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WEAKLY ALMOST PERIODIC FLOWS

R. ELLIS AND M. NERURKAR

Abstract. The notion of the enveloping semigroup of a flow is applied to some

situations in ergodic theory. In particular, weakly almost periodic functions on

groups are studied and Moore's ergodic theorem is proved.

Introduction

This paper originated in the process of studying a notion of enveloping semi-

groups in ergodic theory. Enveloping semigroups have played a very crucial

role in topological dynamics. Analogous notions and ideas in ergodic theory

helped us obtain a simpler proof of C. Moore's ergodicity theorem. A close

examination of our proof showed that the underlying flow on the enveloping

semigroup was weakly almost periodic and many arguments in the proof were

actually consequences of weak almost periodicity. This paper deals with the

notion of weak almost periodicity.

§1 discusses some facts about semigroups which we will need later on. In §11

we derive a number of dynamical consequences of weak almost periodicity. Ap-

plications to the Ryll Nardzewski theorem and ergodic theory are given in §111.

Also, we give characterizations of ergodic theoretic notions of mixing and rigid-

ity. In §IV, using the techniques developed so far, we obtain a generalization

of a theorem of W. Veech.

I. Dynamical systems and semigroups

A flow is a pair (X, T), where X is a compact Hausdorff space and F is

a locally compact Hausdorff topological group acting on X, on the right and

the action (x, t) —► x • t is continuous. Let nt(x) = x • t, x G X, t G T

and let E(X) = {n( \ t G T}, where the closure is in the product topology on
Y

X . Clearly E(X) has a natural semigroup structure and a natural right F

action. For p G E(X), let L (q) = pq and R (q) = qp, q G E(X). In

general L   as a map from E(X) to itself is continuous, but R   is not so. If
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t G T then Rt is continuous and in fact (E(X), T) is itself a flow, called the

enveloping semigroup of the flow (X, T) (see [3]). We will be identifying t

with nt G E(X) and hence will be thinking of F as a subset of E(X). Given a

net tfiGT, t¡t—> p , p G E(X), will mean that x • ta converges to xp for each

x G X . (Note that the image of a point x under the map p will be denoted

by xp.)

In this way compact semigroups arise naturally from flows. Hence study of

such semigroups is of importance in analyzing the dynamics of the flow. In

the following proposition we will summarize some general results about certain

kinds of semigroups. We will be mainly interested in applying these results

to the enveloping semigroups (arising from flows) all of whose elements are

continuous maps.

First we recall that given a general semigroup E, a right (left) ideal / is a

subset of E such that if p G I and q g E then pq G I (qp G I). A minimal

right (left) ideal is a right (left) ideal which does not contain a proper right (left)

ideal.

Proposition 1.1 [4]. Let E be a semigroup with compact F, topology such that

the right and left multiplications are continuous. Let I be a minimal right (left)

ideal in E and J be the set of idempotents in I ; then

( 1 ) The set J is not empty.

(2) If v G J, p G I then vp = p   (pv = p for the left ideals).

(3) If v G J then Iv is a subgroup with identity v   (vl for the left ideals).

(4) (Iv | v G J) is a partition of I  ((vl | v G J) for left ideals).

A flow is said to be almost periodic if the family of maps {nt \ t G T} is

equicontinuous. A pair of points (x,y),x,y G X is proximal if for some net

ta G T, x ■ ta and y ■ ta converge to the same point. A flow is distal if it has

no nontrivial proximal pairs. It is well known that the flow (X, T) is almost

periodic iff E(X) is a compact topological group and the elements of E(X) are

continuous maps. Also (X ,T) is distal iff E{X) is a group (see [4]). Based

on the work of Troillac [10] the following theorem due to J. Auslander is a

sharpening of this result, (see [1]).

Theorem 1.2. Let (X ,T) be a minimal flow. If each p G E(X) is continuous,

then (X, T) is almost periodic.

II. Weakly almost periodic flows

Let (X,T) be a flow. Then C(X) will denote the space of all continuous

complex-valued maps on X. Given / g C{X) and p G E(X), set (pf)(x) =

f(xp), Vx G X. A function / G C(X) is said to be weakly almost periodic

(w.a.p.) iff (J\ t G T) is relatively compact in the weak topology on C(X).

The following is a theorem of Grothendieck (see [6]).
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Theorem II.l. Let (X ,T) be a flow and f G C(X). Then f is w.a.p. iff
(tf\t G T) is relatively compact in the topology of pointwise convergence on

C(X).

A flow (X ,T) is w.a.p. iff each fGC(X) is w.a.p..

Proposition II.2. A flow (X ,T) is w.a.p. iff each element of E(X) is continuous.

Proof. Let (X, T) be w.a.p. and p G E(X). To show that x -* xp is contin-

uous, it is enough to verify that for any / e C(X) the map / is continuous.

Let t —► p . Since / is w.a.p., without loss of generality we may assume that

/ —> g, for some g in C(X), where the convergence is pointwise. Thus,

g(x) = lim(tf)(x) = lim/(x • f) = f(xp) = (pf)(x).

Conversely, let each p G E(X) be continuous. Let / e C(X), let cp(p) = ( f),

V/z G E(X). Note that if xa -+ x, then

limcp(p)(xa) = lim(pf)(xo) = lim f(xap) = f(xp).

