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HYPERGRAPHS WITH FINITELY MANY
ISOMORPHISM SUBTYPES

HENRY A. KIERSTEAD AND PETER J. NYIKOS

Abstract. Let & = (H, E) be an n-uniform infinite hypergraph such that the

number of isomorphism types of induced subgraphs of 2? of cardinality X is

finite for some infinite X . We solve a problem due independently to Jamison

and Pouzet, by showing that there is a finite subset K of H such that the

induced subgraph on H - K is either empty or complete. We also characterize

such hypergraphs in terms of finite (not necessarily uniform) hypergraphs.

In a 1981 colloquium lecture at the University of South Carolina, R. Jamison

posed the following problem:

If an infinite «-uniform hypergraph H = (H, E) is isomorphic

to each of its induced subgraphs of cardinality \H\ , must H

be either empty (E = 0) or complete (E = [H]") ?

In other words, must H be either independent or a clique? Recall that if

tí c H, then the subgraph H\tí induced on tí is (tí ,Er\ [tí]").

In the case of graphs (n = 2) and 3-uniform hypergraphs of regular cardi-

nality, there are simple affirmative solutions, found by Jamison and the authors

and (independently) by M. Pouzet. But already the case of 3-uniform hyper-

graphs of singular cardinality is difficult enough so that it remained unsolved

until 1985, shortly before the general solution provided in this paper; more-

over, neither of the first two proofs for n = 3 by the authors seems to extend

to n = 4.

Our first theorem provides an affirmative answer to Jamison's problem under

formally weaker hypotheses on H . Three of our other theorems also imply an

affirmative answer. Given a hypergraph H, and induced subgraphs H, and H2

of H, we write H, ~ H2 if H, and H2 are isomorphic. This is obviously an

equivalence relation, and if p < \H\ we let I (H) be the set of all isomorphism

classes of induced subgraphs of cardinality ^, and let I.^, (H) be denoted 1(H).

Jamison also posed the problem: if 1(H) is finite, must H either have a clique

or an independent subset of cardinality \H\ ? (His first question is essentially
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the case 1(H) = 1.) Our second theorem provides an affirmative answer, and

we sharpen it to

Theorem 3. Let H = (H ,E) be an infinite n-uniform hypergraph. If, for some

infinite p < \H\, I (H) is finite, then there is a subset K of H such that

\K\ < |I (H)| - 1 and such that the induced subgraph on H-K is either empty

or complete.

Jamison's problems arose from the study of freedom in algebraic closure

systems. An algebraic closure system (X , L) is (a , N)-homogeneous if there

are N isomorphism types of subspaces of cardinality a. Let M (a , N) denote

the smallest cardinal greater than or equal to a such that for any n , if H is

an «-uniform hypergraph of cardinality at least M(a,N) and |Ia(H)| = TV

then H contains a complete subgraph or an empty subgraph of cardinality a.

Jamison [3] proved that for each finite N, if (X , L) is an (a , 7V)-homogeneous

algebraic closure system such that M(a, N) < \X\ and either N = I or, for

some regular cardinal ß, M (a ,N - 1) < ß < \X\, then there exists a subset

F c X with |F| = TV - 1 such that the subspace F - X is A:-free for some

k = 0,1,2,... ,oo. He was able to provide a trivial upper bound on M (a , N)

using infinite Ramsey theory. Our results show that M (a ,N) = a.

Pouzet discovered these problems independently of Jamison. For general

relational systems R = (A ,R¡)ie¡, he considered the function (pR(p) = |I (R)|.

He proved, subject to a positive solution to the second problem, i.e., Theorem

2, that if <pR(p) is finite for some infinite p, then </>R is increasing up to some

integer p0 and then either (i) <pR is constant on [¿¿0,|/4|] or(ii) p = \A\ and 0R

is constant on [p0 ,co) and 0R(f) = v+ for v g [co , \A\) and <pR(p0) < ^(p) ■

The archetypal example of the latter behavior is provided by R = (k , <) when

k is a cardinal number. In the case of hypergraphs, only the former behavior

is possible:

Theorem 4. Let H = (H ,E) be an infinite n-uniform hypergraph. If for some

infinite p<\H\, yH) is finite, then \IX(H)\ = |yH)| for all infinite X<\H\.

Of course, Ramsey's theorem on co, one version of which states that every

countably infinite «-uniform hypergraph has either an infinite clique or an in-

finite independent subset, implies an affirmative solution to Jamison's original

problem, given Theorem 4: let p = \H\ and X = co and |I^(H)| = 1. But what

is most revealing about Theorem 4 is the technique used in its proof. It sets up

a natural 1-1 correspondence between I^(H) and IA(H) which, in particular

(X = \H\), allows us to recover the isomorphism type of H :

Theorem 5. If L(H) is finite for some infinite p, then the isomorphism type

of H is determined by the isomorphism types of the induced subgraphs of H of

cardinality p.

Theorem 6. If I„(H) is finite for some infinite p, then the first-order theory of

H is finitely axiomatizable and categorical in every infinite cardinal.
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The 1-1 correspondence is part of a general theory which we develop here

and which allows us to reduce the entire theory of «-uniform hypergraphs with

finite 1(H) to the theory of (not necessarily uniform) hypergraphs with finitely

many edges, each of size < «. To each infinite «-uniform hypergraph H we

associate a hypergraph S(H) with the same underlying set, such that S(H) has

finitely many edges if, and only if, 1(H) is finite. The correspondence S is

functorial on isomorphisms and, if 1(H) is finite, on embeddings of infinite

«-uniform hypergraphs into H. Specifically, if 1(H) is finite, and f : H1 —> H

is an injective function from the vertex set of an infinite «-uniform hypergraph

H', then / is an embedding of H' into H iff it is an embedding of S(H')

into S(H). Thus I„(H) is in 1-1 correspondence with I (S(H)) for all infinite

p, and in the latter family we have only finitely many edges to deal with.

On being told of our first theorem, P. Erdös asked whether it extends to

what might be called «-uniform hypergraphs: pairs (H, E) where E is a

collection of «-element subsets of H and induced subgraphs etc. are defined

in the obvious way. A. Hajnal later observed the following counterexample:

H = cox and E is the collection of subsets of order type co.

Our second theorem may be looked upon as an attempt to extend Ramsey

theory beyond the countable case: an «-uniform hypergraph must either have a

clique of size k , or an independent subset of size k , or infinitely many pairwise

nonisomorphic induced subgraphs of size k . An interesting question is whether

"infinitely many" can be improved, and to what extent, especially for regular

k .

Problem 1. Let k be a regular uncountable cardinal, « > 2. If an «-uniform

hypergraph H of cardinality k has no clique or independent subset of cardi-

nality k , must 1(H) be uncountable?

