
transactions of the
american mathematical society
Volume 313, Number 1, May 1989

THE LIFTING PROBLEM FOR AFFINE STRUCTURES

IN NILPOTENT LIE GROUPS

NGUIFFO B. BOYOM

Abstract. Affine manifolds occur in several situations in pure and applied

mathematics, (e.g. leaves of Lagrangian foliations, completely integrable Hamil-

tonian systems, linear representations of virtually polycyclic groups, geometric

quantization and so on). This work is devoted to left invariant affinely flat

structures in Lie groups. We are mainly concerned with the following situa-

tion. Let G and Go t>e nilpotent Lie groups of dimension n + 1 and n ,

respectively and let h : G —► Go be a continuous homomorphism from G onto

G0 . Given a left invariant affinely flat structure (Go, Vo) the lifting problem

is to discover whether G has a left invariant affinely flat structure (G, V) such

that h becomes an affine morphism. In the present work we answer positively

when (Go, Vq) is "normal". Therefore the existence problem for a left invari-

ant complete affinely flat structure in nilpotent Lie groups is solved by applying

the following subsequent results. Let a/(G0) be the set of left invariant affinely

flat structures in the nilpotent Lie group Go , (Ie) a/(Go) / 0 implies the

existence of normal structure (Go, Vo) € a/(Go) ; (2°) h: G —* Go being as

above every normal structure (Go, V0) has a normal lifted in a/(G).

0. Introduction

Let G be a real, connected, nilpotent Lie group with the Lie algebra g. Let

V be a left invariant linear connection in the Lie group G. We assume that

the linear connection V is locally flat and complete; then the couple (C7,V)

is called an affine structure in the Lie group G. Let us denote by 2l/(C7) the

set of all affine structures in the Lie group G. If 2l/(C7) is nonempty then

every (G, V) G 2l/(C7) will give rise to the linear representation of q in itself,

p: q —> g/(g) which is given by the formula

(1) p(X)-Y = VxY.

Since V is locally flat we get the following identities, pv(X) • Y - pv(Y) •

X-[X,Y] = 0, pv(X)pv(Y) • Z - pv(Y)pv(X)-Z- pv([X,Y]) ■ Z = 0, for
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(X ,Y ,Z) g qxqxq. The dual representation p*v : g —> g/(g*) of g in its dual

space g* is obtained by setting

(2) (p*v(X)d)(Y) = -d(pv(X).Y).

We consider the cochain complex C (g,g*) associated to the g-module

g*. Let C(C7,R) be the scalar cochain complex of the Lie group G [5, 11].

Since the vector space C(C7,R) is the exterior algebra /\g*, we get the anti-

symmetrization operator:

d: Cpv(g,g*)^ /\g\

which maps AP0*®0* onto AP+'fl*- The map d is coherent with the cochain

complex structures, so that we get the linear map

dp:Hppv(S,9*)->Hp+l(G,R).

The lifting problem. Let us suppose that 2l/(C7) is nonempty. Can one

find (C7,V)G2t/(C7) suchthat dx(Hxpv(Q,Q*)) = H2(G,R)1

At the 1984 AMS-IMS-SIAM Summer Research Conferences in the Mathe-

matical Sciences, I sketched a proof of the following result:

Theorem. The vector space H (C7,R) is spanned by d (H(q,q*)) when (G,

V) runs over 2t/(C).

In the present work I will prove the following result.

The lifting problem. Let G be a connected nilpotent Lie group with the Lie

algebra g. Suppose that 2l/(C7) is nonempty. Then there is (G, V) G 2LF(C7)

suchthat dx(Hxpv(ß,Q*)) = H2(G,R).

Remark. The Lifting Theorem gives an alternative proof of the existence theo-

rem for affine structures in nilpotent Lie groups, [9]. Indeed, every nilpotent Lie

group is a central extension of a nilpotent Lie group; the Lifting Theorem shows

that one obtains (by induction with respect to dim G ) the existence theorem

for affine structures in every nilpotent Lie group, (see Proposition 1.1).

1. Background material

1.1. Koszul-Vinberg-structure. Let g be a finite dimensional Lie algebra. Let

p be a linear representation of g in itself with the following properties: for

every (X ,Y ,Z) in g x g x g we have

(K,) p(X)Y-p(Y)X-[X,Y] = 0;

(K2) P(X)P(Y)Z - p(Y)p(X)Z - p[X, Y]Z = 0.

Definition 1.1. A Koszul-Vinberg structure in the Lie algebra g is a linear rep-

resentation p:a—► g/(g) with the properties (K,) and (K2).

We denote by KV(g) the set of Koszul-Vinberg structures in g. A Koszul-

Vinberg structure p G KV(g) is complete if for every fixed Y0 g g the linear
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map X —► y/y (X) = p(X)YQ + X is a regular linear map of g in itself. It

is known that only solvable Lie algebras can admit complete Koszul-Vinberg

structures [5].

One sees that every affine structure (C7,V) gives rise to unique complete

Koszul-Vinberg structure; conversely, let g be a solvable Lie algebra with a com-

plete Koszul-Vinberg structure p ; let G be the connected and simply connected

Lie group with the Lie algebra g. Then there is a unique affine representation

of G in the vector space g, s -+ (q(s) ,f(s)) G g x GL(g) such that

d(q,f)e = (lg,p).

In other words, let leg and let exp tX be the one parameter subgroup which

is generated by X, then for every Y G g we have

f(exptX)-Y-Y                               q(exptX)
hm=-= p(X)Y,        hm=-= X.

1.2. The Chevalley-Koszul cohomology spaces. In the following we deal with

cohomology space of the Lie group G with coefficients in C7-modules.

Let p be a linear representation of the Lie algebra g in the vector space V.

We denote C (q, V) the cochain complex which is defined as follows (cf. [3,

11]):

Cp(g,V) = ^Hom(/\PQ,V).
p

We set C^(g, V) = Hom(f\p g, Vp). The coboundary operator

ô:Cpp(9,V)^Cpp+X(Q,V)

is defined by setting

ô<p(x0,... ,xp) = £(-i)V(*,M*0,... J„... ,xp)
i

+ £(-i),+'*([*i > Xj],... ,xt,... ,Xj,..., xp).
k<j

One easily verifies that S2 = 0. Let

Zp(g, V) = Ker(S: Cp(g,V) - CP+X(Q,V))

and

Bpp(g,V) = ÔCpp'X(Q,V).

The pth F-valued cohomology space of g is Hp(g,V) = Zp(Q,V)/Bp(g,V).

Let us consider the particular case where V is the trivial g-module R. Then

C0(g,R) can be identified with the exterior algebra Aß* of the dual space of

g. In that case the cohomology space Hq(q,R) is denoted Hp(g,R).

Let G be a connected Lie group with the Lie algebra g. Then the cohomology

space //g(g,R) is called the pth scalar cohomology space of the Lie group G

and we set HP(G,R) = Hp(g,R).
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1.3. Let us consider a connected Lie group G with the Lie algebra g. Let

(G, V) G 2l/(C7). We define the associated Koszul-Vinberg structure in g by

setting

pv(X)Y = VxY
for every (X, Y) G g x g. The dual representation p*v: g —> g/(g*) is defined

by putting

(p*v(X)6)(Y) =-6(pv(X)Y)
for every (6, X, Y) G g* x g x g .

Let us consider the antisymmetrization operator

d: Homt/W^-A^V;
it induces a cochain morphism C (g,g*) —► C(G,R) = C0(q,R) , so that we

get a linear map

ö'://jv(g,g*)-//2(G,R).

1.4. Geometrical meaning of the lifting problem. Let G be a connected nilpo-

tent Lie group with the Lie algebra g. Let H be a 1-dimensional connected

normal subgroup in G. It then follows that H is a central subgroup. Let us

assume that H is closed submanifold of G, then the factor group G = G ¡H

has a Lie group structure such that 1—* H —> G —* G —► 1 is an exact sequence

of connected Lie groups.

If g is the Lie algebra of the Lie group G, the bracket operation in g is

obtained by a given 2-dimensional cocycle co G Z2(q , R), so that by identifying

g with the direct product R x g, we have

[(x,X),(y,Y)] = (to(X,Y),[X,Y])

for every ((x, X), (y, Y)) G g x g . Let (G, V) be a complete affine structure in

G and let [co] G H (G ,R) be the 2nd cohomology class of co.

Definition 1.2. One says that the linear connection V has the [a>]-lifting prop-

erty if [to] lies in 3'(//|v(g,g*)).

If V has the [w]-lifting property, we can find tp G Zp^(g,g) such that

dtp = co. In other words, <p being a linear map of g in g*, let us set

<p(X)-Y = tp(X,Y);

the conditions ôcp = 0 and dtp = co mean that for every (X, Y, Z) in g x g x g

one has

<p(X,Y)-tp(Y,X) = co(X,Y),

<p(X,pv(Y)Z) - <p(Y,pv(X)Z) - <p([X,Y],Z) = 0.

Therefore we define a linear map pv : g -* g/(g) by setting pv(x ,X)-(y ,Y) =

(tp(X,Y),pv(X)-Y).

Proposition 1.1. The linear map pv defines a complete Koszul-Vinberg structure

in the Lie algebra g.
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Proof. Let (x, X) and (y, Y) be elements in g. We compute

(i)

pv(x,X)-(y-Y)-pv(y,Y)(x,X)-[(x,X),(y,Y)]

= (cp(X, Y), pv(X)Y) -(tp(Y,X), p(Y)X) - (co(X ,Y),[X, Y])

= (<p(X,Y)-tp(Y,X)-co(X,Y),p(X)Y-p(Y)X-[X,Y]) = (0,0).