Thus <p(p) G C(X). Now we claim that the map cp: E(X) —► C(X) is contin-

uous (here C(X) has the topology of pointwise convergence). To see this let

Pn -» P , Pn ,P € E(X) and x G X. Then

lim <p(pa)x = lim f(xpa) = f(xp) = <p(p)x.

Thus the image of cp is compact and it contains the set ( J \ t G T). Now

Grothendieck's theorem implies that / is w.a.p.

Remark II.3. (i) Proposition II.2 shows that products and factors of w.a.p.

flows are again w.a.p.

(ii) Also note that if (X, T) is w.a.p. and S is a subgroup of F then (X, S)

is w.a.p.

In the next two propositions / will denote a minimal ideal in the envelop-

ing semigroup of the flow (X, T). Note that (/, T) is a minimal subflow of

(E(X),T).

Proposition II.4. The flow (I ,T) is almost periodic.

Proof. By Theorem 1.2 it is enough to show that each element of E(I) is contin-

uous (as a map from I to I ). Let cp G E(I), say ¡p = Hmta . This means that

lim pta = pep (V/z G I). Without loss of generality let ta —► q G E(X). Then by

the continuity of L , we have pep = lim pta = pq. This shows that cp = R ,

and by the weak almost periodicity of (X, T), the map R   is a continuous.

Proposition II.5. With the notation as above, we have the following.

( 1 ) The minimal right ideal I has a unique idempotent u.

(2) The ideal I is a compact topological group with identity u.

(3) The ideal I is also a minimal left ideal.

(4) The ideal I is the only minimal right ideal in E(X).

(5) Let p G E(X) ; then pu = up.
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Proof. (1) Any two idempotents in / are proximal (see [4]) and since (I ,T)

is almost periodic, it cannot have proximal pairs of points.

(2) This follows from (1) and Proposition LI.

(3 and 4) Since the right multiplication R (p g E(X)) is continuous, the

left F action (p ,t) -* tp also yields a flow on E(X). Now repeating the same

arguments, it follows that a minimal left ideal L in E(X) is also a compact

topological group with identity, say v .

Consider the set IL = {pq \p G I, q G L} Note that IL ç I n L. Now

uv G IL ç I and since / is a group with identity u, there exists a q G I such

that q(uv) = u. Thus,

uv = (quv)v = quv  = quv = u.

Hence u G L. Since u is an idempotent and L is a group, u = v. Now if

p G I, p = pu = pv G L, and similarly if q G L , then q = vq = uq G I, thus

I = L. This argument shows that any minimal right ideal coinsides with any

given minimal left ideal. This proves (3) and (4).

(5) Let p G E(X) ; then by (3) pu G I and up G I. Since u is the identity

in I, pu = u(pu) = (up)u = up .

Corollary II.6. Let (X ,T) be a w.a.p. flow and I be the unique minimal ideal

in E(X). Then I = E(X) iff xu = x, Vxel.

Proof. If / = E(X), then E(X) is a group with idempotents u and e—the

identity of T, thus u = e.  Conversely, if xu — x, Wx G X, then for any

p G E(X) we have xp = xup , Vx G X. Thus p = up G I.

RemarkII.7. Notice that (X,1) is a flow. Set R = {(x,y) \xl = yl}. Then R

is a closed equivalence relation and (x ,y) G R iff Orb(x) and Orb(y) contain

the same minimal set, namely xl.   Also it follows that XI = {xp \p G I,

x G X} is the union of minimal sets and (Xu, T) is almost periodic, where

Xu = {xu | x G X}.   Furthermore, the proximal relation on I is a closed

equivalence relation.

Proposition II.8. Let (X ,T) be a w.a.p. flow.

(1) If (X ,T) is minimal, then (X, T) is almost periodic.

(2) If (X ,T) is distal, then (X, T) is almost periodic.

Proof. ( 1 ) Since (X, T) is minimal, X = xl, Vx G X. Fix any x G X and

let y = xu; then

(y ■ t)u = (yu) ■ t = (xu ) • t = y • t.

Now since u is continuous and the orbit of y is dense in X, xu = x, Vx G X.

Hence by Corollary II.6, (X, T) is almost periodic.

(2) Let (X ,T) be distal; then E(X) is a group. Hence u = e. Again by

Corollary II.6 this implies that (X, T) is almost periodic.

Proposition II.9. Let (X, T) be a w.a.p. flow. If there exists a p G E(X) such

that tp = p (or pt = p), W G T, then

(a) p = u, I = {u}, and all minimal sets are singleton.

(b) If {x0} is a minimal set in Orb(x) then xu = x0.
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Proof. Since (X ,T) is w.a.p. and tp = p, W e F, it follows that {p} is a

minimal left (right) ideal. Thus (a) follows from Proposition U.S. Now (b) is a

simple consequence of (a).

Proposition 11.10. Let (X ,T) be a w.a.p. flow with a unique minimal set. Then

(X, T) is uniquely ergodic.

Proof. Let R = {(x,y)\xu = yu} . Then F is a closed invariant equivalence

relation on X. Since the map p —► (XqP)R from / to (X/R), is an epimor-

phism, the flow (X/R, T) is almost periodic. Furthermore, since (X, T) has

only one minimal set, the flow (X/R, T) is minimal.

