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THE SPECTRAL MEASURE AND HILBERT TRANSFORM

OF A MEASURE-PRESERVING TRANSFORMATION

JAMES CAMPBELL AND KARL PETERSEN

Abstract. V. F. Gaposhkin gave a condition on the spectral measure of a

normal contraction on L2 sufficient to imply that the operator satisfies the

pointwise ergodic theorem. We prove that unitary operators which come from

measure-preserving transformations satisfy a stronger version of this condition.

This follows from the fact that the rotated ergodic Hubert transform is a con-

tinuous function of its parameter. The maximal inequality on which the proof

depends follows from an analytic inequality related to the Carleson-Hunt The-

orem on the a.e. convergence of Fourier series.

There is a large body of work on the question of when a given operator on

an Lp space satisfies the pointwise ergodic theorem, that is, when the Cesàro

means of powers of the operator applied to an element of Lp converge a.e.

(See the book by Krengel [1985] and the article by Duncan [1977] for surveys.)

Gaposhkin [1981] gave a necessary and sufficient condition involving the spec-

tral measure of the operator for the case when p = 2 and the operator in ques-

tion is a normal contraction. In this paper we develop a connection (Proposition

1) between this condition and the ergodic Hubert transform. This connection

allows us to prove directly that operators induced by measure-preserving trans-

formations satisfy a strengthened version of Gaposhkin's condition (Theorem

1). The fundamental result is a form of continuity of the rotated ergodic Hubert

transform (Theorem 2), the proof of which depends on a new kind of maximal

inequality involving a supremum over a parameter (Lemma 1). We reduce the

proof of this inequality to an analytic maximal inequality (Lemma 2), which is

proved from the Carleson-Hunt estimate on maxima of partial sums of Fourier

series.

We thank the many people with whom we discussed this work for their valu-

able contributions, especially M. Taylor, who provided the key ideas for the

proof of Lemma 2, and M. Keane, S. Chanillo, and T. A. Gillespie.

Let (X,7%,p) denote a measure space, and let F be a normal contrac-

tion on L (X ,778 ,p). Let ET denote the spectral measure for F, supported

on the closed unit disc in the complex plane, and for each «=1,2,...   let
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Vn = {z g C: O < \l - z\ < 2 "}. In 1981 V. F. Gaposhkin proved that for a

given f G L   the pointwise ergodic theorem holds for F and /, i.e.,

1 "~x

(1) lim - y^ F f(x) exists a.e.
Zc=0

if and only if

(2) \im\ET(Vn)f\(x) = 0   a.e.

Moreover, he showed that the sequence 2~" used in the definition of Vn may

be replaced by any sequence qn converging monotonically to 0 and satisfying

Q > Q„lQn+\ ̂  9 > 1 for every n .
Gaposhkin observed that since the pointwise ergodic theorem is known to

hold for all / G L , if F is an invertible measure-preserving (m.p.t.) on

X, it would be interesting to verify (2) directly for operators induced by such

transformations. (If the measure-preserving transformation is not invertible,

then the operator that is induces is not normal.) Our main result shows that for

m.p.t.'s a strengthened version of (2) actually holds:

Theorem 1. Let T be an invertible m.p.t. on a measure space (X,778 ,p) with

associated spectral representation

(3) T=       eudE(X)
J —n

2
as an operator on L . If {ek} is any nonnegative sequence which tends to 0 as

k —> oo, then

(4) lim[E(-ek,0)f](x) = 0   a.e. for all f G L2.
k-KX>

We prove this theorem by formulating a condition equivalent to (4) and then

verifying this new condition. The condition we will formulate depends upon

the ergodic Hubert transform (e.H.t.). Recall that for f G L2 the e.H.t. of /

(induced by F) is the a.e. limit

(5) lim I ¿' ^pl = P.V.I f' ß£*> = HTf(x),
k=-n k=—oo

where ' denotes omission of the term for which k = 0. Usually F is under-

stood and we just write Hf. The map which sends / to Hf is a bounded

operator on L2 (see Cotlar [1955]). If F has the representation (3), then H

may be represented via the spectral integral

(6) H = i[   n(X)dE(X),
J—n

where n(X) is the odd function on [-n,7t] whose value for X G (0,7t] is

(tc-X)/tc and n(0) = 0. (See Campbell [1986].)
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By considering a simple product transformation it is easy to see that for fixed

