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LOCAL PROPERTIES OF SECANT VARIETIES

IN SYMMETRIC PRODUCTS. PART II

TRYGVE JOHNSEN

Abstract. Let F be a linear system on a curve C. In Part I we described

a method for studying the secant varieties KJ locally. The varieties V¡ are

contained in the rf-fold symmetric product C(</'.

In this paper (Part II) we apply the methods from Part I. We give a formula

for local tangent space dimensions of the varieties V\ valid in all characteristics

(Theorem 2.4).

Assume rk V = n+1 and criara = 0 . In §§3 and 4 we describe in detail the

projectivized tangent cones of the varieties Kn' for a large class of points. The

description is a generalization of earlier work on trisecants for a space curve.

In §5 we study the curve in C'2' consisting of divisors D such that 2D e

K4' . We give multiplicity formulas for all points on this curve in C(2) in terms

of local geometrical invariants of C . We assume char K = 0 .

1. Introduction

Let C be a nonsingular curve over a field K, and let V c H°(C,L) be

a linear system on C, where L is a line bundle. Denote by C the d th

symmetric product of C. The subschemes Vd of C consist of those divisors

that impose at most d - r independent conditions on V. The Vd are secant

varieties.

As an example consider the case where rkF = 4 and V is very ample.

Then V defines an embedding of C into 7>3. The sections of V are then

thought of as hyperplanes of P3. The variety Vx parametrizes those divisors

of degree 3 that consist of 3 collinear points on C in 7>3. Roughly speaking:

V3   parametrizes the trisecant lines of the embedded curve.

It is a well-known fact that the Vd can be defined scheme-theoretically as

the zero schemes

(A**1')
for r = I, ... ,d,

where a is a canonical C( '-bundle map

a: V®t?ad)^EL,
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206 TRYGVE JOHNSEN

and EL is a vector bundle of rank d on C obtained from L by a so-called

symmetrization process. See, for example, [ACGH, p. 340].

In Part I we constructed a computational device for studying the map a

and the varieties V"d locally. Our main results were given in Theorem 4.2

and Proposition 4.4 of Part I. We constructed a local matrix description of a

and described the formal completion Öv, D of the local ring of Vd  at a point
d '

(divisor) D. Such a local description is often trivial when D consists of d

distinct points. The main purpose with our results is to study the Vd at points

on the diagonal in C . In Part II we will use the information from Part I to

obtain some geometrical results.

In §2 we give a formula for the tangent space dimension of the variety Vd

at a point D. The formula is valid in any characteristic.

In §3 we study a large class of points on the variety Vx , where rkV = n+l .

We describe the tangent cones of Vn at such points, and in particular we give

a formula for the multiplicity of Vn   at these points.

In §4 we find further properties of the tangent cones described in §3. We will

indicate when the projectivized tangent cones are singular. This is a generaliza-

tion of a result in [J] concerning trisecant lines for a space curve.

In §5 we study stationary bisecants for a nonsingular space curve. A stationary

bisecant is a bisecant line, where the curve tangents at the points of secancy

meet, or a tangent line at a point where the osculating plane of the curve is

hyperosculating. We define a curve in C that parametrizes these situations,

and we describe the local structure of this curve. We find out how the tangent

cone of the curve in C( ' at a secant divisor is determined by the local geometry

of C at the points of secancy. The study of stationary bisecants was proposed

to the author by Ignacio Sols. Similar results to those of our §5 have been

found independently by Miguel Gonzalez [G]. He uses bundles of principal

parts.   Global properties of the varieties  Vd   and of the various diagonals in

C(d) are described in [ACGH, Chapter VIII], in the case K = C. Our paper

can be read as a local supplement of that chapter.

Remark. References to results and formulas in Part I will be marked by the

prefix I. Theorem 1.4.2. means Theorem 4.2. of Part I, equation 1.(4.1) means

equation (4.1) of Part I and so on.

2. The tangent space dimension of Vd  at D g C(

The varieties Vd are interesting since they parametrize divisors that are

"special" with respect to the linear systems V .

Let D = £*_, d¡P¡, where D gVx , and the P¡ are distinct points on C. We

will use Theorem 1.4.2. to compute the tangent space dimension of Vd at D.

The Brill-Noether matrix BN (see 1.(4.2)) consists of k groups of consecutive

rows, where the zth group (consisting of d¡ rows) corresponds to the point P¡,

for i = I, ... ,k .
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Definition 2.1. /( is the maximal integer 5 6 {0, ... ,d¡ - 1} such that the

matrix consisting of all rows of BN except the (s + l)st row in the z'th group

has rank d - 1. If no such integer exists, set /( = -1.