For / G C(X), <p(f) = ( J) defines an element of C(X/R). Thus <p: C(X)

-» C(X/R) is an algebra homomorphism with (p(tf) = (t<p)(f), Vi e F.

Since (X/R, T) is minimal and almost periodic, it has a unique F invariant

Borel probability measure m. Define p(f) = m((p(f)). Clearly p defines a

F invariant Borel probability measure on X. Let v be another F invariant

Borel probability measure on X. Let / G C(X) and ta be any net such that

ta—>u. Note that, since / is w.a.p., (,/)—► („/) weakly. Hence v(uf) =

limz/(( /) = v(f). Thus v defines a F invariant Borel probability on (X/R).

Since (X/R, T) is uniquely ergodic, we have v(f) = v(uf) = m(uf) = p(f),

V/ G C(X). Thus (X, T) is uniquely ergodic.

Now we turn to a different question. Given a w.a.p. flow (X, T), we would

like to know under what conditions the map t —> nt from F into E(X) is

an imbedding. This question is of particular importance in studying the notion

of rigidity in ergodic theory, (§III.B and §IV). Let t denote the topology on F

and co denote the induced topology on F as a subset of E(X). Clearly co ç t .

We want to know when œ equals t . First we introduce some notation.

Let ßT be the Stone-Cech compactification of F (see [4]). The space ßT

has a natural right F action and in fact the flow (ßT,T) is the universal point

transitive flow for the group F. Since the flow (E(X), T) is point transitive,

there is a canonical factor map p: ßT —► E(X). Points of ßT will be thought

of as ultrafilters on F. Note that given any ^-neighborhood W of p , p G ß T,

we have {t G T \ t G W} g p . Also, if p, q G ßT, then pq = {A C T \ Ap G q} ,

where Ap = {t G T \ ACX G p} .

Let AT(t) = {p G ßT\ (F - K) G p for ail t-compact subsets K}. (In this

paper - will be used to denote the set theoretic difference between two sets.)

Note that N(t) is the set of ultrafilters which converge to infinity. Furthermore,

AT(t) is a closed invariant right ideal in ßT. The following facts are easy to

verify.

(i) If pgN(t) and p~x = {u~x \uGp} then p~x g N(z).

(ii) If p g N(t) then pp~x G N(r).

(iii) Let p, q G ßT, then p(pq) = p(p)p(q).
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Let G = {p G E(X) \p is invertible, i.e., there exists a q g E(X) such that

pq = qp = e} . Clearly F ç G.

Theorem 11.11. Let (X, T) be a w.a.p. flow. Then the following statements are

equivalent.

(a) The z and co topologies on T are the same.

(b) IfpGN(x) then p(p)¿e.

Furthermore either of the above implies the following.

(c) The sets T and G are the same.

Proof. Letne(r) = {V CT\V is a t neighborhood of e} and ne(co) = {U ç

E(X) \U is an co neighborhood of e} .

(a) => (b): Suppose there exists a p g N(r) such that p(p) = e. Since

p G N(r), there exists a T-compact V g ne(r) such that (T- V) g p. Now (a)

implies that there exists N G ne(co) such that N r\T ç V, hence N n F £ p.

Thus p(p) jt e. This is a contradiction.

(b) => (a): Suppose (a) is false. Then there exists a T-compact V G ne(r)

such that (N n F) n (F - V) is nonempty (where N G ne(co) ). Let p be the

ultrafilter containing the filter base {(T - V) r\ N\N G ne(co)} . Since V is

t-compact and V g p, p g N(t) . Now it follows that p(p) = e, which is a

contradiction.

(b) => (c): Suppose (c) is false. Since p is onto, there exists a p G ßT

such that p(p) G (G - T). Note that p G N(r) (if not, then there exists a t-

compact subset K ç F such that K g p . This implies that p(p) G p(K) ç F,

which is a contradiction). Also observe that, since p(p)~ exists, we must have

P(P~l) = P(P)~X. where p~x = {U~x \U Gp}.

Let q = pp~  G N(r). Then p(q) = p(p)p(p)~x = e . This contradicts (b).

Remark 11.12. (i) Note that in the proof of Theorem 11.11, local compactness

of the topology t was crucial.

(ii) We will show that under the additional assumption of metrizability of

E{X), condition (c) implies (a). To do this we first prove a couple of lemmas.

Lemma 11.13. Let (X ,T) be a w.a.p. flow and (E(X), co) be metrizable. Then

the set G is a residual subset of E(X).

Proof. Let {V G ne(co) \n G N} be a neighborhood base at e such that Vx D

V2 D V3 ■ ■ ■ . Set Gn = {p G E(X)\pt G Vn for some t G T and t'p G Vn

for some t' G T} . Clearly each Gn is an open subset. Furthermore F ç Gn,

Vn G N. Thus each Gn is dense. Now the proof follows from the observation

that G = f]{p G Gn | n G N}.

Lemma 11.14. Let (X ,T) be a w.a.p. flow and let (E(X), T) be metrizable.

Consider the map n(p ,q) = pq, p,q G E(X). Let q G E(X); then n is

continuous at (e ,q).

Proof. Using a general result on joint continuity (see exercise (20), p. 83 of [2])

it follows that for each q G E(X), there exists a residual set F = F(q) ç E(X)
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such that if p G F then (p, q) is a point of continuity of n . Using Lemma

II. 13, we can assume without loss of generality that p G G. Let pn —> e. Then

ppn -» p, whence PP„qn -» pq ■ Since p G G, this implies that pnqn -> <?.