We have no affirmative solution to Problem 1 even in case « = 2. [We do

have an affirmative solution in case k = cox, « = 2 under PFA, as will be

shown in a future paper, but no "ZFC solution."] On the other hand, we have

no negative solution for any « or k to

Problem 2. Let k be a regular cardinal, « > 2. If an «-uniform hypergraph

H of cardinality k has no clique or independent subset of cardinality k , is

|I(H)| = 2'C?

In §5 we will see that the classical examples of graphs with no uncountable

clique or independent set cannot serve as counterexamples to Problem 2.

Other cardinals besides cox and 2K can be reasonably considered as candi-

dates for the minimal size of 1(H): k, 2<K, and 2*(K) where x(K) denotes

the number of cardinals (finite or infinite) that precede k . For singular k ,

X(k) seems to be the best candidate, in view of the example of the disjoint

union of c/(k) cliques of size less than k . But if we modify the question to

ask how large 1(H) must be if there is to be a X < k such that H has no clique
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or independent subset of size greater than X, then all of the above cardinals

could be reasonable candidates for a solution, as well as cf(K).

In § 1 we mention another set of problems motivated by our first theorem:

rather than asking how many isomorphism classes we need for a "non-Ramsey"

example, we ask how few elements we can remove and still obtain nonisomor-

phic subgraphs. Other unsolved problems concerning 1(H) are at the end of

§3.
Most of our terminology and notation is standard. A hypergraph is a pair

H = (H ,E) where H is a set of elements called vertices and E is a (possibly

empty) collection of finite (possibly empty) subsets of H, called the edges of

H. The order of H is the least upper bound on the cardinality of the edges

of H. An injective function f : H —> tí is an embedding of (H, E) onto

(tí ,E') provided that e G E iff f[e] G E', for all e c H. An isomorphism

is a surjective embedding. A hypergraph (//, ,EX) is an inducedsubhypergraph

of (H ,E) if Hx c H and the insertion of //, into H is an embedding. For

the sake of brevity we write "induced subgraph" and frequently omit the word

"induced."

As usual, given « G co, [H]n denotes the set of «-element subsets of H.

A hypergraph H = (H, E) is n-uniform if E c [H]n. H is called empty if

E = 0, complete if E = [H]". Given k G co, a A:-element subset of H is

called a k-tuple. Vertices are designated by letters x, y , z, w , v , u and k-

tuples by the same letters with bars: x, etc. Unions of A:-tuples are designated

by juxtaposition: xy~ means xUy, xy means xli{y}.

An «-uniform hypergraph can be thought of as a model with one «-ary

predicate R which is "fully symmetric," that is,

(xx,... ,xn)GR    iff   (xa{x),... ,xa(n))GR

for each permutation o of {1 , ... ,«}, and "fully antireflexive," that is, if

(xx , ... ,xn) G R then x¡ ^ x., for all i / j. In this way, one can speak

(cf. §§1-3 and 1-4 of [2]) of the theory of «-uniform hypergraphs. An induced

subgraph is then simply a submodel, and R. Jamison's first question refers to

the following concept:

Definition 0. A model A = (A , J) of a theory T is smooth if it is isomorphic

to each of its large submodels (viz. submodels B whose underlying set B has

the same cardinality as A).

A hypergraph can be thought of as a concatenation, over various n G co,

of «-uniform hypergraphs sharing the same underlying set, and many state-

ments about isomorphisms, smoothness, etc. are routinely reducible to state-

ments about the individual «-uniform "parts." For example, from our affirma-

tive solution of Jamison's first problem, it follows routinely that a hypergraph

(H,E) is smooth iff for all «, E n [H]n ¿ 0 implies [H]" c E. For the

sake of simplicity, then, most of our results are stated in terms of «-uniform

hypergraphs.
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The dual of an «-uniform hypergraph (H, E) is (H, [H]" - E). Many

concepts and statements have easily recognizable duals. Given a sentence S in

the theory of «-uniform hypergraphs, a sentence S* is dual to S if (H, E) |= S

is equivalent to (H, [H]n - E) \= S*.

1. THE TRIVIALITY OF SMOOTH HYPERGRAPHS

The title result of this section was first shown in 1984 for hypergraphs of reg-

ular cardinality by the authors. Shortly thereafter, it was shown for hypergraphs

of singular strong limit cardinality by J. Larson and R. Laver. The argument

presented here is a subtle variation on the authors' original argument in the reg-

ular case. The Larson-Laver proof, as well as the proofs for « = 2 and « = 3

mentioned in the introduction, were quite different.

Because it only introduces minor complications, we actually show something

more general than the result in the title.

Definition 1. An infinite hypergraph H = (H ,E) is almost smooth if it is «-

uniform, and isomorphic to H\tí whenever tí c H and \H - tí\ < \H\.

H is p-hereditarily almost smooth if every subgraph of cardinality p is almost

smooth.

Theorem 1. If H = (H ,E) is p-hereditarily almost smooth for some infinite

p<\H\, then either E = 0 or E = [H]n .

For p = co, Theorem 1 is a quick corollary of Ramsey's theorem: H either

has an infinite clique tí or an infinite independent subset. If H is not a

clique in the first case, let 3c be a nonedge of cardinality « . Then tí U 3c is

not isomorphic to tí . The other case is similar.

Before proving Theorem 1, we introduce some concepts and auxiliary results.

Throughout this section, H = (H, E) will denote an «-uniform hypergraph.

Definition 2. If x is an «-tuple in H, then 3c is almost universal (abbrevi-

ated a.u.) if 3c G E and almost isolated (abbreviated a.i.) if 3c ^ E. If 3c

is a k-tuple, 0 < k < n, then 3c is almost universal if \{y: xy is a.u.}| >

|{v: 3cy is not a.u.}| and 3c is almost isolated if \{y: xy is a.i.}| > \[y: xy is

not a.i. }|. The valence of a k-tuple 3c, 0 < k < « , is v(x) = \{y: xy is a.u.}|.

The deficiency of an a.u. k-tuple 3c is d(x) = \{y:xy is not a.u.}| and the

deficiency of an a.i. k-tuple 3c is d(x) = \{y : xy is not a.i.}|.

Note that if 3c is almost universal in H, 3c e tí c H, and \tí\ = H, then 3c

is almost universal in H'. The converse need not be true unless \H-tí\ < \H\.

This complicates the proof of

Main Lemma. If \H\ = k > co, and 1 < k < n, and X is any cardinal such

that X < k if k is regular and X < k if k is singular, then there is a subgraph

H(k ,X) of H such that \H(k ,X)\ = k andan ordering {xa: a < k} of H(k ,X)
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such that:

(*) If {Xç,x,, ... >Xç,k,} is almost universal in H(k ,X) and is listed in nat-

ural order (¿¡(i) < ¿¡(j) if i < j), then H(k,X) \= v(x((l), ... ,xi(k_x)) >

\¿¡(k)\+-X. [Convention:  {xi{X) ,xm} = 0.]

