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CAUCHY-SZEGO MAPS, INVARIANT DIFFERENTIAL

OPERATORS AND SOME REPRESENTATIONS OF SU(« + 1,1)

CHRISTOPHER MEANEY

Abstract. Fix an integer n > 1 . Let G be the semisimple Lie group

SU(r!+l,l) and K be the subgroup S(U(«+l)xU(l)). For each finite dimen-

sional representation (t,^?) of K there is the space of smooth r-covariant

functions on G, denoted by C°°(G, t) and equipped with the action of G

by right translation. Now take (t,3%) tobe (rp,p,^,p), the representation of

K on the space of harmonic polynomials on C+l which are bihomogeneous

of degree (p,p). For a real number v there is the corresponding spherical

principal series representation of G , denoted by (jt„,Iijt,). In this paper we

show that, as a (g, AT)-module, the irreducible quotient of Iii_„_2P can be re-

alized as the space of the AT-finite elements of the kernel of a certain invariant

first order differential operator acting on Cao(G, zPiP). Johnson and Wallach

had shown that these representations are not square-integrable. Thus, some ex-

ceptional representations of G are realized in a manner similar to Schmid's

realization of the discrete series. The kernels of the differential operators which

we use here are the intersection of kernels of some Schmid operators and quo-

tient maps, which we call Cauchy-Szegö maps, a generalization the Szegö maps

used by Knapp and Wallach. We also identify this representation of G with

an end of complementary series representation.

Introduction

This paper is a contribution to the general program of producing concrete

realizations of representations of Lie groups in the kernels of invariant first

order differential operators. The methods we employ are those proposed by R.

A. Kunze, J. E. Gilbert, R. J. Stanton, and P.A. Tomas in [G2, GKST:Cort,

GKST:Zyg and GKT:Clev]. In the case of noncompact semisimple Lie groups,

this approach can be thought of as a generalization of the work on the discrete

series by W. Schmid, R. Hotta, R. Parthasarathy, A. W. Knapp and N. R.

Wallach, (see [SC, HP and KW]). That is, the class of differential operators

we consider generalize the operators of Schmid (see §2 below) and a definition

of Cauchy-Szegö maps is given which is more general than that of Knapp and

Wallach.

Suppose G is a noncompact connected semisimple Lie group with finite

center and a maximal compact subgroup K. Let q = t © s be the Cartan

decomposition associated to (G,K). To each irreducible unitary representation

Received by the editors September 1, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 22E46.

©1989 American Mathematical Society

0002-9947/89 $1.00+$.25  per page

161



162 CHRISTOPHER MEANEY

(r, ig, let

C°°(G,x) = {/: G - V : f is smooth, f(kg) = x(k)f(g) V* e K, g e G}.

The group G acts on C°°(G,x) by right translation. The invariant first order

differential operators acting on C°°(G,t) are determined by 7i-equivariant

projections of Vr ® sc onto 7i-invariant subspaces, where K acts by x <g> Ad.

Given such (x,Vr) and a description of K in terms of dominant integral

weights, one requires a prescription which uses the location of x in K to spec-

ify one invariant differential operator, say ST. One would like to arrange this

so that the Tí-type (x ,Vz) occurs in ker(3T) and also to have a means of con-

trolling all the K-types which occur there. To show that ker(ST) is nontrivial,

we use Cauchy-Szegö maps, which put quotients of nonunitary principal series

into ker(5r). In the cases which we treat, knowledge of these quotients tells

us about the irreducibility and unitarizability of the (g, Tí )-module of K-finite

elements of ker(3r). In the first three sections we explain these general ideas

in more detail. The rest of the paper is taken up with the special case where

G = SU(« + 1,1), K = S(U(« tl)xU(l)) and (x,V) is a representation

of Tí on a space of spherical harmonics on Cn+ which are bihomogeneous of

degree (p,q). The main results in this paper are Theorems 6.3.1, 6.5.2, and

6.6.1.
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1.  NOTATIONAL PRELIMINARIES

1.1. Suppose G is a connected, noncompact, semisimple Lie group with finite

center and real-rank one. Fix a maximal compact subgroup Tí" in G with a fixed

maximal torus T and assume that G is such that T is a Cartan subgroup of

G. We will use lower case German letters to denote the corresponding Lie

algebras, attaching the symbol C to designate complexifications. There is a

Cartan involution 6 acting on 9 such that the decomposition into +1 and -1

eigenspaces is n = Î © s. Let B denote the Killing form on qc and equip gc

with the hermitian inner product

(X\Y) = -B(X,6(Y))

for all X ,Y g qc. In this way (Adl^ ,sc) is a unitary representation of K.

Let ( , )  denote the inner product on tl  coming from the inner product on

tc-
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1.2. Let O denote the set of roots for (ac,tc), <I>t the set of roots for (Éc,tc),

and 06 the set of noncompact roots (that is, the weights of Ad(T) acting on

sc ). Hence O = <I>t U <I>6. We will fix an ordering on <J>t once and for all

and denote by O* the subset of positive compact roots. As usual, set pt =

1 £a€<j,+a ■ The Wey! SrouP for (fc 'lc) win be denoted by Wt. Identify f

with the lattice

{X G H* : ek(X) = 1, MX G t with exp(X) = 1}.

Then K will denote the set of dominant integral weights in T, with respect to

1.3. As in [KW, §2], we assign to each a G <¡> a normalized root vector Ea so

that B(Ea,E_J = 2/(a,a) and d(Ea) = -E_a. Then [Ea,E_J = Ha in tc
and a(Ha) = 2. In particular,

{(\\ß\2)xl2Eß:ßG%}

is an orthonormal basis of sc . Our hypothesis that G has real-rank one implies

that all the noncompact root vectors E„ (ß e <I>6) have the same length (see

[KW, Lemma 12.1]).

1.4. We will be dealing with a situation where it is possible to order O in

several different ways while being compatible with the fixed <I>* . Suppose we

have indexed all these possibilities by some set /, so that for each l G J_,

<p = o+(/)u(-<d+(/)),      o+ = <Dtn<i>+(/),

and <!>*(/) = <DS CiQ>+(l) is a system of positive noncompact roots. In this case,

set

^(/) = 5  E  ß  and  P(l) = Pt + Ps(0-
ße<t>>(t)

1.5. Given a dominant integral weight p e K, we fix (x , V ), an irreducible

unitary representation of 7Í with highest weight p . The Harish-Chandra pa-

rameter attached to the pair (/z,<t>+(/)) is

(1.5.1) p + pt-ps(l).