Proposition 11.15. Let (X,T) be a w.a.p. flow and (E(X),co) be metrizable.

Then conditions (a), (b), and (c) in Theorem II. 11 are equivalent.

Proof. We will show that (c) implies (a).   Since  F = G, by Lemma 11.13

it follows that (T,oj) is a residual subset of E(X) and thus a Baire space.

Furthermore, Lemma II. 14 implies that (F, co) is a topological group. Thus by

the open mapping theorem, the identity map from (F, r) onto (T,co) is open.

This proves (a).

Remark 11.16. When the group F is separable, to analyze various dynamical

properties of (E(X), T) one need not assume metrizability of E(X). We can

reduce the general case to the metrizable case as follows.

Let G be a countable dense subgroup of F and / G C(E(X)). Define a

relation R on E(X) as follows. Let x,y G E(X); then xRy iff f(sxt) =

f(syt), Vs ,t gG . Then R is a closed invariant equivalence relation on E(X)

such that (i) xRy implies that axb = ayb, Va,b G E(X), and (ii) E(X)/R is

metrizable. There is a natural action of F on E(X)/R suchthat (E(X)/R,T)

is a w.a.p. flow with E(E(X)/R, T) = E(X)/R. Thus if a certain dynamical

property is true for all metrizable enveloping semigroups, then it would be true

for all enveloping semigroups.

III. Applications

Here we study two specific examples of w.a.p. flows. The first example yields

a simple proof of Ryll Nardzewski's theorem [9]. The second example illustrates

the importance of w.a.p. flows in ergodic theory.

III.A. The Ryll Nardzewski theorem. Let F be a locally compact, Hausdorff

topological group and CB(T) denote the space of bounded continuous func-

tions on F. A function / G CB(T) is called weakly almost periodic iff the

set {,f\t G T} has compact closure in the weak topology of CB(T), where

tf(s)-f(st). Let W(T) denote the space of all w.a.p. functions on F. Recall

that the flow (ßT,T) is the universal point transitive flow for the group F.

We will regard W(T) as a subset of C(ßT). As such, it is a uniformly closed

F invariant subalgebra of C(ßT). With every such subalgebra one associates

a point transitive flow (\W\,T), (where \W\ is the maximal ideal space of

algebra W(T)) so that W(T) = C(\W\) (see [4] for details).

Proposition III.A.1. The flow (\W\),T) is weakly almost periodic.

Proof. Since CdW7!) = W(T), the proof follows from the definition of weak

almost periodicity.

Theorem III.A.2. The linear space W(T) has a left and a right invariant mean.

Proof. Since (\W\,T) is w.a.p. and point transitive, it is uniquely ergodic.

Let  m be the unique  F invariant probability measure on  |IFL   Since any
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/ G W(T) can be thought of as a continuous map on \W\, m defines a mean

on W(T). Furthermore, from Proposition 11.10 it follows that

(i)   m(J) = m(f) and
(ii)   m(pf) = m(f) = m(fp), where p G I and / is the minimal ideal in

E(\W\).

Thus m is a left and right invariant mean on W(T).

Now consider the following subspaces of CB(T).

(i)   AP(T) = {/ G CB(T)\f is almost periodic; i.e., the set (,f\t G T)
has compact closure in the norm topology} .

(Ü)   Wu(T) = {fGW(T)\(J) = 0}.
(iii)   C0(T) = {fG CB(T) | / vanishes at infinity} .

Note that AP(T) and WQ(T) are closed subspaces of W(T); in fact, we

have the following theorem.

Proposition III.A.3. With the above notation we have W{T) = AP(T)@W0(T).

Proof. Let us write / = (J) + (f - J). Note that, J G AP(T) and
„(/- „/) = 0. Thus /- „/ G W0(T). On the other hand, if g G AP(T)nW0(T)

then g = (ug) and ug = 0, hence g = 0. This completes the proof.

Remark III.A.4. In general, C0(T) Ç W0(T), but these two subspaces may not

be the same. The group F is said to be minimally weakly almost periodic if

C0(T) = W0(T). Using the techniques developed here, we will show (in §IV)

that the group SL(2, R) is minimally weakly almost periodic.

III.B. W.a.p. flows and ergodic theory. Let (Q,T,m) be a flow with a F

invariant probability measure m. Here the action of F may only be jointly

measurable. We will now associate a w.a.p. system to the flow (ft, T,m).

Let H = L (ft,ra), B(H) be the set of bounded operators on H, and

S = {L G B(H) | ||L|| < 1} . The set 5 is equipped with the weak operator

topology. Thus 5 is a compact space.

Let UJ(03) = f(co-t), tGT, co g ft, and / G H. Set r = JUJTgT} ç
S, where the closure is again with respect to the weak operator topology. Thus

<£ is a compact space which is also a semigroup. Also note that the left and

right multiplications in If (i.e., the maps LA(B) = AB and RA(B) = BA,

A,B GtT?) are separately continuous. Furthermore, there is a natural right F

action on f , {(A , t) —> A ■ Ul, A g £7 , tGT} and by the joint continuity

theorem of [3], (f, F) is in fact a flow.

Henceforth we will identify / G T with Ut G f as well as with the map

nt G E(g), where nl(A) = AUl.