(Ü)

pv(x,X)pv(y,Y)-(z,Z)-pv(y,Y)pv(x,X)(z,Z)

-pv(co(X,Y),[X,Y])(z,Z)

= pv(x, X)(tp(Y, Z), pv(Y)Z) - pv(y, Y)(tp(X, Z), p(X)Z)

-(<p([X,Y],Z),pv([X,Y])Z)

= (<p(X,pv(Y)Z)-tp(Y,pv(X)Z)-tp([X,Y],Z),pv(X)pv(Y)Z

-pv(Y)pv(X)Z-pv([X,Y])Z)
= (0,0).

(iii) It remains to prove that pv is complete. Let (y0, YQ) be a fixed element

in g and let (x, X) be an element of g such that p~v(x, X)(y0, Y0) + (x, X) =

(0,0). Then (x, X) is solution of the following system:

tp(X,Y0)+x = 0,       pv(X)Y0 + X = 0.

Since (G, V) is a complete affine structure in G, the Koszul-Vinberg structure

pv is complete, so that pv(X)Y0 + X = 0 implies X = 0. It follows that pv

is a complete Koszul-Vinberg structure in g.   D

Now by virtue of Proposition 1.1, we define the affine structure (tr, V) in

G by setting V.   X)(y, Y) = pv(x,X)(y, Y). (G, V) induces the trivial affine

structure (H ,0) in the subgroup H c G, so that the exact sequence 1 —>

H —y G -^ G —► 1 is an exact sequence of affine structures. Therefore, if some

(G,V) is such that dx(H   (g,g*)) = H (G,R), then every central extension of

the Lie group G, 1—* H —> G —> G —> 1, has an affine structure (G, V) which

is projected to (C7,V). This is the geometrical interpretation of the lifting

problem.

1.5.    Lower central series of nilpotent Lie group and flag of ideals. Let G be a

connected nilpotent Lie group with the Lie algebra g. We consider the lower

central series of the Lie algebra g : C0(g) = g, ... , Cp+X(g) = [g, Cp(g)]

It is clear that every C (g) is an ideal of the Lie algebra g; moreover, we

have the inclusion relation C ,(g) C Cp(g). We are concerned with flags

^(fl) = g 3 ■■■ D g D ■•■ D (0) which are finer than the lower central filtration

g D C,(g) d • ■ ■ D Cp(e) D ■ ■ O (0). If F(g) = g D • ■ o Qp D • • • is such a flag,

then we must have the following:

p = dimQp < dim Cq(g) => gp c Cq(S)
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and

dimCfo) < p => Cq(¿) D gp.

Lemma 1.1. Every nilpotent Lie algebra has a flag of ideals F(g) which is finer

than the lower central series g D Cx(g) d ■ ■ ■ d C'(g) d C   , (g) D • • • .

Proof. We will carry out the proof by induction on dim g. We observe that the

lemma holds if g is commutative. Thus let us suppose that the lemma holds

for dim g < n + 1. Let g be an (n + 1 )-dimensional nilpotent Lie algebra with

C, (a)^(0).
Let pQ be the positive integer such that Cpo(g) ¿ (0) and C ,(g) = (0).

ThenC^g) is contained in the center of g. Let A be a 1-dimensional ideal

contained in Cpg(g). We take the quotient Lie algebra g = g/A. Let n : g —> g

be the canonical homomorphism, so that 7r(C (g)) = C (g). Since dim g = n ,

there is a flag of ideals F(g) = g D • • • d g    d ■■■ which is finer than the central

series g D C,(g) D • • • .  Let us set g   x = it" (gp).  It is obvious that every

gp+x = n~ (g0) is a (p + 1 )-dimensional ideal in g, so that F(g) = n~x(F(g))

is a flag of ideals. The condition n(C' (q)) = C (g) shows that ^(g) is finer

that the lower central series g D Cx (g) d • • • .     Q.E.D.

2. Truncated Lie algebras and truncated affine structures

Let g be an zi-dimensional nilpotent Lie algebra with the fixed flag of ideals

F(fl) = 0 7> • • • D gk+x D gkD ■■■ . Let us fix the following notations:

(i) Ep(g) is the set of nilpotent linear endomorphisms of the vector space g

which preserve the filtration F(g) ;

(ii) 3>p(g) is the subset of E°F(g) defined by the condition that D G 3>p(g)

if and only if D is derivation of the lie algebra g. That is to say

D[X,Y] = [DX,Y] + [X,DY]

for every (X, Y) G g x g.

Let us consider a pair (/,/) where / is a totally ordered finite set and /

is a subset of / with the following property: let (y ,ß) G J x / then ß G J

whenever ß < y. We deal with data

KFJ1(g) = {Da,t;aß,elßl(a,ß,y)Gl'},

where for every triple (a,ß,y) one has (Da,7,„,eyaß) G 2°F(g) x g x R; more-

over (Caß,£7aß) satisfies the following conditions:

Í « +£«   =0,        eY„ + el   =0,
^ap        ^ pa * ap pa '

e^ = 0   if y >min(a,ß).

We write #/ for the cardinal of the set /.
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Definition 2.1. The couple (g,A^7(g)) is called an (n + #/)-dimensional trun-

cated Lie algebra if the following conditions hold:

(caß)-[Da,Dß] = ad77aß + j:yelßDr,i

(Caßy) ' ^cSßy ~ DßSay + "y^aß ~ ¿Ttt^ßy^ta ~ £ay^tß + eaß^ty> = " >

(cj,yXßy: for every fixed yo € J ' we have

Y(e' e/0-e   ¿°R + e aey°) = 0.
i—i ■   ß}   'a ay   tß aß   ly >

t

Examples of truncated Lie algebras. Let g^. be the k-dimensional ideal of the

flag F(g). We choose a basis (ex, ... ,ek, ... ,en) such that every ideal gfc

is spanned by (ex, ... ,ek, ... ,en) such that every ideal gk is spanned by

(ex, ... ,ek). We denote (, ) the scalar product in g defined by setting (e¡,e)

= ¿. (Kronecker symbol). We set I = {k + I, ... ,n). It is clear that for

every a G I the linear map Da = ade, lies in 7&°(gk), where F(gk) is the

filtration that F(g) induces in gk . We define (Çaa,£raa) by putting

k

Zaß = Tl(K'eßhet)el,
í=i

elß = (K>eßhey),

for (a,ß,y) G /3. Let us choose a subset 7c/ such that (y,ß)GJxI,

ß < y => ß S J. Then the data KF {(gk) = {T>a^aß,eyaß} are connected by

the conditions (c A, (caß) and (Cj  ) of Definition 2.1. The truncated Lie

algebra (g,Kj ¡(g)) is a Lie algebra if and only if / = /, for the condition

(caßy) U {(cJ¡7°)afiy} is the Jacobi identity.

2.1.   Truncated affine structures in truncated Lie algebras. Let (g,Kj ¡(g)) be

a truncated Lie algebra. We suppose that g has a Koszul-Vinberg structure

p: g —► g/(ö) • We are concerned with data

where (Aa, Uaß , vyaß) g E°F(g) x g x R for every (a, ß, y) g I3.

Definition 2.2. The triple (g,p,nF 7(g)) is a truncated Koszul-Vinberg struc-

ture in the truncated Lie algebra (g,Kj ¡(g)) if the data nF ¡(g) and KF¡(g)

are connected by the following conditions:

(ka) : [Aa, p(X)\ = p(DaX) for every (a, X) G I x g,

(Kß)- (A*(Aß -Dß)~(Aß- Dn)Da - £, v'aß(At - Dt)) ■ X = p(X) ■ Uaß for

(a,ß,X)Gl2xg,

(Kßy)' Wßy " (Ay ~ DyWaß + 5>#Ä " Kß^y)

= AßUay - (Ay ~ Dy)Uß« + ¿ZKUfi> ~ Vß*U^     f°T ̂  («.* . )0 € /* ,
t
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(kjyohßy- Dt,W-«>?,-e>;) = 0   forevery(y0,a,yS,y)G/x/3;
t

moreover (7,aß,eyaß) and (Uaß,vyaß) are connected by

UÑ-Ufí  -7, R = 0,       vyR-vl  -ey„ = 0,
aß ßa      ^aß ' aß ßa aß '

vyaß = 0   if y>min(a,ß).

Remark. We already observed that (g,KF¡(g)) is a Lie algebra if and only

if J = I. Therefore the truncated Koszul-Vinberg (g,p,nF¡(g)) becomes

a Koszul-Vinberg structure in that Lie algebra, so that the sequence 0 -» g —>

gxR -»R —► 0 is an exact sequence of Koszul-Vinberg structures. If #/ > 1,

the completeness of (g, p) will not insure the completeness of (g, p, itj ¡(g)).

2.2. The D-extension property. Let us examine the particular case where

#1=1. Then Kj ¡g = {/)} with D G 3¡F(g) and the truncated Lie algebra

(g,KF¡(g)) is the (n + l)-dimensional Lie algebra g x R with the following

bracket operation:

[(X ,x) ,(Y ,y)] = ([X ,Y] + D(xY - yX) ,0).

Therefore the conditions of Definition 2.2 become

[A, p(X)] = p(DX)   and   (A2 + D2 - 2AD) ■ X = p(X) U

for some element U G g.

Definition 2.3. Let p G KVf(g) = {p G KV(g)|/> preserves F(g)} and let D G

•2^(0) • We say that p has the D-extension property if we can find (A, U) G

•^f(fl) x 0 such that the following conditions hold:

[A , p(X)] = p(DX)    and    (A2 + D2 - 2AD) ■ X = p(X)U    for every X e g.