In Theorem 1.1 in [KW] we see that if there is an / e J_ such that (1.5.1) is

C>+(/)-dominant and regular, then it parametrizes a discrete series representa-

tion of G with lowest ii-type p. We will be concentrating on examples of p

such that this is not the case. Despite this, it is still possible to use some of the

results in [HP and KW].

1.6. Another consequence of our assumption that G has real-rank one is that

for each / e J_ each simple root in <I>+(/) is a fundamental sequence of positive
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noncompact roots. This is shown in p. 197 of [KW]. The material in §§4 and 5

of [KW] then describes how to produce special Iwasawa decompositions of G.

Fix / e J_ and a¡ a simple root in <!>*(/). Set a¡ = R(Ea + E_a ). so that a¡

is a maximal abelian subspace of s. The space a¡ acts on g by ad and we let

l.¡ denote the set of restricted roots. We use Ea + E_a   to order Z,, letting

X* denote the set of positive restricted roots. Furthermore, let n; denote the

sum of the Z^-root spaces in q and

pa/(H) = í2tr(ad(H)\ni)   V77 e a,.

Next, set A¡ = exp(a¡), N¡ = exp(n;), and write the Iwasawa decomposition

(1.6.1) G = A,N,K.

At the Lie algebra level, the complexified version of this is

0c = (a/)c®(n/)c®ec

and we will denote by Pa, Pn, and Pt the projections onto (a¡)c, (n/)c , and

êc , respectively. These are described in Proposition (5.2) of [KW].

1.6.2. Lemma. Maintain the notation and hypotheses as above. If ß = ±a¡

then

P,a(Eß) = P,a(E_ß) = \(Eß + E_ß)

and

pt(Eß) = \Hß-

If ß  G 4>6   and ß  /  ±a¡,  let the  a¡-string containing  ß   be  ß + na¡,

-Po <n<qß. Then

P!a(Eß) = p'a(E_ß) = 0

and

PÍ(EA=     -1     ([E     ,E] + [E   ,E]).e    ß      Pß + Qß      ~a' *

We emphasize that all this is completely determined by the choice of 3>+(/)

and a simple root at G <I>+(/).

1.7. The decomposition G = A¡NtK leads to smooth maps H;: G —► a¡,

N,: G —► N¡, and K¡: G -* K, so that every g G G has a unique description

(1.7.1) g = exptH/UW^K/U).

Let M¡ = {x G K: xgx~x = g, Vg G A¡}, so that M¡ is a closed subgroup of

Tí . M¡ normalizes A^ , so that for all m e M, and g gG,

mg = exp(Hl(g))(Nl(g))m-mKl(g).

Hence

(1.7.2) H,(mg) = Hl(g)   and   K,(mg) = mK,{g).
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The Haar measure on K is normalized so that Tí has mass 1. The following

change of variables formula shows how K, interacts with this measure. If / is

a continuous function on K and g G G, then

(1.7.3) f f(k)dk = f f(K,(kg))e2l*>{H'{kt)) dk.
JK JK

1.8. Each element X g q acts on smooth functions on G by

d
xf(g) - dt f(exp(-tX)g).

i=0

This action is extended by linearity to permit elements of gc to act on functions,

yielding right translation invariant complex vector fields.

2. Schmid operators

2.1. Fix a O^-dominant integral weight p G K. This gives rise to a homoge-

neous bundle

K\G

with fibers isomorphic to V .  The space T00^) of smooth sections can be

identified, in a G-equivariant manner, with

C°°(C7,-g = {/: G- VM: fis C°° and f(kg) = xp(k)f(g) Vzc e K, g G G}

Here G acts by right translation. For any G-invariant subspace ¿WcC°°(G ,x ),

we let t?K denote the subspace of Tí-finite vectors in I?.

2.2. Next take an orthonormal basis Ex, ... ,E2s of sc and define the following

G-invariant first-order differential operator. For f g C°°(G ,x ), set

2j

(2.2.1) V/(g) = £(V(s»®r;'
7=1

so that Vf takes its values in K, ® sr . The definition of V is independent of
f.1 ^

the choice of orthonormal basis. For each /eC0o(G,T/) and kGK,

(2.2.2) (Vf)(kg) = (xfl(k) ® Ad(zc))V/(^)

and so

V:C°°(G,xfi)-+C°°(G,xft®Ad\K).

The operator V intertwines the action of G by right translation on these two

spaces.
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2.3. It is known that (x ®Ad\K,V ®sc) is a direct sum of irreducible invariant

subspaces

(2.3.1) *; ®«c =£>(,!, 0)f;+/p

where m(p,ß) = 0 or 1 for jSeO. Hence, any Ti-equivariant projection p

onto an invariant subspace (i.e. a sum of some of these V ß ) will give rise to

an invariant differential operator, namely poV (see [HO and SW]).

2.4. In [SC], W. Schmid describes the following special case of this construction.

For each / e J_, set

(2.4.1) V(p,l)=   ¿2   miPo-ßWp-ß,
ßei>1(l)

so that V(p,l) is a Tí-invariant subspace of V ®sc . Now let P,: V ®sc —►

V(p, 1) be the 7i-equivariant orthogonal projection.

2.4.2. Definition. The Schmid operator with data p e K and / e J is defined

to be
D P¡oV:C00(G,xfi)^C00(G,x(p,l)),

where x(p,l) denotes x  ®Kd\K limited to acting on V(p,l).

2.4.3. Lemma [SC]. 7/ (p - 2pt(l), a) > 0 for all a G O* , then T>¡ is elliptic.

Let Q denote the Casimir operator for G.

2.4.4. Lemma [KW]. If (p - pß), a) > 0 for all a G <D+ am/1/ / € ker(S/),

then

nf=(\p + pt-ps(i)\2-\pt + Pi(i)\2)f.

Hence, each pair (p, I) satisfying the hypotheses of these lemmas gives rise

to an elliptic operator whose kernel is a G-invariant subspace of C°°(G,t )

and is contained in an eigenspace of Q. For / e ker(2)/), set

(2.4.5) (Qfi(g)f)(x) = f(xg)   Vx,gGG.

2.5. Hotta and Parthasarathy have shown how to dominate the multiplicities of

Tí-types in ker(S)/)A-, subject to the following technical conditions on p and

<ï>^"(/). We will say that (p,l) satisfy condition (#) provided:

(i) for each E ç <!>+(/) and a e O^ ,

(n + pt-Y,ß,a\>0,
\ ßeE        Iß€E

and

(ii) p-2pt(l) is 0*-dominant.