Proposition III.B.1. The flow (<7? ,T) is weakly almost periodic.

Proof. Let <p G E(£?) and let tit —> cp. Identifying / with U/, we can assume

without loss of generality that tir —► B G %. This implies that for any A e If

we have Acp = lim^it = AB. Thus cp = RB on I?. Since RB is continuous,

so is ó. Now Proposition II.2 completes the proof.
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This proof shows that E(W) can be identified with itself. Thus we will think

of the unique minimal ideal / of E(B') as a compact group inside the set

IE?. Let u be the idempotent and F and C denote the projections on F

invariant functions and constant functions, respectively. Also, if A G B(H),

the adjoint of A will be denoted by A*. It is each to verify that u = u,

I* = {A* | A G 1} = I, %* = %?, and the map A —* A* is continuous.

Let X be the normalized Haar measure on / and set

p(A) = X(AnI),    V Borel subsets AGg.

Proposition III.B.2. With the notation as above, we have the following.

(a) If p G I then pp* = p* p = u.
(b) Let B eg be a Borel set; then

(bi)   p(B*) = p(B) and
(bii)   p((Lgyx(B)) = p(B) = p((Rgyx(B)), VgGÏÏ.

Proof, (a) Let p = Hmtn , ta G F; then utn -> up = p and u(ta)~x = (ta)~Xu =

(tn)*u = (utj* -►/>*. Thus,

u = lim(u(tnrX)(uta) = lim(u(tj~x) lim(w/J = pp*.

Similarly, p*p = u.

(b)(i) By (a) if p G I, then the inverse of p is p*. Hence for all Borel

subsets B of /, X(B*) = X(B). Now if B ç W then

p(B) = k(B n /) = X(B n /)* = X(B* ni) = p(B*).

(b)(ii) First let tGT; then we have

p(tB) = k(tB n /) = X(tB n ti) = X(t(B n /)) = X(B n /).

Thus p(tB) = p(B). Similarly, p(Bt) = p(B). Now let g G %, and set

p = (ug)* = ug* G I.   We claim that (Lg)(B) n I = p(B n /).   Assuming

this, we get p((Lg)~x(B)) = X(p(B n /)) = X(B n /) = p(B). Now we only

have to prove this claim. Let x G (Lg)~x(B) n/; then gx G B. Therefore

pgx = pgux = pp*x = ux = x . Thus x G p(B n /). Conversely, if x = py

for some y G B n /, then gx = gpy = gupy = p*py = uy = y, hence

x G (Lg)~ (B) n /. The proof of invariance of p under R   is similar.

Proposition III.B.3. With the notation as above, we have P = f gdp(g). Thus

the system is ergodic iff C = f g dp(g).

Proof. Let Q = f gdp(g). This integral exists in the sense that

(Qa,b) = j(ga,b)dp(g) = j(ga,b) dp(g),    Wa,bGH.
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Now (bi) and (bii) of the previous proposition imply that Q = Q* and Qg =

gQ = Q, Vg e F. Furthermore we have

(Q2a, b) = (Qa, Qb) = j (ga, Qb) dp(g) = j (Qga, b) dp(g)

= j(Qa,b)dp(g) = (Qa,b).

Thus Q2 = Q. Since Qt = Q, W g T, we have Range Q Ç Range F. Con-

versely, if a G H is such that ta = a, W e F, then ga = a, Vg G i? . Hence

(Qa,b) = ¡(ga ,b)du(g) = (a,b). Thus Range F C Range Q. This shows that

P = Q.

Lemma III.B.4. The idempotent u is the identity operator on any finite-

dimensional invariant subspace.

Proof. Let F ç H be a finite-dimensional invariant subspace. Let ta —► u,

ta G T. Since F is finite-dimensional, weak convergence of bounded operators

on F implies strong convergence.  Thus ||I7a - ua\\ -»0, Va G F.  Hence

||ua|| = ||a||, VaG F . The result now follows since u = u* = u .

The system (ft, F ,m) is said to be weakly mixing if the space of constant

functions is the only finite-dimensional subspace of H that is invariant under

the unitary representation Ut. The system is said to have discrete spectrum if

H is the Hubert space direct sum of finite-dimensional invariant subspaces of

Proposition III.B.5. The following statements are equivalent.

( 1 )  The system (ft, F, m) is weakly mixing.

(2) u = C.

(3) CG&.

Proof. (1) =t> (2): Since pu = p (p g I) the compact group / acts on the

image of u . Hence u(H) must be the space of constants. Thus u = C.

(2) =>• (3):   This is trivial.

(3) => (1): Since C = Cu = uC g I and C is a projection, we conclude

that C = u ; (1) now follows from Lemma III.B.4.

Proposition II1.B.6. The following statements are equivalent.

( 1 )  The system has discrete spectrum.

(2) u = e, where e is the identity operator.

(3) % = I.

Proof.
( 1 ) => (2) :   This follows from Lemma III.B.4.

(2) => (3) :   If p G ê? then p = ep = up G I, whence f = / .

(3) =>. (1): Since I? is a compact topological group, (1) follows from the

Peter Weyl theorem.
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Remark III.B.7. (a) A vector a 6 if is called a compact vector iff the set

{Uta\t G T} has compact closure in the norm topology. It is not hard to

show that all vectors in H are compact iff (ft, F, m) has discrete spectrum.