We will use the full force of this lemma in §2; here we will need only the fact

that H(k ,X) \= v(x„x, , ... ,x(,k_xA > 2. (The symbol f= denotes satisfaction;

in this last case, for example, it indicates that {x(,x,, ... ,x,.k_x7} extends to

at least two A:-tuples that are a.u. in H(k ,X).)

Corollary 1. If H is K-hereditarily almost smooth and \H\ = k , and H has

an almost universal k-tuple, 1 < k < n, then there is a subgraph tí of H,

\tí\ = k , in which there is an almost universal (k - l)-tuple.

Proof of Theorem 1, assuming Corollary 1. If p = k, and H has an edge,

then by Corollary 1 and backward induction on k, H has a subgraph tí

of cardinality k in which 0 is almost universal. Clearly, 0 remains almost

universal in every subgraph of tí of cardinality k . Now if tí has a nonedge,

then by the dual of Corollary 1, tí has a subgraph H" of cardinality tc in

which 0 is almost isolated, but this is contradictory to "almost universal," even

for 0. So tí is complete. If H is not complete as well, it has a nonedge 3c,

violating tí u 3c ~ tí .

Dually, if H has a nonedge, then H is empty. Finally, if p < k , the

above argument shows that every p-element subgraph of H is either empty or

complete, whence H is either empty or complete.     D

Proof of Corollary 1, assuming the Main Lemma. If H has an a.u. A:-tuple y ,

then so does H(k , 2), because it is isomorphic to H(k , 2) u y , and y is a.u.

there.
1 k

Let x be an a.u. A;-tuple in H(k ,2), x = {x , ... ,x } . We claim at least

one of the x-{x1} must extend to k almost universal A:-tuples. Suppose not.

Then, by removing any element outside 3c that could form an a.u. «r-tuple with

some 3c - {x'} , we are removing less than k elements and arriving at a subgraph

tí of H(k , 2), with an almost universal A:-tuple x such that v(x- {x'}) = 1

for all /. Hence H(k , 2) has one as well; but this violates the main lemma,

no matter how the ordering of H(k , 2) is done.

Thus we can pick x - {x1} which extends to k almost universal A>tuples.

By throwing out all elements y of H for which (x-{x'}) U {y} is not a.u. in

H(k , 2), we arrive at a subgraph tí of H of cardinality k that has x-{x'}

for an a.u. (A: - 1 )-tuple.    D

Proof of the Main Lemma. Fix k, and let y/: k —* \J{[k]/ : k - 1 <j < «} be

a surjective function such that each element of the range has k elements in its

preimage and such that, if b G [fe]7 and ß is the largest element of b, then

for each cardinal p such that \ß\ < p < k , \\p~ (b) Dp\ = p.

We let vH denote valence in H, and let v denote valence in H(k , X).
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Let x0, ... , xk_2 be arbitrary. If vH(x0, ... , xk_2) < X, let Hk be the set

of all elements x suchthat {x0 , ... ,xk_2 ,x} is «or a.u., and let xk_x G Hkx.

Otherwise, let Hk = H - {x0, ... ,xk_2} and let xk_x be any element such

that {x0,... ,xk_2,xk_x} is a.u.

Assume {x„ : ß < a} has been chosen, along with Hß whenever k - 1 <

ß < a, so that Hy D Hß when y < ß and \H - Hß\ < X when ß < X,

and of cardinality \ß\ when ß > X. Let H'a be the set of all y G C\ß<aHß

such that xy is almost universal in H for some 3c c {x„ : ß < a} satisfying

vH(x) < \a\+ -X. Then \H'j < \a\+ ■ X, and we let Ha = f)ß<aHß - tía.

Of course, H satisfies the induction hypothesis. Let i\ be the least ordinal

greater than or equal to a for which the y'-tuple 3c indexed by y/(¿¡) has been

defined. If j = k - I and vH(x) < \a\+ • X, let xa be any element of Ha . If

vu(x) > |a|+ • A, let x   be any element of H   such that xx   is a.u. in H.
// v    / — il' a J a a

If j > k, and 3c is a.u. in H, let x  G H . If 3c is not a.u. in H, let xn
j   —       j 7 a ot 'a

be any element of H   such that 3cx   is not a.u. in H.
J a a

Let H(k ,X) = {xa: a < k} . Claim. If k - 1 < |3c| < «, and 3c is almost

universal in H(k , X), then 3c is almost universal in H.

Once the claim is proved, the main lemma follows thus. If {%,}, ... >%£)}

is almost universal in H(k , X), it is a.u. in H. Now, when we added x*,k) we

made sure that any (A: - 1 )-tuple already formed, such as {•%,), • • • , x(,k_xA =

3c, which combined with it to form an a.u. A>tuple in H, would also extend

to at least |^(A:)|+ -X almost universal A:-tuples in H. Then 3c was consid-

ered |£(A:)|+ • X times between £(A:) and |£(A:)|+ ■ X, and each such time an-

other element x   was added such that xx   was a.u. in H. So the valence of
a a

{xi{X),... ,xt(k_x)} in H(k,X) is at least |c;(A:)|+-A.

Proof of Claim. Argue by contrapositive and backward induction on j. It is

obvious for j = « . If it has been shown for all m> j, and 3c is a ./-tuple that

is not a.u. in H, then 3c gets considered /c-many times in the induction, and

each time we add a new element x such that 3cx is not a.u. in H ; hence by

the backward induction hypothesis, xxa is not a.u. in H(k , X). Thus 3c is not

a.u. in H(k ,X).    D

Remarks. In the case where k is regular, " ^-hereditarily almost smooth" in

Corollary 1 can be weakened to " ^-hereditarily «-smooth," where we call an

«-uniform hypergraph co-smooth if it is isomorphic to each of its cofinite sub-

graphs. All it takes is to replace H(k , 2) by H(k , k) in the proof of Corollary

1. Then if p is regular we can weaken the hypothesis on Theorem 1 to " p-

hereditarily «-smooth." We can do the same for singular p if we also assume

that |I„(H)| < cf(p): if we cannot have X = p in the main lemma with p

replacing k , we can find cf(p) nonisomorphic H(k, X) for some k, while

if X = p is possible for all A:, then Corollary 1 follows without any special

hypothesis on |I (H)|. We do not know whether the hypothesis can be dropped

in general, nor, on the other hand, whether |yH)| < cf(p) alone is enough to
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guarantee the existence of a clique or independent set of cardinality \H\ except,

of course, in the case cf(p) = co (Theorem 2).