Explanation. Assume for simplicity that V is base-point free and thus maps

C into some P" . For a chosen set of local parameters of C at the P¡ we can

talk about derivative vectors of C at the P¡. Call the point P¡ itself the 0th

derivative vector of C at P¡. Then l¡ is the maximal integer s G {0, ... ,d¡-l}

such that the union of the 0th,... , ith,... ,(d¡-l)st derivative vectors of C at

P¡ and the 0th,... , (d ',— l)st derivative vectors at P , for j ^ i, span a d - 2

plane in Pn . If no such 5 exists, then l¡ = -I.

Observation 2.2.  D G v] o /,: = -1 for i = 1, ... ,k .

Definition 2.3. Assume tí G C(d'] for some d' G N. Denote by V(-D') the

linear system V n 77 (C, L(-tí)). We now give the main result of this section

(valid in any characteristic).

Theorem 2.4. The tangent space dimension of Vd  at D is

minld,rkV (-¿K + h + X)P>A +2</-/i-2j , where rkV = n + 1.

Proof. It is enough to study the constant and linear parts of the matrix M

(1.(4.1)). Since rkBN < d- 1, we may assume that only the d-1 first columns

of BN are nonzero. Since we will only study the linear parts of the of-minors,

we may assume that the entries in the d - 1 first columns are constant. Assume

first D = dP. We may drop the index i in M, and we have

a0,0      ■■■      ad_2.o (-\)d~^d-\4sd

^0,1      •••      «rf-2,1   (-l)d~2a¿-uV-i +(-l)d~]ad-\,d+iSd    •••
M

a0,¿-l      •■■     ^d-l,d-\     ad-\,dS\ +•■• + (- l)d   %ad-\2i-\sd

(-^)d-'anMsd

(-n'-V^. + M^-V^,^

<*n.dSl +--- + (-l)d~]On,2d-\Sd

Here we used that the linear part of W.(sx, ... ,sd) is (-l)J~ s¡ for j =

1, ... ,d. See 1.(3.4). Let D._, be the d - 1 minor formed by the d - 1

first columns of M (or BN ) minus the y'th row. We see that / is the largest

integer j such that D. ^ 0 if such an integer exists (see Definition 2.1).

The linear parts of the n + 2- d relations cutting out Vd  are (up to signs):

(a¡dD,)sd_, - (aid+xD¡ + aidD¡_x)sd_,+ x +■■■

+ (-x-)'(ai,d+,Di + --- + ai,dDo)sd

for i = d - I, ... ,n .
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The coefficient matrix of these relations in sx, ... ,sd is easily seen to have

the same rank as

W

ad-\,d     •••     ad-\,d+l

an,d       ■■■       an,d+l

Hence the tangent space dimension of Vd  at D is d - rk N if / > 0 and d

otherwise. Assume first / > 0. Let us find

rkV(-(l + d+l)P).

Since / > 0, Observation 2.2. gives that the matrix BN has rank exactly d - 1,

and therefore a section contained in V(-dP) must be of the form cd_xXd_x +

—r-cnXn , where the c€ K, and where X. is the section corresponding to the

(j + 1 )st column of M. The conditions that such a section should be contained

in V(-(l + d+ l)P) are

ad-\4Cd-\       +■•+      an,dCn=0'

ad-\,d+lCd-l      +••'+     an,d+lCn=°-

These equations in the variables cd_,,..., cn give rise to a coefficient matrix,

which is the transpose of N.

Hence rkV(-(l + d+l)P) = n-d + 2-rkN, and we deduce that the tangent
A
d

d-rkN = 2d-n-2 + rkV(-(l + d+ l)P).

space dimension of F,  at D is

Since rkV(-(l+d+l)P) < rkV(-dP) = n-d+2, our tangent space dimension

is at most (2d-n-2)+(n-d+2) = d. Hence the theorem holds when D = dP,

and /> 0.
When D = dP and / = -1, the tangent space dimension is d since all the

Dj are zero. On the other hand,

2d - n - 2 + rk V(-(l + d + l)P) = 2d - n - 2 + rk V(-dP)

= (2d-n-2) + (n + l- rkBN) >d+l

since rkBN < d - 2. Hence d is the minimum of d and 2d - n - 2 +

rk V(-(l + d + l)P). Our proof is now complete in the case D = dP. The

general case follows easily using the same argument for each group of d¡ rows

of M.

3. A LOCAL STUDY OF  Vx   where rk V = n + 1 > 4

In [J, Theorem 2.3.1], we gave a multiplicity formula for trisecant lines to a

space curve. In this section we will generalize this formula.