(b) If we let A = {a G H n L°°(cl,m)\a is compact}, then A is a F

invariant subalgebra (more precisely it is a L°°(ft) module; see [13]). Hence

there exists a factor dynamical system (Y,T,m) suchthat A is the pullback

of L2(Y ,m) under the factor map. This factor is the maximal factor with

discrete spectrum and (ft, F, m) is its relative weak mixing extension.

Now we study a generalization of the notion of mild mixing introduced by

H. Furstenberg and B. Weiss. Since (I?, F) is a point transitive flow, there

is a canonical factor map p: ßT —> f. We recall the notion of convergence

associated with an ultrafilter.

(i) Given p G ßT and a G H, we write lim     Uta = b or p(p) = b iff

{t\\\Uta-b\\ <e}Gp, Ve>0.
(ii) Given p G ßT and A G <7?, we write Hmtep U( = A iff for any a, b G H

and e > 0, we have {t\ \(Uta,b) - (Aa,b)\ <e} Gp.

Since the weak and strong topologies on {Ut \ t G T} coincide, if A G {Ut\t G

T} then lim(€ Ut = A implies that p(p)a = Aa, Va G H. Notice that the

notation in §11 and proofs of Theorem II. 11 through Theorem II. 15 are also valid

after replacing (E(X),T) by (%?,T). The flow (ft,F,ra) is rigid iff there

exists a p G N(x) such that p(p) = e . Note that this means that lim Ut — e.

The flow (ft, T,m) is mild mixing if it has no nontrivial rigid factors. Now

Theorem II. 11 implies the following.

Proposition III.B.8. The following statements are equivalent.

(a) The system (Çl,T,m) is not rigid.

(b) The t and co topologies on T are the same.

Furthermore, if (I?, F) is metrizable (in particular if (ft, m) is a standard

Borel space) then the above statements are also equivalent to the following.

(c) The sets T and G are the same.

A vector a G H is called rigid iff there exists p G N(x) such that p(p)(ta) =

ta, V? G T. Note that for abelian F, p(p)a = a implies that a is rigid.

Proposition III.B.9. The system (Sl,T,m) is mild mixing iff the constants are

the only rigid vectors.

Proof. Let (ft,F,m) be mild mixing and a G H be a rigid vector. Let

(Y,T,m) be a factor of (Q,T,m) such that L2(Y,m) is isomorphic to

the algebra generated by {ta \ t G T} . Since a is rigid, there exists a p G ßT

such that p(p)(ta) = ta, Vf e F; thus p(p)(b) = b, Vie L2(Y,m). Thus

(Y,T,m) is a rigid factor. Hence F is a point space. This implies that a is

a constant function.

Conversely, let (Y ,T ,m) be a rigid factor of (ft, F, m). Then there exists

PGN(x) suchthat, p(p)b = b, VbGL2(Y,m). Thus for any gGL2(Y,m),
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p(p)(tg) = tg, Vi G T. Hence g must be a constant function and Y must be

a point space.

Proposition III.B.10. Let the group T be abelian. Then the following statements

are equivalent.

(a) The system (ft, F, m) is mild mixing.

(b) If for some p G N(x), \\p(p)g\\ = \\g\\, then g is a constant function.

(c) For all nonconstant vectors a G H, we have

Sup \(p(p)a,a)\<\\a\\2.

Proof. Given p G ßT, recall that p~x = {U~x \U G p}. Note that in this case

(i.e., E{X) = &)  p(p-x) = p(p)\

(a) => (b): Suppose there exist p G N(x) and a G H such that ||/>(p)a|| =

\\a\\. Set q = p~xp G N(x) ; then

\\p(q)a - af = \\p(q)af + \\af - (p(q)a,a) - (p(q)*a,a) = 0.
Thus a is a rigid vector and hence must be constant.

(b) => (c): If (c) is false then since N(x) is closed there exist p G N(x)

and a nonconstant vector g G H such that \(p(p)g,g)\ = \\g\f ■ Again let

q = p~ p . Then as before it is easy to check that p(q)g = g, whence g is a

constant vector, which is a contradiction.

(c) =*■ (a) :   This is easy to see.

Finally, we formulate the notion of strong mixing as follows. The system

(ft, F, m) is called strongly mixing iff p(p) = u, V/z 6 A^r), where u is the

unique idempotent in fcf. Note that u ^ e unless (ft, F ,m) is trivial.

Proposition III.B.ll. The system (Q,T,m) is strongly mixing iff (<§*,

co) is the one point compactification of (T ,x).

Proof. Let (Cl,T,m) be strongly mixing. From the definition it follows that

any weak limit of a net Ut (where tQ tends to infinity) must be u. Thus

£7 — {(J¡ 11 g T} u {«} and u = C. Also, it is clear that strong mixing implies

mild mixing. Hence by Proposition III.B.8 the map t —» (7,: (F,t) —> (T,co)

is an imbedding, whence 3* is the one-point compactification of (T, x).

Conversely, if i? = {Ul \ t G T} u {«} and F is open in & , then it follows

that any net t which lies outside a r-compact set eventually converges to u

weakly. This means that p(p) = u, V/z G N(x).