Another problem arises naturally from the results in this section:

Problem 3. If H is almost smooth, must H have either a clique or an inde-

pendent subset of cardinality \H\ ?

Of course, an affirmative solution to Problem 3 would lead to a very quick

alternative proof of Theorem 1, as in the end of the proof assuming Corollary

1. However, on being informed of Problem 3, L. Soukup constructed a coun-

terexample of cardinality «, in a forcing model, and Zs. Nagy constructed one

assuming CH. Both were graphs. We still do not know whether a counterexam-

ple can be constructed from ZFC alone.

Note that we cannot hope to conclude that H itself is empty or complete

from its being almost smooth. In fact, if G = (G,E) is any graph, then we

can replace each vertex of G by either a clique or an independent subset of

cardinality at least \G\ • co, and connect two vertices by an edge iff the vertices

of G they replace form an edge of G. The resulting graph is almost smooth.

2. Finite I (H) implies finite nuclei

In this section, we begin our analysis of the general case where I (H) is finite

for some infinite p , showing (Theorem 2) that H must have either a clique or

an independent subset tí of cardinality \H\ and moreover (Theorem 3) we

can take \H-H'\ < |I (H)|. Theorem 1 and the title result follow as immediate

corollaries.

In Lemmas 1-3, we will assume H = (H ,E) is infinite and «-uniform, and

let k = \H\. We call 1(H) minimal if it is minimal with respect to inclusion;

that is, if H' is an «-uniform hypergraph of cardinality k and I(H') c 1(H),

then lin') = 1(H). Of course, this is equivalent to I(H') = 1(H) for all induced

subgraphs H' of H of cardinality k , and if 1(H) is finite, it is equivalent to

|I(H')| = |I(H)| for all such H'.

Lemma 1. Suppose 1(H) is minimal and finite. If k < n and some subgraph

of H of cardinality k has an almost universal k-tuple, then all subgraphs of

cardinality k have at least one.

Proof. Suppose H, has an a.u. A:-tuple 3c, but H', c H, does not. (Of course,

k > 1.) We may assume x, n H'x = 0 because tíx - x, has a subgraph of

cardinality k without an a.u. A;-tuple. Then there exists H2 c H\ with an

a.u. A:-tuple x2 as well. In general, with Ht and H\ chosen for all /' < j,

H\ c Hi C //■_, for all i, let //. be a subset of //'_, of cardinality k ,

with an a.u. A:-tuple x . Let //' be a subset of H. of card/c without an a.u.

A:-tuple, and such that tí n 3c  = 0.

Let Gm = x, U • • • U xm U tím . Then Gm has the following property: by

throwing out mk elements, one obtains a subgraph without an a.u. A:-tuple,
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but it is impossible to achieve this by throwing out fewer than m elements.

It is clear from this that there are infinitely many nonisomorphic Gm , each of

cardinality k , contradicting 1(H) < «.    D

We use Lemma 1 implicitly in the proof of the following lemma; the point

is, H(k ,X) could satisfy the main lemma vacuously without Lemma 1.

Lemma 2. Suppose 1(H) is minimal and finite. Let 1 < k < n. If some

subgraph of H of cardinality k has an a.u. k-tuple, then some subgraph of

cardinality k has an a.u. (k - l)-tuple.

Proof. For regular k , we follow the proof of Corollary 1, except that we use

H(A:, k) instead of H(A;, 2) and dispense with all but the first sentence of the

second paragraph. For singular k , let x be an almost universal A:-tuple of

H'cH. If for some x'€3c, x-{x!} extends to k almost universal A;-tuples

of H', the proof of Corollary 1 again goes through and we get H" with an a.u.

(A:- l)-tuple. So suppose every a.u. A:-tuple x of every H'cH, \H'\ = k fails

to have such an element x'. Then for each X < k , the minimum of all the

max{iw Áfx-{x'}): 1 < / < A:} as x ranges over the a.u. A>tuplesof H(A: ,X)

is at least X, but less than k , and so there are infinitely many nonisomorphic

H(A", X), contradicting the hypothesis on H.    D

Lemma 3. Suppose 1(H) is minimal and finite. If H has an edge, 0 is almost

universal in H.

Proof. Repeated applications of Lemma 2 give a subgraph H' of H with an

almost universal 0-tuple, namely 0. Now H' has a subgraph isomorphic to H

so 0 is almost universal in H.    o

Theorem 2. IfH = (H,E) is an infinite n-uniform hypergraph with 1(H) finite,

then H has either a clique or an independent subset of cardinality \H\.

Proof. Suppose not, and let H be a counterexample with |I(H)| minimal.

Then 1(H) itself is minimal. Since H has an edge, 0 is almost universal;

dually, since H has a nonedge, 0 is almost isolated; but these are contradic-

tory conclusions.    D

Corollary 2. If 1(H) is minimal and finite, then |I(H)| = 1 and H is either

empty or complete.

The subset promised by Theorem 2 is "almost all" of H, according to The-

orem 3. To prove it, we introduce some more concepts.

Definition 3. Let H = (H, E) be a hypergraph. A subset K of H is a cover

of H if H¡(H — AT) is empty. A cover K is called a nucleus if no subset of

H of strictly smaller cardinality is a cover and minimal if no proper subset is

a cover. We let nuc(H) denote the cardinality of a nucleus of H.

Note that K is a cover iff K meets each e G E. A routine Zorn's lemma

argument shows that every cover has a minimal subcover.
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Lemma 4. If an n-uniform hypergraph has a finite cover, it has only finitely many

nuclei.

Proof. Let m be the cardinality of any nucleus of H. There cannot be enough

nuclei to form a A-system of cardinality « + 1, otherwise each edge must meet

the root of the system, making the root a cover of cardinality < m , contradict-

ing the definition of a nucleus. But every collection of infinitely many sets of

cardinality m contains an infinite A-system.      D

[Aside. By way of contrast, the disjoint union of X two-element cliques is a

graph with 2   minimal nuclei.]

Proof of Theorem 3. By Theorem 2, we may assume without loss of generality

that H has an independent subset H0 of cardinality p. Of course, 0 is the

unique nucleus of HQ . If H has any edges, adjoining the elements of an edge

to H0 one at a time will raise the nucleus size of the resulting subgraph. At

the step when it first becomes nonzero, it equals 1, because the last element is

a singleton nucleus; call the resulting subgraph H, .

