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A-CLOSURES OF IDEALS AND RINGS

LOUIS J. RATLIFF, JR.

Abstract. It is shown that if R is a commutative ring with identity and A is

a multiplicatively closed set of finitely generated nonzero ideals of R , then the

operation / —» IA = [JKeA(IK '■ K) is a closure operation on the set of ideals /

of R that satisfies a partial cancellation law, and it is a prime operation if and

only if R is A-closed. Also, if none of the ideals in A is contained in a minimal

prime ideal, then IA Ç Ia , the integral closure of / in R , and if A is the set

of all such finitely generated ideals and / contains an ideal in A , then IA = /„ .

Further, R has a natural A-closure RA , A —> AA is a closure operation on a

large set of rings A that contain R as a subring, A —► AA behaves nicely under

certain types of ring extension, and every integral extension overring of R is

RA for an appropriate set A . Finally, if R is Noetherian, then the associated

primes of IA are also associated primes of IAK and (IK)A for all K e A.

1. Introduction

Integral dependence is one of the most widely used concepts in commutative

algebra. From several points of view, integrally closed ideals and rings are

nicer and easier to work with than their nonclosed counterparts. The subject

itself is classical, and a list of mathematicians who have helped develop its

current foundational place includes Cohen, Grell, Krull, Mori, Nagata, Noether,

Northcott, Rees, Samuel, Seidenberg, and Zariski, to mention only a few.

The current paper is concerned, somewhat indirectly, with integral depen-

dence; actually, the "closure" part of the subject. Closure operations (see (2.3)

for the definitions) are of some interest in themselves, and they have been

studied both in relation to specific ideal-closures (such as integral closure) and

abstractly; for example, see [2, 3, 4, §43, 6, 8, 10, Appendix 4]. In this paper a

new family of closure operations is introduced and several of the classical prop-

erties of integral closure are extended to these new closures. (Actually, for this

paper I used as a working guide: a result for integral closure should have a valid

analogue for A-closure. This is probably not a meta-theorem, but it is certainly
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a good precept to keep in mind while working with A-closures.) Specifically,

for a multiplicatively closed set A of finitely generated nonzero ideals of a ring

R (commutative with identity) we define the A-closure IA of an ideal 7 of R

and then show that the operation 7 —> 7A is a closure operation that satisfies the

A-cancellation law: if (IK)A ç (JK)A and K g A, then 7A ç JA . Also, 7 -> 7A

is a prime operation on the set of ideals 7 of R if and only if R is A-closed,

and 7A ç Ia for most such sets A and ideals 7. Further, there is a natural

A-closure R of R in its total quotient ring, A —> /Í is a closure operation

on a large set of rings A that contain R as a subring, and A —► ^4 behaves

nicely under certain types of ring extension. Moreover, P plays a role relative

to the ideals 7A that is analogous to the role played by the integral closure P'

of R relative to the ideals Ia , and every integral extension overring of R is an

R for an appropriate set A. Finally, if P is Noetherian, then it is shown that

several recent results concerning the asymptotic prime divisors of 7 are special

cases of results concerning the associated prime ideals of 7A .

Throughout this paper the terminology is standard, the methods are generally

elementary, most proofs are short and straightforward, and some of them are

patterned after their classical (integral dependence) analogues. Simply stated,

this is a rather nice piece of "almost classical" (1930-1960) commutative algebra

that seems to have been overlooked until now. The working guide (mentioned

above) made the results seem natural, and I think they are potentially very

useful; for example, in regard to certain of its ideals, P has some of the nice

properties that P' does, and P    may be a finite P-module when P' is not.

A brief summary of this paper will now be given. In §2 the A-closure 7A

of 7 is introduced and it is shown that 7 —» 7A is a semiprime operation

that satisfies the A-cancellation law. The relationships between IA and Ia are

developed in §3, and characterizations are given (in terms of 7A ) for 7 and R

to be integrally closed. §4 contains a few miscellaneous properties of the ideals

7A , and the results in §5 are concerned with the relationship between the ideals

7A and the analogous closure of the ideals IB, where B is an P-algebra. In §6

it is shown that P has a A-closure P , that A —> A is a closure operation on a

large set of rings A containing P as a subring, and that P is a good analogue

of the integral closure P' of P. The results in §7 show that A —> A behaves

nicely under certain types of ring extension, and in §8 it is shown that if A is

an integral extension ring of P that is contained in the total quotient ring of

R, then A = PA for an appropriate set A. Finally, it is shown in §9 that if P

is Noetherian, then the associated prime ideals of 7A are also associated primes

of IAK and (IK)A for all K G A, and it is then shown that this implies some

of the recent results in the literature concerning asymptotic prime divisors.