IV. W.A.P.  FLOWS OF SEMISIMPLE LlE GROUPS

In this section we show that any w.a.p. flow (X ,T), where F is a semisim-

ple Lie group with finite center and no compact factors, has a certain prop-

erty (which will be defined shortly). In particular, this will yield a theorem of

W. Veech and also the ergodicity theorem of C. Moore.

Let (X ,T) be a point transitive w.a.p. flow. This flow is said to have property

(A), if (i) the unique minimal set in (X, T) is singleton, say {m}, and (ii) for

any x € X we have Orb(x) = Orb(x) U {m}.
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Theorem IV.l. Let (X ,T) be a point transitive, weakly almost periodic flow.

Let T be a semisimple Lie group with finite center and no compact factors.

Then (X ,T) has property (A).

Remark IV.2. Let F be a semisimple Lie group and F = KAN+ be the Iwa-

sawa decomposition. Let A7" denote the "opposite" nilpotent subgroup. Con-

sider the following condition.

Condition (*). If an G A and an -* oo, then either (a) or (b) of the following

must hold.

(a) ant(anrx ^e, \/t G N+ and (an)~xtan - e, Vf G N~ .

(b) ant(an)-x ^e, Vf e TV" and (an)~xtan^e, Vf e N+ .

We will first prove Theorem IV. 1 for semisimple Lie groups satisfying con-

dition (*). Note that any semisimple Lie group with real rank 1 (in particular

SL(2, R)) satisfies this condition. This proof will be generalized to higher rank

groups using some standard facts of Lie theory.

Proof of Theorem IV. 1 for groups satisfying condition (*). First note that with-

out loss of generality, we can assume that the F action on X is effective (i.e.,

if x • t = x, Vxel, then t = e). Recall that G = {p G E(X) | there ex-

ists q G E(X) such that x(qp) = x, Vx G X} . The proof follows from the

following series of lemmas.

Lemma IV.3. Let an G A and an—>pG E(X) - T. Then p &.G.

Proof. Let t G N+ (or t G N~ depending on the validity of (a) or (b) of

condition (*)), be such that t ^ e and ant(an)~x —» e. Then by the joint

continuity of the left F action, we have

pt = lim ant = l\mant(an)~x an =p.

Suppose p G G ; then x{qp) = x, Vx G X, for some q . Hence x = x(qp) =

x(qp)t = x • t, Viel. This implies that t = e , which is a contradiction.

Lemma IV.4.  With the above notation we have T = G.

Proof. Clearly F ç G. Let p G G and suppose that p g F. Then considering

the Carian decomposition, F = KAK, we may suppose that p = krl, where

k, l g K and r = lim an , an G A . Note that p £ T implies that r G E(X) - F.

Since p G G, there exists q g E(X) such that x = x(qp), Vx G X. Hence

x = x(qp) = x(qkrl), therefore x/- = x(qkr), whence replacing x by x/,

x = xl(qkr), Vx e X. Since Iqk G E(X), this shows that r G G, which is a

contradiction to the previous lemma.

Lemma IV.5. Let an -^pGE(X)-T, an G A , and (a,;)"' -* q g E(X). Then

pq = qp = u.

Proof. First note that A (the closure as a subset of E(X)) is an abelian sub-

semigroup. This follows from the separate continuity of both the left and the

right multiplication. Thus pq = qp . Now we show that t(pq) = pq, Vf G T.
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Suppose (a) of condition (*) holds (a similar argument can be given if (b)

holds). Note that

tp = lim tan =liman((an)~xtan)=p,    Vt e N~

and

tq = Hmt(an)'{ = lim(an)-x(ant(an)~x) = q,    Vf G N+.

Hence t(pq) = pq , Vf e N+ u N~ . Since N+ u N~ generates F, the proof

follows from Proposition II.9.

Lemma IV.6. Let p G E(X)-T, say p = kp'l, where k, l G K and p = Hman,

an G A. Let q = Fx qk~x, where q = lim(an)~'. Then pq = qp = u.

Proof. Note that pq = p'q = u = qp = qp, by Lemma IV.5.

Lemma IV.7. Let p G E(x) - F. Then p = u.

Proof. First let p G A - T, say p = lim an, an G A. Let is N" (or N+

depending on the validity of (a) or (b) of condition (*)). Then we have

tp = limtan = liman((an)~xtan)=p.

Thus tmp = p, for all integers m. Again writing tm = kmamlm, where

km,lm G K and am G A, and passing to a subsequence if necessary, we let

q = k(limam)l, with k ,1 G K, and q* = limCm = l~x lim(am)~xk~x , thus

qq* = u. Also we have qp = p and p = q*p . Hence,

p = qp = q(q*p) = (qq*)p = up = u.

Now a general p can be written as p = krl, k, l G K and r G A - T. Thus

p = kul = u .

This completes the proof of Theorem IV. 1 for groups satisfying condition

(*)•
Now we extend this result to general semisimple Lie group with finite center

and no compact factors. This is done by the standard technique of reducing

the proof to the SL(2,F) case. All such reduction techniques are based on the

crucial fact that such groups contain "many" copies of SL(2, R). We will need

to recall some notation and standard facts from [11]. We will do this in the

next paragraph. The use of enveloping semigroups techniques will allow us to

give simpler and shorter arguments than those of [ 11 ] and with less use of Lie

group machinery.

Let F be a semisimple Lie group with finite center and no compact factors.

