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TOTALLY CATEGORICAL STRUCTURES

EHUD HRUSHOVSKJ

Abstract. A first order theory is totally categorical if it has exactly one model

in each infinite power. We prove here that every such theory admits a finite

language, and is finitely axiomatizable in that language, modulo axioms stating

that the structure is infinite. This was conjectured by Vaught. We also show that

every N0-stable, N0-categorical structure is a reduct of one that has finitely many

models in small uncountable powers. In the case of structures of disintegrated

type we nearly find an explicit structure theorem, and show that the remaining

obstacle resides in certain nilpotent automorphism groups.

1. Introduction

A sequence of fundamental papers in model theory has given rise to an un-

derstanding of the totally categorical structures as those structures that are co-

ordinatized (in a certain precise way) by a projective space over a finite field (or

in the degenerate case by a pure set). Much of this work was motivated by a

conjecture of Vaught: a totally categorical theory can be axiomatized by a finite

set of sentences that has arbitrarily large finite models, together with axioms

stating that the intended models are infinite. The part stating that every finite

set of axioms does have a finite model was settled in [Z] and refined in [CHL].

§2 of the present paper proves the conjecture in full. In particular, it follows

that the class of totally categorical theories is countable.

In [CHL], the context of research was shifted from totally categorical the-

ories to N0-categorical, N0-stable ones; those theories whose models are coor-

dinatized by a collection of projective spaces over finite fields and degenerate

spaces (rather than just one). Lachlan proved that in the disintegrated case,

where only degenerate spaces occur, these structures are precisely the reducts

of the totally categorical ones [L]. In §3 we prove the corresponding result in

general: the N0-stable, N0-categorical structures are precisely the reducts of

N0-categorical structures whose theories have finitely many models in some un-

countable power. The number of dimensions of the expanded structure will be

the number of distinct primes occurring as characteristics of finite fields asso-

ciated with the projective spaces in the original structures. The main point of

the proof is a trick needed to negate the effect of finite Galois groups.
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The theorem of § 1 implies that there are only countably many KQ-categorical,

K0-stable theories, but gives no explicit structure theorem. In §4 we attempt to

give one, assuming that the coordinatizing strongly minimal set is disintegrated.

(Most of the results require only the weaker assumption that no affine spaces

are present.) We give an explicit construction of a certain class of disintegrated

totally categorical structures. It falls short of containing all of them, but not

by much: every disintegrated totally categorical structure expands to a member

of the class by simply naming a finite set of parameters. (In particular, we

obtain a direct proof of the original Ahlbrandt-Ziegler result in this case.) We

also show that the information lost in the naming of parameters is controlled

by nilpotent automorphism groups. As a corollary, the automorphism group

of such a structure has a finite Jordan-Holder decomposition (as a topological

group) in which each of the components are of a known type.

Aside from the basic results that set the groundwork (Morley, Baldwin-

Lachlan, Zilber, Cherlin-Harrington-Lachlan), this paper has several direct pre-

cursors. The basic idea of §2 originated with [A-Z], where the conjecture was

proved in the almost strongly minimal case. Lachlan then proved the finite lan-

guage result for structures of disintegrated type. The common generalization

was then achieved by Cherlin, who proved both finite language and quasi-finite

axiomatizability for the class of N0-categorical, N0-stable structures of modu-

lar type. (One needs to redefine quasi-finite axiomatizability in this context to

take into account the existence of several dimensions.) The basic setup for the

general proof was already present there.

§3 generalizes a result from [L]. §4 can also be viewed as strengthening [L],

for example the result there that every totally categorical structure of disinte-

grated type is interpretable in a dense linear ordering. It seems clear that every

K0-categorical, N0-stable structure of modular type is interpretable in a finite

disjoint union of universal locally lexicographically ordered vector spaces over

finite fields; see [T]. This will not be pursued.

The notation is from [CHL], and the basic facts proved or assumed there are

assumed here also, (d x)<p(x ,y) denotes the /z-definition of <p .

Greg Cherlin helped with this paper in many ways other than the obvious

debt to his [C]; I would like to thank him.

2. Finite language and axiomatizability

Theorem 2.1.  (a) Let M be ^-categorical, unstable. Then M admits a finite

language.

(b) If a finite language is chosen for M, then the theory of M is quasi-finitely

axiomatizable.

A theory T is quasi-finitely axiomatizable iff there exist a finite TQ c T

and a finite number of axiom schemes of infinity true in models of T, which

together axiomatize T. An axiom scheme of infinity is a collection of axioms

that assert for certain formulas ç and D that in any model of T, if |= <p(b)
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then D^ is infinite in M. (Here D = D(x,y), D^ = {x:\= D(x,b)}, and

imaginary sorts are allowed.)

Remark 2.2. One an restrict the allowable sorts in various ways without chang-

ing the content of the definition. However, unless certain axiom schemes of

homogeneity are added, it is not in general enough to have axioms stating that

each class in one O-definable equivalence relation is split into infinitely many

classes by a second one.

If T is totally categorical, it is easy to see that the only axiom scheme of

infinity needed is the one stating that the model is infinite.

The theorem will be proved by the Ahlbrandt-Ziegler method. It also owes a

large debt to Cherlin's [C]. The fine structure of N0-categorical, N0-stable models

is hardly used at all. Indeed, it seems that no truly essential use is made of our

knowledge of the identity of the strictly minimal sets involved, except for the

fact that they admit a quasi-well-ordering.

After replacing M by a bi-interpretable model, we will define a partially

ordered set n and an order preserving map U:p i-> U of (n, <) into subsets

of M, satisfying the following conditions:

(CO) (Normality) The action of Aut(Af) on M extends to an action on

(n, <,u,M).
(Cl) (n is ample) (a) IT. has a least element, whose image is 0, and a

greatest, with image M.

(b) If p < q then there exists p with p < p < q such that U , = Up U {a}

for a singleton a. Moreover, one may choose tp(a/U ) to be either algebraic

or strongly minimal.

(c) Any increasing sequence px < p2 < ■ ■ ■ in YI has a least upper bound

p Gil; and U   is the union of the U  's.

(C2) (Quasi-well-foundedness) Let W be the range of U. For any finite

F g M and any SX,S2, ... gW there exist i < j < w and an isomorphism

h of M such that h fixes F pointwise and h(St) c S..

(C3) (Uniform finite language property) There exists a finite set L of 0-

definable relations such that for any S gW , any map h:S —► M preserving

the relations in I is a partial elementary map.

(C4) Every S gW is a definable set.

The "moreover" clause of (Cl)(b) creates a somewhat artificial distinction

between different Morley ranks. The only reason for this discrimination lies

in the definition of quasi-finite-axiomatizability, which says something about

formulas of rank 1 only, and thus creates an asymmetry. We will not need this

clause until the very end. (C4) is not necessary for the finite language result, and

is too weak for the finite axiomatizability (we will need a sharper version); but it

seems reasonable to include it. (C3) will immediately be seen to be redundant.

Lemma 2.3.   (C0)-(C2) imply (C3).

To prove this we need a "downward Lowenheim-Skolem" principle.
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Lemma 2.4. For each integer k there exists an integer X = X(k) such that for

all S gW and all k-element subsets F of M, there exists a subset H of S

of cardinality at most X such that:

*(F,S, H): F n S C H, F ,S are independent over H and

tp(F/S) is the unique nonforking extension to S of tp(F¡H).

Proof. Fix F . For S G W , let X(F, S) be the least possible cardinality of a

subset H suchthat *(F,S,H). Suppose X(F ,S) can be unboundedly large.

By Ramsey's theorem, one can then find a chain Sm (m G œ) of elements

of W such that X(F,Sm) > m, and either each S¡ embeds into Si+X by a

partial elementary map fixing F, or no S¡ embeds into any S¡ (j > i) in

this way. The second possibility contradicts (C2) directly. So replacing each

S¡ in turn by a conjugate copy over F , we may assume that the S- 's form an

increasing chain, with union S (say). By ¿^-stability it follows that for some

z0, *(F,S¡o,S) holds. Therefore if *(F,H,Sio) then *(F,H,S¡) holds forall
i > iQ . Hence X(F ,S¡ ) > X(F ,S() for each i, a contradiction. Thus X(F ,S)

is bounded by some X(F). Since X(F) depends only on tp(F) and there are

only finitely many possibilities for tp(F), X can be chosen to depend on k

alone.

Let A = A(l), and let L be a finite set of relations containing a logical

equivalent to every zc-ary relation for k < X + 1 . I claim that this L satisfies

(C3). We will show that if C is a large, saturated elementary extension of M,

S = U , and h:S —► C preserves the relations in L, then h is elementary.

By (Cl)(c) and Zorn's lemma, one can find a ö-maximal q G U such that

q < p and h\U(q) is elementary. Let T = U(q). h\T extends to an auto-

morphism of C . Without loss of generality, h is the identity on T. Suppose

for contradiction that T ^ S. By (Cl)(b) there exists a G S - T such that

Tö{a}GW. Replacing M, S, T by h(M), h(S), h(T) and h by h~x if

necessary, we may assume that rk(a/T) < rk(h(a)/T). By Lemma 2.4, there

exists F c T with card(F) < A such that tp(a/T) is the unique nonforking

extension of tp(a/F). As h preserves L, tp(h(a)/F) = tp(a/F). Because of

the rank inequality, h(a) must realize the unique nonforking extension T of

tp(a/F). Thus h\Tl> {a} is elementary, contradicting the maximality of T.