Let D G C(n) be a point of Vx , where rk V = n + 1 > 4. Assume:

(1) for each tí G C("~X), such that tí < D, we have tí £ Vx_x ;
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(2) if D = Eti n¡P¡ (all n¡ > 0), then D + Pt. £ F2+1 , for i = 1, ... , k ;

(3) char Tí =0 and K = K .

Proposition 3.1. Under assumptions (1), (2) and (3), we have:

(a) the tangent space dimension of Vn at D is rkK(-27J>) + n - 2, where

rkV(-2D) is 0 or I;

(b) dimOv, D = n-2;

(c) the multiplicity of Vx at D is the largest integer s such that rk V(-sD) >

1 (with equality if Vn   is singular at D).

Proof. Let l¡, for i = 1, ... ,k, be the integers described in Definition 2.1.

Assumption (1) gives /( = n¡ - I for all i. The tangent space dimension

formula in (a) is then a special case of Theorem 2.4, and it holds also when

charTC >0.

Assumption (2) gives that rk V(-2D) is 0 or 1, because if rk V(-2D) > 2,

then 2D G V2n+X , and then D + P¡ G V¿+x for all i G {1, ... , k} . Hence (a)

holds.

By general facts about determinantial varieties, we have dim Ovi n> n-2.
"n  iL)

If rk V(-2D) = 0, then the tangent space dimension of Vx at D is n -2 by

(a). Hence, dimcX., n < n-2, and (b) follows. Furthermore Vx isnonsingular

at D in this case. Hence the multiplicity of Vx at D is 1. Since rkV(-2D) =

0, and rkF(-l • D) > 2 > 1 , the number given in (c) is also 1. Hence (c)

follows when rk V(-2D) = 0.

It remains to prove (b) and (c) when rk V(-2D) = 1. Let V be generated by

the sections {X0, ... ,Xn}. rkV(-D) > 2 since D G Vx , and rkV(-D) < 2

since D $ V* by (1).

Hence rkV(-D) = 2, and we may assume that Xn_x and Xn generate

V(—D). This means that the entries in the two last columns of the BN matrix

(see 1.(4.2)) are zero.

We may assume that Xn generates V(-2D) since rkV(-2D) = 1. The

matrix M of 1.(4.1) will have constant terms only in the entries of the n - 1

first columns, corresponding to X0, ... ,Xn_2 (since Xn_x,Xn are in V(-D)).

On the other hand, each of these n - 1 columns will have at least one entry with

a nonzero constant term. This implies that the ideal generated by the «-minors

of M is, in fact, generated by the two «-minors obtained by disregarding each

of the two last columns, corresponding to Xn_x and Xn . We call these minors

Rn_x and Rn, respectively.

The strategy now is as follows: (1) and (2) imply that the leading form of

Rn is linear in the variables s, ,,... , sk n . One uses Rn to express one of the

s¡ j, say s¡0 0 , as a power series in the remaining s¡ modulo the ideal (Rn)

in 7^[[j]]. Then one substitutes this power series for si0 0 in Rn_x to get a

new relation Rn_x in the remaining s¡   . Using 1.(3.4) it is easy to show that
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the leading form of 7?fl_, is of degree m , where m is

max{s|rkF(-s7)) = 1} > 2.

It is less obvious, but still true, that the leading form of 7? , is of degree m

also. The verification of this is done in detail in [Prpr] for the case D = nP.

There we also indicate how this verification can be modified to apply to the

general case D = £V=1 n¡P¡ . This gives the conclusion of our proposition.

Definition 3.2. For a variety X and a point P in X the tangent cone 7Tp(X)

of X at P is

Spec j Qm'/m'+     ,

where zn is the maximal ideal of the local ring Ox p .

The projectivized tangent cone P7Tp(X) of X at P is

Proj I Qm /m'+  j .

Corollary 3.3. Under (I), (2) and (3), the projectivized tangent cone P^(VX)

is a hypersurface of degree m in Pn~ , where

m = max{í|rk V(-sD) > 1}.

Proof. Corollary 3.3 follows from the proof of Proposition 3.1.

4. The tangent cone 7Td(V^) , where rk V = « + 1 > 4

In this section we will not always prove our assertions. Our goal is to give

a geometrical interpretation of 77rD(Vn ) (or P7fD(Vn )) described at the end of

§3.
In §3 we studied a point D in Vn , where rk V = n + 1 > 4. Under (1), (2)

and (3) of §3 we gave a description of the dimension, embedding dimension

and multiplicity of Vn   at D .