In general, suppose we have added finitely many elements to H0, arriving

at a subgraph H^ whose nuclei are of cardinality k (finite). There are only

finitely many, by Lemma 4, and we can destroy each by adding an edge of H

disjoint from it, unless there is no such edge, in which case the A;-tuple will

be a nucleus of H. The destruction can be completed by adding finitely many

elements, and if we add them one at a time, then the element x that destroys

the "last" nucleus Kk of size k gives a nucleus Kkli{x} of the new subgraph

Hfc+, of size A: + 1.

But this process must cease before we arrive at k = I (H), because H.

cannot be isomorphic to H if i ^ j: nuc(H() is an isomorphism invariant.

Hence H has a nucleus of cardinality at most I„(H) - 1 .    G

Corollary 2 naturally gives rise to a number of questions.

Problem 4. Does there exist a hypergraph of regular cardinality with infinite

minimal 1(H) (equivalently, minimal 1(H) and |I(H)| > 1)? countably infinite

minimal 1(H)?

Of course, such examples would be uncountable by Ramsey's theorem. For

each singular cardinal k , there is an elementary example of minimal 1(H)

with |I(H)| = x(k) : the direct sum of cf(tc) cliques of cardinality less

than k , the supremum of whose cardinalities is k . However, at this point

we do not even know whether it is consistent that these examples, and their

duals, together with empty and complete hypergraphs, exhaust the list of H

with minimal 1(H). In [1], Baumgartner constructs a Souslin tree, assuming

t+, whose comparability graph has minimal 1(H). But 1(H) > c for each

Souslin tree; see §5.

Problem 5. Does there exist a hypergraph of singular cardinality k with mini-

mal 1(H) of cardinality greater than /(«:)       ?
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At the opposite extreme, the following problem also seems to be open:

Problem 6. Is there an infinite hypergraph H such that no subgraph H' of

cardinality \H\ has minimal I(H')?

3. The fundamental correspondence

For all its strength, Theorem 3 still leaves a great deal unsaid about hyper-

graphs with finite 1(H). For instance, it does not seem to easily imply that they

are «-polarized:

Definition 4. An infinite «-uniform hypergraph H = (H, E) is polarized if

every A;-tuple, 0 < k < n , of H is either almost isolated or almost universal.

If A is a cardinal number, then H is X-polarized if it is polarized and d(x) < X

for all A:-tuples x, 0 < k < « .

It is fairly easy to see that this is true for graphs (« = 2) and that, conversely,

an «-polarized graph with a finite nucleus has only finitely many nonisomorphic

induced subgraphs of any fixed cardinality. This converse does not hold for any

« > 2, however. To give a characterization valid for all « , we introduce in this

section some machinery that will be used to prove Theorems 4, 5, and 6 and the

reduction theorems mentioned in the introduction. These reduction theorems

are part of a more general functorial correspondence between A-polarized «-

uniform hypergraphs H = (H, E) and A-bounded hypergraphs, F = (H, E),

of order at most « with the same underlying set H.

Definition 5. Let F = (H, Ë) be a (not necessarily uniform) hypergraph. Let x

be a A:-tuple in H. The degree of x is ¿(3c) = \{y : xy G E}\. F is X-bounded

if r5(3c) < X for every tuple 3c in H. If H is infinite, we say F is bounded if

it is \H\-bounded.

In the following section, we will show that, under this correspondence, if

I (H) = N for some positive integer N and infinite p, then H is /V-polarized

and corresponds to a hypergraph with only finitely many edges.

To help understand the correspondence, we first consider the case of infinite

graphs G with finite 1(G). If 0 is a.i., there can be only finitely many a.u.

singletons, since these are part of any nucleus. Also, any vertex with infinitely

many edges emanating from it is part of every nucleus, and if it is not a.u. of

finite deficiency, it is easy to come up with infinitely many pairwise nonisomor-

phic subgraphs. It is now easy to see that there are only finitely many edges in

all which do not contain an a.u. singleton and only finitely many pairs which

are not edges and do contain an a.u. singleton. By listing these finitely many

"exceptional" pairs and the finitely many "exceptional" a.u. singletons, we can

now reconstruct the entire graph, given its underlying set.

If 0 is a.u., the criteria of whether a singleton and a pair are "exceptional" are

the dual of the above. In general, the idea is to let the corresponding hypergraph

have as edges the "most exceptional" A:-tuples, using these as a catalogue from
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which to reconstruct the original hypergraph. If « > 2, we need an index of

how "exceptional" a A:-tuple is, if we are to keep the catalogue finite, even in

the case of finite 1(H). This consideration and ease of recovery of H from the

catalogue led the authors naturally (at least in the case of polarized H ) to the

following "exceptionality index."

Definition 6. If H = (H ,E) is «-uniform, the large index /H(x) = I(x) of a

A:-tuple x in H is defined by induction on |3c| as follows:

(0) 7(0) = 0,
( 1 ) J(x) = max{I(y) :y<zz and y ^ z} if |x| > 0,

(2)
J(x) if either J(x) is odd and x is a.u.

I(x) — { or J(x) is even and x is not a.u.,

J(x) + 1    otherwise.

Clearly I(x) is odd iff 3c is almost universal, and I(x) ^ J(x) iff /(3c) =

/(3c) + 1 .

For the remainder of this section, H will denote a polarized «-uniform

hypergraph (H ,E).

Definition 7. The signature S(H) = (H ,EH) of H is defined by £H = {x c

H:I(x) = J(x) + l}.

Lemma 5. If H is X-polarized then S(H) is 2"" (X- I) + l-bounded.

Proof. First we prove: if J(xy) < I(xy) then I(w) = J(wy) < I(wy) for

some w c x. Argue by induction on |x|. It is clearly true if x = 0. If

I(x) = J(xy), let w = x. Now suppose /(3c) < J(xy). Let w be a minimal

(proper) subset of x such that ./(3c» = I(wy). Then J(wy) < I(wy) since

I(w) < I(x) < J(xy) = I(wy) and the choice of w guarantees that I(vy) <

I(wy) for all proper subsets v of w. Now by the induction hypothesis, I(u) =

J(uy) < I(uy) for some ïï c w c x and we are done.

Fix 3c. If xy G EH then J(xy) < I(xy). Thus there exists w c x such

that I(w) = J(wy) < I(wy). Since H is A-polarized there are fewer than X

such y for each w ex. Thus ö(x) < 2"~~ (X - 1) + 1.    G

Now we define an index which will enable us to recapture any polarized

H from its signature and also to establish that any bounded infinite hyper-

graph with edges of cardinality at most « can be the signature of a polarized

«-uniform hypergraph. However, this index also behaves well for arbitrary hy-

pergraphs, so at first we make no assumptions about F = (H ,E) despite the

suggestive E notation. We do not even assume our A>tuples are subsets of H.