Thus T = S, so h is elementary.   D

In particular, this proves that part (a) of the theorem holds, assuming the

existence of a good collection W. To prove part (b), and to find n, U, W,

we need to change M slightly. By Lemma 3.8 we may assume momentarily that

M has a unique 1-type. Let c realize this type. By repeated applications of the

coordinatization theorem of [CHL], there exists a sequence a{, ... ,an such that

C e dcl(an) and tp(a(+1/{a,, ... ,a¡}) is strictly minimal or algebraic for each

i. Replacing ai+x by (ax, ... ,a(,a(+1), we may assume that ai G dcl(a;+1)

for each /'. Let r¡ = tp(ax, ... ,a¡), and let L(ax, ... ,a,-_,) = {(xx,... ,x¡)\=

r¡:Xj = a   for j > i}.   There are four possibilities for L(ax, ... ,a¡_x):  it
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may be modular and orthogonal to each L(ax,... ,a, j) for j < i, it may be

modular but nonorthogonal to some previous L(ax, ... , a, , ) ; it may be affine;

or it may be finite. The cases do not depend on the choice of ä \= r, so they

give a partition of {1, ... , n} into four sets, which we will call 7new, /old , 7afn

and 7fin , respectively. We make the following further requirements. If i G 7afn

then the corresponding projective space should already have been encountered

as L(ax, ... ,a. ,) for some j < i. If L(ax, ... ,at) = P is a projective space

over a field F , then F can be considered as a (finite) definable subset of M ;

an element of F can be taken to be a certain equivalence class of 4-tuples from

P. We require that each element of F be definable over ax, ... ,aiX. The

effect of this is that for any tuple 3c from P, tp{x/ax ■■■aj_x) is stationary.

For / G 7newU7old U7afn , let a(i) be the least j < i such that L(ax, ... ,«,_,)

is nonorthogonal to L(ax, ... ,ctj_x) (if a |= rn ).

We will work not in M but in M*, the «-sorted model whose sorts are the

solution sets to rx, ... ,rn. As M and M* are bi-interpretable, the transition

can be made. N0-stability, N0-categoricity, and quasi-finite axiomatizability are

invariant under this transformation, the last essentially by definition. M* has

a natural tree structure: a node of height k is a realization of rk . The branches

correspond to realizations (ax, ... ,an) of rn , ordered by ax < ax < ■ ■■ < an .

We will sometimes think of the tree as having a root, a formal element which

will always be denoted aQ. From now on we assume that M = M*, i.e. that

one has types r¡ and a tree structure satisfying the above requirements. Having

moved from M to M *, we will not make further use of imaginary elements.

Property (C2) will ultimately come from the following lemma, which in turn

is a translation of a combinatorial lemma of Higman's. It is essentially equiv-

alent to the existence of a good enumeration of a projective space, proved in

[A-Z], but does not appear to follow directly from any statement there. The

proof will be given at the end of the section.

Lemma 2.5. Let P be a projective space over a finite field. Then there exists an or-

dering of P of order type œ with the following property. Let xp = (xx, ... ,x")

be an n-tuple of elements of P for p = 1,2, ... . Then for some p0 < px there

exists an order preserving elementary embedding h:P —» P with h(x  ) = (x  ).

The same lemma holds trivially for a disintegrated strongly minimal set,

taking any ordering of order type co. To avoid mentioning this case explicitly

we will consider such sets to be degenerate projective spaces, over a "1-element

field".

For each finite field F, fix a countable-dimensional projective space (P, <)

over F , ordered as in the lemma. An ordering isomorphic to (P, <) will be

called standard. Given such an ordering on P, let P3 be ordered as follows:

(a,b,c) < (a ,b ,c )   iff   (ma\(a,b,c),a,b,c)
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precedes (max(a ,b',c'),a ,b',c') lexicographically. So P3 also has order-

type o), and every order-preserving embedding h:P —► P induces an order-

preserving map P  —* P .

Claim 2.6. (a) Let ¡' e /af[l. Then there exists a (i;+3)-place0-definablemap fi

with the following property. Given (ax,...,ai) \= r¡, let P =

L(ax, ... ,flQ(/)_|), L = L(ax, ...,a(_,). Let / be an enumerated affine line

in L. Then the map nx:P —> L defined by: n(x) = ft(l,x) is well defined

and surjective.

(b) Let i G IoXd. Then there exsits an (/'-1 )+1-place 0-definable map f such

that for any â = (a,,... ,a,_,) |= r._,, if ; = a(i), P = L(ax, ... ,aa{j)_x),

and L = L(ax, ... ,aix), then the map 7t-:P^>L defined by n(x) = ffé^)

is surjective.

Proof, (b) is obvious. To prove (a), let ax, ... ,ai and / be given, and let

b , b be the first two points of /. Let L be the projective space of directions

in L. For any x G L - I, let o!(x) be the direction from b' to x, and let

a(x) = (a (x),a (x)). Clearly a is a 1-1 map of L -1 into L . So a~x is

a map defined on a certain subset of L , onto L-l. It is easy to doctor a

so as to get a map of L onto L. Composing with the projection n:P -» L

obtained as in (b), we get a map P  -» L . The process was uniform in ä, /.

Definition 2.7. We will first define a collection 3^ of subsets of M . Each U G

W0 will have a certain characteristic subset of U called the ease. The base will

have the form 50u{a0}u5,U{fl1}U---uSA. for certain sets S¡ c {x G U:x \= r¡}

and certain distinguished elements a.. Let < denote the tree ordering of M,

described previously. If U = M then S0 = {a0} and k = 0. Otherwise,

S0 = 0, and a0 is the root of the tree. Assume 5• and a. have been defined

for j < i. Let S¡ = {x (= zv: a;_, < x, and whenever j»c<yeM, ye(/}. In

order that £/ be in W~0,v/e require that either Un{x:x > at_,} is precisely the

upward closure of Si in the tree, or else there exists a unique element ai f= ri,

a i > ß,_i > such that every element of U above a(_, lies above an element of

5( u {a7). The definition of the base stops when the first case occurs. The base

has actually been defined as a structured set (a0,Sx,ax, ... ,Sk ,ak), and we

will treat it as such.

Definition 2.8. We now define II, U and W . n is the set of all objects of

the form p = (Sx ,ax, ... ,Sk ; T{, ... , Tk ; <,,..., <k ;/,,... ,lk), satisfying

the following. (5, ,ax, ... ,Sk) are the base of some set U G WQ . Clearly

U is uniquely determined; by definition this is U(p). <¡ occurs in p only

if i G 7new ; in that case it is a standard ordering of L(ax, ... ,at_x).  If i G

7new U 7old '   T,   ÍS a Sut)Set °f  L(fll ' • • • >aa{,)-0 ; if  ' G 7afn ■   Ti   ÍS 3 Subset °f

L(ax,..., aoii)_, )3. If i G 7new u 7fin, T, = S,. /, occurs iff i G 7afn , and then

it is an ordered affine line from L(ax, ... , a _, ). The main conditions: for z e

7new u 7oid u 7afn ' eacn ^z *s an initial section of the ordering on the appropriate
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set, and S¡U{a¡} is the image of T¡ under f¡(l,-) or f(ax, ... ,at_x _). This

defines n and W as sets. The ordering on n is defined as follows, p <p  if

Un c U„,, and for each /', if a. = a. then <,,,=<',, or I... = /'     (at most
p       p' ' J j      j j+l     j+l        j+l      j+l

one of these conditions can apply).

We proceed to prove that (n, V ,W) satisfy conditions (C0)-(C4). (CO) is

obvious. So is (C4), but we record a more precise version.

(C4#) Given U G W one can canonically define a finite set B = base(U) ç

U . B decomposes canonically into a "bounded part" av and a "monotone

part" T. This means that base(U) = {a0, ... ,a^ U Tv , where i is bounded

independently of U, and if av = a~v,, then U c U' implies Tv c Tu,.

Further, U is definable from B: there exists a formula <p(x ,y) such that

U = {x: <p(x, y) holds for some y G Tv} u {a0, ... , a(} .

That (C4#) holds in M is clear: letting base(U) = S0 U {aQ} U • • • u Sk , the

bounded part is {a0, ... ,ak_x} and the monotone part is S0U SXU ■■■L)Sk .

<p(x,y) says that x is above y in the tree ordering.

Lemma 2.9.   (U,U) satisfies (Cl).

Proof. (Cl)(a) and (b) are easy. To prove (Cl)(c), let px < p2 < ■■■ in n.

As a matter of notation, let superscripts and brackets commute in expressions

such as

P  - (So, <2n, ... , S. ; T. , ... , Tk ; <,,..., <,;/.,...,/,) .

Let

PJ\i = (■V'V ••• 'Si'Ti ' ■■■ >T7' <i - •■• ' <i>(i> ••■ '',) '

and let i be the largest integer < k such that the sequence (pJ\i) is eventually

constant. Call its eventual value (p\i)°° . If i = k there is nothing to prove, so

assume i < k . Note that a\ must also have a constant value a°° eventually:

if p\i = p'\i but ¿r° ,¿ ap{ then p ,p are incomparable in Ö. Our choice for

the limit of the pJ 's is

, c,oo        oo     Ooo OO        „OO f    oo1      ^.OO ^,00
/z = (,S0  ,a0 ,5,   , ... ,a¡_l,S¡   U{a¡ };TX   ,...,T¡   ;

OO OO       jOO fOO\
<, ,..., <, ;/, ,...,/, )•

It follows from the definition of the base of a set that Sj , ç SJ^I ç • • •   for

large enough j . We need to distinguish three cases.

If i+l G 7fin . Since T¡+x = S. . and <¡ ,,//+| are undefined for z'+l e 7fin,

it follows that (pJ\i + 1) converges also, contradicting the maximality of i.

If i + l G 7new . By the definition of the ordering on P, <Jj+x is eventually

constant (as soon as a!i is). So SJj+x is an initial section of <°^, . Since

this ordering has order type to, there are two cases: either the value of SJj+x

stabilizes eventually, or else the union of the Sj+i 's is L(a^° , ... ,a°°). In the

first case, pJ\i + 1 stabilizes, a contradiction. In the second, a straightforward

check shows that (p|z)°° satisfies the requirements.
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If i + 1 G 7afn or 7Qld . Then a(i + 1) < i, so the relevant ordering <LÍ+1)

stabilizes. By the definition of the ordering on n, If,, also has a constant

value eventually in the affine case. Thus for large j, SJj+x is the image of T¡+x

under a fixed function. Since Tj+i is an initial section of <^?(+1) for large j,

the same argument as before works.

Lemma 2.10.   (C2) holds.

Proof. Define partial orderings " <     (up to k )" on YIxMr as follows, (p, c)

<w (p ,7) (up to k)iff:

(i) for i <k, of = of ' ; also /f = /f ' when z e 7afn, and 7* = Tf' if

(ii) For each i such that a(i) <k, Tf ç Tf'.

(iii) Let 77 = L(a0) U L(a,) U • • • U L(ak). Then tp(c/77) = tp(c/H).