(See pp. 154-156 of [HP].)
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2.6. For each l G J_ and X e t, let Q(X,l) be the number of distinct ways

that X can be written as a sum of nonnegative integer multiples of elements

of 0*(/). For p and / as above and X e K, let mult(p,l: X) denote the

multiplicity of (rx,Vx) in (Q L, ker(33/)A:). Theorem 1 on p. 156 of [HP]

gives the following estimate on mult(/z ,1: X).

2.6.1.   Lemma. If (p,l) satisfy condition (#), then for each XgK,

mult(p,l: X) < J2 fet(s)Q(s(X + pt) - (p + pt),1).
sew,

In particular, mult(p,l: p) < 1.

Notice that if mult(// ,1: X) ̂  0 then there must be at least one s e W and

an arrangement of nonnegative integers nß   (ß e <t>^(/)) such that

(2.6.2) A + />f = sU + /zt + ^z2/?./3

ízzií/ A + /z( is «^-dominant.

2.7. In what follows we will see examples of p such that more than one possible

l G J_ leads to the pair (p, I) having property (#). This means that p will give

rise to several Schmid operators. Now consider J_(p), the subset consisting of

all those / e J_ such that (p, I) has property (#) and

(2.7.1) <Ds+(/)ç{aeO:(/i,a)>0}.

This latter condition is suggested by the sharp and star systems used in [TOMAS].

In this case, set

(2.7.2) ^=   U  *U1)-
¡€¿(P)

Furthermore, set P   to be the orthogonal projection

(2.7.3) P^.V^Bç^ ¿2m(P>-ßK-ß-

When J(p) consists of just one element then we are back at the case of (2.4.1).

In general, define the differential operator (eth)

(2.7.4) 5^VV>

acting on C°°(G, x ). Our preceding discussion shows that

ker^ç   p|  keriS,)

l€¿(fi)

and the multiplicity of a A--type (t^ , Vx) in the space ker(5 )K is less than or

equal to

(2.7.5) min(mult(p,l: X)).
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2.8. Hence, we have started with a dominant integral weight p and produced

a (g, AT)-module ker(S )K which might possibly contain the 7i-type (t , V )

with multiplicity 1. To show the nontriviality of this space, we use Knapp and

Wallach's work on the Cauchy-Szegö map. First we need to set up to nonunity

principal series.

3. Principal series and Cauchy-Szegö maps

3.1. Fix one l G J_ and a simple root a¡ e <!>*(/). This permits us to build an

Iwasawa decomposition G = /LA^Tí, as described in §1.6. Suppose (a ,Ha) is

an irreducible unitary representation of M¡ and v e (a¡)*c is a linear functional.

The (nonunitary) principal series representation coming from these parameters

is the action of G by right translation on

(3.1.1)
7, „ = {/": G -> 77: / is smooth and f(mang) = e{p°>+l/m(a))o(m)f(g)

for all man e M¡A¡N¡, g e G}.

The normalization pa + v follows [BW] and gives rise to a unitary representa-

tion of G when v e ia*.

3.2. Gilbert, Kunze, Stanton and Tomas have introduced the following general-

ization of the Szegö map, used to produce quotient representations of principal

series representations. Suppose that (a,Hg) occurs as a subrepresentation of

(x \M , V ), where p G K. In this case there will be an M^equivariant isom-

etry R: Ha —» V . The Cauchy-Szegö map with data (a,v,p,l,R,a¡) is the

G-equivariant linear operator

(3.2.1) S:Iou^C°°(G,xli)

defined by

(3.2.2) Sf(g)= [ xM(k)-]Rf(kg)dk

for all / e 7 (/ and g e G. From (1.7.3) we can rearrange this integral to

become

Sf(g)= f x^ikg^))-1 Rf(K/(kg-x)g)e2'"'{H'{kg~]))dk.
J K

Next, observe that

k = kg-]g = exp(H/(kg^))Nl(kg-])Kl(kg'X)g.

Compare this with p. 179 in [KW].

3.2.3.    Lemma. For (<t,v ,p,l,R,a,) as above and fGlai/,

Sf(g) = [ e{"^}(H'{k^)]x/t(Kl(kg-x))-xRf(k)dk

for all g G G.
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We will call the Cauchy-Szegö kernel the smooth function

S:KxG^Hom(Ha,VM)

given by

(3.2.4) S(k,g) = e{p°-»m(ks~')\¿Kl(kg-x))-XoR.

3.3. We would like to arrange matters in such a way that S: Ia v —> ker^) or

ker(S ). Arguing as in §7 of [KW] we see that the Cauchy-Szegö map with data

(o,v,p,l,R,a¡) will map Ia v into ker(5J provided

(3.3.1) ^oV(S(l,^)H=0

for one nonzero vector tp e Ha . The details of this argument appear in §9 of

[BLANK]. The calculation of V(S(1 ,g)<p)g=x is described on p. 180 of [KW].

3.3.2 Lemma. For (o,v ,p,l,R,a¡) as above and q>GHa,

Is

V(S(l,g)y)g=x=Y2{(Pai-v)(P,aE])(R<p)®E-]-xyiE])(R<p)®E-j}.
>=i

When we use the basis of root vectors in sc and apply Lemma 1.6.2, this

can be rewritten. Note that if ß e í>s then Eß = -QE_ß = E_ß .

3.3.3 Lemma. For (o ,v ,p,l,R,a¡) as above and tpGHa,

A V(S(1,g)<p)g=x = \(pai - p)(Èni + E_-m) 9 (Eni + £_„,)

+ E 77-Ta-TAE-«rEß^Rrt®E-ßPß+a

+ E  D-+-a-'AE^rEß^R^®E-ß
ßt±a, pß + qß

- \^(Hai)(R<P) ® E-ai + \\(Ha)(R<p) « «/

3.4. Knapp and Wallach use the special case where (a ,Ha) is the action of

x \M on the AT-invariant subspace of V generated by highest weight vector

ip . Here R is the identification of 77^ as a subspace of Vt. They show that

the Cauchy-Szegö map with data (o,v,p,l,R,a¡) maps Ia into ker(D;)

provided

(3.4.1) ><En + E_)--20 + '<-':ll)-a<).