A question which then arises naturally is: When is the projectivized tangent

cone P^(VX) singular? If zz = 3 and Vx is a curve, then P7TD(VX) is singular

if Vn does not have normal crossings at D ; we also say that Vn possesses a

nonordinary singularity at D in this case. In [J] we gave necessary and sufficient

local conditions on C for determining whether the trisecant curve (essentially

V3 ) possesses nonordinary singularities or not. We want to generalize these

conditions to apply to any Vn , n > 3, where rk V = n + 1 . In order to do this

we assume:

(2') V is base-point free and D + P £ Vn+X for any point P g C.

Assumption (2') is, of course, a strengthening of (2) of §3; but this strength-

ening is of no importance for the local geometry of V   at D. Whatever local
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result we prove for Vn at D under (1), (2') and (3) will also hold under As-

sumptions (1), (2) and (3). This is true because the matrix M (see 1.(4.1)) is

only dependent on the behaviour of V at the points Px, ... ,Pk, and because

any base point of V is outside {Px, ... ,Pk} by (1).

Under (2') V defines a map (p: C -► C C P" . Let G = G(n-2,n) be the

Grassmannian, which parametrizes the « - 2 planes in P" .

For an n - 2 plane 77 denote by [77] the corresponding point in G. Denote

by F the incidence variety

{([H],P)gGxP"\PgH}.

Consider the following diagram:

Here p and q are the natural projection maps from F to Pn and G, respec-

tively, and WF=p~l(C).

Let Sec be the subvariety of G cut out by the sheaf of 0G-ideals: Fn~x(qtOw ) ,

that is, the sheaf of (« - l)st. Fitting ideals of the Og-sheaf qtOw . Then Sec

parametrizes « - 2 planes that are «-secant to C. This definition of Sec is

taken from [GP], where the case n = 3 is treated. As in §3 set D = £] n¡P¡,

where £}«, = «.

Assume D g Vn , and that (1), (2') and (3) hold. Then D spans a unique

« - 2 plane; that is, Px, ... ,Pk and the n¡ - 1 first derivative vectors of C at

P¡ for i = I, ... ,k , span a unique « - 2 plane 77.

We make the following claim:

(4.1) ^(^^(Sec).

In fact, we strongly believe

Í4 2) Ô ,     ~ Ô

We have not made any attempts to prove (4.2), but we have proved (4.1) when

D consists of n distinct points.

To find 7TD(Vn) one simply calculates the leading forms of the relations

R„-\(l) an<3 R„(l) described in the proof of Proposition 3.1. In [J] an explicit

description of ,5^, (Sec) is given in the case where « = 3, whether D consists

of three distinct points or not.

It is easy, but a little painstaking, to generalize this explicit description to

arbitrary « > 3, when the « points of D are distinct. Comparing the two

tangent cones one sees that they are isomorphic.

We omit the very technical calculations here. In principle the same method

should work when the « points are not distinct.
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Definition 4.1. For a curve  C  and a hypersurface  M  in  P", denote by

I(P,CC\M) the usual intersection number between C and M at P.

In the following we will only use (4.1) in Corollary 4.4. Assume that (1), (21)

and (3) hold for D. From Proposition 3.1(a) and from local results about Sec

we have: Sec is singular at [77] ■& Vn is singular at D o There exists a unique

hyperplane %7 in P" with

I(Pi,Cf\7T)>2ni   fori=l,...,k.

We have Sec c G c P for some large S. Making explicit calculations

analogous to those in [GP and J] one finds that the embedded (compactified)

tangent space in Ps to Sec at [77] is %? c G c Ps, where & is the « - 1

plane in G, which parametrizes the n - 2 planes in the hyperplane ^ c Pn .

Hence the embedded tangent cone in P to Sec at [77] is a union of an

(« - 3)-dimensional family of lines in %7. Each point of the projectivized

tangent cone P77^HX(Sec) or P7TD(Vl) corresponds to one such line.

A line L in %f through [77] is a nesting of a one-dimensional family of

« - 2 planes in ^ containing a fixed n - 3 plane hL contained in 77.

Hence each point of P7^H](Sec) and P77~D(VX) corresponds to an «-3 plane

hL in the « - 2 plane 77. Denote by [h] the point in 77 corresponding to

an n - 3 plane h , where 77 is the « - 2 plane which parametrizes the « - 3

planes in 77.

By Corollary 3.3, P^D(Vn ) is a hypersurface of degree

m = max{s|rkF(-sT)) > 1}

in P"~  . From the above discussion it is clear that a natural geometrical inter-

pretation of this P"~2 is 7T, and that

P^H](Sec) £ {[hL]\L is a line in # through [77], such that

L is contained in the embedded tangent cone to Sec at [77]}.