Claim. For each i, (*(.) holds:
12 12

(*,-) Given /? ,/? , ...eu and tuples c , c , ... from M of equal length,

there exists an infinite X c œ and isomorphisms hJ of M for j g X, such that

if j<f GX, then hJ(pj ,cj) <w hj'(/ ,cf) (up to i ), and hj(cj) = hj'(cj').

Proof. Assume inductively that (*,_i) holds. Let ¿   be the concatenation of

cJ, a\, l\ if i G 7afn , and an enumeration of Tf if i G 7fin . Applying (*,-_,)
12 ,  i'    j2 ., 1   ^w     2  ^w      3   -.to

to p ,p ,...  and íz ,d ,...  we may assume that p   <    p   <    p   <    •■•

(up to í - 1 ), that all the c¡ 's are equal to some c, that a] = a¡, Ij = /, (if

i G 7afn), and Tf = T. (if i G 7fin ). If i G 7fin U7old u 7afn then it follows directly

from the definition that o   <w pJ   (up to i ) whenever j < f.  So the only

case of interest is i G Inev/.

By Ramsey's theorem, it suffices to show that (in any infinite subsequence of

the pJ 's) one may find j < f and an isomorphism h of M such that h(c) = c

and pj <w h(pr) (up to i).

Let 77 = L(a0) U L(ax)U • • • U L(ai_x). By definition of 7new , P = L(ai_x)

is orthogonal to 77. Moreover, we have assumed that each element of the

underlying field of P is definable over aQ, ... ,a¡_x. It follows that every au-

tomorphism of P over a0, ... ,ai_x is an automorphism over 77. (One needs

to know that every type of a tuple from P is stationary over aQ, ... ,a¡_x . See

the proof of 3.11 (d). Since the orderings <\ of P are of the same isomorphism

type, we can find isomorphisms of M fixing 77 pointwise, and carrying one to

the other. We may thus assume that <] is always the same standard ordering

< of P . In doing this we lose the assumption that c' and a\ do not depend

on j, but we still have (p1 ,cJ ,a\) <w (pJ ,cJ ,aj) (up to i-I) for ; < / ,

since the automorphisms fix 77.
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Let ëx be a tuple from P and e~ a tuple from 77 such that tp(c ¡1 e) \-

tp(c'/77 U 7*). They exist by w-stability, since 77 u P is definable. Since each

c1 is conjugate over 77 to c1, we can find e~j for each j so that tp(cJ/eJ) \-

tp(cJ/H U P). (ë and the length of ëJ are constant.) Let / = {i':a(i') = i} .

For Í G J, Tf, is an initial section of (P, <); say Tf, = {x G P:x < bj,} . Let

V = (b\,:i GJ).
By Lemma 2.5, there exists j < j   and an order-preserving elementary map

h0:P -» P with h0(ëj) = ëf and h0(bJ) = V'. So h0(TJ,) c T¡ for each

i' G J. As the TÍ 's are finite, one can find an isomorphism h of P over

(a0, ... ,a¡_x) (not order-preserving) such that h and h0 agree on the Tj, 's

(/' G J), a\ and eJ. By a remark made earlier, h may be extended to an

isomorphism of M fixing 77 pointwise. So

(h(pj),h(c>),h(a{)) <w (/ ,cf ,a{)   (up to i - 1).

It follows that

(h(pj), h(cJ), h(aj)) <w (/ 7c4', a{)   (up to i).

Conditions (i) and (ii) are immediate from what has just been done. Condition

(iii) reads tp(h(cJ)/H u P) = tp^'/H U P). This follows from the fact that

h(e) = 1 and h(ëJ) = h0(eJ) = e~J , together with the choice of ë], ë. This

proves the claim except for hie1) = c1 . By condition (iii) there exists an

automorphism fixing HliP and carrying «(c7) to c1 . Composing with it

finishes the proof of the claim. The lemma follows by applying the claim with

i = n and all the c1 equal to an enumeration c of F .

We proceed to find a set of axioms for the theory of M. We first define an

appropriate language L, using a slight refinement of (C3).

Fact 2.11. (a) There exists an integer A > n + 1 such that for any U G W , if A

is the base of U then tp^) h tp(^). (tpA(y) = IJ{tp(yo): yo c Y >card(yo) ̂
A+l}.)

(b) There exists an integer p = p(2X) such that for any 2A elements of any

U gW lie in some U' G W with U' c U, and such that the base of U' has

at most p elements. The base of U' can be chosen to have the same bounded

part as the base of U, and hence base(lf') c base(U).

Proof. We need the following variation of Lemma 2.4. (a) follows from it in

much the same way as 2.4 gave (C3) (with A = A(l)), but a little more care is

needed at limits. Let a section of a base {<z0} u Sx u {¿z,} U • • • u Sk be a subset

of the form {a0} USXU---US¡ or {aQ} U Sx u • • ■ U S¡ U {a¡} . Then the correct

inductive hypothesis is this: for each p GÏI, each section X of the base of

U(p) satisfies: tp¿(.Y) h tp(X). This goes through at limit steps because if

pn—*p in n, then for all sufficiently large a, the base of U(p) is a section of

the base of U(pa).
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Lemma 2.4 '. For each integer k there exists an integer X(k) such that for all

U gW and all k-element subsets F of M, there exists a subset 77* of U of

cardinality at most X(k) such that with H = 77* nbase(C/),

(i)   F n U c 77*, F ± U\H* and tp(F/S) is the unique nonforking exten-

sion to S oftp(F/H*).
(ii)   tp(F/base(U)) is the unique nonforking extension of tp(F/77).

Proof. Fix F ,i, and an i -tuple a. Let W(a) = {U G W : the bounded part

of base(U) is a}. For U G W(a) let X(â~,F, U) be the least integer A such

that there exists an 77* of cardinality A satisfying (i) and (ii). One proves

that A is bounded as in Lemma 2.4, but taking the embeddings over au F.

(The point is that if Ux c U2 c • ■ • and each If' is in W(a), then by (C4#)

base( U ) ç base( U ) ç ■ ■ • , so by «-stability, there exist j < f < œ such that

tp(F /base(UJ )) is the unique nonforking extension of tp(F/base(UJ)) and

tp(F/UJ) is the unique nonforking extension of tp(F/UJ ).) X apparently

depends on a and F, but as ä is at most an n -tuple and there are finitely

many n + zc-types, it depends on k = card(7r) alone.

(b) is proved in exactly the same way, letting p(F ,a~,U) be the least integer

p such that for some U' G W(a), U' ç U, F ç U1, and the base of If' has

at most p elements. Then p(F ,a,U) is bounded for fixed F and a, and one

lets p(2X) = sup{p(F,a, U):card(F) < 2X}.

Let A = A(l) and p = p(2X). Choose a finite language L for M such that

every atomic relation of L has arity A + 1 , and every definable relation of arity

A + 1 is equivalent to an atomic relation of L. The only function symbols of

L are to be the restriction maps r¡+, —► r•.  This automatically gives a tree

structure on any model M of L. (The loci of the rj are the only sorts, so

they give a partition of M, and one can define a partial ordering by: x < y iff

x G r., y Gr., j > i, and x is the image of y under the restriction map from

r. to ri.) So we can define W0(M), and the base of an element of W^M), as

in Definition 2.7. Note that (C4#) holds for W0{M).

Axiom Group I. State the cardinality of finite sets definable with < A elements.

For every pair of atomic formulas <p(x ,y) and y/(y) (so length(y) < A), if

M \r- (Vy)(ip(y) -* (3mx)<p(x,y)) for some m , then this sentence is an axiom.

Axiom Group II.   L(ax, ... ,at_x) is infinite (i & 7fin).

Axiom Group III. Suppose U G W has a base A of cardinality at most p,

and b is a A-tuple from U. Let q, r be partial ¿z-definable atomic types over

U. This means that there exists a function tp(x,y) t-> (dqx)<p(x,y,z,A) from

atomic formulas to formulas, such that q has the form

q = {(p(x,c):c from U, and (= (dqx)q>(x,c,b,A)}

(and similarly for z*). Assume q V- r. We will add an axiom to describe this

situation.
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U is a definable set in M, and hence can be considered as an K0-categorical

structure in its own right, with the full structure induced on it by M. De-

fine a [/-restricted formula to be a formula obtained from the atomic rela-

tions using Boolean operations and the quantifiers: (3x G U), (Vjc g U). By

(C3), every relation definable on U as a subset of M is in fact definable from

U with the L-structure alone; i.e. it is equivalent to a [/-restricted formula.

In particular, for each atomic <p(x ,y), there exists a [/-restricted formula

<p*(y,z,A) equivalent to (y,~zG U and (d x)tp(x ,y ,~z, A)) (similarly for r).

In addition, there exists a [/-restricted formula p(~z,A) that isolates tp(b/A).

By Fact 2.11, the atomic type of A implies the full type of A. It is therefore

the case that for every U' G W^(M), if the base A1 of If' realizes the atomic

type of A , then for all b G If' ,if \= p(b , A) then for all x G M, if for every

atomic tp , (p(x,c) holds for every c such that \= <p*(c,b ,A'), then for every

atomic <p , (p(x ,c) holds for every c suchthat \=<p*(c,b ,A'). This is a single

sentence which we call an axiom. Note that altogether we have finitely many

such.

We need to prove that this axiomatizes M in the language L. Let M

be another model of the axioms. We will build an isomorphism from M to

M. This will be done by induction. We will find a continuous, increasing

sequence p(a) of elements of n, and a continuous chain of maps ha: U,, —►

M, satisfying:

(i) The hQ preserve the atomic relations of L.

(ii) The image under ha of V , , is in WQ(M), and the base of the image

of [/,q) is the image of the base of V ,a).

In particular, it follows from (ii) that if U ., = M, then the image of

M under ha is the unique member of WQ(M) whose base is the singleton

set consisting of the root of the tree, i.e. M itself. Thus h , , will be an

isomorphism. So we only need to show that the chain can be continued until

the domain becomes M.

Note that (i) is trivial at limit stages, and (ii) at successor stages. We first

deal with the successor case. The image under h of an object X associated

with M will be denoted X.

