (or

space of homogeneous type), because there will not be a good replacement for

cubes. Pseudo-accretivity does work in general, so one can ask if para-accretivity

always implies pseudo-accretivity. In [DJS2] it is shown that this holds on R,

but that on R , d > 2, it fails, because of a topological obstruction. The

problem is basically that the unit circle is not contractible. To get rid of this,

we allow ourselves to work in quaternions instead of complex numbers. This

enlarges substantially the set of invertible elements and gets rid of the topological

problem. Because of the noncommutativity, however, one must be more careful

about the algebra.

For the application in §2, we need to do this in more generality, for Clifford

algebra-valued functions. Let us first go through the definitions above and indi-

cate how they must be changed in the Clifford-valued case or, more generally,

the matrix-valued case.

First of all, for an operator with matrix-valued kernel acting on matrix-valued

functions, we define the transpose as in §2.

A sequence of matrix-valued functions {pk} is called an approximation to

the identity if it satisfies (3.1)—(3.5) above. In (3.1), "1" means the identity.

A bounded matrix-valued function b is pseudo-accretive if there are two

matrix-valued approximations to the identity {pk} and {pk} such that

H(W-l|loo and IK^r'lloo are uniformly bounded and Pkb = f[b for all

k . Here the operators T^ and Pk are defined in the obvious way by integration

against the kernels pk and pk . (In the commutative case, we take Pk = Pk .)
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With these definitions, the T(b) theorem for pseudo-accretive matrix-valued

functions b is proved exactly as in [DJS]. One defines the operator Sk by

Sk = Pk{(Pkb)~x}Pk, where {(Pkbyx) means the operator of multiplication by

(Pkb)~x . Then the kernel of Sk satisfies (3.1)-(3.4) and also Skb=I= S[b .

(This last formula is why we needed both approximations to the identity.)

This point, about needing two approximations to the identity, seems to have

been overlooked in [DJS]. In some interesting special cases, such as when b is

accretive, i.e., Re b > ô > 0, one can take pk to be real-valued and Pk = P'k ,

and this issue does not arise.

Theorem 3.7. Suppose b is a bounded function on 5? with values in

spanne,.en}çWn(R°).

(There need be no relationship between n and the dimension of S*.) Suppose

that b is para-accretive, which is defined just as above (see (3.6)) for scalar-

valued functions, except that we require t] to be real-valued. Then b is pseudo-

accretive when viewed as a Wn+x(R)-valued function. In particular, the T(b)

theorem holds for this choice of b .

Recall that if x E span{e0 ,ex, ... ,en) , then ||x_11| = ||x||_1. This is why

we require b to take values there.

To prove Theorem 3.7 we use the argument given in [DJS2, §10] to show that

para-accretivity implies pseudo-accretivity on R. Because that argument was

never published, we give the details. We must make suitable changes to get rid

of the topological problem by permitting values in Wn+X(R), and we must also

construct both Pk and Pk . We do this only for k = 0, the general case being

similar. From now on, we assume that b satisfies the hypotheses of Theorem

3.7.

Lemma 3.8. Let {<p¡(x ,y)} be any nonnegative real-valued approximation to

the identity on S"'. Assume q>.(x ,y) = 0 if \x — y\ > 2~J (which we can

always do anyway by relabeling). Then there are a large j0 and a small ô such

that if f(x) = ¡^ tpj (x , y)b(y) dy, then for every x there is an x such that

\x-x\<\ and \f(x)\ >ô>0. Also, \\f\\Upa < C.

Let x E S? be given. Let r\ = r\x R be as in the definition of para-

accretivity, with R small enough so that supprç ç B(x , \). Setting <I>¡b(x) =

J <pj(x, y)b(y) dy , we have

\L < C2~]a.

This comes from the Holder continuity of j. If j is large enough,

ri(y)(b(y)-<í>b(y))dy
y J

ti(y)Q>jb(y)dy

by (3.6). The lemma now follows easily.

\f- >ß>0.
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If f were not too small anywhere, then we could take P0 = P0 = O .

Because / may be small (or zero) sometimes, we have to make corrections.

The first correction will be of size p, p > 0 to be chosen later (small, smaller

than 1 or S in Lemma 3.8).

Lemma 3.9. Observe that f (as in Lemma 3.8) takes values in

span{é>0,<?, , ... ,£>„}.