Definition 8. The small index z'F(x) = ¿(x)  of a finite set x  is defined by

induction on x as follows:

(O)j(0)=O,
(1) j(x) = max{i(y): y c x and y/x} if |x| > 0,
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(2) „
i(x) = {Í{X} iíx¿E>

I J(x) + I    otherwise.

Note that /"(3c) ¿j(x) iff /'(3c) =j(x) + 1 iff 3c G È.

Definition 9. Let F = (H, Ë) be a hypergraph and let G be a set. The parity

transform 1(G ,F) is the hypergraph whose vertex set is G and whose set of

edges is T(C7,F) = {3c c G: |x| is finite and i^(x) is odd}. The n-uniform

parity transform Tn(C7,F) is (G ,T(G,F) n [G]") = (G,fn(G,F)). Incase

G = H we write T(F), T(F), Tn(F), and T^F). If « is understood we write

Tn(G,¥) = Ë*G andT„(F) = £#.

It can be shown that T is an automorphism of the category of all hyper-

graphs and their embeddings and that it has infinite order under composition.

However, in this paper we are concerned with Tn rather than T.

Note that if G c H, then T(G , F) = T(F[C7) : on subsets of G, /F and i¥¡G

agree. More generally, T(C7 ,F) = T(G ,FfG() H) by the same reasoning.

Lemma 6. If F is X-bounded and \G\ > 2"(X - 1) + «, then Tn(G ,F) is

2"_1 (A — 1) + I-polarized. Moreover x is almost universal in T„(G, F) iff iF(x)

is odd iff x is not almost isolated in Tn(G, F).

Proof. First we show that for any A:-tuple x, 0 < A: < « in G, i(xy) = i(x)

for all but fewer than 2 (X - 1) + 1 elements y of G. Suppose that i(xy) >

i(x). Let w be a minimum subset of x such that i(wy) = i(xy). Then

j(wy) < i(wy). Thus wy G E. Since F is A-bounded, there are fewer than

A of these y for each subset w , so we are done.

Next we show that x is almost universal in Yn(G ,F) = (G ,EG) if /'(3c) is

odd and almost isolated if z'(x) is even. We argue by reverse induction on

\x\ = k. If k = n then x is almost universal in (G, ËG) iff x e ËG iff i(x)
is odd. Now assume the claim has been proved for k + 1 . If i(x) is odd then

i(xy) is odd for all but fewer than (A - 1)2"~ + 1 elements of G. Thus by

the inductive hypothesis and the size of G, x is almost universal in (C7 ,EG).

A similar argument holds if i(x) is even,    a

Lemma 7.   /H(x) = /S(H)(3c) for all x G H, 0 <\x\ < n .

Proof. We show by induction on  |x|, suppressing the respective subscripts,

that 7(3c) = ;'(3c) and /(3c) = /'(3c). Clearly 7(0) = 0 = j(0). Now assume

J(x) - j(x)  for all A:-tuples x  in //.    /(x) = 7(3c) +1   iff x 6 ËH  iff

i(x) =j(x) + 1. Thus /(x) = i(x), and so J(J) = j(y) for all (k + l)-tuples

y.    D

Lemma 8. // F is X-bounded and \G\ > 2n(X- I) + n, then iF(x) = /D(3c),

D = Tn(G,F) for all xcG, 0 < |x| < «.

Proof. The size of G assures that Tn(C7,F) is polarized. We shall show by

induction on |x| that 7(3c) = /(3c) and /(3c) = /'(3c).  Clearly j(0) = J(0).
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Now assume that j(x) = /(x) for all A:-tuples 3c. Then /'(x) = ./(3c) + 1 iff

either /'(x) is even and j(x) is odd or /(3c) is odd and ./(3c) is even iff either

x is a.i. and J(x) is odd or x is a.u. and /(3c) is even iff /(3c) = /(3c) + 1.

Thus i(x) = I(x) and so j(y) = J(y) for all (A: + l)-tuples y .    G

Definition 10. Let A be an infinite cardinal. Let Pk be the class of all A-

polarized «-uniform hypergraphs of cardinality at least A and Bx the class of

all A-bounded hypergraphs of cardinality at least A and order at most « . Let

S: PA -► BA be the class function taking each H to S(H), and Tn: Bx -> PA

be the one taking F to Tn(F).

Theorem 7. Let notation be as above. Let H = (H, E) G PA, F = (H, Ë) G Bx.

(1) T„oS = id = SoT„.

(2) Let tí cH.

(a) S(H[H') = S(H)[//' if\H'\>X.

(b) Tn(F[H') = Tn(F)\H'.

(3) (a) H^H' iffS(H)^S(H').
(b) F^F' iffTn(F)cTn(F').

(4) Let H0, //, be subsets of H, |//,| > A.

(a) H\H0 ~ H\HX iff S(H)|7/0 * S(H)\HX.

(b) F\H0cF\Hx  iffTn(F)\H0^Tn(F)\Hx.
(5)IfX<p< \H\, then

(a) |yH)| = |I,(S(H))| and

(b) \IßP)\ = |I/T„(F))|.
Proof. (1) Use Lemmas 7 and 8.

(2a) Note that \tí\ was chosen large enough so that /H = /H, on tí . [As

usual, we let H' = H\tí.] Thus 3c G ËH, iff /H, / /H, iff /H # /H, iff

3ce£Hr//'.
(2b) Here the size of tí does not matter. By the note preceding Lemma 6,

Tn(F[H') = Tn(H' ,F) and the small indices agree on finite subsets x of tí .

Thus 3c G EH, iff |3c| = « and i(x) is odd iff x G ËH .

(3) The "if directions are obvious. For the "only if directions, use (1).

(4) Use (2) and (3). The size of HQ and //, does matter in the "only if

direction of (a) and the "if direction of (b).

(5) Use (4).    G

Theorem 8. IfS(H) has finitely many edges, then L(H) is finite for all cardinals

p. Moreover, if p and v are infinite cardinals and p , v < \H\, then |yH)| =

|/„(H)|.

Proof. Since S(H) is finite, S(H) is «-bounded. It follows from the defini-

tion of S(H) that H is «-polarized. Thus the first statement is immediate

from 5(a). To show the second, we first establish some notation. If H is an

induced subgraph of H, we write Fw for U^h' > anc* we let Y(Yl') be the

finite hypergraph (FH, ,EW).   Now if \H°\ = \HX\ > co then H° ~ H1  iff
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F(H°) » F(HX):   "only if is clear while "if follows from the fact that /H,

and zF(H1) agree on tí , so that H' = Tn(H' ,F(H')), and the isomorphism

type of Tn(H' ,F(H')) depends only upon that of F(H') and the cardinality

of tí - FHo, and these agree by finiteness of Fw . Hence there is a natural

bijection between 1(H) for each infinite p and the isomorphism classes of

induced finite subgraphs (FA , EA) for A c FH.    G

In the following section, we will see that the converse of the first sentence of

Theorem 8 holds. More strongly, we show:

Lemma 9. ///(H) is finite for some infinite p<\H\, then S(H) has finitely

many edges; moreover, d(x) < |I (H)| for every k-tuple x, 0 < k < n.