Let D G 3>F(g). We denote by gD the Lie algebra gx R with the bracket

operation, [(X ,x) ,(Y ,y)] = ([X ,Y] + D(xy - yX) ,0). The flag F(g) extends

to the flag of ideals F(g) = gDD gD ■ ■■ d gk D ■■■ . Let KVF(g) be the set of

Koszul-Vinberg structures which preserve F(g).

Lemma 2.1. Let p G KVf(g) and let D g 3¡°F(g) ■ Suppose that p has the

D-extensions property, and let A g E°F(g) be such that [A, p(X)] = p(DX) for

every X G g. Then the linear map B = A-D: g>-» g is a I-dimensional cocycle

with respect to the linear representation p: g —> gl(g).

Proof. We have to prove that the identity p(X)B ■ Y - p(Y)BX - B[X ,Y] = 0

holds for every (X, Y) G g x g. Indeed we have p(X)BY = p(X)(A - D)Y =

p(X)A Y - p(X)DY. On the other hand we get D[X, Y] = [DX, Y] + [X, DY],

so that B[X, Y] = A[X, Y] - [DX, Y] - [X, DY]. Since p G KV(g), we must

write [X, Y] = p(X) -Y-p(Y)X, so that

p(X)BY - p(Y)BX - B[X,Y] = p(X)AY - p(Y)AX - p(X)D + p(Y)DX

- Ap(X)Y + Ap(Y)X + p(DX)Y - p(Y)DX + p(X)D~p(DY)X

= [p(X), A]Y - [p(Y), A]X + p(DX)Y - p(DY)X = 0.    Q.E.D.
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We have the following result:

Proposition 2.1. Let pGKVF(g) and let DG3¡F(g). If p has the D-extension

property, then p extends to some pD G Y77fF(gD). Moreover pD is complete if

and only if p is complete.

Proof. Let (A, U) G EF(g)/g be such that the following identities hold:

[A,p(X)] = p(DX)   and   (A2 + D2 - 2AD) ■ X = p(X)U   for every X g g.

Let us define the linear map pD : gD —> gl(gD) by setting

pD(X,x)-(Y,y) = ((p(X) + xA)Y + y((A-D)X + xU),0).

Then we have

pD(X,x)(Y,y)-pD(Y,y)(X,x)

= p(X)Y + xAY + y((A - D)X + xU)

- p(Y)X + y AX + x((A - D)Y + yU)

= p(X)Y - p(Y)X + D(xY - yX)

= [(X,x),(Y,y)].

Thus it remains to prove that pD is a linear representation. We have

pD(X,x)pD(Y,y)-(Z,z)

= p(X) + xA((p(Y)+yA)Z + z((A - D)Y + yU))

= (p(X)p(Y) + xAp(Y) + yp(X)A)Z

+ z(p(X) + xA)((A - D)Y + yU);

so that by antisymmetrizing with respect to the pair ((X,x), (Y ,y)) we obtain

[pD(X,x),pD(Y,y)](Z,z) = ([p(X),p(Y)] + [A,p(xY-yX)])Z

+ z((p(X) + xA)((A -D)Y + yU)- (p(Y) + yA)((A - D)X + xU))

= ([p(X),p(Y)] + p(D(xY-yX))Z

+ z(p(X)BY - p(Y)BX - p(xY -yX)U- A(A - D)(xY - yX)).

By Lemma 2.1 and Definition 2.3 we get

[pD(X,x),pD(Y,y)](Z,z) = p([X,Y] + D(xY-yX))Z

+ z(A - D)([X, Y] + D(xY - yX))

= pD([(X,x),(Y,y)])(Z,z).

Now let us suppose that p is complete. Then every linear map p(X) is

a nilpotent endomorphism of the vector space g, [1, 10]. Since p belongs to

KVf(g) we can choose a basis (ex, ... ,en) in g such that every ideal g¿. of the

flag F(g) is spanned by (ex, ... ,ek). Then the matrices associated to p(X),
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to D and to A , respectively, are upper triangular i.e. they are of the following

form
ro

0

Let us therefore fix (Y0 ,y0) G gD and consider the linear map i//Y : (X ,x)

-* pD(X,x)(Y0,yQ) + (X,x). If (X,x) lies in the kernel of y/y we have

the following system:

I (p(X) + xA)Y0 + y0((A-D)X + xU) + X = 0

{ x = 0

so that (X, x) = (X, 0) and our system is reduced to the equation

p(X)Y0 + y0(A-D)X + X = 0.

On the other hand p(X), D and A have the form (**) in the basis (ex, ... ,

en) ; therefore the linear map X —► p(X)Y0 + y0(A - D)X is nilpotent, so that

the condition p(X)Y0 +y0(A - D)X + X = 0 is equivalent to X = 0. This ends

the proof of Proposition 2.1.     D

Examples of p with D-extension properties. ( 1 ) Let g be the commutative Lie

algebra R" and let (R", 0) be the trivial Koszul-Vinberg structure in R" . Then

(R" ,0) has the D-extension property for every D G End(R"). Indeed it suffices

to take A = D.

(2) Let h3 be the 3-dimensional Heisenberg algebra. Let (ex,e2,e3) be a

basis of h3 such that [e2, e3] = ex, [ex, e2] = [ex, e3] = 0. We consider the flag

F(h3) spanned by the basis (ex,e2,e3); F(h3) is a flag of ideals. Let D be the

element of 7&F(b3) whose matrix in (ex ,e2,e3) is the following:
"0    1    1"

D=    0   0    1

.0   0   0.

We consider the linear map p: h3 —► E°F(h3) which is given by

p(xx,x2,x3)(yx ,y2,y3) = ((ax2 + x3)y2 + 2x2y3,0,0).

The matrix of p(xx ,x2,x3) in the basis (ex ,e2,e3

p(xx,x2,x3) =

ax2 + x3

0
0

) is

2x2

0
0

We get p(xx ,x2,x3)(yx ,y2,y3) - p(yx ,y2,y3)(xx ,x2,x3) = (x2y3 -x3y2,0,0)

= [(xx,x2,x3),(yx ,y2,y^)] ■ On the other hand one see that

p([(xx ,x2,x3),(yx ,y2,y3)]) = [p(xx ,x2,x3),p(yx ,y2,y3)] = 0.

Let us look for an element A G E°F(h3) such that

[A,p(xx,x2,x3)] = p(D(xx,x2,x3)).
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We set

so that

and

[A,p(xx,x2,x3)]

0 a /3
0 0 y
0   0    0

0   0   -y(ax2 + x3)

0   0 0
0   0 0

p(D(x)) = p(x2 + x3,x3,0) =

0   ax3   2x3

0     0
0     0

0
0

Thus, if a ¿ 0 there is no A G E°F(h3) such that [A,p(X)] = p(DX).

proves that the element p0 G KVF(h3) given by

This

Pq(xx ,x2 ,x3)

does not have the D-extension property where

0 1 1

0 0 1
0   0   0

0 x2 x2

0 0 0
0    0     0

3 Normal affine structures

Let g be a nilpotent Lie algebra with the complete Koszul-Vinberg structure

p: g —> gl(g). Since p is compete there is a /z-preserved flag F(g) = g D • • o

gk D ■ ■■ , [9, 10]. The flat F(g) is not necessarily a flag of ideals. We set
n = dim g.

Definition 3.1. A complete Koszul-Vinberg structure p is called normal struc-

ture if it has the following properties:

(i) there is a ^-preserved flag of ideals F(g) = gD-DgkD--  which is

finer than the lower central series g D Cx(g) D ■ ■ ■ D Ck(g) D ■ ■ ■ ,

(ii) if (k ,1) is a pair of integers with k < I and (k, l) G {1, ... , «} , then

we have [g,,gk] = p(gt)gk.

Remark 3.1. Let g be a nilpotent Lie algebra; let f(g) = g D 3 8*+i D

gk d be a flag of ideals which is finer than the lower central series of g

Let KVf( , be the set of normal Koszul-Vinberg structures p: g —> gl(g) such

that the couple (F(g),p) satisfies (i) and (ii) of Definition 3.1. For every ideal

gk+x taken in the sequence F(g), let pk+x = />|fc+i -» gl(gk+x) and F(gk+X) =

9k+\ 3 9k D " • Then the couple (F(gk+X),pk+l) satisfies conditions (i) and

(ii). Hence, pk+x is also a normal Koszul-Vinberg structure in gk+x .
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Examples of normal structures. 1. Let g be the commutative Lie algebra R" .

By virtue of (ii), the unique normal structure in R" is a trivial one (R", p = 0).

2. Let f)3 be the 3-dimensional Heisenberg algebra. We take a basis (ex, e2,

e3) in h3 such that [e2,e3] = ex, [e2,ex] = [e3,ex] = 0. We consider the flag

F(g) which is spanned by (ex ,e2 ,e3) ; it is a flag of ideals. We construct the

linear map p: b3 -* gl(b3) by setting

p(xx,x2,x3)(yx,y2,y3) = (ax3y2 +(I+a)x2y3,0,0).

The matrix of p(xx ,x2,x3) in (ex ,e2,e3) is

P\xx, x2, x3) —

ax

0
0

(l+a)x2

0
0

One sees that p has properties (i) and (ii) of Definition 3.1, that is p is normal

if and only if ( 1 + a)a / 0. Every complete normal Koszul-Vinberg structure

in f)3 has this form.