We can find a function g on 5?, valued in span{e0,e, , ... ,en+l}, such that

g(x) = f(x) if \\f(x)\\ > p., \\g(x)\\ = p if \\f(x)\\ <p,and g satisfies the
Holder condition

\g(x)-g(x')\<C\x-x'\a,       Q>0.

Let I+ = Z^+1 = {x E Rn+X : \\x\\ = p, x = E"=+0' Xft , xn+x > 0}. There is

a nice bilipschitz map p of Z+ onto Bn+X (0, p), the closed ball in R"+1 , which

agrees with the identity on Z+ n {xn+x = 0}. Define g on S? by g(x) = f(x)

if \\f(x)\\ >p, g(x) = p~x(f(x)) if ||/(x)|| <fi. This works. (The Holder
condition on g comes from the one on /.)

Now set h = g - f, so that PH^ < 2p and \\f + h\\ > p everywhere,

h = 0 when ||/|| > p , and h takes values in span{e0 ,ex , ... , en+x}. Also, the

Lip a norm of h is < C. To define P0 and PQ , we start with <P and make

corrections, the first of which we define now, in terms of h .

Let {6¡} be a partition of unity on 5" such that each d¡ satisfies 0 < 8¡ < 1,

II^/IIlíp((*) - ^_a ' Q > 0. i"/2 < diamsuppö7 < p, and suppfy ç B for

some ball B¡ such that the doubles 2B¡ have bounded overlap, with bound

independent of p . For each /, let x, be any point in supp 6¡, and let x, be

as in Lemma 3.8.

Our first corrections will be denoted p,(x , y) and x¡(x , y), associated to

P0 and P0, respectively. If ||_/~(jc/)|| > ¿/10 (S from Lemma 3.8), then we set

p, = 0 and x, = 0. If \\f(x,)\\ < ¿/10, we take a, = f(x,) - f(x), so that

\\af || < 2ô , and we define hl = hd¡,

p¡(x , y) = hl(x)(l/al)(cpjo(xl, y) - q>]o(x,, y)),

and x¡(x , y) = (<PJO(x,, y) - <pjg(x/, y)){l/a,)h,{x). Then:

(3.10) íp,(x,y)dy = ÍT,(x,y)dy = 0   for ail/;

(3.11) jpl(x.y)b(y)dy = J' b(y)x ,(x , y) dy   for ail /,

and when 11/(^)11 < ô/lQ, this common value is h¡(x) ;

(3.12) p¡(x,y) = x,(x,y) = 0   if|x-y|>3;

(3.13) H^IU + ll^llup^" + HT,»«, + \\*i\\Upy < C/L
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(These Lipa norms are in (x ,y)E5fi xS^, jointly.)

Set rQ(x , y) = <p. (x , y) + E/ P¡{x , y) ■ This r0(x , y) does not have all the

properties that we want for p0(x , y), but it has many of them. Unfortunately,

/ r0(x, y) dx may not be 1. However,

(3.14) /   rQ(x , y)dy = 1    and ( /   r0(x ,y)b(y)dy 1      is bounded.

The first follows from (3.10).

For the second, we write

(3.15) Í r0(x,y)b(y)dy = f(x) + J2 f P,(x ,y)b(y)dy.
J ¿r J ¿r

Fix x E 5?. A term in the sum is zero unless 8¡(x) =¿ 0 and H/ix,)!! < á/10.

Suppose there is at least one / such that 6¡(x) ^ 0 and ||/(x,)|| > r5/10. For

this / we write f(x) = f(x¡) + (f(x) - f(x¡)), and because diam supp 6¡ < p,

we have \x - x¡\ < p , so that \f(x) - f(x¡)\ < Cpa . If p is small enough, this

gives ||/(x)_1|| < CS~X , because ll/ÍXy)-1!! < 10<5_1 . Because suppö/ have

bounded overlap, with bound independent of p, we get

\[ r0(x,y)b(y)dy-f(x) < £ I / pk(x ,y)b(y)dy
\Jy k \Jy

<Cp   (since ||A |l    < 2p).