Two problems now arise in a natural way:

(i) Find those « - 3 planes « in 77 such that [h] g T^^Sec).

(ii) Find those n - 3 planes h in H such that [h] is a singular point of

7^, (Sec).

We state without proofs the solutions to problems (i) and (ii) (Results 4.2

and 4.3, respectively). Result 4.2 is a generalization of Theorem 2.3.2 of [J],

and Result 4.3 is a generalization of Theorem 2.3.3 in [J].

We have proved Results 4.2 and 4.3 in the case where D consists of «

distinct points, but we omit the technical details here.

Result 4.2.  Under (1), (2') and (3) we have [h] G P37H](Sec) if and only if

there exists a hypersurface M in Pn such that:

(a) degA7 = m + 1, and M has a singularity of multiplicity at least m at

all points of h ;
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(b) 7(7',., M n C) > (m + l)n¡ for all P¡GHnC;

(c) m ■ 77 ç M n ¿T, i.e. I (M) ç (I(%f) + I(H)m), and 77 g Sing(Ttf) ;

(d) the equation defining A7 in P" is equal to the equation of a cone of

degree m + 1 with h contained in its vertex set, modulo the square of the ideal

defining 77.

Remark. M can be taken to be a union of a one-dimensional family of « - 2

planes containing 77. Thus M gives rise to a curve [ in G. The tangent line

to [ at [77] is L, where h = hL.

Result 4.3. Under (1), (2') and (3) we have: [h] is a singular point of

P7^H](Sec) if and only if there exists a hypersurface N in P" suchthat:

(a) N is a cone of degree m , and h is contained in the vertex set of TV ;

(b) 7(7>,CnA0 > («i+ 1)«,. for i= 1, ... ,k;
(c) 77 i Sing(/V).

Corollary 4.4. Assume that (1), (2), (3), and (4.1) hold for D. We have:

P7^D(Vn ) is singular if and only if there exists a cone N and an « - 3 plane h

as described in Result 4.3(a), (b), (c).

5. Stationary bisecants for a space curve

In §5 we assume char Tí = 0, and K = K. Let C be a nonsingular curve

in P , and let Px and P2 be points on C. The line Px P2 is usually called a

stationary bisecant if the tangents to C at Px and P2 meet. In general there

is a one-dimensional family of stationary bisecants for a space curve. We will
(1)

define a scheme in C , which essentially parametrizes divisors Px + P2 with

7*, and P2 as described. Some divisors 2P may also occur as points on this

scheme in C     since tangent lines are in some sense bisecants.

Let C be mapped into P by evaluating sections of some linear system V

of rank 4. Consider the map:

(5.1) i : C(2) -» C(4),    where i(D) = 2D

for divisors D in C(2).

Definition 5.1. The scheme of stationary bisecants for C with respect to V is

r\v¡).
Remark 5.2. Clearly D G i~x(Vx) <* 2D G Vx . If />, ¿ P2, then P, + P2 G

*"" ' ( ̂ 4* ) •** the tangent lines to C at Px and P2 meet.

We also have:

2P g i~ (K4 ) •*> 7* is a flex on C, or the osculating plane of C at P is

hyperosculating.

It will follow from the proofs of Propositions 5.3 and 5.5 that i~x(Vx) is

either a curve or empty.
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We will use Theorem 1.4.2. to determine the multiplicity of i~ (V4) at an

arbitrary point D (in C ) in terms of the local geometry of C at the secant

points in P3. The cases D = 2P and D = Px+ P2 (Px ± P2) will be treated

separately. As before we denote by I(Q,C n F) the intersection multiplicity

between a curve C and a surface F at a point Q in P3.

The multiplicity of the curve i~ (V4) at D = Px + P2. Assume P, ^ P2,

and let L be the line PXP2. Set ni = I(P¡, C n 77) for z = 1,2, where 77

is a general member of the pencil of planes containing L.  We may assume

«j > «2 .

Let r be the maximal integer such that there exists a plane 77 with

7(P(, C n 77) > n¡ + r   for i = 1,2.

Let r2 be the maximal integer such that there exists a plane 772 containing L

with

I(P2,CnH2) = n2 + r2.

Proposition 5.3. The multiplicity of the curve i~ (V4) at Px + P2 is

min(«1 + n2 + r - 2,2n2 + r2 - 1).

Proof. Choose coordinates X0,XX,X2,X3 for P , and let t¡ be a local pa-

rameter at P¡ for z = 1,2. Without loss of generality we choose

*o=!.

Xx = tt + k¡,

*2=E «/,//>
)>n¡

^ = E ftj«í
j>n¡+r

as local parametrizations at P, for i = 1,2 .