Remark 3.2. Let g be a nilpotent Lie algebra. We denote by KVc(g) the set of

complete Koszul-Vinberg structures (g,p). L. Auslander conjectured that for

every element (g,p) G KVc(g) the linear representation p is not injective. It is

David Fried who constructed a counterexample to this conjecture. By the virtue

of Definition 3.1 every normal structure (g, p) has nontrivial translations. A

paper of H. Kim contains a complete classification of 4-dimensional complete

Koszul-Vinberg structures without nontrivial translation (H. Kim, Complete

left invariant affine structure on nilpotent Lie groups, J. Differential Geom. 24

(1986)).
Let us fix a normal Koszul-Vinberg structure in the nilpotent Lie algebra g.

We fix some flag F(g) = gD--DgkD--- and some basis (ex, ... ,en) which

satisfy the conditions of Definition 3.1. Let D g 2>F(g). We consider the Lie

algebra gD as in Proposition 2.1 and we take the flag F(gD) = gDD gD ■■■ D

gk D ■■■ . We set gD = g0/g, and g = g/g, , so that the following diagram is

commutative:

i        1
(***) - Bo

9 0/j

R

R.

Let us suppose that p has the /^-extension property. Then by virtue of

Proposition 2.1, p can be extended to some Koszul-Vinberg structure pD in gD

such that the flag F(gD) is pD-preserved. Therefore (***) becomes a diagram
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of Koszul-Vinberg structures

(01,O) «= (01,O)

I 1
(9,P)   -► (&d'Pd)

I
r 1"

(B,P)   -► (9D,PD)

where p (resp. pD ) is the quotient structure of p (resp. pD ). We shall prove

the following theorem.

Theorem 3.1. Keeping the previous notations, let us suppose that p and pD are

normal and that for every n-dimensional ideal a c gD such that gn_x c o,

Pa = Pula /s normal- Then p has an extended structure pD which is normal

and ~pD = pD.

Proof. Since p and pD are normal, the structure p is normal also. Thus we

have to prove that the diagram

(ß,P) -► (Sd'Pd)

1- 1"
(9,P) -► (9D,PD)

is a commutative diagram of normal structures. We begin by fixing a basis

(<?,,... ,en+x) of gD such that (*,,... ,en) (resp. (e2, ... ,en+x) = (ne2,...,

nen+x)) spans the flag F(g) (resp. F(gD)). We suppose that F(g) (resp.

F(gD) ) satisfies (i) and (ii) of Definition 3.1. Let co be the 2-dimensional

scalar cocycle of gD such that the bracket in gD is given by setting

[(x ,X) ,(y ,Y)] = (co(X ,Y) ,[X ,Y]).

Then pD has the [fcz]-lifting property, so that we can find tp G Cx(gD,g*D) such

that pD is given as

pD(x,X)-(y,Y) = (cp(X,Y),pD(X)Y).

We have to prove that the flag F(gD) = gDD F(g) has properties (i) and (ii)

of Definition 3.1 for some pD . It is easy to see that condition (i) holds. Let us

prove that condition (ii) also holds. It is assumed that condition (ii) holds for

Z^gß) and for every zz-dimensional ideal o c gD with gn_x c a, (for pa = pD,

is normal); so that is sufficient to prove that for every ideal g^. we have

[9D,9k] = PD(9D)9k-

Let a be the «-dimensional ideal of gD spanned by ex, ... ,£„_, ,en+x > then

a — 0„_i © ^„+1 • By me virtue of our hypothesis one has

[9n = 9,9k] = P(9)9k    and   [a,gk] = p(a)gk.
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The above equalities imply [gD, gk] = pD(gD)gk ■ That follows from the follow-

ing lemma which will be useful in forthcoming work.

Lemma 3.1. Let us consider the normal structures in (* * *'). Let (ex, ... ,en+x)

be the fixed basis of gD as in the proof of Theorem 3.1. Let (,) be the scalar

product in gD given by (ea,eß) = daß. We set eyaß = ([ea,eß],ey) and vyaß =

(P(ea)eß>ey) ■ We identify (e2,... ,en+x) with the projected basis (en, ... ,en+x)

in gs . We suppose that the following condition holds:

(n flj:^« ¿0^vyJvylt-eyR)¿0v   aßy;      aß  ' aßy   aß aß'  '

for (9d>Pd> and for every n-dimensional ideal a c gD with gn_x c a. Then

we can choose some extended structure (gD,pD) suchthat (naß) holds again.

Proof. Let us identify (e2, ... ,en+x) with (e2, ... ,en+x); then if (a,ß,y) G

{2,... ,n + 1 }3 we have eraß ¿ 0 => (vyaß)(vyaß -eyaß)^0. On the other hand

the inclusion gn_, c g implies that if (a,ß) G {2, ... ,n}2 then

œ(wa>ep)¿0^ <P(ea,eß)(tp(ea,eß) - co(ea,eß)) ¿ 0.

Let us consider the ideal a of gD which is spanned by (ex, ... ,en_x ,en+x).

It is clear that pD induces a Koszul-Vinberg structure pa in that ideal and that

structure is normal. Then, for every pair (a,ß) G {2, ... ,n + 1} such that

(a ,ß)^(n,n+ 1 ), one has

co(ea,eß) ± 0 => <p(ea,eß)(tp(ea,eß) - co(ea,eß)) ¿ 0.

Finally we have to prove that by perturbing cp we can write

co(en,en+x) ¿0=> <p(en,en+x)(tp(en,en+x)-co(en,en+x)) ¿0.

Let A be a real number, X ̂  0. We define the symmetric bilinear form Sx: gDx

gD -+ R by setting

SAea <eß) = À(ÔanÔfin + l + Sßn0an+l)>

where (a,ß) G {2, ... ,n + I}2 and ôan is the Kronecker symbol. If (a,ß,y)

G {2, ... ,n + 1} , we compute

dPDSx(ea > eß > ey) = S¿ea > PD(eß)ey) ~ Sx(eß > Po^a^y) ~ SÁK >eß] »«,)•

Since pD is normal we have pD(gD)gD = [0D,0D] c g„_,, so that dp¡¡Sx = 0.

We consider the map

0k(X,Y) = cp(X,Y) + Sl(X,Y).

Then we have

<px(X,Y) - <px(Y,X) = co(X,Y),        dpJx = 0.

If (a,ß) í (n,n+ 1) we have f(en,eß) = cp(en,eß) and $x(eH,en+l) =

cp(en ,en+x) + X ; thus we can choose the scalar X such that

w(ea ,eß)^0^ <p(ea, eß)(tpx(en , eß) - co(en , eß)) ¿ 0
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for every (a,ß) G {2, ... ,n + I}2.   Therefore we consider Koszul-Vinberg

structure pD which is given by

pD(x,X)(y,Y) = (cpx(X,Y),pD(X)Y).

We see that pD is normal and has the following properties:

(i)   pD(X)Y = p(X)Y if (X,Y)Gg;

(Ü)   Pd = Pd'>

so that pD is the required Koszul-Vinberg structure,   o

4. The lifting problem for normal structures

We fix a zi-dimensional nilpotent Lie algebra g with a fixed complete normal

structure p . Let F(g) = g D g„_, D ■ ■ ■ be a /z-preserved flag of ideals and

we consider a basis (ex, ... ,en) which spans F(g). We assume that F(g) and

(ex, ... ,en) satisfy conditions (i) and (ii) of Definition 3.1.

Let gn_3 be the (n - 3)-dimensional ideal of the flag F(g). We set a3 =

fl/0„_3 • Then o3 is either the Heisenberg algebra h3 or the commutative Lie

algebra R3. We identify (en_2,en_x ,en) with a basis (ëx,ë~2,ë3) of a3.

Let us set / = (n - 2, n - 1, n) = ( 1,2,3) and let p0 be the Koszul-Vinberg

structure of gn_3 which is induced by p. Let (, ) be the Euclidean product in

g given by (ea ,eß) = Saß . We set

D  = ad(ë ),      ;
a v   a'\a„-3 '

n-3

<wz= ¿Z^a'tßheje,;
t=\

Elß = (\.Sa^ß\^y)

for (a, ß, y) g {1,2,3}  . Then the Lie algebra g can be identified with trun-

cated Lie algebra (g„_3,A:/f/(gn_1)) where

KFJ(gn_3) = {Da,taß,eyaß\(a,ß,y)Gl3}.

On the other hand let us set

Aa = Pn(ea\a„-^

n-3

Uaß=  ¿2(P(ea)eß>e,)e<>
(=1

vlß = (p(e,Mß>ey)-

Then the Koszul-Vinberg structure p is defined by the truncated structure

(0„-2>/V ^,7(0.-3))  Where

nFJ(g„_3) = {Aa,Uaß,vyiß\(aß,y)Gli}.
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In other words the data K¡ ¡(g„_3) and n¡ ,(gn_3) are connected as follows

(ka):[Aa,p0(X)] = p0(DaX),    IeV3;

(*„,: (Aa(A, - D„) - (Aß - Dß)Da - J2<ß(At - D,)) ■ X = p0(X)Uaß ,
t

*eg„_3;

(*»/»,): Wßy - (A? - Dy)Uaß + E(v'ßyUat - <ß^ty)
t

= AßUay-(Ay-Dy)Ußa + J2(v'ay(vtayUßt-v'ßaUty);
t

(kt,yXßy--Z(vßy<:-<y<t-iß<) = 0>

U R-VR
aß ß a       ^a£nfí ' vla = Eifl>        Ua/? = °   ify>min(o,^).

-1,
If a2 is some 2-dimensional ideal in a3, we set o = ñ    (o2), so that o is

(zz - 1)-dimensional ideal in g such g„_3 c a ; % being the projection such that

gn_3 —> g —» a3 is an exact sequence.