Claim 2.12. Let h:U -> M satisfy (i) and (ii), where U = U(p), p Gil,

base(U) = {a0}uSxö-■ -u{ak_x}uSk . Suppose/z+ en, p+ >p, U+ = U(p+),

base([/+) = {uo/US^ u ••• U {ak_x} uSk u{at}U0 or k = n, base([/+) =

{a0} U Sx U ■ • ■ U {ak_x} U^+, Sk = Sk U {ak} . Then h extends to a map on

U+ satisfying (i) and (ii).

Proof. Consider tp(ak/U). By stability it is a definable type. Let r be the

set of atomic formulas in this type.  By Lemma 2.4, there exists a A-tuple b
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from U such that tp(ak/U) is the unique nonforking extension of tp(ak/b).

It follows directly that r is ¿-definable

Let (p(x ,b) be an atomic formula isolating tp(ak/b). Let q(x) = {tp(x ,b)}

if tp(x/b) is algebraic. If tp(x/b) is strongly minimal, let q(x) = {q>(x ,b)} U

{~ 6(x ,c):c a A-tuple from base(U), and 6(x ,c) is an atomic formula with

only finitely many solutions}. In this case we can simply choose b = ak_x,

<p(x, b) = (x G L(ax, ... , ak_x)). q isa ¿»-definable atomic type in either case.

We will show that q \- r and q is realized in M. An axiom in group III implies

that any realization of q in M realizes r. This proves that h can be extended.

(The statement before the last may require clarification. Consider sets [/' ç

U, [/' e W whose base has cardinality < p and the same bounded part as

base([/), and with b ç [/'. The proof that q Y- r will of course show that

q\U' \- r\lf' for any such [/'. So some axiom from group III will state that the

type over u defined by the image of the definition of q under h implies the

type over u defined by the image of the definition of r. Since the definitions

are in terms of restricted formulas, and h is at any rate an isomorphism of U

with Í/', the types in question are q\u and r\u , respectively. So q\u \- f\Ü'.

By 2.11(b), r = \J{r\U':U'}, so r = \J{r\Ü':U'}. Letting [/' vary we get

qr-r.)

In the algebraic case both claims are clear. So assume we are in the strongly

minimal case. Let X = L(ax, ... ,ak_x) n acl(U). X is a base([/)-definable

subset of L(ax, ... ,ak_x), so it is either finite or cofinite. In the second case,

the finite subset of L(ax, ... ,ak_x) missed by X is c acl(base(i/)) ; since

X D acl(base(i/)), we must have X = L(ax, ... ,ak_x). But this contradicts the

fact that tp(ak/U) is not algebraic. Thus X is finite; being base([/)-definable

it is contained in acl(base([/)) ; so X = acl(base([/)). Now if a (= q then by

Lemma 2.4' a is not algebraic over base(i/). It follows that a & acl(U), so

a \= r. This shows q \- r. The fact that q is realized in M is obvious from

Axiom group II.

It remains to deal with the limit case. It is clear that this has no chance of

working if the choices in the successor case are carried out randomly. So fix in

advance a well-ordering of M of order type w. Each time one has a choice

about extending h  , make the least possible one.

Fact 2.13. Let pa, and ha be defined for a < a*, satisfying (i) and (ii). Let

p be the least upper bound of the pa 's, and let h be the union of the ha 's.

Assume the hit 's have been defined as stated in the previous paragraphs for

successor a < a*. Then p and h satisfy (i) and (ii).

Proof. Recall the proof of (Cl ). Say pa = (a% ,5", ... , ak{a) ,Sk{a) ;•••)• Let

i be the largest integer such that a'¿ ,S" , ... ,S°_X ,a"_x eventually settle down

(say to a0,SQ, ... ,Si_t, a¡_, ). Then L(a,, ... , a¡_, ) c U(p), and the only

problem is to show that L(á,, ... , ä   , ) c U(p).
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Note first that L(äx, ... ,äi_x)r\aclL(Ü(p)) = L(äx, ... ,ai_x)r\Ù(p). For

if Je e L(äx, ...äiX) and M |= tp(x ,c), where tp is atomic and algebraic and

c is a A-tuple from Ü(p), then we have c = h(c) for some A-tuple c from

U(p). <p(x,c) has exactly m solutions for some m. All of these solutions lie

in U(pa) for some a < a*. By an axiom in group I, <p(x ,c) has precisely m

solutions in M. It follows that all m lie in U(pa), hence in U(p).

Now distinguish two cases. It may be that for some a < a*, L(ax, ... ,at_x)

C acl(U(pa)). In this case we are immediately finished. So assume otherwise.

Let a be the least element of L(ax, ... ,ät_x) - U(p). So all the preceding

elements are in Ü(pa ) for some a0< a*. Choose aQ large enough so that for

a>a0, pn = (a0,S0, ... ,S¡_x,ai_x ,5",etc.) for some S" . Let X0 = acl^U

■ ■ • u^,_i) > and let T" be the tree-upward-closure of S" . Then base(U(pa)) ç

X0uTa ç (pJ . Since L(ax,... ,a¡_x) g acl(U(pa)), Ta must be orthogonal

to L(ax,... ,a¡_x). So

L(ax, ... ,a(_1)nacI(X0ura)Çacl(.Y0uS'ia).

It follows that if a is the least ordinal > aQ such that U(pa+X) = U(pa) U {w}

with w G L(ax, ... ,aiX) and w £ acl(X0 U 5"°), then w <£ acl(X0 U S"), so

w £ acl{base(U(pn)). In this case the proof of the successor case called for

extending hn to ha+x by sending w to the least element of L(äx, ... ,a¡_x) —

acl¿(base([/(pri))). This least element must clearly be ó, so à is in the range

after all.

This finishes the proof. We conclude with a curious characterization of in-

stability, leaving the proof to the reader.

Fact 2.14. Let T be a countable theory, a a countable ordinal. Then TFAE:

(i)   T has Morley rank < a.

(ii)  For every system (TI,U) satisfying (Cl) and (C4), (œ", <) does not

embed into (n, <).

Proof of Lemma 2.5. It is clearly stronger to prove the lemma for a vector space

than for projective space. Let F be a vector space over a finite field F with

basis vQ, vx, ... . Fix a linear ordering of F with 0,1 as the first two elements.

Order V lexicographically: ^2a¡v¡ < ^lß,vi iff for some j, a( = /?( for z > j

and ai < ßl.

Lemma. Let x = (x , ... ,x") be an n-tuple of elements of V for p =

1,2,.... Then for some p0 < px there exists an order preserving linear em-

bedding h: V -► V with h(xpH) = (xp¡).

Proof. For any u = Y^a¡v¡ in V > 'et supp(w) = {i:aj ^ 0} , and let lead(u) =

sup(supp(w)). Let [/ be the subspace of V generated by {x , ... ,x"}.

Choose a basis u.u"   for  U , with  lead(w/')) < ••• < lead(«/" ).   We
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may write x = Mü , where M is an n x «'-matrix over F. For infnitely

many p , M   equals a fixed matrix M ; throw out the others.

We will use the following result from [Hi]: let w be a word in a finite

alphabet for p < 03. Then there exist px < p2 such that w is a subword of

w, i.e. w can be obtained by deleting some letters from w . Associate a

word wp to each u ; the jth letter in this word will give the v -coefficient of

up for k < n , as well as the information of whether or not lead(uk) = j. (To

prevent the word from being infinite, cut it off after the largest lead(u).) By

Higman's lemma, there exist p0 < px and a nondecreasing map e:co —► œ with

the following property: if /( = lead(«' ), mi, = lead(ulp), u'p = ¡C/</ a'jvj and

u'Pl = ¿Zj<l> ß'jvj » then  *(l¡) = mi   and  a'j = ß'e(j)   f0r each   *'J •

Now define a linear map h: V —► V by specifying h(v ) for each p . h will

be order-preserving because it will satisfy:

(*)    h(vp) = vE{p) + rp ,    where lead(rp) < e(p) and supp(rp)nrange(e) = 0.

For any such h ,

ÄK„) = h(T,ajvj) = 5»«« + o)
v j<i,       j<i,

;</, j<i, j£J j<t¡

where J = {j < m(:j e range(e)}. So we will have 77(w ) = z7 provided

that for each i, ]£,</. a'r, = Z¡,g/ /^;uj • We will choose r, = 0 unless ;' = /(

for some i < n ; letting wi = J2¡aj ß\v\ > tne requirement then becomes:

Yl,i<k airi — wk ^or eacn k <n . The matrix (a; ) is triangular with no zeros

on the diagonal (a) ¿ 0 by definition of /( = supp(w^)), so one can solve

for the r, . Moreover, r, will be in the span of wx, ... , wj, so we will have

supp(r; ) n J = 0 and lead(r¡) < maxk<¡lead(wk) < mi, so the requirements

in (*) are satisfied. Thus there exists an order-preserving linear map h: V —► V

satisfying h{u ) = Ti . Multiplying by M, it follows that h(xpg) = xp¡ , ending

the proof.

3. Expanding to a finite-dimensional structure

Theorem 3.1. Let M be ^-stable and ^-categorical. Then M is a reduct of

an v\Q-stable and ^-categorical, nonmultidimensional model M. In fact, M

can be chosen to have O-definable strictly minimal sets Dx, ... ,Dn, with 7). a

projective geometry over a finite prime field Fi, and no other dimensions. The

fields F¡ can be chosen to have distinct characteristics.

(It is easy to see that two projective spaces of distinct characteristics cannot

live inside the same totally categorical theory, so the number of dimensions

cannot be reduced any further.)
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Notation. AutM(D/F) is the group of all permutations of D that extend to an

automorphism of M fixing F . Here D is any set, not necessarily definable.

Definitions 3.2. (a) Let 7), , D2 be definable sets in a structure M. D{ is D2-

internal if there exists n and a surjective definable function /: D2 —► Dx. The

definition of / may use parameters.

(b) Dx is 7J>2-analyzable if in every elementary extension M of M there

exists a sequence E0, ... ,E of definable equivalence relations on 7), such

that E0 = {(d,d):d G 7J>,} , Em = Dx x Dx, E{ refines E(+i for each i, and

for each Ei+X-class C, C/E¡ is 7J>2-internal.

(c) A partial type O is 7J>2-internal (analyzable) if the set defined by some

formula in it has this property.