"2
By the definitions of «, , «2, and r, we may assume that a¡ n   and a2

are nonzero, and that /?, n +f or ß2 n +r is nonzero.

We see that the line L = PXP2 has equations X2 = X¿ = 0, and that P¡ =

(l,k¡,0,0) for i= 1,2, with zc, ̂  zc2.

The unique plane (if any) that intersects C at least «( + 1 times at P¡ for

i = 1,2,  has equation X3 = 0. This is also the equation of 772.

By Theorem 1.4.2, we have

Ôyi 2P,+2Pi-KttS\  1'51 2'52 i>S22]]/(delM),
4*1* » ' ' '

where

M =
i

^2+^2,1

1

Ej>„, ai,,Hj_,(sM,Si,2)    E;>„1+,/9iJHy-i(il.l'il.2)

E;>n, "2,;^(i2,l.S2,2) E>^+, Aj^^i»^)

E;>„, a2J Wjf-1 (i2,l. *2,2)      Ey>«2+r hj Wl- ' (i2-' 'i2-2)
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-(2)    _ ~(4)
The map i: C    —> C    , where i(D) = 2D induces a map

Now

t : Ocw 2p¡ +2f>2 —► Ocw p¡ +p2.

®CW,2P,+2P2 — Oo2> ,2P, ® Ocm ,2Pi
K

where the s¡    can be regarded as formal, algebraically independent, variables.

s¡ can also be regarded as the jth elementary function in two replicas

t¡ ¡, t¡ 2 of the local parameter t¡ of C at P¡ for / = 1,2, j = 1,2.

Furthermore,

Ôcm,Pl+p2 - Ôc Pt ® ÖCPi ^ K[[tx, t2]].

Hence we regard i* as a map

i* : K[[sx j,Sj 2,sÏA,s22\] — K[[tx, t2]].

We have 0¡_[(V,)A+Pi ~ K[[tx, t2]]/det M(i*sxx, ... ,i*s22). Clearly i*s¡ j =

s¡  (t¡,t¡),   I = 1,2, j = 1,2. From 1.(3.5) we then obtain

i*rVj(t¡) = Wj(i*s¡x,i*s¡2) = (j+l)tj¡.

This implies that

where R is the determinant of the matrix obtained from M by substituting

WMl,\ >s/,2) by U + !)'/ for / = 1,2,   j > 0.
Calculation gives that the leading form of R is

(5.2) (kx - k2)[nx(n2 + r)ax n¡ß2^i+/2 - «2(«, + r)a2 „/, nx+rt\] -t^ ■ t^ ,

or

(5-3) r2a2niß2^+r2.t22n^-X,

or the sum of these forms.

One must check that neither of the forms vanishes identically as a polynomial

in tx ,t2, and that the forms do not cancel each other. Clearly (5.3) does not

vanish. (5.3) cancels (5.2) only if nx = 1, but then «2 = 1 also, and the forms

have different degrees. Hence they do not cancel each other. For the form (5.2)

we have two cases:

(a) r = 0. Then the form vanishes iff

ai,HA«2~a2,«A", =0-

But the last expression is zero if and only if there is a plane 77, with

7(P,., C n 77) > «, + 1     for i = 1,2.

This would contradict the definition of r, so the form does not vanish.
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(b) r > 0. The form does not vanish since

(i) kx ¿ k2,
(ii) a, n   and q2 n   are nonzero, and

("i) fi¡'ni+r or ß'22ni+r is nonzero.

Hence the multiplicity of i~X(VX) at Px+ P2 is equal to the degree of the

leading form of R :

min(«, +n2-2 + r ,2n2 + r2- 1).

This gives the proposition.

Corollary 5.4. If a stationary secant PXP2 is not a tangent to C at any of the

points P¡ ,P2, then the multiplicity of i~ (VA) at Px+ P2 is

r = min(I(Px ,C n H) ,I(P2,C n H)) - I,

where 77 is the plane spanned by the tangent lines to C at P, and P2.

The multiplicity of i~X(Vx) at D = 2P. Let L be the tangent line to C at

the point P. Set z«2 = max{/|/P G V¡'~2} or, equivalently, z«2 = 7(P, C n 77)

for a general member 77 of the pencil of planes containing L. If P is not

a flex on C, then m2 = 2. Set m3 = max{/|/P g V¡ } or, equivalently,

m3 = maxHDL{I(P, C n 77)} . Clearly «z3 > m2 + 1.

We now give our main result in the case D = 2P.

Proposition 5.5. The multiplicity of i~ (V4) at 2P is [(m2 + m3)/2]-2, where

[x] means the integral part of the real number x.