To see this, combine Theorem 6.1 and Lemma 8.5 in [KW]. Corollary 4.6 in

[BW] states that if v(E + E_a ) > 0, then Ia has a unique nonzero irre-

ducible quotient.   This means that if (p + pt - ps(l),a¡) < 0, then  ker^)
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contains this irreducible quotient of a principal series. Compare this with the

procedure for producing X(p), as described on p. 30 of [BBS]. When we take

Rtp = y/   in Lemma 3.3.3, we can make the following reductions:

(i) if a, + ß G <&+ , then xß([Eai, Eß])Wft = 0 ;

(ii) if ß - a, G <D¿", then xß([E_ai,Eß])¥ti = 0 ;

(iii) if a¡ + ß G -&i , then xß([Ea ,EA)y/   is a weight vector of weight

p + a¡ + ß in V , which will be 0 if (p, a, + ß) = 0 ;

(iv) if ß - a¡ G -O* , then x ([E_a ,EA)ip   is a weight vector of weight

p-a¡ + ß in V , which will be 0 if (p, ß - a¡) = 0.

This last remark follows from equation (10) in [HU, p. 122].

Then the first sum in Lemma 3.3.3 is over

(3.4.2) (-< - a,) n{ßG<t>s:(p,al + ß)tO}

and the second sum is over

(3.4.3) (a, - <D¡) n {ß G Os : (p, ß - a,) ¿ 0}.

In the event that p is "very singular", these sets will be small and this suggests

that the image of the Cauchy-Szegö map may be is a subspace of ker(D/),

perhaps even ker(S/).

3.5. In the general case we will need to know that the image of a Cauchy-Szegö

map is not trivial. An argument analogous to that in §6 of [KW] does this. Take

a unit vector <p G Ha and consider the smooth 77CT-valued function on K given

by

f(k)=R*(x/i(k)R<p),

so that f(mk) = o(m)f(k) for all m e M¡, zc e Tí. Extend / to all of G by

requiring that /' Gla v. Then, using the innerproduct in V ,

(Sf(l)\R<p) =   í (xii(k)-XRR*(xil(k)Rtp)\R<p)dk
J K

=   i \\R*(xM(k)R<p)\\2dk
J K

and this is strictly positive since the integrand is nonzero at k = 1.

Suppose we fix an o.n. basis >px, ... ,ipd of V such that Rq> = y/x and

7*77^ has y/x, ... ,y/b as its o.n. basis. Then

f(k) = R*lj2(rM(k)¥x\Wj)¥j)

b

7=1

This shows that / is of Tí-type (t , V ) in Ia v .
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3.5.1. Lemma. For all (a,v,p,l,R,a¡) as above, the image S(I0 u) in

C°°(G,x ) contains the K-type (x , V) with multiplicity > 1.

3.6. The following observation was shown to me by John Gilbert [GI]. Fix / e J_

and a simple root a¡ G <!>*(/). Now suppose V has a nontrivial x (M^-hxed

vector, say <p, Take Ha = Ctp, a = I, and Rtp = tp . The line a¡ is Ad(M¡)-

fixed in sc . The orthogonal complement to a¡ in sc has as its orthonormal

basis

{^o, "*-.,)} u{^V^tof'*e*.}

and a¡   is Ad^^-invariant.

Lemma 1.6.2 shows that

(3.6.1) p[(X) = -[Ea!+E_ai,X]

for all X Gaf , provided pß + qß = 1 for all ß G <t>s\{±a¡} . Taking m G M¡

and letting it act on V„ <g> sr , we see that

(3.6.2)

-?,(* (m) ® Ad(m))(V(S(l,g)r)     )
\a,\

= \(Pa, - ")(Ea, + E-a/)<P ® (K, + E-a)

+T,
(\ (E   -E )1\
Í   Ea+E_ai,Ad(m)    a'^a'     \<p®Ad(m)

(E   -E     )v    a¡ —a¡ '

SÍ2

+  E  ^([Ea+E_ai,Ad(m)Eß])(p®Ad(m)Eß.
fi¿±a.

and this last expression is independent of the orthonormal basis of a¡ .

3.6.3. Lemma. If a¡ G <!>*(/) is simple and if pß + qß = 1 for all ß e

<I>6\{±a/}, then V(S(l ,g)tp) , is an M-fixed vector in V ® bc . Here the

Cauchy-Szegö kernel has data (1 ,u,p,l,R,a¡) with Rtp = tp and tp is an

M !-fixed vector in V .

4. The case of G = SU(n + 1,1)

4.1. Fix n > 1 and let T be the (n + 2) x (n + 2) matrix

=(V ->)
so that SU(« + 1,1) = {#eSL(n + 2,C): ^r^* = T}. On SL(« + 2,C) let
9(g) = VgF. When this is restricted to G = SU(« +1,1) it becomes

0(g) -(**)"■.
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The corresponding maximal compact subgroup K of G is

and we will let T be the subgroup of diagonal elements in Tí . The Lie algebra

of G is

x.. is skew-hermitian, (n + 1) x (n + 1)'

A.    .
J ■ xx2— ̂ 2X

x22 = — tr(Xj j j

0= \
xxx   xx2

X2\     -"-22 .

x7l G Cn+ , ;c„ e i'R > .

Hence

s =
0     x?. .

x2x     O')

n+l 1

4.2. The complexification ac = sl(zi + 2,C), and tc is the Cartan subalgebra

of diagonal elements in g.c . It is known that

$ = {<*,*: 1 <J,k<n + 2, j¿k},

where aJk(diag(xx, ... ,xn+2)) = x. - xk . As in [KR], identify t^ with

Cl+2=¡sGC"+2:nfsj=o),
7=1

^n+l
so that s(diag(t!, ... , tn+2)) - ]£/=] tÁs¡ - sn+2). The unit lattice in t is

{diag(tx, ... ,tn+2)Gi:t]G2nil, V.},

and so

T=LG^2r+2:sj-sj+xGZ,Vj,npj = 0^.

4.3. The compact roots are

% = {ajk: l<f,k<n + l,f¿k},

and the noncompact roots are

% = {aj,n+2>an+2,r 1<7<"+1}.

Fix once and for all

<t>¡ = {ajk: l<j<k<n + l}.

This means that p G f is O^-dominant if and only if p¡ > pJ+x for 1 < j < n.

It places no restriction on pn+2, except that ]£,=i p}■ = 0.

The possibilities for compatible systems of positive noncompact roots are

indexed by ¿ = {0,1, ... ,n,n + 1}. For 0 < / < n + I,

*.+ C) = i(*j,n+2: 1 <;</} U {an+2j :l+l<j<n+l}.
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An element p G t will be 0+(/)-dominant if and only if it is O^-dominant

and p, > pn+2 >pl+x.