Theorems 4, 5, and 6 follow immediately from Theorem 8 and Lemma 9; in

particular, we can recapture H from any /¿-element subgraph H that contains

FH, by simply taking T„(H ,S(H )). Such subgraphs are distinguished by the

fact that they have the greatest F¿ of all subgraphs of cardinality p.

The conclusion in the second sentence of Theorem 8 can be extended down-

ward to finite p and v ; just how far varies from one H to another and will

be dealt with in a future paper. Of course, some p and v are easily seen to be

"safe" by various results of this section. For instance, if A is a (finite) cardinal

and S(H) is A-bounded, p , v > 2"(X - 1) + « is "safe" by Lemma 6.

We close this section with some categorical remarks that will not be needed

later.

From Theorem 7 and the following theorem, it is clear that S and Tn can

be regarded as functors between the category (PA, embeddings) and (BA, em-

beddings), and hence the two categories are isomorphic. Conversely, the fact

that S and Tn are inverse isomorphisms of these categories implies most of

Theorems 7 and 9; we leave it to the interested reader to verify this and to try

to formulate a category-theoretic statement implying all parts.

Theorem 9. Let H , H' g P¿ and let F, F' be hypergraphs.

(1) If f: H —> tí « a 1-1 function, then f is an embedding of H into H'
iff f is an embedding of S(H) into S(H').

(2) // / is an embedding of F into F', then f is an embedding of Tn(F)

into T„(F') for all «e«.

Proof. By Theorem 7 and the fact that embeddings preserve /', and also / if

both the domain and codomain are A-polarized.    G

The converse of (2) is also true; one does need / to be an embedding for all

finite n <\F\, however. This is what is behind our earlier statement that T is
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an automorphism of the category of all hypergraphs and their embeddings; but

we leave the proof for a future paper.

4. The reduction completed

In this section, we establish Lemma 9. The argument we give is a simplifica-

tion of our original proof suggested by M. Pouzet. As usual, we let H = (H, E)

be an «-uniform hypergraph.

Definition 11. If y G H, then H(y) = H\(H-{y}). If F is a subset of H of

(finite) cardinality / less than « , then H/F is the («-/)-uniform hypergraph

defined on H - F by: e is an edge of H/F iff e u F is an edge of H.

We omit the routine proof of

Lemma 10. (a) If y G H, H(y) is polarized, and x is a k-tuple in H(y), then

dH(x) < dH^(x) + 1 ; furthermore, if H is also polarized then x G Ën.y)  iff

xgËh.
(b) If F is a subset of H of cardinality f<n, H/F is polarized, and x is

a k-tuple in H - F with k < n- f, then dH(xl)F) = dH,F(x). Furthermore,

if H is polarized and x ^ 0, then x g Ëh/f iff x u F g Eh ; in fact, IH/F (x) +
IH(F) = yiuf). Also, 0 is almost universal in H/F iff F is almost

universal in H.

Proof of Lemma 9. By Theorem 3, either H or its dual has a finite nucleus

K ; without loss of generality, assume it is H. We argue by induction on

N = |I(H)|. If N = 1 then H is empty by Theorem 1. Thus d(x) = 0 and

EH = 0. Suppose the lemma holds for N < M and set N = M. Now we argue

by induction on « . If « = 1 the lemma is obvious, so we assume the lemma

holds for N = M and n < m . Let ¿H be the set of all isomorphism classes

of finite induced subgraphs of H, and let YH denote {x G H: SU ^ r5H(x)} .

Note that YH is nonempty since every nucleus is a subset of YH .

Claim. If YH c P C H, where \P\ = p, then Yp = YH and SP = SH.

Proof of Claim. We show that (1) if Yp ± YH then ÔP ¿ SU and (2) if

ÔP ¿ ôH then there exists P' such that P c P' c H, P' - P is finite,

¿P / <5P', and Yp, ̂  yH . So, if either conclusion of the claim is violated, we

can build a chain P0 c Px C • • • C H, where P0 = P and P¡+x = P'¡ , such that

IF I = u and ¿P ^ ÔP   for all /'</<«, which contradicts the finiteness of
I    /1 r- i   i j j i

VH)-
For (1), first suppose that x e YH - Yp. Then there exists an isomorphism

type t G ôH - ôU(x). Clearly, t £ ÔP(x). Since x £ Yp,, x i ÔP

and thus SH ¿ SP. Second, suppose that x e Yp - YH. Say x G A and

(A) G SP-ôP(x), where A is a finite subset of P and (A) is the isomorphism

class of A . For any subgraph G of H, set KG = {x G G: (A) $ G(x)} . Note

that x £ KH and KH § A . For each y G A - KH, choose Ay c H(y) such

that Ay ~ A . Let B = Au{A : y gA-Kh} . Then (B) G <?H-r5P: KB = KH,
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but if B' is a subgraph of P such that (A) G ÔB', then x G B' and KH c B' ;

thus KB U {x} c K3,, and |ATB| < \KB,\, so B' £ (B).

For (2), suppose that t g r5H-r5P. Let P' be a minimal extension of P such

that t e ÔP1. Clearly, each element of P' - P is in Ypi, and since YH c P,

it follows that Yp, ¿ YH . Obviously, ÔP' ¿ ÔP.

To complete the proof of the lemma, consider a A:-tuple x in H, k < « .

Case 1. YH-x^0. Say ye YH - x. Now H obviously has a subgraph

H' of cardinality p such that SH' = <5H, but no subgraph of H(y) can be

isomorphic to H'. Hence |I H(y)| < N, and by the induction on N and

Lemma 10(a), dH(x) < dH, Ax) + 1 < N.

Case 2. YH c 3c. We first show that |yH/7H)| < N. Suppose that P*

and Q* are induced subgraphs of H/ YH of cardinality p. Let P and Q be

subgraphs of H induced by P* U YH and Q* U YH respectively. It suffices to

show that P* ~ Q* if P ~ Q.

Suppose that tp is an isomorphism from P onto Q. Since YH c P and

YH c Q, by the claim, Yp = YH = YQ. Thus y/[YH] = YH and y/\P* is an

isomorphism from P* onto Q*.