Proof. Let t be a local parameter for C at P. Without loss of generality we

may assume that C is parametrized locally at P as

Xx =t,

*3 =   E  ß/ ■ ßm> * °-

Let i,, s2, s3, sA be local parameters for C(4) at 4P, where the sk are the k th

elementary functions in tx ,t2,t3,t4; four replicas of /.

By Theorem 1.4.2, we have

ÔK, 4P = K[[sx,s2,s3,sJ]/(df¡tM),
4   '

where

M =

i sx ZjajWjd) Ejßj^)
o i EjajWj-W T.jßjWj.^s)
0 0 ZjCLjWj^M EjßjWj_2(s)

LO 0 E,«y^-3(í) T.jßjWj.^s)
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We see that

detM=  £ "jWj^tà- £ ßjW^d)
(5 4) j~mi J-m'

- T, ajWJ-3® 7% WJ-2&-
j>m2 j>nti

Let Sx  and S2 be local parameters of C(2) at 2P, where the Sk are the

k th symmetric functions in TX,T2; two formal replicas of /.

The map (5.1) induces a map

i*: K[[sx ,s2,s3,s4]] -+ K[[SX ,S2]].

Clearly Ô(-l(1/1) 2p = K[[SX ,S2]]/(R), where P is the power series obtained

by substituting i*sk for sk in (5.2), for k = 1,2,3,4. The multiplicity

mult2/)(z~ (V4)) is the lowest value ex + e2 for any term Sex'S22 occurring in

R . We will first find the i*sk . Let sk = sk(tx ,t2,t3,t4) ; that is: Regard sk as

the k th elementary symmetric function in four replicas of t for k = 1, ... , 4.

We define

Wk(Tx,T2) = sk(Tx,Tx,T2,T2).

Clearly i//k(Tx,T2) is symmetric in P,, T2 for k = I, ... ,k . Hence there

are unique functions <pk(Sx,S2) suchthat

<pk(Sx(Tx,T2),S2(Tx,T2)) = ¥k(Tx,T2)

for i = I, ... ,k .

One sees that i*sk(Sx ,S2) = <pk(Sx ,S2) for all k .

We then obtain

i*sx = 2SX,        i*s2 = Sx + 4S2 ,

We have

r= ^/^•E^'^)

y>m2 ;>'«3

where i*W¡ = W¡(i*sx, ... ,i*s4) for all /.

We now must verify that the leading form of R in the variables Sx and S2

is as stated in Proposition 5.5. This was done in detail in [Prpr]. We omit the

very technical calculations here.

Corollary 5.6. If P is not a flex on C, then the multiplicity of i~X(Vx) at 2P

is [z«3/2] - 1, where m3 = 7(P, C n 77), for the osculating plane 77 of C at
P.
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Comment 5.7. Assume:

(a) No plane intersects C more than four times at any point;

(b) C has no bitangents;

(c) C has no flexes;

(d) no plane is osculating at more than one point of C ;

(e) for each tangential trisecant line to C tangent to C at say Px and inter-

secting C transversally at say P2, the osculating plane at P, does not contain

the tangent to C at P2.

Then it follows from Propositions 5.3 and 5.5 that the curve i~ (V4) is

nonsingular.

A nonsingular space curve has only finitely many tangential trisecants, flexes,

bitangents, and hyperosculating or biosculating planes. Hence it follows that

the curve (scheme) i~ (V4) is always reduced.

This curve however, might, be reducible. As an example of this, take C as

the complete intersection of two quadric surfaces. Then C is contained in four

quadric cones, and each generatrix of each such cone is a stationary bisecant

line. Hence i~ (V4) has (at least) four components in this case.

A geometrical interpretation of the tangent cone 77~D(i~ (V4 ). In Definition

3.2 we described the (projectivized) tangent cone of a variety at a point. The

tangent cone of the curve i~ (V4) at a point D is determined by the leading

form of the relation R as given in (5.5) in the case D = 2P, or as in (5.2)

and (5.3) where the leading form is given explicitly in the case D = Px + P2,

PX¿P2.

In both cases the tangent cone is determined by a homogeneous polynomial

of degree m in two variables, where m is the multiplicity of i~ (V4) at D.

This polynomial splits into m linear factors. It turns out that in many cases

each linear factor in the leading form corresponds to a point on the secant line

L with a certain geometrical significance. Clearly each linear factor corresponds

to a point of the projectivized tangent cone P¿7D(i~]X(VX)). Hence we have an

analogy to Result 4.2 in these cases. We would like to explain this more closely.