2. The A-closure of an ideal

The A-closure 7A of an ideal 7 is introduced in this section, and it is shown

that 7 —► 7A  is a semiprime operation that satisfies the A-cancellation law.
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Throughout this section, R is a commutative ring with identity and A is an

arbitrary (but fixed) multiplicatively closed set of finitely generated nonzero ideals

ofR.

(2.1) Theorem. If I is an ideal in R, then D(7) = {77i : K ;K G A} is a

directed set and IA = \J{IK : K ; K g A} = ¿ZKeA(IK : K) is an ideal in R such

that IA = IAK:K for all Kg A.

Proof. Let 77 and K be two ideals in A. Then 777 : 77 and IK : K are both

contained in 7777Í : 777Í, and 7777C : 777< G D(7), since HK G A, so D(7) is a

directed set of ideals of P . Therefore it is readily checked that (j{IK : K;K g

A} = EKeA(IK :^).so 7A is an ideal in P. And, if K = (bx,... , bn)R G A
and x G IAK : K, then

xK Ç IAK = ( [J (777 : 77) ) K = ( £ (777 : 77) ) K
\//€A / V//€A /

= £ 7<(777 : 77) ç£ (77(77:77)= \J (IK77 : 77),
HeA HeA HeA

so for i = I, ... ,n there exists an ideal 77, e A such that xb¡ G IKH¡ : H¡.

Let L = Hx-Hn,so Lg A, and xb¡ G I KL : L for i = I, ... ,n . Therefore

xK ç IKL : L, so x G (IKL : L) : K = IKL : KL ç \JHeA(IH : 77) ç 7A.
Thus IAK : K C IA, and the opposite inclusion is clear.   Q.E.D.

It is clear from (2.1) that if IK : K g D(7), then IK : K ç IA. And it is

also clear from (2.1 ) that an element x is in 7A if and only if x G IK : K for

some Tí e A if and only if xK ç IK for some K G A. These facts will often

be used implicitly in what follows.

(2.2) Definition. The A-closure of 7 is the ideal 7A = (jKeA(IK ■ ̂ ) =

¿ZK€A(IK:K) given by (2.1).

The main reason for this terminology is that 7A is usually a small (incremen-

tal) enlargement of 7. Specifically, it is shown in (3.2.1) that if no ideal in A

is contained in any minimal prime ideal, then 7A is contained in the integral

closure of 7.

If A is a multiplicatively closed subset of the set of regular principal ideals

bR of P (an ideal is regular in case it contains a nonzero divisor), then IbR :

bR = I, so it follows from (2.1 ) that 7A = 7 for all ideals 7. Also, if A, ç A2

are two muiltiplicatively closed sets of finitely generated nonzero ideals of R,

then it is clear that the A,-closure of each ideal is contained in its A2-closure.

(4.1) contains a few more miscellaneous properties of the ideals 7A.

In (2.4) it is shown that 7 —► 7A is a closure operation and, more specifically,

a semiprime operation, so we now give the appropriate definitions.

(2.3) Definition. Let 7 -* 7Y be an operation on the set of ideals 7 of a ring

R, and consider the following rules, where 7 and J are ideals of R and b is

a regular nonunit in P : (a) 7 c Ix ; (b) if 7 C J, then I ç / ; (c) (Ix)x = Ix ;
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(d) IxJx ç (7/)^. ; and (e) (bl)x = blx . Then 7 -* Ix is a closure operation if

(a)-(c) hold for all ideals 7 and J in P, it is a semiprime operation if (a)-(d)

hold for all ideals 7 and J in R, and it is a prime operation if (a)-(e) hold

for all ideals 7 and J and regular nonunits b of R.

It should be noted that the definition of a prime operation in (2.3) differs

from that given by Krull in [4, §43] and also from that given by Zariski and

Samuel in [10, Appendix 4]. In both [4] and [10] a prime operation satisfies

(a)-(e). However, in [4], I —> Ix is applied more generally to fractional ideals

7, but it is assumed that P is an integrally closed integral domain. And in [10],

7 —► Ix is applied to the P-modules 7 contained in an extension field K of

an integral domain R, and a prime operation must satisfy the cancellation law

and also be such that Rx = R1, the integral closure of P in Tí . However, in

both [4] and [10] it is pointed out that all prime operations that satisfy these

additional properties are essentially known. Since we want to derive a new

family of prime operations in this paper, we chose the definition in (2.3), which

does agree with that given in [6] and [8].

(2.4) Theorem. The operation I —» 7A is a semiprime operation on the set of

ideals I ofR; that is, for all ideals I and J ofR:

(2.4.1) 7C7A,

(2.4.2) IQJ^IAQJA,

(2A3) Ca)a = 'a>

(2.4.4) 7A7A C (7T)A.