4.4. For our choice of O^ and each 0*(/),

Pt=7 E(" + 2 - 2->>7
7 = 1

and

7=1 7=/+l

Here e • is the row with 1 at the j position and 0 everywhere else.

4.5. The only simple root in O*(0) is an+2 x. The only simple root in Q>*(n+1)

is <*„+! „+2 • F°r 1 </•<!» there are two simple roots in <D*(/) : a, n+2 and

a«+2 /+i • ^or 1-7' k < n + 2, j t¿ k, the root space for aJk is spanned by

eJk , the (« + 2) x (n + 2) matrix with 1 as its (j,k) entry and 0 at all other

entries.

4.6. The Killing form for sl(n + 2,C) is B(X, Y) = (In + 4)tr(XY) and so

the hermitian inner product is

(*|7) = -(2« + 4)tr(.mT).

When restricted to X ,Y gs this is

(X\Y) = (2n + 4)tr(XY*).

For X G i*c let Hk e tc be such that

X(H) = B(H,HX),    V77etc.

Then (X,X') = B(Hk,Hk.) for all X,X' Gt*c. This shows that if A,A' € C"0+2 =

n+2

(2n + 4)

l*~, then

m>-75^i;v;.
and

2
(a,a) = Tz-TT-    for all a G 3>.v   '   '     (2«+ 4)

The normalization of root vectors in §1.3 shows that if a = ajk then

(4.6.1) En = ejk   and   Hn = ejj-ekk.

4.7. Next we examine the action of Tí on sc . For les of the form

(°     f),    wUh^C»',
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and

we have

-Co ¿H

Passing to the complexification, we see that sc has two Ad(7i )-invariant sub-

spaces,

so {(¡l)^},       S-{(¡¡   *) = .«"},
both of which are irreducible. The weights for s0 are {an+2 : 1 < j < n + 1}

and the weights for s0 are {a n+2: 1 < j < n + 1} .

4.8. Suppose we fix <!>*(/) for some 1 < / < n + 1, take o, = R(e, n+2 + <?„+2 ¡)

as the start of an Iwasawa decomposition G = A,NtK and let M, = {zc e

Tí": kgk~ = g y g G A,}. Lemma 1.6.2 tells us how to calculate the Iwasawa

projections of the noncompact root vectors.

Let Pa,Pn, and 7^ be the projections associated to g = a © n, © t.

4.8.1. Lemma. If ß = a¡n+2 or an+2J, then Pla(Eß) = \(eln+1 + en+2J) and

P't(Eß) = \Hß.

If ß = c*j>n+2 and j¿l, then pß + qß = l, Pla(Eß) = 0,and P[(Eß) = ejt.

Ifß = aH+2J and j¿l, then Pß + qß = l, p[(Eß) = 0,and p[(Eß) = -et] .

Notice that M, is the subgroup of Tí consisting of matrices whose Ith row

and /th column have only one nonzero entry, that being on the diagonal, and

this is the same as the (n + 2, n + 2) entry. This fits in with §1.6 since a¡ n+2

is a fundamental sequence of in <!>*(/).

5. Spherical harmonics

5.1. Maintain the notation of §4. The complexification of 7Í is

*c = {(o   de,(°)-l):*eGL("+1'C,}

and this acts on sc by

g 0      WO   n'\ = ( 0 gtl'det{g)\
i5AA)       M\0   det(gyxJU    0) = \det(g)-x^g-x

From now on we will identify s@  with (Cn+ )', the space of columns with

zî + 1 entries, and s0 with C"+ . In addition, 7ic will act on these subspaces

of sc as in (5.1.1). Fix p and q nonnegative integers and consider the tensor

product
i,« = ®V+,)l®®V+'),
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on which 7ic also acts, via a tensor product of the previous action. There is

a TiV-equivariant linear map of X„ „ to *B  „ , the space of polynomials in c;

and Ç* (rj; e C"+1) which are homogeneous of degree p in t\ and degree q in

C . Let us denote this map by #: 1p   -* <ß    , so that

(5.1.2) (C1®..-®Cp®r1®.-.®r/(ç,r) = n(^)xn(r/)
7=1 7=1

for all Cj g (C"+x)', ^ e C"+1, and { e C"+1. 1pq has an irreducible Kc-

invariant subspace consisting of those elements which are of trace 0 and which

are symmetric in the first p terms and symmetric in the last q terms. Call this

space 23 . The image of this under # is the space of spherical harmonics of

bidegree (p ,q), which we will denote by V Let x denote the action of

7i"c on V    . The highest weight in F     is

(5.1.3) flp,g=Pel-ge„+x+(q-p)en+2

and we take ipp q(Ç,£*) = ÇplÇn+l as the highest weight vector. Note that

<//    = e\®---®e\®en+x®---®en+x),
v . .

P times q times

where ex, ... ,en=x is the standard basis of C"+ .

5.2. We will need to know the derivative of t  „, that is, the action of xn   (tr)
PA P ,<JK C'

on V . For (a¿' a^ ) € tc , with a,, an (n + 1) x (n + 1) matrix and a22 =

-tr(an),andfor /e Vpq

<5'2-" V,("¿'   al)""*'*22.

n+1 n+1

= a22(q - p)/ + £(£fl,, )jdjf - ¿(a„€V/.
7=1 7=1

In Tp    this is given by

(5-2-2)   T/-.?(a¿'    fl° )(ci ® •■■®S®ri »■■■»'•,)

= a22(q-p)(cx »■■•®ri)5^c1 ® ■■-»(a,,^.)® •••» cp

7=1

® r, ® • ■ ■ ® r9 - ]P c, ® • • • ® cp ® r, ® ■ • • ® (r^a,, ) ® ■ ■ • ® r?.

7=1

5.3. If we use (t     , F   ) to set up Cauchy-Szegö maps, as described earlier, we

will need to be able to calculate VS and this requires calculations with r    o P1

for a given Iwasawa decomposition. Fix I G J_ and apply Lemma 4.8.1.
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5.3.1.   Lemma. Suppose 1 < / < n + 1 and f e V    . Then

rpJpt(E«,„+M= i(p - Q)f+z-W-iiid,f>

%MiEa,J)f=\ti-P)f-\W+2<fi,f>
and if j ^ /, then

and

5.4. Once l G J_ has been fixed and an Iwasawa decomposition G = A¡N¡K

has been determined, we need to understand x„ q\M ■ In V there is a special

vector fixed by x    (M¡). This is described in Theorem 3.1 of [JW] and it is

(5.4.1) tpp^¡(7,C) = ̂ riF^-p,-q-,n-}^^.