Lemma 3.3. If M is sufficiently saturated, then:

(a) Dx is D2-internal iff for every elementary submodel K c M over which

DX,D2 are defined, Dx ç dcl(7í U7J>2); iff there exists a finite E such

that Dx ç dcl(E u D2).

(b) Dx is D2-analyzable iff for each a e Dx there exist ax, ... ,anG dcl(a)

such that a = an, and tp(aj{ax, ... ,«,_,}) is D2-internal, for each i.

Proof. Easy, using compactness.

Claim 3.4. (a) If Dx is D2-analyzable and D2 is 7J>3-analyzable then 7), is

D3-analyzable; provided that T is stable.

(b) If TJZj is finite and 7J>2 has cardinality at least 2, then 7J), is 7J>2-internal.

(c) If TJZj is strongly minimal and Dx 1 D2, then Dx is £>2-analyzable.

(d) If M is a reduct of M', Dx, D2 are definable subsets of M, and Dx

is D2 -analyzable in M, then the same is true in M'.

Proof. Only (a) is nontrivial, and it becomes so using the following charac-

terization from [H]: tp(a/B) is D-analyzable iff for every X, if tp(a/X) is

orthogonal to D then a e acl(X).

Definition 3.5. If D is a definable set in a theory T, call D N0-stable ( N0-

categorical) if for every uncountable cardinal k (for zc = n0 ), every elementary

extension M of M, and every A c M with card(^) < zc , there are fewer than

zc types in D over A .

Warning. The definition of " D is N0-categorical" may depend on the struc-

ture of the model outside D, even if T is stable.

Lemma 3.6. Let 7),, 7J>2 be definable subsets of a structure M. Dx is N0-

stable ÇH0-categorical), and D2 is Dx-analyzahle. Then D2 is H0-stable (N0-

categorical ).

Proof. We may assume M is quite saturated. The lemma then follows by

induction from the following two claims.



146 EHUD HRUSHOVSKI

Claim 3.7. Suppose M is Nx -saturated.

(a) If Dx  is 7)2-internal and 7J>2 is N0-stable ( n0-categorical), then so is

(b) If IT is a definable equivalence relation on D, D/E is N0-stable ( N0-

categorical) and each 7i-class is N0-stable ( N0-categorical), then so is

D.

Proof. By counting types.

(a) Let /:7J>2 —►—► Dx be a surjective definable function. Say / is C0-

definable, C0 finite. Then for every set C ¡2 C0, there are at most as

many 1-types over C inside D2 as there are «-types in D2 .

(b) tp(a/C) is determined by tp((a/E)/C) and tp(a/Cu{(a/7¿)}).

Note that if M is 7)-analyzable, then M is minimal over D   .

The following is trivial but convenient:

Lemma 3.8. Let T be ^-categorical. Then T is bi-interpretable with a theory

T' with a unique l-type.

Proof. Let px, ... ,pn be the 1-types of T. Let ai (= pt. Let a = (ax, ... ,an),

p = tp(a), M' = the locus of p , and T1 = Th(Af').

Proof of'3.1. We will prove the theorem by induction on the following index,

measuring how far M is from being totally categorical. Define the essential

rank and multiplicity of M, (e-rk(M), e-mult(M)) as the smallest pair of

integers k , m such that x = x is analyzable over a definable set (in Mtq) of

Morley rank k , multiplicity m .

Assume that every theory of index less than k, m satisfies the conclusion

of 3.1. Let D0 be a set of Morley rank k, multiplicity m such that x =

x is 7)0-analyzable. Let D be a definable subset of D0 of Morely rank k,

multiplicity 1 ; and let D' = D0 - D. Without loss of generality D, DQ are

definable over 0. Let a e D, rk(a/0) = k. Find a, , ... ,ak G acl(a) such

that tp(a./{ax , ... ,a,_,}) is strongly minimal. Let Dx = stp(ax ■■■ak_x/0).

Note that D2 = tí u 7),  has smaller rank or multiplicity than DQ .

Find a strictly minimal, modular set P = Ph (definable over b0), such that

stp(a/ax,... ,ak_x) 1 P, b0 g acl(ax , ... ,ak_x), and the Morley rank of bQ

over 0 is least possible.

Claim 3.9. If b is conjugate to b0, then stp(b/b0) A Pb .

Proof. Since the theory is 1-based, b A b0\c, where c = acl(b) n acl(¿>0) (acl

evaluated in Meq). If stp(b/b0) 1 P then stp(¿z/c) / P, so by the minimality

of rk(bQ) it follows that rk(c) = rk(7>0). Hence

rk(b/c) = rk(b) - rk(c) + rk(c/¿>) = rk(¿>0) - rk(c) + 0 = 0.

So stp(b/b0) is algebraic, hence certainly orthogonal to P.
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Hence P is still strictly minimal over {b,b0}. So if Pb L Pb (where b,b'

are conjugate to b0 over 0 ), then there exists a unique O-definable bijection

between Pb and Pb,. Let D3 be the set of conjugates of b0, and define an

equivalence relation on the set of conjugates of b by b ~ b' iff Pb 1 Pb,. Then

by using the above remarks, we can define, uniformly in b/ ~, a set P'(b/ ~)

uniformly in b, such that for any b conjugate to b0, there exists a (unique)

¿»-definable bijection between Pb and P'(b/ ~). Thus, replacing 7* by 7>' and

¿z0 by b0/ ~, we may assume that ~ is the identity on the conjugates of bQ ; i.e.

b / b' => 7¿ 1 Pb,. Let 7J>3 be the set of conjugates of ¿>0 , and D = D2uD}.

Since rk(¿>0) = k - 1 , we have (rk(D) ,mult(7J>)) < (rk(7J>0) ,mult(7>0)).

Claim 3.10.  M is IJi^V ¿> e 7J>3} u D-analyzable. Pbo A D.

Proof. The first statement is clear, using the fact that stp(a/ax, ... ,ak_x) is

strongly minimal and nonorthogonal to [}bPb, and Lemma 3.4(a) and (b).

Suppose Pb 1 D. By 3.4(c), Pb   is 7)-analyzable. Since D is O-definable, Pb

is 73-analyzable for each ¿> e 7)3. By 3.9, the Pb 's are pairwise disjoint; so

one has a definable equivalence relation on \Jb Pb whose classes are the Pb 's.

It follows by Definition 3.2(b) that (jbPb is 7)-analyzable. By 3.3(a), M is

TJz-analyzable. But then (e-rk(M) ,e-mult(M)) < (k, m), a contradiction.

Let P* be a structure such that each Pb (b G D3) is abstractly isomorphic

to P*. P* is either a structureless countable set or else a projective geometry

over a finite field. In the former case, let Q* = P* and ignore the following

lemma.

Fact 3.11. Suppose P* is a projective geometry over the finite field F, and

F0 c F is a prime subfield. Then there exists a subset Q* of P* with the

following properties.

(a) Let R = {(a,b,c) e P*:a,b,c are dependent but distinct}. Then

Rf)Q* gives Q* the structure of an infinite dimensional vector space

over FQ .

(b) Every automorphism of (Q*, 7? n Q* ) extends to an automorphism of

P*.

(c) Let zc = [F: FQ]. Then every a e P* lies in the projective F-space

generated by some zc-elements of Q*.

(d) If a,b G Q*" realize the same type (as elements of P), then they realize

the same strong type.

Proof. The relationship between P* and Q* is the projective version of the

relationship between V = U ®F F and U, where is an infinite dimensional

Tyspace. In more detail: Choose a vector space U over FQ , with dim,,. ([/) =

N0. Let V = U <8>f. F, but endow it only with the structure preserved by

the semilinear automorphisms. Let ~ be the equivalence relation on V - (0)

defined by v ~ v iff v = av for some r* e F. By effecting a set theoretic

manipulation, we can assume V/ ~=¿ P* . Note that for «, u G U, u ~ u   iff
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u = au for some aG FQ. More generally, it is easy to verify:

(*) If ux, ... ,uk G U are linearly independent and ^ aiui G U,

then each a¡G FQ.

Let Q = U/~ = {u/ ~:m e [/}. So (*) implies (a). Every automorphism

of Q* extends to an automorphism of U, and every automorphism of U

extends uniquely to a linear automorphism of V, hence to an automorphism

of P*. This proves (b). (c) is immediate. To prove (d), assume tp(ä) =

tp(¿>). Let a be an automorphism of P with o (a) = b. Without loss of

generality ax, ... ,ak are independent and ai depends on ax, ... ,ak for i >

k . Choose u¡ G U such that a¡ = uj ~. So w( = ]£,■</<Q, ¡u¡ f°r some matrix

(a¡. .) from F. Extend a to a semilinear automorphism a of K. Since

each a¡ ¡ is in the prime field (by (*)), a(u¡) = LZJ<k ai fä(u) . But clearly

stp(w,, ... ,uk) = stp(rJM,, ... ,ouk);so stp(ux, ■■■ ,ün) = stp(aux, ... ,cun),

and stp(a) = stp(b). (The strong types are evaluated in V, but for elements

of P it is the same as taking them in P.)

Let hb: Pb —► P* be an isomorphism, and let Qb the inverse image of Q*

under hb . Let N0 = MÙQ* (model-theoretic disjoint union) and let A^ be N0

enriched by the relation 77: (b,x,y) e 77 iff ¿> e D3, x e Pb, y G Q* and

y = hb(x).

Lemma 3.12. Tw every finite X c N there exists a finite Y c NQ such that

every permutation of D U Q* that extends to an automorphism of NQ fixing

Y, extends to an automorphism of N fixing X. For X = 0 one may choose

Y = 0.

Proof. Let X = XM u Xp. , XM c M, Xp. c P*. Let E = IJ6€D3 Qb ■ Let X'

be a finite subset of D U E such that tp(T/Ar/) h tp(X/D U E) in AT0 (where

X is an enumeration of X ; if X = 0 , choose X' = 0). Let

Y = (X'n (73)) U {¿> € Dy ?jnl'/0}u {hb(x):bGD3,xGQbn x'}.

Let a be a permutation of Dö P* that extends to an automorphism of NQ

fixing Y. As the Pb 's may be assumed to be pairwise disjoint, there exists a

unique permutation t of DL)P* LIE such that uci and hrb(rx) = t(hb(x))

for any ¿> e D3 and any x G Qb . Note that x fixes X' pointwise.