e in [-7t, 7t], the rotated e.H.t., H f, defined by

.    °°       ike f,Tk ~\

(7, w-p.v.irM^
2

exists a.e. for each / e L , and the map sending / to HJ is a bounded

operator on L2 . We claim that (4) above is equivalent to a form of continuity

of the rotated Hubert transform at s = 0 :

Proposition 1. For f G L2, T, and E as above,

lim[E(-ek,0)f](x) = 0   a.e.

if and only if

(8) UmH f(x) = Hf(x) + i[E{0}f](x)   a.e.
K—»OO *

Proof. We apply the functional calculus. If n(X) is the "representing function"

for H as in (6), then n(X + ek) is the representing function for HE , so that

H   - H has the representation

(9) H  - H = i f" [n(X + ek) - n(X)] dE(X).

The difference n(X + ek) - n(X) may be written as

(10) (~ek/7t)l + X{.tk}W + 2*(_et ,0) W + *{o> W '

where 1 is the function which is identically 1 on [—71,71] and xA is the char-

acteristic function of set A . Since /"n 1 dE(X) = I, the identity operator on

L2 , we may conclude that (8) holds if and only if

(11) lim (^)f(x) + E{-ek}f(x) + 2E(-ek,0)f(x) = 0   a.e.
/c-»oo \   7t   J "

■2
Clearly, lim^^ -ekf(x)/n = 0 a.e. for each / € L . Also,

lim E({-ek})f(x) = 0    a.e.,
k—»oo

for the following reason. If e~lEli is an eigenvalue for F, then E{-ek} is the

projection onto the corresponding eigenspace; otherwise it is the 0 projection.

No matter what order the eigenvalues are given, as k —► 00 these projections

applied to / give the tail blocks of the eigenfunction expansion for the projec-

tion of / into the Kronecker factor. Since these blocks are L2 summable, the

tail blocks tend to 0 a.e. Thus (8) holds if and only if the third piece of the

sum, 2E((-sk ,0))f(x), tends to 0 a.e., as k tends to 00.
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To prove Theorem 1 it is sufficient to prove that (8) holds:

Theorem 2. If T is an invertible m.p.t. on a measure space (X,778 ,p), and

f G L (X ,778 ,p), then for any nonnegative sequence {e,}  tending to 0 as

oo we have

lim HJ(x) = Hf(x) + iE{0}f(x)   a.e.
Zc—»oo       *

Proof. As usual, we prove a.e. convergence for a dense subset of L2, and then

establish an appropriate maximal inequality (Lemma 1). The functional calcu-

lus may be used to provide the dense subset. If / is in the range of F{0},

so that f(x) = f(Tx) = E{0}f(x) a.e. and Hf(x) = 0 a.e., then H f(x) =

in(ek)f(x) a.e., and lim^^ in(ek)f(x) = if(x) a.e. Suppose now that ô > 0

is fixed and / is in the range of E([-n, - S) U (Ô, n]). Then E{0}f(x) = 0

a.e., and if 0 < ek < S we have (see (11)) (H£ - H)f(x) = iekf(x)/n a.e.,

which clearly tends to 0 a.e. as k -+ oo. The union over all positive ô of such

functions, along with those in the range of F{0} , is dense in L .

To complete the proof of Theorem 2 we prove the following maximal in-

equality which involves a double supremum:

Lemma 1. For each f G L , e > 0 and n G N, define

,     n        ike rtrj.k    \

k=-n

and

(13) H*f(x) = sup\Hn£f(x)\.
n ,e

Then there exists a constant C > 0 such that

(14) p{x:H*f(x)>X}<-^\\f\\22   forallX>OandfGL2.
A

To prove Lemma 1 we need first to prove Lemma 2, an interesting maximal

inequality from harmonic analysis. Then we use Lemma 2 to prove Lemma 3,

a sequence version of Lemma 1, which finally transfers to the ergodic setting.