Let co be some 2-dimensional scalar cocycle in g ; we denote gw the Lie

algebra R x g with the bracket

[(x,X),(y,Y)] = (co(X,Y),[X,Y]).

Let 7i be the canonical homomorphism gw —» g.   Let F(gw) be the flag

n~\F(g)). By setting gk°+x = ft~\gk) we have the commutative diagram

IÚ

0«-2

0«-3

co         n
9      -►   «3

.-!/-
Let a2 be a 2-dimensional ideal in o3, we set a = ñ (a2). Then a is

(n - 1)-dimensional ideal in g such that gn3 c a. Let us put aœ = iC (a).

The following diagram commutes

CO

9n-2

0«-3

w n
-> a    -►  cu

->   a -> a-.

The structure o induces the structure /zo: a —> g/(a). If (o2,o2) is a pair of

ideals in a3 we have that

Pana' ~ Jalona' — Pa'\af\a'
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The restriction co,ttXa is denoted co again. If pa has the [<y]-lifting property

we shall denote by p" any structure in aw such that for every X G aœ we get

n°Pa°(X) = pa(nX)on.

Keeping these notations we will prove the following theorem.

Theorem 4.1. Let (g,p,co) be as we just defined. We suppose that the complete

normal structure has the following properties:

(i) For every ideal a2 c a3, pa has the [co]-lifting property.

(ii) We can choose the p™ such that given every pair (a2,a'2) of ideals, p™

and p™, induce the same structure p^na, in a0 n a"0 .

(Hi) Let (a2,a2) and (a2,a2) be pairs of ideals in a3, then

w _    ico neo _    meo co co
a   na    =a     Do      => pana, = pa„na,„.

Then p has the [co]-lifting property.

Proof. Since p is normal, its quotient structure (a3,p) is normal, so that the

sequence 0 -♦ (g„_3, p0) —► (g, p) -* (o3, p) -» 0 is an exact sequence of normal

structures.

Since a3 is either b3 or R3 we consider the two cases.

Case 1. a3 is the commutative Lie algebra R . In this case the quotient struc-

ture (a3, p) is the trivial structure for it is normal. We consider the ideals

a2 = span(ë,, e2),       a2 = span(ë1, e3),       a2 = spani^, e3).

Let a, a and a" be the corresponding (n- 1 )-dimensional ideals in g. The

flag F(gn_3) is extended to flags

^(0„_3) C à C a = F(o),        F(gn_3) C à' C a = F(a),

F(gn_3)cà'"ca" = F(a").

One sees that F (a), F (a) and F (a) are spanned by (ex, ... ,en_3,en_2,

en_x),  (ex, ... ,en_3,en_2,en) and (ex, ... ,en_3,en_x,en) respectively.  We

already saw that g is identified with the truncated Lie algebra (0„_3, KF,(gn_3)).

Since a3 = R   we have

KFj(gn_3) = {Da,t:aß\(a,ß)Gl2}.

The subalgebras à, à' and à" are nothing but (g„_3)Di , (0„_3)D2 and (gn_3)Di

respectively, therefore, the following diagram is commutative

»ä —>a

n -^    ~i>K  i

N à"<Sa".
Moreover we have D3 G 3>F(a), Dx G 2>°F(d) and D2 G 9f°F(a) such that

i        /        //
aD} = °Ô,  = aD2 = 9
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so that we have the commutative diagram

(****) 0—>gn_

The structure (g,p) is given by the truncated structure (g„_3,p0,n¡ ¡(gn_3)),

with

^,,(9n-i) = (Aa^aß\(a,ß)Gl\

The data K¡ ¡(gn_3) and {p0,tt, ,(g„_3)) are connected as in Definition 2.2.

Now we consider an analogous construction in g" by taking n~x   (****), so

that we get the following diagram:

.0)
a.

a '     c

(* * *

CO ̂

0„_2 —* ° °      —\ 9

^    >1 >^
0„-3 — tC°> o

By the virtue of hypothesis (i), the structures pa, pa,, and pa„ have the [&>]-

lifting property. Let (a°,p™), (a/Ct\/z^) and (a"œ,p^„) be the corresponding

lifted structures.

We consider  (aw,p™,   (aw,p™,)  and   (a"œ,p™„)   as truncated structures

(0^_2 -P-nj,j) > (0^-2 'P > n'j,j) and (0«"-2 'P" 'n"f,j) respectively. Let us set

71J ,J - iA\ >A2> ^12 > ̂ 21 ' ^11 ' ^22^'

*5j = {A~i'>A~i>Vi3>Vl>V33y>
11F       _  t 7 "     7 "   fj       fj       fj"     if" \

It   j j - \A2    ,A3    ,U23,U32,U22,U33).

Let  KF,(gwn_2) = {Dx ,D2,D3 ,í12,í13,í23}  be the data such that  *° «

(9^-2,^¡(gwn_2)). Then we have

a" = (0?_2,{Dx,D2,lx2}) = (g"_2,KFj),

^ = (9^1,{Dx,D3,l3}) = (g:_2,K'FJ),
neo       ,  co        , 7i      f;     c1       ,  co        j^iiF .

a     - (0„_2 , {D2,D3,7.23} = (gn_2,Kj j).

We know that (g^_2,p,nF y) and KF} are connected by the relations (kj,

(kn ß),  (kn ß  ) and (kj   )n ß   .   The same assertions hold for the couples
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{(0?_2,¿'><y)><y} a"d {(g^_2,/,zT^),/s:;fy}. By the virtue of hypoth-

esis (ii) we have

CO CO CO CO _       CO CO CO CO CO

Pa\a" * Pa'\à« ~ P& '     Pa\i'°> ~ Pa"\ä'»> ~ P'a '      Pa'\â"" ~ Pa'\a"» ~ Pi"'

On the other hand, the hypothesis (ii) tells us that

CO _       CO CO CO

P«K_2 - pà'\e^2 - ^6"|b™_2 ~ po '

so that we obtain
~/       ~n co

P = P   =P    = PQ-

These equalities imply the following

Ax - Ax ,       Uxx - Uxx ;

A3 = A3   = A3,       U33 = U33 = U33 ;

7 - 7" 77    _ fj"A2 — A2   , U22 — U22.

Thus, by setting nF¡(g™_2) = {Äa,Üaß\(a,ß) G {1,2,3}2} we see that if the

data (g^_2,PQ ,7t¡ ,(g^_2)) and K¡ ¡(g"_2) are connected by the conditions

(kJ> (ka.ß)> (K,ß,y) and (fc/>ft)0i/y; this is equivalent to saying that p has

the [(y]-lifting property.
y's

Since o3 is commutative the vaß are zero; so that it is easy to see that the

conditions (ka), (kaß) and (k¡ ) hold. Let us prove that (kaß) holds also.

We consider the 2-dimensional ideal of o3 spanned by ea + eß and ea + e .

Then by hypothesis (i) the Lifting Theorem holds for the «-dimensional ideal

b = 0„_2 ® R(ea + eß) ® R(ea + ey) • ^v writing that the following identity holds

PMea + eß)(ea + ey))(^a + *' ß) + P(ßa + ßy))

- Pb(ea + eß)P*(ea + ey)(x(ea + e ß) + p(ea + e?))

= PMea + ey)(ea + *,))(*(*<, + É' ß) + P(e a + ßy))

- P*(ea + er)pb(ea + eß)(X(ea + eß) + p(ea + ex))

for all the (X,p) G R , one obtains the following equalities

(Aa - DaKyß " AyUßa + A ß^ya = (Aß ' » ßKy ~ Aa^yß + Ay^aß

= (Ay-Dy)7ßa-AßUay + AaUßy.

Because of the condition, £ R = U R - Uñ   we see that
9   ^ap otfS pa

WAa - DaK,ß - AyUßa + AßVya] = »atßy ~ »ß^ay + »&,-

By virtue of (Caßy) we see that

(Aa-Da)iyß-AyUßa + AßUya = 0

so that (kaßy) holds.
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Case 2.   a3  is the Heisenberg algebra b3. In this case the quotient structure

(b3, p) is given in the basis (êx, ë2, e3) by the matrix

p\xx, x2 , x3) —

0   ax3   (a + 6)x2

0     0
0     0 0

where the scalar 0 g R is defined through

[ê2,ê3] = 6ex.

By changing \\ex || we can take 0=1. Then the Lie algebra g is given by the

truncated Lie algebra (gn_3,KF ¡(gn_3)). We have KF ,(gn_3) = {DX,D2,D3,

*M2 ' ̂ 23 ' e23 = 1} • ^e set vi2 = a ' so tnat me structure (g, p) is given by the

truncated structure

and

(9n-3,P0,nF/gn_3))

nFJ(gn_3) = {Aa,Uaß,vyaß\(a,ß,y)G{l,2,3}3}.

We consider the following ideals of f)3 :

a2 = span(e, ,e2),       a2 = span(e,,e3).

Then the ideals a = ît~ (a2) and a = ñ~ (a2) are spanned by (e{, ... ,en3,

e„-2,en-\) and (ex, ... ,en_3,en_2,en) respectively. We have the following

diagram:
a

'«-3 0„-2

If we take the pull back in gw of this diagram, we get

0«-2

'I
0«-3

co   "
»«-1.

8/1-2

ico'

By virtue of hypothesis (i),  pa  and pa,  have the [<y]-lifting property.   Let

(ow,/9^) and (a"°,p^,) be the corresponding lifted structure.
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We consider gœ as the truncated Lie algebra (g^_2,K¡ ¡) where

K;j = {Da,£.aß,e23 = l\(a,ß)G{l,2,3y}.