Cô~x
Thus if p is small enough, we may conclude that \\(f r0(x .y)b(y)dy)'

— i

If there is no / for which 6,(x) # 0 and ||/(x,)|| > ¿/10, then

r0(x , y)b(y) dy = f(x) + J2 hiM = fix) + h(x) = g(x),Iy
and we know that ||^(x)|| > p everywhere and g(x) E span{e0 ,ex, ... , en+x} ,

so that ||g(x)-1|| < p~ .

To get pQ(x,y) with all the desired properties, we need to add another

correction to rQ(x ,y) to fix the fact that Jr0(x ,y)dx may not be 1. Note

that |/r0(x,y)ö?x - \\ < Cp, i.e., is small. The idea is to perturb rQ(x ,y)

only where f(x) is big, so as to keep / p0(x , y)b(y) dy from getting small.

For each /, choose a nonnegative bump function y/l supported in B(x¡, e),

where e > 0 is very small and will be chosen later, in a way that depends only

on ô and ||/||LipQ, but not p. We also require that ^y/¡(x)dx = 1 and

IIViWupa *s bounded, independently of p .

Define m¡(x,y) and n¡(x,y) as follows. If H/Xx^H > (5/10, then m¡ = 0
and nt = Q. (Notice that p¡ = 0 and x¡ = 0 in this case also.) Otherwise, if

\\f(x,)\\> 5/10, set

m,(x,y)= (j   h¡(x)dx\ -¥,{x)(tp]Q(x, ,y) - (fjQ(x, ,y))
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and n¡(x,y) = y/¡(x)(<pjo(xl,y)-(pjo(x¡ly))(l/al)f^hl(x)dx. Then

(3.16) ml(x,y) = nl(x,y) = 0   if|x-y|>3;

(3.17) KIL + ||W|||^a + H^IL + ||n/||L.pa < Cpd+X ;

(3.18) /   m,(x , y) dy = 0 = / n,(x,y)dy   for all/, x;
Jy Jy

(3.19) /   m¡(x,y)dx=      p¡(x,y)dx   and

/   n,(x ,y)dx = /   x,(x ,y)dx for all I ,y;
Jy Jy

(3.20) m¡(x ,y) = 0 = «,(x , y)   if\x — x¡\>e,

by definition of y/¡.

If e > 0 is small enough (depending only on ô and ||/||Lipa ), then Ix-X/I <

e implies ||/(x)|| > Ô/3. Thus we get from (3.20) that

(3.21) j^m,(x,y)b(y)dy = Q = j b(y)n¡(x,y)dy   if\f(x)\<0-.

Define

p0(x. y) = <pJo(x . y) + J2 p,{x , y) - Y, mi(x • y)

and

%(x ,y) = <pjo{x,y) + J2 T/(x -y)-¿Z "/(x - y) •

and set PQ(x,y) = q0(y ,x). By construction, p0 and q0 satisfy conditions

(3.1)—(3.5) for k = 0. Also, by definitions,

/ P0(x,y)b(y)dy= Í b(y)q0(x ,y)dy = Í b(y)P0(y ,x)dy

for all x G S". (This was true for the p¡ 's and x¡ 's and for the m¡ 's and

"/'s.)

Set k(x) = fj? p0(x ,y)b(y)dy . We must show that k(x)~x is bounded. Fix

x E Sr°. Suppose that ||/(x)|| < Ö/3. By (3.21), k(x) = J r0(x , y)b(y) dy ,

and we have already seen that this has a bounded inverse (3.14).

Now suppose that ||/(x)|| > Ô/3, so that ||/(x)"'|| < 3/Ô . Then

(3.22) |^)-/WI<E|/ P,(x,y)b(y)dy + £ I f m,(x ,y)b(y)dy

Because {suppf?.} has bounded overlap and PIL < Cp, we obtain

Elf Pi(¡\Jy
x,y)b(y)dy < Cp.

Also, for a given x, there are at most Cp     different / 's such that <p¡(x) ̂  0.

Hence there are at most Cp~   different / 's such that | / m,(x , y)b(y) dy\ ¿ 0.



BOUNDEDNESS OF SINGULAR INTEGRALS ON HYPERSURFACES 513

From this, (3.16), and (3.17) we get

J2  /   m,(x,y)b(y)dy
,   Jyi

< Cp.

From (3.22) it follows that \k(x)  '| < 10/á if |/(x)| > Ô/3 and p is small

enough.

This completes the construction of p0(x , y) and p0(x , y). Theorem 3.7 is

now proved.
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