Let y be its Lie algebra. Fix a Cartan decomposition 7T = 7% + 3P and

involution 6 . Let sé be the maximal abelian subspace of 7? . Let A be the set

of (restricted) roots of the pair (7T ,sf). Order the roots and let A+ be the set

of positive roots. If X G A, define F1 = {X g¥\\H ,X\ = X(H)X, Hgs/}

and set JV± = H±A6A+ ̂ . Let K, A, ^ be the analytic subgroups of F

corresponding to 377, sé , and Jr± . Let s/+ be the positive Weyl chamber,
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s/+ = {H G sé\X(H) > 0, X G A+}. Set A+ = exp(sé+) and sf+ ç A,

where the closure is in the group F, and not as a subset of E(X). Let B(-, ■)

denote the Killing form. Then for each X G A, there exists Qx G sé such that

X(-) = B(-,QX).

If a = (an) is a sequence in F, N¿ shall denote the closed subgroup of F

generated by the set U* , where

U+ = {t\l\mô((an)-Xtan,e) = 0}.

Here S is a metric on F generating its topology. Where a has the form

an = b", n > 0 for a fixed b G T, we shall write Nb for N* . Define

Nb = Nb^, and let Tb be the closed subgroup of F generated by A^ . We

shall need the following facts from Lie theory, (see [11] for proofs).

(Fl) If b G A , then Tb is a normal subgroup containing b. If b G A+ then

Nb = N+ and Tb = T.

(F2) If a is a sequence tending to infinity in A+ , then 3b G A+ , b ^ e,

such that N+ = N7 .
a D

(F3) If X G A+ and if v G 7Tk, v ± 0, then v,d(v) and Qx span a Lie

algebra of 7F isomorphic to the Lie algebra of SL(2,R).

(F4) With the notation as above, we have F = KA+K.

We shall now assume that F = F, x F2 x • • • x Tr, where each F. is a sim-

ple and noncompact Lie group with finite center. We shall identify T¡ with

{(f,, t2, ... , tr) 11, = ej, V7 7^ /}. Note that it is enough to prove the the-

orem for such a F [11]. Finally, let T¡ = K¡AJ¡Kl be the modified Cartan

decomposition as in (F4).

Lemma IV.8. Let S be a subgroup of T isomorphic to SL(2, R). Let a G AnS,

a ^ e. Let us be the unique idempotent in S ç E(X). Then pst = tps = ps,

Vf G F .

Proof. Since (X,S) is w.a.p. and 5 is isomorphic to SL(2,R), we have

S-S = {ps}. Since a G S, there is a sequence n¡ -* oo such that a"' —> ps and

a~"' —► ps . Thus by the argument of Lemma IV.3 we have pst = ps = tps ,

Vf G N* u N~ . Since N^ generates Ta , the proof is complete.

Lemma IV.9. Fix any I   (I < I < r). Let a = (an) G A~¡. Let liman = p G

E(X). Then tp = p, VtGT¡.

Proof. By (F2) there exists b G A¡ , b ¿ e, such that N¿ = Nb . Let X G A¡

be such that ^ç/^. By (F3), there exists tz € TT* Ç yV+ such that v¿0

and v , 6(v), Qx span a Lie algebra isomorphic to the Lie algebra of SL(2, R).

Let 5 be the Lie subgroup corresponding to this subalgebra. Let a = exp(Qx)

and s = e\p(v). Note that (i) a G AnS and (ii) sp = p (this is because

vG^xCyVb+=yr;).
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Now Lemma IV.8 implies that pst = tps = t, Vf g Fq .  Pick a sequence
k

k¡ —> co such that 5 ' —<• ps . Thus (ii) implies that psp = p . Combining this,

we get

tp = t(psp) = (tps)p = psp=p,    Vf G Ta .

Note that by (Fl), Ta is a normal subgroup. Since T¡ is simple, Ta n T¡ = T¡.

This completes the proof.

Lemma IV.10. Let tn = (t\,... , fn) -► p G E(X), where t'nGT¡, 1 < i < r.

Then p = u.

Proof. By Proposition II.9 it is enough to show that tp = p, Vf G T. Let

t'n = k'na'nl'n, where k'n,l'n G K¡ and a'n G A* . Fix any i, I < i < r, and

consider q' = lima'n . Then by the previous lemma tq' = q', t g T¡. Hence

q = u . Thus p' = limk'na'nl'n = k'ul' = u, where k' = Hmk'n and /' = Hml'n .

Thus p = u. This completes the proof of Theorem IV. 1.

Finally,    we   note   that   the   following   theorems   of   W.   Veech   and

C. Moore which motivated this paper follow at once from Theorem IV. 1.

Theorem IV.ll (W. Veech [11]). Let T be a semisimple Lie group with finite

center and no compact factors. Then T is minimally weakly almost periodic.

Proof. Apply Theorem IV. 1 to the transitive w.a.p. flow (\W{T)\,T).  Thus

given any / g C(\W(T)\) = W(T), lim^^ f(t) = m(f), where m is the

invariant mean on W(T). Thus C0(T) = WQ(T).

Theorem IV.12 (C. Moore [8]). Let (Çl,T,m) be an ergodicflow, where T is a

semisimple Lie group with finite center and no compact factors. Then (ft, F ,m)

is strongly mixing.

Proof. The proof follows by applying Theorem IV. 1 to the point transitive

w.a.p. flow (IP, F).
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