Therefore we identify a° (resp.   dw ) with the truncated Lie algebra (g^_2,

KFj) (resp.  (%.2,K'fj)) where

KFj = {Dx ,D2,£X2},    (resp. K'fj = {Dx ,D3,£X3}).

According to our previous notations we set

,  co      co.       ,  co F    > ,  ico      co.       ,  co        ~i      iF   ,

(0    ,Pa) = (9n-2>P>7lJj)> (°     >Pa') = (fin-2>P  'KJ,j)

with

Ttjj = {Ax ,A2, Ux2, U2X, Uxx U22) ,

itjj = {Ax ,A3, Ux3, U3X, Uxx, U33}.

By virtue of hypothesis (ii) we have
a» cu

P«W-, ~ ^'ItC,;

so that we have p = p = p™, Ax = Ax and Uxx = Uxx . Therefore the data
F F

Tij j and Ttj j satisfy the following system:

f [Aa,p"(X)] = p'7;(bX), (X,a)Ggwn_2x{l,2,3);

(AMß - Dß) - (Aß - Dß)Da)(X) = p0w(X)daß ,

forevery^Gg^,    and    (a,ß) ¿ (2,3) ;

Afißy - (Ay - Dy)Uafi = AßÜay - (Äy - Dy)Üßa ,
for every (a,/?,y) = {l,2}3U{l,3}3.

One easily sees that the system (a) depends only on n(ÏJa7). Therefore we set

U R = (M„« > G „) e g" , = R x g„   ,.aß        v   ap '     aß'       vn — 2 vn — 3

Let us examine the matrix associated to each Aa in the basis ((1,0) ,ex, ... ,

en_3) of g"_2. We set

A   =
0   a

a

0   A
D  =

0    6
a

0   D

where an G g*_3. It is clear that the An are those which give (g,p) =

(0n_3,/Vrcf,/)- Let 9&Cx(gn_3,g*n_3) besuchthat p™ is given by

p"(x,X)(y,Y) = (cp(X,Y),p0(X)Y).

By considering g"_x as the Lie algebra (g"_2)g , Pq has the Dx -extension

property. In other words, aa, 6n and tp must be connected by the following

conditions:

( tp(DnX,Y) + tp(X,AJ) - aa(p0(X)Y) = 0,

I aa((Aa - DJX) - (aa - 6a)(DaX) - <p(X,UJ = 0.
(iv*)
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These relations are direct consequence of (ka) and (kaß), respectively. We saw

that the quotient structure (b3,p) has the matrix

P(xx ,x2,X-,) —

0   ax3   (I + a)x2

0     0 0
0     0 0

where a is a fixed real number. Let us set (ex,e2,e3) = (Xex ,ue2 + ve3, pe2 +

ve~3) with X = uv -vp ¿ 0. Then we have

[/J2,e3] = (uv -vp)ex =ex,

and

p(ë2)ë3 = p(uê2 + vê3)(pê2 + vê3) = vp(ë2)e3 + vpp(ê3)ê2

= (a + l)uvëx + vpaêx = [(a + l)uv + vpa]ëx.

Let us look for (u,v,p,v) suchthat

(a + l)uv + vpa = \(uv - vp).

That will give

so that we get

2(a + l)uv + 2vpa = uv -vp

(2a + l)(uv + vp) = 0.

Therefore one sees that if a ^ - \ one can choose some (u, v , v, p) such that

uv = -vp t¿ 0. Thus, we can always choose some basis (ex,... ,en) in g such

that [e2e3] = ex and the matrix of p in (ex ,e2,e3) = (en_2,en_x ,en) is

P\xx,x2,x3)
2        2

0      0
0      0

We fix such basis; we need the following lemma:

Lemma 4.1. The data (aa,da,Aa,Da,Uaß\(a,ß) G {2,3}2) and cp are

connected by the formula a2((A3 - D3)X) - (a3 - 63)(D2X) - tp(X,U23) =

-a3(A2 - D2)X + (a2 - d2)(D3X) + tp(X, U32), X G gn_3.

Proof. We consider the ideal o; c f)3 spanned by (Sx ,Xe2 + pe3). Let aXp =

7t~X(ax ) c g. The ideal a™ can be identified with (g^_2)j where DXp =

XD2 + pD3. By virtue of hypothesis (ii) of Theorem 4.1, p™ has the DXp-

extension property, so that if we set AXp = XA2 + pA3 then there is UXp such

that XD2 + pD3 satisfying

M^o (*)] = /#( V)
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and (À2^ + D2Xp - 2ÄXpDXp)X = p"(X)ÜXß . The latter condition gives

([XÄ2 + pÄ2]2 + (XD2 + pD3)2 - 2(XA2 + pA3)(XD2 + pD3))(X) = p"(X)ÜXß

= p%(X)(X2Ü22 + p2Ü33)

+ Xp(Ä2(Ä3 - b3) - (Ä3 - b3)b3 + Ä3(Ä2 - b2) - (Ä2 - b2)b3) ■ x.

But, by projecting this condition in gn_3, we can choose UXp = (uXßUXp) with

Ux  = X222U22 + p U33 + Xp(U23 + U32), so that by taking the (R x 0)-component

we see that

<p(X,UXp) = cf>(X,X2U22 + p2U33 + Xp(U23 + U32))

= <p(X,X2U22 + p2U33) + Xp(a2((A3 - D3) ■ X) - (a3 - d3)(D2X)

+ a3((A2-D2)-X)-(a2-62)(D3X)).

Finally we obtain the following equality:

tp(X, U23 + U32) = a2((A3 - D3) • X) - (a3 - 63)(D2X)

+ a3((A2-D2).X)-(a2-d2)(D3X).

for every X G gn_3. Lemma 4.1 is proved   D

Now we define the linear form a'x G g*_3 by setting

\(a\ - 6X)(X) = a2((A3 - D3) ■ X) - (a3 - 63)(D2X) - <p(X, U23)

= - a3((A2 - D2) ■ X) + (a2 - 02)(D3X) + cj>(X, U32).

This formula gives

(ax - 6X)(X) = a2(A3 - D3) ■ X) - a3((A2 - D2)X) + (a2 - 62)(D3X)

- (a3 - e3)(D2X) + cp(X,U23- ç23) - tp(X, U23)

= a2(A3X) - a3(A2X) + d3(D2X) - 62(D3X) - tp(X ,{23).

We know that [D2 ,D3] = Dx+ adc;23, which implies that

e2(D3x) - e3(D2x) = ex (X) + œ(^23, x).

We have also cp(7\23, X) - cp(X, 7\23) = co(7;23, X), so that a\ is given by

a\(X) = a2(A3X) - a3(A2X) - <p(723,X).

We need a second lemma:

Lemma 4.2. The l-cochain X —► cp(DxX, -) + <p(- ,AXX) is the coboundary of

the 0-cochain a'x.

Proof. We have to prove that <p(DxX,Y) + <p(X,A,Y) = a[(pQ(X)Y). Indeed
we have

a\(p(X)Y) = a2(A3 ■ p0(X)Y) - a3(A2p0(X)Y) - <p(723, p0(X)Y)

= a2(p0(X)A3Y + p0(D3X)Y) - a3(p0(X)A2Y + p0(D2X)Y)

-<p([â.23,X],Y)-tp(X,p0(Ç23)Y).
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We know that (Aa,Da,aa),a G {2,3} are connected as in (iv*).  Then we

have

ax(P()(X)Y) = <p(D2X ,A3Y) + tp(X ,A2A3Y) + tp(D2D3X ,Y) + tp(D3X ,A2Y)

- <p(D3X,A2Y) - tp(X,A3A2Y) - tp(D3D2X,Y)

-<p(D2X,A3Y)-tp([7.23,X],Y)-tp(X,p0(7.23)Y)

= <p(X,[A2,A3]Y) + <p([D2,D3]X,Y)

-<p(p0[7.23,X]Y)-tp(X,p0(£.23)Y)

= <p(([D2,D3] - adç23)X, Y) + tp(X,([A2,A3] - pQ(Z23))Y).

We know also that [D2,D3] - ad¿¡23 = Dx  and [A2,A3] - p0(7,23) = Ax.  It

follows that a'x(p(X)Y) = tp(DxX,Y) + tp(X,AXY). Lemma 4.2 is proved,   o

We define the linear operator A'x : gwn_2 -» g™_2 be setting

4 = 0    a\

0   Ax

The Lemma 4.2 implies that for every X G g™_3,

[À'i,Po(X)] = p^(bxX);

so that for every pair (X, Y) G gn_3 we have

ax(p0(X)Y) = a'x(p0(X)Y).

Let us set 60(X) = ax(X) - a\(X). Let 5 = dim[gn3 ,g„_3]. Then by the

condition (iii) of Theorem 4.1 (ex, ... ,e,J)span[gn3,gn_3], and since p0 is

normal we get /zp(g„_3)g„_3 = [g„_3, g„_3], so that every 1-form n = g*_3 with

n(p0(X)Y) = 0 is a linear combination of ns+x, ... ,nn_3 where (nx, ... ,nn_3)

is the dual basis of (ex, ... ,en_3).

The structure (g,p) being normal, we have also p(g)g = [g,g] = g„_2, so

that every linear combination of es+x, ... ,en_3 can be written in the form

AXXX+ A2X2 + A3X3 where XX,X2, X3 are linear combinations of es+x, ... ,

en_2. Since Ax = [A2,A3] + p0(7,23), we deduce that every linear combina-

tion of e x, ... ,en_3 can be written A2X'2 + A2X'} where X'2,X3 are linear

combinations of e   x, ... ,en_3-

In other words we have the equality,

span(ej+1, ... ,en_3) = span(A2ex+x ,A3es+x, ... ,A2en_3,A3en_3).