Lemma 2. For h G L2[-n,7t] (with respect to Lebesgue measure) define a se-

quence of nonnegative numbers by

(15) r/z(;) = supir/z(í)e'7'ísfí
£>0 \J-e

Then there is a constant C > 0 such that

(16) ¥'h(J)\\IHZ)<C\\h(t)\\L2[_nn]   forallhGL2[-7t,7t].

Remark. The Carleson-Hunt estimate for the maxima of partial sums of Fourier

series of L   functions says that if

JGZ.

S f(x) = sup
«>0

E-fa)ikx
e

k = -n
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then

\\s*f\\L^n,n]<c\\f\\mr

Thus Lemma 2 may be regarded as the Fourier transform of the Carleson-Hunt

Theorem. Kenig and Tomas [1980] derived analogues of the Carleson-Hunt

result for other dual pairings; the following argument uses their transference of

the Carleson-Hunt Theorem to the (R, R) pairing to prove the version stated

in Lemma 2.

Proof of Lemma 2. Fix h and for each complex number s and e > 0 define

I f°°
(17) Ge{s) = \       x(0(_e,e)A(0e

\J—oo

istdt

and

(18) G(s) = sup Ga\s).
£>0

Easy calculations show that

(i) The family {C7£: 0 < e < n} is equicontinuous on the complex plane.

(ii) For each e, Ge(s) is a subharmonic function of s.

These statements together are sufficient to imply that G is subharmonic in the

plane (see Hörmander [1973, p. 16]). We want to bound the sum of the squares

of the values of G at the integers by a constant times the L norm of h . If

Dj is the disc of radius 1/2 centered at j, then by the mean-value property of

subharmonic functions and Holder's inequality we have

(19) G(j)2<c(ff G(x + iy)dxdy\   <C ÍÍ G(x + iy)2dxdy.

Note that C is independent of j and h. The disjoint union of the D- 's is

contained in the strip -1/2 < y < 1/2, and we can estimate the L norm of

G over this strip as follows. For each y G [-1/2,1/2], let Gy(x) = G(x + iy),

so that

(20) Gy(x) = sup\(  h(t)
6>0 \J-e

—yt   ixt j.
e    e    dt

For each such y, F(t) = e~y'h(t) is in L (R), and hence we may apply the

result of Kenig-Tomas [1980] to transfer the Carleson-Hunt maximal estimate

to this setting:

-y'i
(21) \\Gy(x)\\lHR)<C\\e yih(t)\\l1{_nnX.

Since the y 's are being chosen from a compact set, there is a constant C such

that \\e~yl h(t)\\2 < C||/z(f)||2. Applying Fubini's Theorem, we have

/-1/2       /-oo /"'/^

(22) /       /        G(x + iy)2dxdy< C\\h\\2L2[_n    dy < C\\h\\2L2[_„nX.
Jy=\l2 Jx=—oo Jy=—1/2
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Remark. It follows from Lemma 2 that if h(t) = ¿ZkL-oo o.ke     and

oo     /ji{k+j)e,

R*h(j) = sup
E>0

/ e

k——oo
£

'k+j

then \\R*(h)\\¡2{Z) < CWhW^^^ n] (because R* differs from /* by an operator

which is clearly strong (2, 2)). This is not a robust enough result to survive

transference to the ergodic context. We need instead to provide an estimate for

(2,0') = SUP SUP
n>l £>0

", e,(i+*<,

E
k=-n

k+j

this is the content of Lemma 3, which follows from Lemma 2 by means of the

covering lemma and disjointification techniques also used in Petersen [1983].

We conjecture that even strong (2, 2) holds:  ||#*||/2(Z) < CIMIIp     .

Lemma 3. There is a constant C > 0 such that if {ak} G I (Z) and X > 0 then

f-,        oo

(23)
C 2

card{j:al(j)>X}< -¿  ^  \ak\ .
Á   k=-oo

Proof. Let A be a bounded subset of

j: sup sup
n>\ e>0

" , e'tt">'a

E k+j >x

so that A c [-N, N], say. For each j G A there is a block in Z of the form

[j - njtj + n¿] and an e, > 0 such that

(24)

Since

keij

ike,
i e    'i

k-j
>X.