As usual we denote by l(L) the point in the Grassmannian G = 67(1,3)

corresponding to a line L. Set

B = {l(L)\L satisfies (a) or (b) below}.

(a) LflC = {P,, P2} , and L is not a tangent line to C.

(b) Lr\C = {P} , and L is a tangent, but not a flex tangent line to C at P.

By the Trisecant Lemma the closure B is a surface in G. It is a standard

fact that B is locally isomorphic to C(2) at points of B under the map that

sends the secant (tangent) line l(L) to the divisor Px + P2(2P). Moreover B

is nonsingular at points of B.

Let S be the subcurve of B corresponding to stationary bisecants in the

sense described earlier. Then 5 is locally isomorphic to i~ (V4) at points of

SnB.
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Consider the Plücker embedding 67 ç P5. It is a well-known fact (see, for

example, [GP, p. 16]) that the points of STifi are exactly those points of B

such that the embedded tangent planes to B in P are globally contained in

67 (in fact as /?-planes). For a point l(L) on SnB, this tangent plane is H,

where 77 is the stationary plane in P   spanned by the divisor 2D on C.

This information implies that if C is not contained in a cone consisting of

stationary bisecant lines, then the family of stationary bisecant lines envelope

another curve W in P .

Considering the stationary bisecants as dual lines, the same family envelopes

a curve [ in P .

The following is easily verified.

( 1 ) C is on a cone consisting of stationary bisecant lines o A component

of ? degenerates to a point o A component of [ is plane.

(2) ? and [ are dual to each other, that is, [ parametrizes the osculating

planes of ?, and vice versa.

(3) [ parametrizes the bitangent planes of C.

Since i~X(VX) is locally isomorphic to S at points of S n B, we can study

the tangent cone to S at l(L) instead ofthat of i~X(Vx) at D. Since the

embedded tangent space of B at l(L) is the dual plane 7T, we can embed

¿7¡,L)(S) as a union of m lines in 77 through the point l(L).  But a line in

77 c 67 through l(L) corresponds to a pencil of lines in 7T c P through some

point Q of L. Such points Q of L are exactly the points of In? arising

from the local branch(es) of S. This means that the explicit calculations of

the leading forms performed earlier in §5 tell us how the points of In? are

located in Cases a and b.

Case a. L n C = {Px, P2}, L is not a tangent line. Set

r = min(7(P, , C fl 77), 7(P2 , C n 77)) - 1

for the stationary plane 77. By (5.2) the leading form in tx ,t2 is (up to a

constant)

"l.l^.r+l^- a2,l£l,r+l'í•

Hence the multiplicity m is r, and we get r distinct points of In? outside

C unless either /?, r+, or ß2 r+x is zero. If, say, ßx r+x = 0, which means

I(PX, Cn77) > r+ 1, then all r points of In? collapse to one point. It turns

out that this single point is P2. See Result 5.8. below, or Remark 5.9.

Caseb. LnC = {P} , L is tangent to C at P, but P is not a flex. We recall

the definition m3 = I(P, C n 77), where 77 is the osculating (stationary) plane

of C at P.

We recall that the leading form in Sx ,S2 is S'2m3~3)/2 when m3 is odd and

(Sx+kS2)Smi' ' when m3 is even. It turns out that the factor S2 corresponds

to the (secant) point P of Cnl, while the factor Sx + kS2 corresponds to a

point outside P. "In general," when m, = 4, we get only the last factor.
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In Cases a and b, we have another description of the points of L n ? arising

from the local branch(es) of S. Denote by m the multiplicity of S at l(L).

Result 5.8. Q G L is a point of ? iff there exists a cone A^ of degree m + 1

with vertex at Q such that Sing(AT) ?5 L and:

Case a. I(P¡, C n N) > m + 2 for i =1,2.

Case b. I(P, C n N) > 2m + 4.

Idea of proof. Let F be the surface in P swept out by the stationary bisecant

lines. Let C' be a dummy curve on F transversal to the ruling around L.

Regard L as a singular irz'secant to CuC'. The point l(L) is contained in a

nonreduced component of the trisecant curve in 67. Then apply Result 4.3 in

the case n = 3 .

Remark 5.9. Recall the local parametrizations of C introduced in the proof of

Proposition 5.3. Referring to these parametrizations, Result 5.8 translates in

Case a to Q = ( 1,k,0,0) is a point on In? iff

(k2-k\r    ßx>r+x   o£l

Kk.-kJ     ß2r+x   Q;+>-

A similar result can be obtained in Case b.

We might return to a more detailed study of the curves ?, S, [ in another

paper. With the information we have now it is easy to compute the "expected"

genera, degrees, and numbers of cusps of these curves.
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