Therefore let n be an element of the dual space g*_3 suchthat n(p0(X)Y) = 0

for X G gn_3 and Y G g„_3 ; then n belongs to the subspace of g*_3 spanned

by the system

(ns+l,,..,nn_3).

By virtue of the equality,

span({e   ./l < j < n - s - 3}) = span({A2es+j,A3es+J/l < j < n - s - 3})
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the linear form n lies in the subspace spanned by the following linear forms,

»s+loA2>  '7í+l0^3'--->'7«-30'42>  »n-3oA3-

In particular the linear form 60 = ax - ax lies in span(z/J+1, ... , nn_3) ; so that

we can find n' and n" in span(ns+x, ... ,nn_3) suchthat 60 = n'oA2 + n"oA3.

This means that for every X G gn_3 we have

e0(X) = n'(p(en_x)X) + n"(p(en)X).

Let us return to p™ and p™, and (Pq)j¡ '■

CO ft). CO CO /

,    CO CD.

■(°    'Pa)
0/     LU LU\ /     LU LU \

^(0„_2'/9o)^(0«-l'/9ana')
7   ico      ft)x
(a    ,Pa,).

Then, (a°,p™) (resp.  (a"°,p™)) is given by (a,pa,tpa) (resp.  (a ,pa, ,<pa,))

such that for (X,Y) GaC\a  we have

<Pa(X,Y) = tpa,(X,Y);

we recall that an a = gn_2 . Let us change cpa and tpa, by putting

cpa(X, Y) = cpa(X,Y) + n'(p(X)Y),       cpa,(X ,Y) = cpa,(X ,Y) - n"(p(X)Y).

It is clear that (a°,pa,tpg) (resp.   (dw,pa,<pa,)) defines a lifted structure in

aœ (resp. a"0 ). We have the following

<pa(D2X,Y) + <pa((X,A2Y) = a2(p(X)Y) + n'(A2p(X)Y)   ifX,YGa

and

<pa,(D3X, Y) + cpa,(X,A3Y) = a3(p(X)Y) - n"(A3p(X)Y),    ifX,YGa.

We know that for (X, Y) G gn_3 we have

n'(Po(X)Y) = n"(p0(X)Y) = 0

so that 0Jgn_3 = tpa,,  _ = <p . We set ä2 = a2 + n'A2 and ä3 = a3 - n"A3, so

that
. /
a\  =à2A3-a3A2-tp(Ç23,-)

= a2A3 - a3A2 - p(£23,-) + n A2 + n A*2^3      "3^2

= a'x+d0 = ax.

By virtue of this result together with Lemma 4.1 the operators

4-
0    ax
0   AU

A2 =
0   a2

0   A,
and   A3 =

0   a3

0   A,

are connected by the formulas (k23) and (zc32) :

(Ä2(Ä3 -b3) - (Ä3 -b3)b2 - \(ÄX -bx))x = p"(X)ü23,

(À3(À2-b2)-(Ä2-b2)b3 + \{AX -bx))-x = pç(x)v32,
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where X,Ü G 9^_3, U23 = (u23,U23), D23 - Û32 = £23. On these formu-

las the real number u23 can be chosen arbitrarily. Therefore by setting Üaß =

(uaß,Vaß) it remains to prove that we can choose uaß suchthat (9™_2, P™, nF ¡)

defines a truncated Koszul-Vinberg structure in (g"_2,KF¡), with

^1,1 = {Aa>Uaß>v2\ = ~v\i = i).       a>ß = ! '2-3.

These data satisfy the conditions (ka), (kaß) and (k¡ )„ . It remains to

prove that there are (uaß), a,ß = 1,2,3 such that (kaß ) holds. Since (kaß)

holds for (a, ß, y) G {1,2} U{1,3} , we have to prove that one can find (uaß)

such that the following system holds:

(*123): ÄxÜ23 - Ä2ÜX3 - (Ä3 - D3)lx2 = -\ÜXX,

(*,32): ¿Ä -AA2 - (A2 -D2)Sn = \Un,

(I) (k23X): Ä2Ü3X-Ä3Ü2X - (Ax-Dx)723 = Üxx,

(k233): A2U33 - A3U23 - (A3 - D3)7,23 = 2U3X + Ux3,

(k322): A3U22 - A2U32 - (A2 - D2)7\32 = -2U2X - Ux2.

Condition (k2xx) can be written in the form (k2xx) = (kX32) - (kX23). Indeed

we have

(^.32) - (*133) =   - AÄi + ^2(^13 - íl3) - ^l(^.2 - Í12) + ^2^13 - 53¿12

= -(Äx-bx)l23 + Ä2iJ3x-Ä3ü2x.

It will therefore be sufficient to prove that we can choose uaß such that the

system (zc231) = 2(kX32) holds. This means that

AAx - AAl ' (À - 5.)4 = 2K ^32 - AA2 - (A2 - 5j)í13) S fl:_2 !

for the subsystem {(k233), (k322)} gives (uX2, uX3). We know that the equality

(k23x) = 2(kx32) holds in projection g™_, A gn_3 ; that is, tt(z<:231) = 2n(kx32).

On the other hand we observe that if we substitute for ((Dx ,D2,D3) the new

data (D\ ,D2,D3) with D\ = Dx -r-ad^T0 then the truncated Lie algebra g =

(0„_3,tf/f/) becomes g-(g„_3,^F/) where

Kt,i - (D\>D2>Dï>Ç>\2 ~diXq'^\3 ~dzx0,7,23 -X0,e23 = 1);

therefore if we set A\= Ax+ p0(X0), condition zc231 becomes

[A2(A3 - D3) - (A3 - D3)D2 - {(A\ - D\)](X)

= [A2(A3 - D3) - (A3 - D3)D2 - \(AX - DX)](X) - \p(X)XQ

= p(X)(U23 - {X0).
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By choosing Ü23 = U23 - \X0 the truncated structure (g,p) = (gn_3 ,P0,n¡ ¡)

becomes (g,p) = (gn_3,p0,7t'F,) where

n'ï, = (Ax + p0(X0),A2,A3,Ux2 + (A2-D2)X0,UX3 + (A3-D3)X0,

77     — Ly     i7    — L\^23       2^0' u23 ~ 2>-

The structure (g™_2, Pq) does not change. According to the previous notations

the 1-forms aa G g*_3 as in Lemma 4.1 become

äx =ax + tp(X0,-),       a'2 = a2   and   a'3 = a3.

These new data (K'¡ j,n',F¡) will satisfy all the identities (ka), (kaß) and (kaßy)

that are verified by (IF¡ ,nF¡). Therefore the proof of Theorem 3.1 is ended

by the following lemma.

Lemma 4.3. We can find XQ g gn_3 such that (k23x) = 2(kX32).

Proof. Since n(k23x) = 2n(kx32) it remains to solve the following system:

a2(U3x) - a3(U2x) = (ax - 0,)ç23 = 2[ax(U32) - a3(Ux2) - (a2 - 02)(ç13)];

with aa, Uaß and £.aß in n'¡¡UK'F we get

a2(U3X + A3X0) - a3(U2x + A2X0) - (ax - 6X)(723 - X0) - <p(X0,Ç23 - X0)

= 2[ax(U32 + {-X0) + <p(X0,U32 + \X0) - a3(UX2 - (A2 - D2)X0)

-(a2-62)(7X3-D3X0)]

= 2[ax(U23) - a3(UX2) - (a2 - 02)(c;13) + a3((A2 - D2)X0)

+ (a2-e2)(D3X0) + tp(X0,U32)]

+ ax(X0) + tp(X0,X0)

= a2(U3x) - a3(U2x) - (ax - 0,)(¿;23) + a2(A3X0) - a3(A2U2x)

- (ax - 6X)(X0) - tp(X0,7.23) + <p(X0,X0)

so that by setting (xQ,z0) = (a2(U3x)-a3(U2x)-(ax-6x)(7.23),ax(U32)-a3(UX2)-

(a2 - 02)(¿;13)) we have to solve (for X0\ )

x0 + a2(A3X0) - a3(A2U2x) - 6X(X0) - <p(X0,7.23)

= 2[z0 + a3(A2 - D2)X0 + (a2 - 62)(D3X0) + cp(X0, U32)].

This is an equation in X0 g gn_3 of the form f(X0) = c G R where / G g*_3.

This ends the proof of Lemma 4.3. Therefore Theorem 4.1 is proved.

Theorem 4.1 has great importance. It leads to the Lifting Theorem. The exis-

tence theorem appears like a corollary of the Lifting Theorem. In the following

section we are concerned with the proof of these two results.

5. The lifting theorem and its consequences

5.1. Let g be a (n + 1 )-dimensional nilpotent Lie algebra and let Z (g,R) be

the space of 2-dimensional scalar cocycles of g.   We fix some flag of ideals
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^(0) = 0 3 0„ 3 0„_i 3 • • • which is finer than the lower central series. Let

p G KVf(g) be some complete normal Koszul-Vinberg structure in g. For

every (n + 1)-dimensional ideal a with g„ c 0 let pa be the normal structure

in a which is induced by p. We choose co G Z2(g,R), the 2-forms that co

induces in the g" are denoted co. We consider the Lie algebra g" and take

the pull back of F(g) : F(g'°) = n~x(F(g)), so that we have the commutative

diagram

0«+i

I 1
R

R

We know that (gn, p0) is normal. We shall prove the following theorem.