Here F is the usual hypergeometric function

F(A,B;C;X) = ±{-§f^Xk
k\(C)k

We will use this to build a Cauchy-Szegö map, with a = I,  Ha = C and

Ri = <PP a i ■ Recall the discussion in §3.6.

Following equation (3.2.4) we set

(5.4.2) Si,)9>/>I/(fc^) = ^-^H'(^,))rp)9(K/(fcg-,))^>i>/

for all zc e Tí , g e G. Then the Cauchy-Szegö map S: Ix v —> C°°(G,t ) is

determined by S/(g) = ¡KSpql^(k,g)f(k)dk for all /e C°°(7C). In order

to find possible solutions to (3.3.1) we must first calculate

(5-4.3) VSp>9/„(1,^)1^,,

using Lemma 3.3.3

5.5. The expression (5.4.3) is an element of V ® sc . We have seen that

sc = se+so *s a decomposition into irreducible TC-invariant subspaces and that

(Ad|/f,se) = (t1i0,K1i0) and (Ad|^,s0) = (t0>1K0>1). Furthermore, (5.4.3) is

an M ¡-fixed vector in V ®(VX 0®V0 ,). The decomposition of Vp^®Vx 0 into

irreducible 7i-invariant subspaces involves three spaces, with highest weights:

(p + l)sx -qen+x + (q- 1 -p)en+2;

pex+e2-qsn+x+(q-l-p)en+2;

pex - (q - l)en+x + (q - I -p)en+2.
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That is, V ® Vx 0 = V x © V . © V', where V' has the second highest

weight in the list. Similarly

and V" has highest weight

pei-en-gen+l + (q + l-p)en+2.

The spaces V' and K" contain no nonzero M¡ -fixed vectors. There is a 7i-

equivariant map

given by f(7\,C) ® £, |-> <Z¡f(<7,,C)f(£,,C), where its kernel is K' and its

image is F,+1 © |¿;|2^ ,. Similarly, there is a 7i-equivariant map V ®

F0 , —» ft      ,, given by multiplication, where its kernel is K" and its image

is Vp q+[ © |f| ^_, . Hence, in calculating (5.4.3) it suffices to calculate its

image in ft      , © *p   ,    . This means that we must calculate

(5.5.1) D^-")(^>MA
7=1

5.6. We will use Lemma 5.3.1 to calculate this expression. Notice that we can

use the Euler identity in £ and 7\* to simplify, and also the fact that

ici2-ic,i2 = Ei^i2-

Then we can rewrite the expression above and collect terms to obtain the image

of VSP,?,/,,(1^)I^=. in ^+u©^,,+1 is (2az + 4) times

(5.6.1) {(pai - u)(en+2J + eln+2) + (3q -p)}<Pp,qfi,

+ \t\2dl<PP,q,l-P,<PP,qj-W2dl<Pp,qJ

+ i(Pa, - V)(en+2,l + el,n+2) + (3P - í)}^,,,/í/

+ \s,\%pP:<lj-tîd,Vp,çj,7-2w%9p,qJ-

At this stage we need some identities based on the properties of the hypergeo-

metric function. These state that

(5-6-2) dl*P,9J=PV(p-i)jJ>

(5-6-3) dl<ppqJ = q<pp(q_X)l;

(5-6-4)      t,r„j = -!L±Z-f{p+lUJ + —±^\^9p(q_iyl-
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and

(5-6.5) Zi<PP,q,, = -

Furthermore,

n + q
■ tp +

+ p + qYPÁi+i),i     n+p + q
■\t\2<P{p-\),Q,l-

and

\Zi\2di<PP,q,i-ZÎdi<Pp,q,i = (Q-P)lii<PP,q'

\^\2di(Pp,q,i-t^i(Pp,q,i = (p- tâi<PpAr

5.6.6.    Theorem.  When we write V    ® sc as

vp+Uq®\t\2vp,q_x®v'@\c:\2vp_x^vpq+x®v11

then the components of VSp    ¡ v( 1, g)\    x are

(2n + 4)(n+p),. ,, ,    . ,
n+p + q     UP«,-l/Ken+2,i + el,n+2) + 2P}<Pp+i,q,i

+ (2n + 4) { «*« - ^¡+Y + 2P)Q - 2'} l^-i, + 0

(2w + 4)(w + <?)
+        n+p\q       «Pal-^en+2,l + el,n+2) + 2Q}<Pp,q+l,l + °-

5.7. We will also need to carry out similar calculations for the Cauchy-Szegö

maps used by Knapp and Wallach. Fix 1 < I < n + I and let (a¡,H¡) be

the representation x \M acting on H¡, the yV^-invariant subspace generated

by <p in ft . Combine Lemma 5.3.1, the definition of ip in 5.1, and

Lemma 3.3.2.

Then we see that, in K„
P,Q '

(5.7.i:

and

(5.7.2)

W^V^)) P̂,q

2      rp ,q t  2 Yp A

(EZ3ÏW*
p,i

-T^V»

i£=3lv,p,q        2rp ,qVn

(1-P) w*    - £
P,1

\,q(P*K+2,tH,<t = <

rp ,q       2 Vp <q

P.1

if 1=1,

if 1 < / < n + 1,

if / = n + 1,

if / = 1,

if 1 < / < n + 1,

W,*,+ !*£.,  if/ = » + i-
For the other terms we will only discuss the case when  1 < I < n + I .  For

j¿l, l<j<n + l,

0 if 1 < j < n + 1,

-QieX+l    ifj = n+l,
(5.7.3) TP,?(/Jt(^,«+2))^,? = <l
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and

(5.7.4) WPi(W)<, = {
if 1 < j < n + 1,

p^r'Ci tfj-i-
Notice that

^CC £4
A=l T

(position Zi '

)e\®en+l -n=l

and

íí/ÉfC! = I *í
\\#

-«+1

Zi=l T
(position h

~n+\

JJ
In ft  _®sc there are the two ^-invariant subspaces ftp   ®sm and ft„ <7®sn

P+1,9

■'p,4,o'*'0-

The first of these can be identified, Tí-equivariantly, with a subspace of 1n

by assigning

v ® e. n+2 •-•• er: ® u   for 1 < j < n + 1.

Similarly, the assignment

v ® en+2 j^v® e.

identifies ft     ®s0 with a subspace of X      , , in a TC-equivariant fashion.