Claim,  x is a partial automorphism of NQ .

Proof. Let ô be an automorphism of A^ extending a. Let p = o~ x. It

suffices to show that p is a partial automorphism of N0 . Now p is the identity

on DoP*. Since A^ = MOP*, the only question is whether p is elementary

on DUE. In other words, for any n and any distinct bx, ... ,bn G 7J>3, one

must show that p\(DöQb U ■ • • U Qb ) is elementary. Proceeding by induction

on n , we may assume that p fixes G = Du\J¡<n Qb pointwise. Since Qb has

either an F0-projective space structure respected by p, and no more, or else no
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structure at all, it is clear at least that p\Qb U {bn} is a partial automorphism.

To prove that p\(DuPb U---UPb) is elementary thus amounts to this: if c,d

are tuples from Qb realizing the same type over bn , then they realize the same

type over G. By 3.9 and 3.10, Pbn A G. Thus c A G\{bn} and d A G\{bn}.

By 3.11(d), stp(c/bn) = stp(d/bn). So tp(c/¿zn) = tp(d/bn), and the proof of

the claim is finished.

Let t0 be an automorphism of A^ extending x. Since x fixes X' pointwise,

so does t0 ; so tp(X/D U E) = tp(xQX/D U E). Let p0 be an automorphism

of NQ fixing Du Eu P* and sending X to xQX, and let f = x0p^ . Then

T extends x, fixes X pointwise, and is an automorphism of N0 . Moreover, x

preserves 77, hence is an automorphism of N.

Remark 3.13. The proof of Lemma 3.12 used only the following information

about N : it is obtained from M by freely adjoining the structure P*, and then

adding bijections hb from a subset of Pb onto Q*, such that each hb extends

to an isomorphism of P with P*(b G D3). This remains true of a saturated

extension N of N. Hence the lemma is true of such a saturated extension.

Therefore, the lemma implies that Du Q* is N0-stable, K0-categorical as a

definable subset of N, and in fact Q* is strictly minimal as a definable subset

of N.

We can now finish the proof of the theorem. Each Pb is uniformly algebraic

over Qb,so (\JbeDiPb) is (U6eD3 ôé)-analyzable in N. Since the Qb 's are the

classes of a definable equivalence relation, and each is definable isomorphic to

Q* (via hb), (UbeDiPb) is D UQ* -analyzable in N. Thus Du (lJèeD, Pb) is

DuQ*-analyzable. Using the last remark, Lemma 3.6 shows that Du(\JbeD Pb)

is N0-stable, N0-categorical as a definable subset of N. But by 3.10, M is

D U (\JbeD Pb)-analyzable. Hence so is N, and another use of Lemma 3.6

proves that N itself is N0-stable, N0-categorical. Now by 3.3(a), A^ is DuQ*-

analyzable.

Taking X = 0 in Lemma 3.12, we see that the structure induced on D in

N is the same as the structure induced on it as a definable subset of M. In

particular the Morley rank, multiplicity of D in N is less than k ,m . But the

lemma also says that P* is strongly minimal in N ; so if zc > 1  then

(e-rk(N),e-mult(N)) < {rk(D u P* ), mult(D u P* )) < (k,m).

We are thus done unless k = 1 . (Strictly speaking, M is not a reduct of N

because of Q* ; but the distinction is clearly only poetic.)

We may therefore assume e-rk(M) = 1 . So M is Px U ■ ■ ■ U P -analyzable,

where each TV is strictly minimal and O-definable, and the Pj 's are pairwise

orthogonal. The reduction of the essential multiplicity n is effected in the same

way as that of the rank was above. Each projective 7>/ is first replaced with a

Qj provided by 3.11. Then, if two distinct TV's (say Px and P2 ) are over

fields of the same characteristic, or both disintegrated, one adds an arbitrary
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isomorphism h between Px and P2. Let M = (M, h). Then one sees as

above the M is N0-stable, N0-categorical, has essential rank 1, and essential

multiplicity n - 1. After finitely many steps, all the projective P¡ 's become

over distinct prime fields, and there remains at most one disintegrated P¡ (say

P0 ). If one wishes, one may further swallow 7^ into Px (if n > 1 ). This

finishes the proof.

Remark 3.14. The introduction of projective spaces over prime fields is un-

avoidable. Suppose for example that one is presented with a model M, an

infinite definable set D in M, and for a G D a vector space V over a fi-

nite field Fa . The Fa 's are abstractly isomorphic of course, but there may be

no M-dehnable uniform system of isomorphisms between the Fa 's. Suppose,

however, that M is interpretable in a finite-dimensional M e C. Let Z>0 c D

be the locus of a complete stationary nonalgebraic type of M. For a G D0,

let Ua be a minimal infinite A/-definable subgroup of Va , and let P be the

associated projective space. The Pa 's must be pairwise nonorthogonal. So for

a,a! G D0 there exists a unique O-definable bijection between Pa and Pa,.

This map induces an isomorphism of Fa and F,, where Fa is the underlying

field of Ua (and Pa ). The uniqueness shows that one has a commuting system

of field isomorphisms. Thus if one wants to find an expansion in which no

vector spaces over smaller fields are introduced, i.e. Fa = Fa for each a, then

one must first find an expansion in which the Fa 's become identified with one

F . The following example shows that this may not be possible.

Example 3.15 (Cherlin). Let W be a vector space over a finite field K with

/ + 1 elements, / > 1. Let F0 be any prime field, and let F be the extension

of degree /. Let f(x) be an irreducible polynomial over F0 with exactly

/ solutions in F. Let P be the projective space associated with W ; each

p G P will literally be considered as a 1-dimensional subspace of W without

the 0 point. For b G P, let Fb be a copy of F, so that the set-theoretic

intersection of Fb and Fb, is just F0 for b ^ b'. Let Gb be the group of

automorphisms of Fb over F0 , and let Xb be the set of roots of f(x) in Fb .

Then (Gb,Xb) is a cyclic group of order / acting faithfully on a set of order

/. So (Gb, Xb) « (Kx, b). let hb: b^Xb, Gb^Kx be an isomorphism.

Suppose M is a structure containing W,P,Fb,Xb,Gb,hb (b G P), and

such that the Fb 's are uniformly isomorphic to F for each ¿> in some infinite

subspace PQ of P. Let WQ = {0} U \JPQ. Let a be a solution of f(x) in F .

For each the isomorphism of Fb and F takes a to some element ab of Xb .

hb takes it back to a point in b . So one has a definable set Y that intersects

each 1-dimensional subspace of WQ in a unique point. It follows that M is

unstable. For if M were stable, let r be the generic type of the connected

component of W0 . For a N r, aa G Y for a unique a e K - (0). But if a 1= r

then ßa\= r for ß G K - (0), so aßa e Y , so aß = a. This proves that K is

the 2-element field, contrary to assumption.
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Hence if one further adds, for each ¿>, a vector space Vb over Fb , then by

3.14 there is no finite dimensional N0-categorical, N0-stable expansion in which

the Vb 's remain strongly minimal.

Remark 3.16. If we start with M e Cm (the class of structures of modular type

studied in [C]), the theorem gives an interpretation of M in an almost strongly

minimal structure.

Example 3.17. It is not possible to embed an arbitrary totally categorical struc-

ture in an almost strongly minimal structure. The reason is that once one has

a group structure, by [PH] almost no further structure can be added to it. For

let A = (Z/4Z)(W). Note that if B is a subgroup of A and B n 2A = (0)

then B = (0). Moreover, if B n 2A is finite then so is B (and card(7?) <

card(5 n 2A)2). Suppose A sits inside an almost strongly minimal theory.

Say A c acl(Dx u • • • U Dn), where the D{ 's are strongly minimal. After

absorbing some parameters, we may assume that a generic a G A is equi-

algebraic with some independent dx, ... ,dm in D = Dx u • ■ ■ U Dn . Say

dx,... ,dk is a maximal subset of dx, ... ,dm independent from 2a. Con-

sider N = {x G A: stp(x/dx ■ ■ ■ dk) = stp(a/dx ■ ■ ■ dk)} . For each generic c e 2a

there are finitely many (but at least one) x e N such that 2x = c. By [PH],

the stabilizer S of N is infinite. By the remark made at the beginning, S n 2A

is infinite. If follows that for x G N there exist infinitely many y G N with

2x = 2y. This is a contradiction.

4. Structures of disintegrated type

The main result of this section is the classification of a certain class of totally

categorical structures of disintegrated type. Every totally categorical structure

can be expanded to a member of this class by the naming of finitely many

constants. This gives an explicit proof of the original Ahlbrandt-Ziegler result

for the disintegrated case, without using combinatorial theorems.

Let D be the class of totally categorical structures with a distinguished 0-

definable set D of disintegrated type.

We also investigate the situation before constants have been added. We show

that the information that is lost by the addition of constants is controlled by

nilpotent automorphism groups. (The proof gives more detailed information.)

Weaker versions of the results hold for the class C, = {M e C:M ç acl(D)

for some O-definable, modular, strictly minimal set D}. This is not our main

interest here, so we only indicate them in passing.

We start by defining an operation M* F ; starting with M gCx, M* F gives

another structure in C, , obtained by freely joining copies of the finite structure

F along a Grassmannian associated with M.

Notation. A definable substructure Tf of a finite model F is a definable subset

of F, considered as a structure in its own right, in such a way that every

automorphism of E extends to an automorphism of F.
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If D is a strictly minimal set, let [D]n = {w c D: w is algebraically closed,

of dimension n }.

If M G Cj, let D be a strictly minimal, modular, O-definable subset of M,

and let M(w) = acl(w) n M for w e [D]". Let M[n] = \J{M(w): w e [D]"} .

Note that M[n] does not depend on the choice of D. Let En(M) be a finite

structure isomorphic to M(w) for w e [D]n .

Definition 4.1. We now define M*"F . The data are a model M gCx, a finite

structure F, and a definable substructure F of F isomorphic to En (M).