Now by induction on « and Lemma 10(b), dH(x) = dG(x- YH) < N, where

G = K/YH.
Thus we have shown that d(x) < |I (H)| for all A:-tuples x, 0 < k < « . To

show that S(H) has finitely many edges, we again consider two cases:

Case 1. |yH| > «. Let Y be a set of « + 1 elements of YH. Then every

A:-tuple, 0 < k < n, is in H(y) for some y G Y. So, by Lemma 10(a),

^h c UÍ-^hív) '■ y e^} and we use the induction on /V = |I (H)|.

Case 2.   \YH\ < « . Let Y = YH . Then

Èn c (U^H(y) : y G n) U ({x U 7: x G ËH/Y})

by Lemma 10(a) and (b), and we use the induction on « and N.

Recall that FH = \JËH. We end this section by noting:

Corollary 3. Let H bean infinite n-uniform hypergraph with |I (H)¡ = N<co.

(a) \FH\<n(N-l).

(b) If YH is as in the proof of Lemma 9, then YH = FH .

Proof, (a) Let F^ = FH . Suppose we have defined F' for all i < j. Choose

x G FJ~   which is in a few edges of ËH[Fj~l as possible. Let S = {y G Fj~x :

for all e G ËH\FJ~X , if y Ge then x G e}, and Fj = Fj~x - S. Note that

\S\ < n . Since H is polarized and |I (H)| = N, there are at most N distinct

F', one of which is 0. Thus |FH| < n(N - 1).

(b) If FH c H(x), then H ~ H(x) by Theorem 7(4), and so ÔH = SH{x).

Thus  YH c FH .   Conversely, by Lemma 6, there is a finite subgraph G of
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H containing FH, large enough so that S(G) = (G ,ËH). But if x € FH, no

subgraph of H(x) can have signature isomorphic to (G ,EH).    G

5. A CLASS OF GRAPHS WITH LARGE 1(G)

In this section we show that the classical examples of graphs of regular cardi-

nality k with no cliques or independent subsets of cardinality k also have the

largest possible value for 1(G). These are the comparability graphs of partial

orders that are the intersection of two linear orders on the same set of cardi-

nality k , one the type k well-ordering, the other an order with no suborder

of type k or its dual. We also show that the comparability graph of a tree

of cardinality k with no cliques or independent subsets of cardinality k has

|I(G)| > 2<K.

Definition 13. A linearly ordered set (H, R) is strongly dense if it does not

have end points and for all x, y G H there are \H\ many points between x

and y.

Lemma 12. If a linearly ordered set (H ,R) has no subset order-isomorphic to

k or k* where \H\ = k , and k is regular, then there is a subset tí of H such

that \tí\ = k and (tí ,R) is strongly dense.

Proof. Let x = y if there are fewer than k elements between x and y . This

is an equivalence relation, and the equivalence classes are of cardinality < k .

[Regularity of k is needed here.] If we let tí be a subset that meets each

equivalence class in one element (except the least and greatest, if such exist)

then tí is as required.    G

We do not require k to be regular in

Theorem 10. Let W be an order of type k > co on a set H, R a strongly dense

order on H, and P = W n R . Then the comparability graph H = (H ,E) of

P = (H,P) has |I(H)| = 2\

Proof. We first show that we can recover P from H. Indeed, xPy iff both

xEy and \{z: xEz A->yFz}| = k: if xPy then there are zc-many z between

x and y in R = (H ,R) and almost all of these are greater than x and y in

W = (H, W) ; if -ix/y but xEy , then yPx, and for almost all z satisfying

xEz we have xPz and thus yEz.

Next we show that we can recover W and R from P . Clearly it is enough

to recover R . Now xRy iff \{z: xPz A -<yEz}\ = tc: if xRy then almost all

elements between x and y in R are greater than y in W ; if yRx, then for

almost all z satisfying xPz, we have yPz and thus yEz.

Finally, we show that for every X c zc there exists Hx c H such that

(i) R\HX is strongly dense and

(ii) if y is zero or a limit ordinal, and « e «, then

y + nGX   iff hy+2n R hy+2n+x ,

where h   is the ath element of W|7/y .
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From (i) and (ii) it follows that H\HX ~ H\HY iff X = Y: since both

structures are intersections of cardinal order types with strongly dense order

types, we can recover these orders and then recover X and Y.

Construction of Hx. We construct Hx in stages 0 < a < k . Let tí be

the part of Hx constructed before the ath stage, let Ha = tí U {-co ,00],

and let Tl = H u {-00 ,00} . Let g: k —> H x H be a surjection such that

\g~x(a,b)\ = k for all a ,b G H.

Stage a = y + 2« , where y is a limit ordinal: Choose s G H such that 5

is IF-greater than any element of tí and if g(y + n) = (a , b) G Ha x Ha ,

a±b, then 5 is R -between a and b . Let tí+  = Ha u {s} .

Stage a = y + 2« + 1, where y is a limit ordinal. Choose s G H such that 5

is IF-greater than all elements of tí and rRs iff y + n G X, where r is the

(y + 2«)th element of tí . Let tí+x =tíu{s}.    a

Corollary 4. Let W be an order of type k on a set H of regular infinite car-

dinality k. Let R be a linear order on H such that (H,R) has no subset

order-isomorphic to k or k* . Then the comparability graph H of (H ,WnR)

has |I(H)| = 2K .

In a similar but even simpler manner, any tree in which each nonmaximal

element has at least two immediate successors can be recovered from its com-

parability graph: x ç y iff {z: xEz} D {z: yEz} . The comparability graph of

a tree of cardinality zc either has a clique of cardinality k or an independent

subset of cardinality k , or the tree is K-Souslin: every chain and antichain is of

cardinality < zc . There are degenerate examples of zc-Souslin trees for singular

cardinals zc , but even in those models where there are examples for k regular,

we have

Theorem 11. If there is a K-Souslin tree and k is regular, every such tree has

at least 2<K   (= sup{2 : X < ¡c})   nonisomorphic subtrees of cardinality k .

Its comparability graph has at least 2<K  nonisomorphic induced subgraphs of

cardinality k . In particular, every Souslin tree has at least 2W nonisomorphic

subtrees of cardinality «,.

Proof. As is well known, every zc-Souslin tree has a subtree of cardinality zc in

which every element has at least two immediate successors and successors on

all levels of the tree. So it suffices to show that such a "pruned" zc-Souslin tree

has at least 2<K nonisomorphic subtrees of cardinality zc .

For each A g [k]<k , choose an element x on level (sup^l) + 1 and then,

for each a G A, choose an immediate successor ya of the predecessor xa of

x on level a, such that y   é x _,_. , and remove all successors of y .  The
' Ja   '        a+l' Ja

resultant subtree has the property that every nonmaximal element has at least

two immediate successors. Obviously, if A ^ B, the subtrees obtained from A

and B cannot be isomorphic. Thus by the remark preceding the theorem these

subtrees do not have isomorphic comparability graphs,    a
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