5.7.5.   Lemma. Suppose 1 < / < n + 1  and R is the identification of H¡

as an M ¡-invariant subspace of ft     .   Then S, the Cauchy-Szegö map with

data (o¡,v ,pp   ,1 ,R,a¡), has the following property. The %p+x q component of

V(S(Ug)VpJg=l is

\(Pai - »)(ei,n+2+en+2,l)e'l ® V,,, ~ ^y^<?,' 9 Wp,,

+4® í>í®---®  4   ®---®<?ii
\A=' ,    A.     .,\ (position Zi)

The component of V(S(l ,g)y/pq) in Tpq+X is

\(Pa, - »)(ei,n+2+en+2jK,q®ei ~ '^^p« ® el

-«+!•

+ e, ^í® lÉ^+i
Zi=l r

(position Zi)

"Vn   ®w
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5.8. Next we will write down the Knapp-Wallach parameters given by (3.4.1).

For 1 < / < n , §4.4 shows that

P + Pt- P,(l) = (p + \ - 5) e, + E (j + \ - j) eJ

+ E {hhj)eJ+{-q-î+l2
7=/+l   V ' X

+ (°-P-\-\ + l)*n+2

£«+l

and

t* + Px - P.(n + 1) = (p + \ - i) «, + ¿ (1 + \ - j) eJ

+ \q ' \ ~ 2J £«+' + [9 ~ P + \ + 2 ) £"+2

Hence (3.4.1) is

' q - 2p - n + 1 if / = 1,

(5.8.1) v(e,<H+2 + eH+2J) = I q-p-n-l + 2l   if 1< / < n ,

. 2q-p + n + 1 if / = Z2+ 1.

5.8.2. Lemma. 7/1 < I < n + I and v is determined by (5.8.1) then the

Cauchy-Szegö map with data (o¡,v ,pp     l ,R,a¡ n+2) maps Ia¡ v into ker(D;).

For 1 < I < n, an+2 ¡+x is also a simple root in <I>+(/) and so we could

apply [KW, Theorem 6.1] in this case as well. That is, the parameter is now

given by v e a*+1 with

fH+l-2/-#+p   if 1 < / < «,
(5.8.3) Hen+2Ml+el+Xtn+2) = {p_2q_n_i .f/ = /j

5.8.4. Lemma. If I < I < n and v is determined by (5.8.3) then the Cauchy-

Szegö map with data (oux,v ,pp q,l ,R, an+2 /+1 ) maps Ia¡+¡ v into ker(2)/).

6. The kernel of eth (3)

6.1. We are now in a position to exhibit nontrivial examples of operators 9 ,

as described by (2.7.4). Continue to let p and q denote nonnegative integers

and maintain the notation used in §§4 and 5. First we ask when is the Harish-

Chandra parameter (1.5.1) í>+(/) dominant? From §§5.8 and 4.3, we see that

we must compare the /,(/ + 1), and (n + 2) entries in pp q + pt-pß). When

/ = 0 we are asking for solutions to the inequality

n + 1 ^        n + l
-^—+q-p>p + —T-
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which means q >2p. When / = 1 we are asking for

n     1 zi     1      «     1
P+2-2^q-p+2-2^2-2

which means 2p > q >p. This will only be 0+(l)-regular if 2p > q > p . For

2 < I < n the inequality is

n     1     . ^ «     1     , ^ n     1     .
2 + 2-/^-^+2 + 2-/^2 + 2-/

which requires p = q and in this case the Harish-Chandra parameter is orthog-

onal to the 4>+(/) simple roots a¡ ¡+x, a¡ n+2, and an+2 /+1 . For / = zz the

inequality is
1     zt 1     n ^ In-1--1><I-pA-1--1>-q + -1--1

which means 2q > p > q and this will only describe a 0+(«)-regular parameter

if 2q > p > q . If we are to find representations which are not in the discrete

series, we should concentrate on the the case p = q .

6.2. Now take p = q > 1 . We would like to find J_(p ), as described by

(2.7.1). Since p     = pax n+x , we are seeking those / e J_ such that

Kn+i>Q7,«+2>^°   for7'^

and

K«+l'a«+2,7>^°     f°r7>/.

This pair of inequalities is only possible provided 1 < I < n. Next we must

consider property (#). Observe that

(PP,P + Pt^)>2nT4    for all a e<.

Moreover,   (pp    + pl,ax   ) > (p + l)/(2n + 4)  for all  2 < j < n + 1  and

(PP P + Pt'aj n+i) ^ (P + l)/(2" + 4) for all  1 < j < n . If E is a subset of

<P6+(/), with 1 < / < n, then

/ «+i

J2 ß = E m7£7 -   E   m7£7 + CEen+2 -
ßeE        ]=\ j=/+\

where m}. = 0 or 1 for 1 < j < n + 1. If j < I < k then there will be subsets

E c <D6+(/) such that

\5>V7 = 2>7T4-\ßeE I

Hence, condition (i) in §2.5 will only be valid if / = 1 or n . Note that

p - 2/>,(l) = (p- l)e, + J2£j■ - (P - lK+i - "e»+2

7=1
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and
n

p - 2p6(n) = (p- l)ex -J^e.-fp- i)en+x + nen+2.

7=1

These will be <I>*-dominant provided p > 2.

6.2.1    Lemma. Ifp>2 then J_(pp   ) = {1,«} and

VM„ = {al,«+2'an+2,n+l >aj,n+2>an+2,j: 2 < T < "}

= {aG<t>B:(ppp,a)>0}.

6.3. For p > 2, the range of the projection P,    , defined by (2.7.3), consists
t*p.p

of those Tí-invariant subspaces of ft     ® sc with highest weights,

P<*\ ,«+l - a\,n+2 >     P<*\ ,n+\ - an+2,2 = Pa\ ,n+\ + a2,n+2 '

Pa\,n+\~an,n+2     and     Pal,n+\-an+2,n+V

In addition, the kernel of 7^      has highest weights pax n+x + ax n+2  and

P°i ,n+2 + Q«+2,„+i . so that ker(\,) = Vi ,p ® %,p+i • when we compare

this list with Theorem 5.6.6 we see that we have proved the following.

6.3.1.    Theorem. If p > 2,  1 < / < n + 1, and v e a* satisfies

(Pa,~1')(en+2,l+el,n+2) = 2n + 2P>

then the Cauchy-Szegö map with data ( 1, v , p , I, R, a¡) maps 7, v into the

kernel of 9„    .

6.4. Next we must see which Tí-types can occur in (ker3 )K , using Lemma

2.6.1 and the fact that

(6.4.1) ker(8     ) = ker(S>1)nker(S)II).