E=E-E.
k€lj      k=-oo      kit,

we may apply the triangle inequality to see that

Ac { j : sup
£>0

(25)

oo        ike
i e    a.

E
k — — oo

k-j

u{jG[-N,N]:

X
>2

ike.

\Z-TZ
k€l,

k-j >-}=AxuA2.

If j G Ax , then by Lemma 2 (since strong (2, 2) implies weak (2, 2)), j falls into
2 2

a single (independent of j ) set of cardinality no more than (4C/X )\\a\\2. To

count the z 's in A2, we first make each of the numerators real and nonnegative
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by taking the positive and negative parts of the real and imaginary parts. Thus

we define rj(k) = [Re(e'k£jak)]+ , and similarly define rj , it, and ij . We

will count

(26)
k&j

rj(k)

j

X
J«^E^7<-if-'+W-

A similar argument will count how often the same sum is larger than A/8, and

also how often the same sum with rj replaced by rj , t, and ij is greater

than X/ 8 and less than -X/ 8, giving the same estimate each time.

Replace the family {/.} by a disjoint subfamily {Ij} which still covers at

least 1/3 of A2. Index the centers of the new intervals by J. If for ieR we

let

(27)
kit,

then h'j(t) > 0. Since hAj) < -A/8, so is hin) < -A/8 for n G[j - n.,j].

Hence we find

cardr+(^2) < 6j2(nj + 1) < 6card U

j€J j€J

< 6 card   \J

jeJ

»=Erj(k)
<

kit,

^ r](k) X  ,

k=—oo

-E rj(k)

16

< 6 card
w rj(k) A

jeJ

kei,

(

+ 6E (16)ZC

V
E

by Lemma 2. Continuing, because the /   are disjoint all of this is

< 6 card \ n : sup
£>0

oo        ike

E /c-zz

A  |      6(16)ZC   ^   ,
E iaA-i

<V —— oo

6(16)2C
E

,2     6(16)2C
ak\  +

k = — oo k = — oo

E Kl2-

where we have again applied Lemma 2, as in the remark above. The estimate

on r+(A2) is now complete with constant equal to ( 12)( 16) C, where C is

the constant from Lemma 2. We may similarly estimate r~(A2), i+(A2), and

i~(A2), where the definitions of these sets are obvious. Combining these es-

timates on A2 with the previously obtained estimate on Ax , we obtain the

estimate in the conclusion of Lemma 3, where the constant for the estimate in

line (22) may be taken as (2)(4)(12)(16)2C.
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Proof of Lemma 1. For each fixed N > 1 define

(28) AN = < x : sup  sup
£>0 Kn<N

k=-n

"   . Jkee'Ktf(Tx)
>x

and for this N and K G N define

(29) ANK = {(x,j): -K<j<K and T] x G AN}.

An argument analogous to that given in Petersen [1983] to prove Lemma 1 of

that paper shows that

ß{ÄN) = 2K + \fiXCara{ÄN'K) - \J})
[2(K + N) + l]Ufn2

2K+1       nJ"2'

where card denotes counting measure on Z. Lemma 1 follows by letting K

tend to infinity.

To complete the proof of Theorem 2, fix any nonnegative sequence {e^}

tending to 0. We have shown that the a.e. convergence claimed in the conclusion

of Theorem 2 holds for a dense set of functions in L . The maximal inequality

provided by Lemma 1 implies, by Banach's Principle, that the set of functions

in L for which this same a.e. convergence holds must be closed. Hence it must

be all of L2.

Remark. Probably a Wiener-Wintner type theorem holds in this situation; that

is, for each / G L there probably exists a single set of measure 0 outside of

which Hef(x) exists for all e. Then these arguments would extend to show

that in fact

lim+ HJ(x) = Hf(x) + iE{0}f(x)   a.e. for each /el2.
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