( E is considered to be given as a part of the presentation of F. n can

be recovered from E, so we will sometimes write A7*F for M*"F.) For

w G [D]n , let (F(w),E(w)) be a copy of (F,E). Choose the copies so that

E(w) = M(w) for each w e [D]" , but otherwise there is no intersection:

{M}u{F(w) -E(w):w e [D]"} is a pairwise disjoint family, let M*F be the

model with universe M u lJ{F(ifj): w e [D]"} , and whose structure consists of

the structure on M together with the relations {(w ,x):w G [D]n ,x G F(w),

F(w) N R(x)}, where R is a definable relation of F. It is clear that every

automorphism of M extends to one of M*F . It follows that M*F e C, .

We will be interested in structures of the form D* FQ*XFX* ■ ■ ■ *"Fn , where

D is a pure set. It is therefore useful to have an explicit criterion for recognizing

iterations of the operation *.

Definition 4.2. Let M be a structure, D a projective space or a set, and M(w)

a substructure of M for w e [D]~k . We say that (M(w):w g [D]~ ) is in

free amalgamation within M if

(i)   M(w) n M(w') = M{w n w') for w , w' G [D]~k .

(ii)  If a  is a permutation of D U ((J,„ M(w))  that leaves  D  invariant

and carries M{w) isomorphically onto M(ow) for w G [D]~   , then

<t|(Uhj M(w)) is a partial automorphism of M .

Criterion 4.3. Let M e C, and let D be a O-definable, modular, strictly mini-

mal set in M. Then M is isomorphic to D* FQ* ■ ■■* Fn for some F0, ... ,Fn

iff M = M[n], and (M(w):w G [D]-") is in free amalgamation within M.

(The notion of isomorphism is for permutational structures.)

Theorem 4.4. Every totally categorical M e D has an expansion by constants

isomorphic to 7)*°F0* ' F, * • • • *" Fn for some Fx,... ,Fn and some disintegrated

D.  ( Both structures are given their canonical languages. )

Remark 4.5. F0 and F, can be chosen to be the trivial (0- and 1-element)

structures. But if this requirement is not made, then the constants in the state-

ment of the theorem can be chosen from D. In fact, the proof will show that

it suffices to name an element of the Grassmannian [D]    for some k .

Corollary 4.6. If 77  is a definable substructure of Fn, define D* F0* F, • ■ •

*"Fn\H as follows: let H(w) be the substructure of Fn(w) corresponding to 77,
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in a given copy Fn(w) of Fn in D* F0* F, ■ • • *nFn Let D* F0* Fx • • • *"Fn\H

=df Uiuemi" H(w). Then every totally categorical structure M e D has the form

M = D* F0*'f, • •-*"FJ77. This provides a finite code for M.

Proof. Let D be a strictly minimal, O-definable subset of M. Let F be a

finite subset of D such that N = (D,F) has the form D* F0* F, • • • *"Fn . Let

M1 = aclM(D - F). Then M' is a definable subset of A^, so it has the required

form. But M' is an elementary submodel of M, so M1 k, M, and hence M

has the correct form also.

The code for N is a finite system (M(w):w e [n]~n) of finite structures

in free amalgamation, with the further requirement that M(n) contain n as

a definable, disintegrated substructure. Note that any such code can be writ-

ten uniquely as n*°FQ*xFx* • • • *"Fn , with all F( 's finite; and it is the code of

co* F0* ■ • • *"F" . The code for M is the code for A^, together with 77. (Ad-

mittedly this is not entirely satisfactory, which is why the section does not end

here.)

Proof of Theorem 4.4. Let D be a O-definable strictly minimal set of M. Let

« be the Morley rank of M. For w e [D]<w, let M(w) = acl(u;) n M.

So M = \J{M(w):w G [£»]"}. For w e [D]m (with m > n), M(w) =

\J{M(w'): w' G [w]-"} . For w e [D]k , k < n , and S c D, let

G(w, S) = Aut(M(w)/ \J{M(w' U S): w e [w]<k}).

Note that for 5 disjoint from w, G(w, S) depends only on card(S) ; and

as card(5) grows larger, G(w,S) becomes a smaller subgroup of Aut(M(iü)).

Thus there is some d(k) such that G(w ,S) is as small for card(S) = íz"(zc) as

it ever is. Let d = max(d(k): k < n), and let F be a subset of D of cardinality

d. I claim that the system (M(wuF): w e [D-F]-"} is in free amalgamation.

By Criterion 4.3 this implies that M, enriched with a constant for each element

of F , is of the required form.

We may assume inductively that (M(w u F): w e [D - F]< ) is free, and

prove the same for (M(w u F):w e [D - F]~ ). Note that (i) is immediate.

To prove (ii), let o be a permutation of \J{M(w U F):w e [D - F]~ } that

leaves D-F invariant and carries M(wuF) isomorphically onto M(owUF)

for w G [D]-    (isomorphically means over F now). By induction,

o\(\J{M{w uF):wg[D- F]<k})

is a partial automorphism of M over F. If zc > 1 then D ç (\J{M(w u F) :

w g [D-F]K }). If k = I , then trivially o\DuM(F) is a partial automorphism

of M. Correcting o by an automorphism of M, we may thus assume that

o acts as the identity on \J{M(w U F):w e [D - F]<k} U D. In particular,

o leaves each M(w) invariant, and o\M(w) e G(w,F) for each w. By the

choice of d, o\M(w) e G(w ,J) for every finite J D F with w n J = 0. Let

<7* = (o\M(w)) U (the identity on \J{M(w'):w' g [D]n ,w <£ w'}).   o*  isa
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permutation of M (fixing D ); I claim that it is an automorphism. It suffices to

show that o\M(w) is a partial automorphism over \J{M(w'):w' G [J]~" ,w £

w'} for each finite J with F c J c D. But this is just the meaning of the

fact that a\M(w) e G(w,J - w).   Thus cr*   is a partial automorphism of

M. Let cr* = o*w\\\{M(w' U F):w' e [D-F]-*}. Each er* agrees with a

on M(w) and fixes pointwise every other M(w') with k/ e [D] , as well as

\J{M(wuF):wG[D-F]<k}. So the product of all the o*(w) (wG[D-F]k)

converges to a. Thus cr is a partial automorphism of M. This finishes the

proof.

Example 4.7a. Let A be a finite Abelian group of exponent e. Let D be

an infinite set and zc an integer. Let W = [D] . Let N be the structure

(D,W ,A x W ,R) where ((a ,wx), ... ,(aJ ,wJ)) gR iff ax + ■ •• + a1 = 0,

and (if/: z < j) is an enumeration of the set of all zc-element subsets of some

k + e - 1-element subset of D. Note that for any map c: [D]k~x —> A , the map

(a,w) —► (a + £){c(k/): u/ € [if] ~'},w) is an automorphism of N. (This

example is akin to examples by Cherlin and Lachlan presented in [C].)

Example 4.7b (twisted version). This example shows that the exponent of the

group cannot be computed from the dimension of the Grassmannian and the

location of the link. Let A be a finite Abelian group of arbitrary exponent.

Let D, W, k be as above. Given w e [D] , let Xw be a set of the same

cardinality as A. Given an enumeration w of w, let h—:A —> Syn^A^) be

a regular action of A on Xw . Arrange that if <p e Sym(«;), w1 = g>(w),

then for all a s A, h-,(a) = /z_((-l)sign(i,)+1a). Choose the Xw 's disjoint. So

specifying an automorphism over D of MQ = Du \JW Xw with the structure

described so far is the same as giving a function a: D —> A such that a(<pw) =

(-lfên{'l')+xa(w) for any We Dk and any <p e Sym({uj,, ... ,wk}). Let G =

{a: for all t = {d0, ... ,dk} e [D]k+X , letting t' = (d0,... ,d¡_x,d¡+x, ... ,dk),

one has X)o</<A:(~l)'Q(?') = *-*} • There exists a unique expansion M of M0

suchthat AutM(D) = Sym(D) and Aut(M/D) = G. Automorphisms of M can
k— 1

be obtained as follows: let < be a linear ordering of D. Let c: [D] —> A be

any k - 1 coloring of D ; identify [D] ~ ' with the increasing k - 1 -tuples. For

increasing w e [D] , let a(w) = X^(-1)'c(iíz, ,... ,w¡,... ,w„)\ and extend

a to [D]    in the obvious way. Then it is easy to check that a e G.

Proposition 4.8. Let M G D,. After adding finitely many imaginary sorts to

M from Meq, M can be analyzed as follows. Let D be strictly minimal and

O-definable, M¡ = \J{M(w):w e [D]'}. Then for each i > 1 there exists a

O-definable set Mj 0 such that M¡_, ç Mt. 0 ç Mi, and

(i)   MQ is finite.

(ii)   Mx 0 = M0 u D. For / > 2, Aut(M¡ JM¡_X) is nilpotent of class < i.

(iii)   M. = A/. 0*'F for some finite F   (i > 1).
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The reader is warned that aside from the bound on the nilpotency class in

(ii), the proposition has an entirely trivial proof. The proof below is given not

in order to get the bound, but rather as it gives a model theoretic meaning to

the nilpotency. The trivial proof is given at the end of the chapter.

Proof. Let R = rk(A7). Let M* consist of finitely many sorts from A7eq , all

of rank < R, and enough so that:

(*) For every r < R and every w G [D]r, letting M*(w) = acl(w)C\M*, the

correspondence between definitionally closed subsets of M*(w) and subgroups

of Aut(M*(w)) given by X -> Aut(M*(w)/X), 77 -♦ {e G M*(w):he = e

for all h G 77} is a 1 -1 correspondence. WLOG M* = M, so (#) holds for

M(w) = acl(u;) fl¥. For x c w c F c D with card(x) = zc, card(u>) = r,

card(F) = n , define

G(w) = Aut(M(w)).

G(x;w) = Aut(M(w)/\J{M(w'):w e [D]r,x C w ,w ¿ w'}).

G(k;w) = f){G(x;w):x e [w]k},

M(x ; w) = {e e M(w): e is fixed by G(x ; w)} .

M(k ;w) = \J{M(x ; w): x c w , card(x) = zc}.

Mrk = {J{M(k;w):wG[D]r}.

G(x ,w ,n) = Aut(M(w)/\J{M(w'):x c w' c F , card(izz') = r,w' ^ w}).

(It does not depend on F .)

G(k ,w ,n) = Pli^^,w ,n):x cw, card(x) = k} .
Clearly G(x ,w ,n) = G(x ;w) for large enough zz.