Theorem 5.1. Let (g,p), the (a,pa)'s and co be as just defined. If the />"

have the [co]-lifting property, then p also has the [co]-lifting property; moreover,

if (9W > Pq) is some normal lifting of p0, we can choose some lifted structure

(9W » Pw) such that the following diagram of Koszul-Vinberg structure is commu-

tative;

,    CO to\

(9n+i,P0)
I    CO      „ft)..

(9    ,P   )

(9n>Po) (9,P).

Proof. We prove Theorem 5.1 by induction with respect to n .

( 1 ) If n = 1, then (g, p) is the trivial structure, for the 2-dimensional

nilpotent Lie algebra g is commutative and p is normal. The trivial structure

has the [w]-lifting property, so that Theorem 5.1 is true if n == 1.

(2) Let us suppose that Theorem 5.1 is true if dim g < nQ + 2 . We consider

the problem for (g, p) with dim g = nQ + 2. Let us consider g as the extension

of R   by gn   and let us write the diagram:

'n0+l

1     1
'no

R¿

R¿

Let p0 be the structure that p induces in gn  and let Oj besóme 1-dimensional

ideal in R2, and a the pull back of a, in g. Then 0 is an («0-l-l)-dimensional

ideal in g with gn   Co.  The structure (a,pa) is normal.   In particular we
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consider the ideal gn+x ; according to the hypothesis, (g„o+, ,p0) has the [co]-

lifting property:

0«0+2

(9no+i,P0) -► (9,P)-

Let p™ be some lifted structure in g"+x c gw . By Theorem 3.1 we can sup-

pose that p" is normal. Then (g" + 1,/?^) induces a normal structure (g" ,p™)

in g™  such that the following diagram of normal structures is commutative:'«0

I    CO CO\

(0„„+l >/>())
I    CO CO\

(0«„+2'/>o)

(0n„>/>o)    -' (flB„+i»/,o)-

Theorem 5.1 is true for the diagram

/    ft) CO\ CO

(0„o+1>/>o) -►     «

1 1
(0«„>/>o)    -► («»/>«)

if a is an (nQ + l)-dimensional in g with g    Co.  Hence we can choose a
«0

normal lifted structure (o   ,pa)  such that the following diagram becomes a

commutative diagram of normal structures

I    CO CO\
—► (a  ,/>0)

I
—♦   (a,Pa).

Now we consider g as extension of a3 = g/gn _,

have the diagram
ft) en

9„

I    CO ft)\

(««o+l'^o)

1
(9no>Po)

by 0„ _, ; therefore we
*«o-l

'«0 0

I     1
0«o-l 0 -> o3-

Since this result holds for every (n + 1 )-dimensional ideal o c g with 0„ C a

we see that (g, p) satisfies the hypothesis of Theorem 4.1. Thus by Theorem

4.1, /? has the [<y]-lifting property. By the virtue of Theorem 3.1 we can choose

p(gü),pb)) suchthat pw is normal. Theorem 5.1 is proved    D

Let (g,p) be a complete normal Koszul-Vinberg structure; let F(g) = g D

■■■ D gK be a flag of ideal such that p G KVf(g). We set g = g/g, ; (g, p) is
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the quotient of (g, p). We fix Dg 2°(g) and we consider the Lie algebras gD

and op . The following diagram is commutative:

0  -►  9D

I        I
0 -> 9d-

Keeping these notations we have

Corollary 5.2. Suppose that (g,p) is induced by some normal structure (g-p, p^).

Then (g, p) has the D-extension property.

Proof. We consider the following commutative triangle of normal structures

(g,p)-^gD

This is exactly the situation of Theorem 5.1. Therefore, p being normal we can

find some normal extension (gD,pD) of(g,p) such that the following diagram

commutes:
(9,P) ->  (9D,PD)

I I
(0-/5) -► (Od'Pd)-

This ends the proof of Corollary 5.2.     D

5.2. The Lifting Theorem. Let g be a nilpotent Lie algebra. If co G Z (g, R),

then every complete normal Koszul-Vinberg structure p G KV(g) has the [co]-

lifting property. Moreover one can choose (gw ,pw) suchthat pw is normal.

Proof. This theorem is proved by induction with respect to n = dim g > 2.

Indeed, if n = 2, the complete normal structure (g, p) is the trivial structure

(g, 0) and it has the [az]-lifting property. Suppose that the theorem is true if

dim g < n0+ I, and let us consider (g,p ,co) with dim g = n0+ I, n0 > 1.

Since (g, p) is normal we fix some flag of ideals F(g) = g D g„o D ■ ■ ■ such that

p G KVf(g). Thus (g,p) induces the normal structure (gno,P0) ■ We consider

the following square:
ft) CO

8/10+1   -> 0

1     I

By the virtue of the "induction" hypothesis, (g„ ,p0) has the [cu]-lifting prop-

erty. Then Theorem 5.1 tells us that (g,p) also has the [<y]-lifting property.
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But Theorem 3.1 says that we can choose (g , p ) such p is normal. This

ends the proof.   D

5.3. Some consequences of the Lifting Theorem. We state the most important

consequence as follows.

Existence Theorem. Each nilpotent Lie group admits a complete normal affine

structure.

Proof. Let G be a connected nilpotent Lie group with the Lie algebra g . Let

F(q) be some flag of ideals which is finer than the lower central series. Let

g, be the 1-dimensional ideal of F(g) - g D ■ ■■ D gk D ■ ■ ■ D g, . If g =

g/g, has complete normal Koszul-Vinberg structures (g,p), then by the Lifting

Theorem, g will have complete normal structures. Therefore it is sufficient to

observe that g/[g,g] has the complete normal structure (g/[g,g],0). Since

[g, g] coincides with some gk, we deduce that g admits a complete normal

structure.   D

Let us finish by pointing out a tautology contained in the previous paragraphs.

Corollary 5.4. Each normal Koszul- Vinberg structure is complete.

Proof. Let (g, p) be a normal Koszul-Vinberg structure and let F(g) be some

p-preserved flag of ideals, F(g) = g D ■ ■ ■ D gk D ■ ■ ■ D gx . Since g, is contained

in the center of g, we have p(gx)g = /?(g)g, = (0). Thus if we set g = g/g,

and if (g, p) is the quotient of (g, p) it is sufficient to prove that (g, p) is

complete.

We iterate this remark by considering g = g/g2 = g/g2 and (g, p) which

is normal. There is some gk such that g/g^ is commutative, therefore the

quotient of p in g/g¿. is the trivial structure (g/gfc , 0) for it must be normal.

Since (g/g^, 0) is complete so must be (g, p), because g is obtained from

(9l9k) by means of central extensions. This proves Corollary 5.4.   D

Appendix

Let (g,p0,7tj ¡) be some truncated Koszul-Vinberg structure in the truncated

Lie algebra (g,KF¡). We set

Kjj = {Da,iaß,elß/(a,ß,y)Gl3},

Let m = #1. The canonical basis of Rm is denoted (e ) c/. If / = /, we
• F

shall give the formula which defines the Koszul-Vinberg structure (g,p0,n¡ ¡)

in the Lie algebra (g,KF¡). We define the linear map D: Rm -» 3¡^(g) by

setting

DÍyXe) = yx D .I  /   >    a  a J '   j    «    a
\a€I J «€/
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We define also the skew symmetric bilinear map Q:RmxRm-tg by putting

n(x,y) = 1£xayßiaß.

We also define the skew symmetric product in Rm by setting

[x,y] = J2elßxayßey.
aßy

The condition (c,yo)aßy tells us that the bracket [x,y] satisfies the identity of

Jacobi, so that Rm becomes Lie algebra, we denote it a. The conditions (Caß)

and (Caßy) give the following:

[D(x), D(y)] = D([x,y]) + ad Q(x, y),

D(x)Q(y,z) -D(y)Q(x,z) + D(z)Q(x,y) - Q([x,y],z)

+ il([x,z],y) -Çî([y,z],x) = 0   if (x,y,z) G Rm x Rm x Rm.

Therefore the vector space g x Rm has the following Lie algebra bracket:

[(X,x),(Y,y)] = ([X,Y] + D(x)Y-D(y)X + Q(x,y),[x,y]).

Now, we define the following maps:

p : a -> gl(a)   is given by   p(x) • y = J^ vißxayßey

a,ß,y

We see that p(x)y - p(y)x = 2Zaßy^aßxayßey = [x,y]. The condition

(zc( 7o)a ß y implies that p is linear representation of o in Rm , so that (a,p)

is a Koszul-Vinberg structure in a. We define the bilinear map <f> : a x a —► g

by putting

<p(x>y) = J2xayßuaß-
aß

Then <p(x ,y) - <p(y ,x) = Q(x ,y). Let A: a —* EF(g) be the linear map given

by A(x) = J2 x A   .j \    /        ¿—ra     a    a

Now we define the following product in g x a :

\p(X,x) • (Y,y) = ((p(X) + A(x))Y + (A(y) - D(y))X + cp(x,y), p(x)y) \

The condition (ka) and (kaß) imply that the above product satisfies the fol-

lowing condition

p(X,x) ■ (Y,y) - p(Y,y)(X,x) = [(X,x),(Y,y)].

By applying (kaß ) and (k, )aß one sees that the linear map p: g x a —>

g/(g x a) is a linear representation of g x a, so that (gxa,p) is Koszul-Vinberg

structure and moreover, the sequence

0 - (g,p0) -► (0 x a,p) -> (a,p) -► 0

is an exact sequence of Koszul-Vinberg structures. We observe that the condi-

tions (ka), (kaß), (kaßy) and (k,yo)aßy imply the conditions (na,naß and so

on) that I gave in [9].
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