Recall that we are assuming zz > 1 and that the Weyl group Wt is the symmetric

group acting on the first (n + 1 ) entries of an (n + 2)-tuple. Suppose X G K

is a ÄT-type occurring in (kerS^ . Then there is a permutation s G Wt and

n + 1 nonnegative integers mx, ■ ■ ■ ,mn+x , such that

(6.4.2) X + Pt = s {p + Pt + mxaXn+2 + J2mj<*n+2,j\ >

and the left-hand side is ^-dominant. Thus (Xx+n/2,X2 + n/2- 1, ... ,Xn+x-

n/2,Xn+2) is equal to a permutation of

n+2
n n »   v^

p + ^ + mx,j-l-m2,...,- mn+x -p--,^mj-mx
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affecting only the first n + 1 entries. The dominance condition also requires

that the permutation does not move the first entry. Hence

(6.4.3) Xx = p + mx > p.

For 2<f<n + l,
Xj -j< -s(j) - m

s(j)

with strict inequality when s(f) = n + 1, when a further p is subtracted from

the right-hand side. In particular,

(6.4.4) X2 < 2 - s(2) - ms(2) < 0

since 5(2) > 2. A similar argument works for Dn .

6.4.5. Lemma. If X is a K-type in (kerD,)^  then Xx > p and A, < 0 for

2 < j <n + 1. If X is a K-type in (ker1)n)K then Xn+X < -p and Xj > 0 for

1 < j < n .

6.4.6. Proposition. If X  is a K-type in  (ker9     )K  and p > 2  then X =

p'ex -q'en+x + (q'-p')en+2, with p > p and q >p Furthermore, its multiplicity

is no more than 1.

The multiplicity part of the statement follows from Lemma 2.6.1 and the

fact that for X as in the statement above, equation (6.4.2) reduces to s = 1

and m2 = 0 = m^ = ■ ■ ■ = mn.

6.5. Johnson and Wallach have found all the parameters for reducible spherical

principal series (see [JW, p. 154]). In particular, if there is m e N such that

v G a¡ satisfies

(6.5.1) (Pa,+v)(en+2J + el,n+2) = -2m

then (7, v)K has the following invariant (g,7i)-submodules:

m oo      m

Elm =      ¿^     Vp' ,q' ' EI2m = 2_^ ¿—I *p',?' '
p',q'=0 p'=0(?'=0

oo     m

H2~m=EEVp>,q'     and     HL+H2m-
q'=0p'=0

Furthermore, the quotient (7, u)Kl(H2m + H2m) is irreducible and the K-

types in this quotient are (x , ,, V, ,) with p ,q > m. It is known that

Pa,(en+21 + ei n+2> = " + 1 and so equation (6.5.1) requires that

2m = ^n-l-v(en+2, + e,n+2).

However, in Theorem 6.3.1,

n + l-i>p(en+2l + eln+2) = 2n + 2p

and so 2m = 2p -2, that is, m = p - 1.
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6.5.2. Theorem. (ker9^ )K is an irreducible (Q,K)-module with minimal K-

type (t     ,V   ). Furthermore, it is unitarizable.

See [JW, Theorems 5.1 and 6.3].

6.6. Our operator 9^ has as its kernel ker(£>2) n ker(£n). We saw in §5.8

that there were several imbeddings of principal series into either ker(53j) or

ker(X>n ). Hence, there are Cauchy-Szegö maps

whose image contains the K-type (x , V ) and hence all of (ker(9 ))K .

Let % be the set

{/e(/CT,J^:5/eker(9^;))}.

Then

(ker(S))KG%G(Iav)K

and

(kerg^J = %l(ker(S))K C (Iai/)K/(ker(S))K.

In this way we see that when there is an imbedding of Ia into ker(5),) or

ker(D ), using a Cauchy-Szegö map, then  (ker(9„   ))„  is a subquotient of
r-p ,/'       **■

(Ia u)K . In the case of 7CTi v , with v = (n - l)/(n + 1 ))//„,, we can say more.

6.6.1. Theorem. For p>2, (ker(9 ))K is the unique irreducible quotient of

(7öi )K and this quotient is given by the Cauchy-Szegö map with data

(o2,((n - l)¡(n+ l))paj,pp p,l ,R,an+22).

To prove this, set 7=1  and p = q in equality (5.8.3).   This gives v =

((« - l)l(n + 1 ))/>„,. Next, use the statement of Lemma 5.7.5 with p = q and

2-(Pa2-»)(e2,n+2+en+2,2)=[-

This forces the components described there to be in ftp+| and ftp p+x , re-

spectively. Comparing this with the list at the beginning of §6.3 shows that the

image of this Cauchy-Szegö map is in the kernel of 9     . The nontriviality of
fp-p

the image is guaranteed by Lemma 3.5.1. The uniqueness follows from [BW,

p. 127]. According to Theorem 6 of [KR] this means that (Q„    , ker9„   ) is*• y-p .p Pp .p

an end of complementary series representation (see also [KS]). Since this real-

izes (ker3     ) as a quotient "on the positive side", the methods described in
Pp.p

[BLANK and GKST:Zyg] show how to equip this with a unitary structure. We

do not pursue this matter in this paper.

6.7. It remains to take into account the other maps described by (5.8.1) and

(5.8.3). First, setting / = 1 in Lemma 5.8.2 we see that (kerg^ ) is a subquo-

tient of Ia u , where
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Similarly, taking / = n , we see that it is also a subquotient of Ia v where

Finally, since an+2     ,   is a simple noncompact root in <l>+(zi), we see that

(ker9    )„ is a subquotient of I      , when

'p + « + r
« +1 '..♦■

Combining these with Theorem 6.3.1 now accounts for all four possibilities, as

described by Theorem 7 in [KR].

6.8. We conclude with some comments on the representations (o¡,H¡) of M¡.

For 1 < / < n + 1, M¡ is isomorphic to the group

e'° I :uG\J(n),e2iedet(u) = 1,0 e

For m ,p' ,q' Gl, with p >0 and <?' > 0, there is a representation (nw,   ,   ,, f) ,

of tAT on f) ,   ,, the space of spherical harmonics of bidegree (p ,q) on C" .

This is given by

Vo    o    ^'6

for all z e C", / e Sj ,  ,. In this case:

(a) (a,, 77,) is equivalent to (itpflj),%tP);

(b) for 1 < / < n + 1, (o,,H¡) is equivalent to (&<,.,,„>%,,,) ; and

(c) (cr„+,, 77n+, ) is equivalent to (n_p p 0, Sjp 0).
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