Claims, (a) Mr = Mr 0*rF for some F.

(b) dcl(A/rir_,) = dcl(A/r_,) for r>2. dcl(Mx0) = dcl(MQuD).

(c) Let F c D be finite, w G [D]r. Then

Aut(M(w)/ \J{M(w): w G [F]~r}) = Aut(M(w)/M(w n F)).

(d) [G(r-l;w),G(k + l;w)]CG(k,w)   (k + 1 < r - 1 ,w e [D]r).

Proofs, (a) Let (F,E) be a finite structure isomorphic to (M (w), M (0 ;w)) for

w G [D]r. Mr = Mrfi u \J{M(w):w e [D]r} . To show that Mr = M*QF we

need to show that (i) {Mr Q}u{M(w)-M(0;w):w e [D]r} is pairwise disjoint,

and (ii) every permutation a of AT, such that ff|A7, 0 is an automorphism and

a takes M(w) isomorphically to M(ow) for each w , is an isomorphism of

(i) is clear: if e e (M(w) - M(0;w)) n M(w') with w' / w then for

every o G G(0;w), o(e) = e (else o could not extend to an automorphism

fixing M(w')) ; thus e e M(0;w), a contradiction, (ii) is similar to the end

of the proof of 4.4. [By correcting with an automorphism of Mr extending

a\Mr 0 we may assume a fixes A/, 0.   So a\M(w)  is an automorphism of

M(w). Since o fixes M(0;w), o\M(w) e C7(0;uj). So cr* = (a\M(w))u

(\J{id\M(w'):w' g [D]' ,w' ^ w}) is an automorphism of Mr, for each w.

Thus so is a = \\{a*:w G [D]r}.]
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(b) We will show that M(x ; w) = M(w) n dcl(M(x) Uw) when x c w and

card(x) = r - 1 , card(iü) = r. If er is an automorphism of M fixing w and

y = lJ{acl(xU{/z}):/> gD-w} , then cr leaves A/(uz) invariant and a\M(w) e

C7(x;iu), so a must fix A7(x;wj) pointwise. Thus M(x;w) = M(w) n

dcl(w u 7). But (acl(x u {p}):p e D - x) is an independent set over acl(x)

= M(x). Hence M(w) A Y\M(x), so M(w) A Y\(M(x) U w). Moreover,

tp(y/acl(x) u M(w)) is the unique nonforking extension of tp(y/acl(x)), so

a fortiori it is the unique (nonforking) extension of tp(Y/M(x) U w). So

tp(Y/M(x)Uw) h tp(Y/M(w)). By restriction, tp(M(x;w)/M(x) U w) h

tp(A/(x;uz)/A/(tfj)). Since M{x;w) c M(w), it follows that M(x;w) c

dcl(M(x)uw).

(c) M(w n F) is algebraically closed, and M(w) ± acl(F)]acl(u> n F).

(d) We have to show that [G(r - 1 ;w),G(k + 1 ;w)] ç t7(x,ifj) for each

x e [D] . Fix x e [D] . Choose n sufficiently large so that G(x,w,n) =

G(x;w) for w e [D]r with x c w , and fix F d x with card(F) = n. Let

W = {w: x c w c F, card(if) = z-}. Choose a point p e W - x, and divide

H7 into two sets:  iT0 = {tüeW:/)^ii)}, W^ = {u> e W:p e u;}.

(*,) For w G W, Aut(A/(uz)/U{A/(iü'):tii' G W,w ± w}) = G(x,w).

This is by the choice of n .

(*2) For w G Wx, Aut(A/(tiz)/U{A/(V): w' G Wx,w ¿ w}) 2
G(k + 1, w). In fact the group on the left contains C7(x U {p} , w) explicitly.

(*3) For w G Wx , Aut(A/(«;)/U{A/(uz'):ti;' e WQ}) DG(r-l,w). This

follows from (c), applied to F-{p} ; it shows that the group on the left contains

Aut(M(w)|M(w - {p})) ; this in turn contains G(w - {p}, w), hence certainly

G(k+ l,w).
Now pick w e W{ and o , x e G(k + 1 ,w). By (*,) and (*A , we can find

extension cr,f of a,x to automorphisms of \J{M(w'):w' G W}, such that ä

is the identity on M(w') for w gW— {w} and x is the identity of M(w )

for w' G WQ. It follows that the commutator [a ,x] is the identity on M{w')

for w' G W - {w}. By (*,), [a , x] = [o ,x]/M(w) is in G(x;w). Since o ,x

were arbitrary, the claim is proved.

Note that Aut(Mr 0/Mr r_x) embeds into the product, over all w G [D]' , of

Aut(A/(0;itz)/A/(r - 1 ;w)). This group is isomorphic to

Aut(M{w)/M(r- l;w))/Aut{M(w)/M(0;w)) = G{r- 1 ;w)/G{0;w).

Thus by (d), Aut(Mr 0/Mr r_x) is nilpotent of class r. By Claim (b), Mr r_x =

Mr_, , proving the proposition.

Remark 4.9. It seems possible that "nilpotent" can be replaced by "Abelian".

The proof of the preceding proposition showed that the groups G({d};w) are

central in G(w)/G(0;w) for d G w . It may be that they generate G(w) over

(7(0; w).

Proposition 4.10. Let MgD. Then Aut(M) has a sequence of closed subgroups

G0 c G, c ■ •■ c Gn such that G0 = (1),  Gn = Aut(A7),  Gj+X   is normal in
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Gjt and the quotient G¡+x/G¡ has one of the following forms (as a topological

group).

(i) A finite group.
(ii) Fw, where F is a finite group.

(iii) The full symmetric group on to.

(iv) Sm, where S is the full symmetric group of a).

Proof. The totally categorical case is immediate from 4.8. One has a Jordan-

Holder decomposition (1) = G0 ç Gx Ç ••• Ç Gr = Aut(Af) in which Gr/Gr_x

is finite, Gr_x/Gr_2 = Aut(D/A/0) is the full symmetric group on an infinite

set D, and each subsequent Gj+X/G¡ is either of the form Aut(N*F/N) fora

structure N e D, and a finite F, or Abelian.

Aut(N*F/N) = Y[{Aut(F(w)/F0(w):w)}

is of type (ii). As for the Abelian case, remember that Gi+X/Gt is profinite of

bounded exponent. Being Abelian, it has a further refinement GM D G'¡+x D

■ ■ ■ D C7( in which every factor has prime exponent. By Pontryagin duality,

the only infinite separable compact Abelian group of exponent p is (Z/pZ)w .

This falls into case (ii) again. This finishes the totally categorical case. It is not

hard to deduce a slightly stronger fact: if M e D, and N is any O-definable

subset of M, then Aut(G/N) has a decomposition of the same form.

The general case is done by induction on the essential multiplicity of Ai.

Let D,D0,DX,D2,D3,D,E = {J{Pb:b G D3} be as in the proof of 3.1. Let

N = DuE. We have exact sequences 1 -» Aut(M/N) -* Aut(M) -t Aut(N) -*

1 and 1 ^ Aut(N/D) -* Aut(N) -* Aut(D) ->■ 1, so it suffices to show that

Aut(M/N), Aut(N/D) and Aut(D) have decomposition sequences of the right

form.

Aut(M/N) : Consider A^ as a structure in D. By Theorem 3.1 (and the

fact that there are no projective spaces around) there exists an expansion N

of N (by some relations 7?,, ... ,Rk ) such that TV is totally categorical, of

disintegrated type. Let M be M enriched with the relations Rx, ... ,Rk . Ob-

viously every automorphism of M over N fixes Rx, ... ,Rk;so Aut(M/N) =

Aut(M/N). N is totally categorical, so by the previous paragraph Aut(A/y./V)

admits a tower of the required form.

Aut(AVD) = Aut(F/D) « rjiSym^): b G D}} , so this is a topological group
of type (iv).

Aut(D) be a decomposition sequence by the induction hypothesis.

Combining the towers gives one for Aut(Af).

We now state the generalizations to C, .

Theorem 4.4C. Let M g C,, and let D be strictly minimal and O-definable.

Then there exists an expansion by constants N of M such that N has the form

N* F2  ■ ••*"Fn, where F2, ... ,F   are finite structures, and Nx  is a structure
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in C, of rank 1. Moreover, N may be obtained from M by simply adding a

name for a finite subset of D.

Theorem 4.8C. Let M e C,. Then there exist O-definable subsets of Afeq,

Mx Ç M2 0 ç M2 ç A/3 0 Ç ■ • • Ç Mr0 ç Mr, such that:

(a) dcl(A/,) = dcl(acl(0) U P), where P is a modular O-definable strictly

minimal set.

(b) A/, = M*QF¡ for some finite structure F;.

(c) Aut(A//+1 JM¡) is nilpotent.

(d) r = rk(M), and M ç M*.

Corollary 4.10C. Let M be ^-categorical, unstable of modular type, and let

G = Aut(M). Then G has a topological Jordan-Holder sequence (I) = G0 c

Gx c ■ • c Gn = G such that for each i, Gi+X/Gj is isomorphic ( as a topological

group ) to one of the following:

(a) a finite group,

(b) the full symmetric group on œ,

(c) the full projective general linear group on an infinite dimensional projective

space over a finite field.

(aw) ,(bw), (c°): The full product Hw, where 77 is as in (a),(b),(c), re-

spectively.

4.4C and 4.IOC are proved similarly to 4.4 and 4.10. The proof of 4.8C

uses the definition of Mi 0 from 4.8 (it is the "linked" part), and the following

lemma to prove nilpotency:

Lemma 4.11. Let Gx, ... ,Gm be groups, and let H be a subgroup of Gx x

■ ■ x Gm . For w C {1 , ... , m} , let nw be the restriction to 77 of the canon-

ical projection of Gx x •■• x Gm onto Ylie,vGr Assume nw is 1-1 whenever

card(u;) = m - 1, and nw is onto whenever card(u;) = 2. Then each G¡ is

nilpotent of class m - 2.

It is possible to find finite groups G and H < G satisfying the hypothesis

with m = 4, and with G non-Abelian. However, such groups cannot fit as

G(w) for w G [D] , D a disintegrated Grassmannian. It is unclear whether

non-Abelian examples exist in higher dimensions or with less constrained links.
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