Proof. IfKGA, then I ç IK : K g D(7), so (2.4.1) holds by (2.1). Also, if
7 ç 7 are ideals in P and Tí € A, then IK ç JK, so IK : K c JK : K g

D(7), hence it follows from (2.1) that (2.4.2) holds. Further, it follows from

7A = IAK : K for all Tí € A (see (2.1)) that (TA)A = TA. Finally, if x G IA

and y G JA, then there exist ideals 77, and 772 in A such that x G IHX : 77,

and y G JH2 : 772. Therefore xyHxH2 C IJHXH2, so xy G IJHXH2 : HXH2 G

D(7T), so it follows that (2.4.4) holds.   Q.E.D.

(2.5) Remark. Let T be an index set. Then it is known (and readily veri-

fied) that for any semiprime operation 7 —► Ix on the set of ideals 7 of P

it holds that (IXJX)X = (IJ)X , (E(6r(',)A = (£,er '/), > and (flia-WA =
f|¡er(7,)A.. Therefore it follows from (2.4) that

'(a) (7A/A)A = (7/)A,

0» (E/er(//)A)A-(EierA)A^nd

«0 (M)a)a = fierce •
The following proposition is quite useful in its own right, and it will be used

in the proof of the A-cancellation law (2.7).

(2.6) Proposition. If I is an ideal in R and if either K g A or K is a regular

principal ideal, then (IK)A : K = IAK : K = IA.
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Proof. It is clear that 7A C 7A7i : K, and it follows from (2.4.1) and (2.4.4)

that 7A7i : Tí ç (77í )A : Tí , so it remains to show that (IK)A : K ç TA. For

this, let Q be the multiplicatively closed set of ideals generated by A and the

set of all regular principal ideals of R. Then it is readily seen that TA = Ia for

all ideals 7 in R, so it suffices to consider the case when Tí G A. For this, let

x G (IK)A : K. Then xK ç (IK)A = \JHeA(IKH : 77), so it follows as in the

proof of (2.1) that x G IA, so (IK)A :KCIA.   Q.E.D.

By (2.4) the following ideals lie between 7A and (77i )A : Tí , so by (2.6) they

are all equal when Tí € A: TA,7A7iA : KA, IAKA :K,IAK:K, (IK)A : KA, and

(IK)A:K.

(2.7) Theorem (A-Cancellation Law). 7/7, J, and K are ideals in R such

that either K G A or K is a regular principal ideal, and if IK ç (JK)A, then

ICJA. Therefore if (IK)A = (JK)A, then IA-= JA.

Proof. If 77i C [JK)A, then 7 ç (JK)A : K = JA, by (2.6). Therefore, if

(77i)A = (T7i)A, then 77i ç (T7í)A, by (2.4.1), so 7 c 7A, by what was just

proved, hence IAÇ JAA = JA, by (2.4.2) and (2.4.3). Therefore it follows by

symmetry that 7A = JA.   Q.E.D.

By ignoring the first statement in (2.7) and instead using (2.6) on both sides

of (IK)A = (JK)A , we get the following shorter proof of the last statement in

(2.7): 7A = (77QA : K = (JK)A :K = JA.
The converse of (2.7) also holds: if 7A = JA, then (77i )A = (JK)A for all

ideals Tí in R (not just those in A). (For, 7A = JA implies 7A7iA = TA7iA, so

the conclusion follows from (2.5)(a).) A stronger converse is true if P satisfies

the ACC on colon ideals, as will be shown in (2.9). However, to prove (2.9) we

need the following remark.

(2.8) Remark. Assume that R satisfies the ACC on colon ideals. Then by this

ACC (but without assuming that the ideals in A are finitely generated) it is easy

to show that (a) for each ideal 7 in P there exists an ideal Tí in A such that

IA = IK :K g D(7) and (b) if IA = IK :K, then IA = IAH :H = IKH : KH

for all 77 € A (since IK.KC ((IK : K)H) : 77 C IKH : KH G D(7)).

It is only in the proofs that 7A7i : K = IA (in (2.1)) and (77i)A : K = IA (in

(2.6)) that the finite generation of the ideals in A has been directly used. (The

first of these was used to show that 7^ = 7A, and the second was used to prove

(2.7).) Using (2.8), it is easy to show that (2.1) and (2.6) hold without assuming

that the ideals in A are finitely generated, so if P satisfies the ACC on colon

ideals, then all the previous results in this section (and in the remainder of the

paper, except for (5.1.2), (5.2.1), (6.6.3), and the results following (6.6.3) that

reference one of these three results) hold for arbitrary multiplicatively closed

sets of nonzero ideals of such a ring R.
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(2.9) Theorem. Assume that R satisfies the ACC on colon ideals and let I and

J be ideals in R. Then the following are equivalent:

(2.9.1) ID = JD   for some D G A,

(2.9.2) (IK)A = (JK)A   for some Kg A,

(2.9.3) 7A = JA.

Proof. (2.9.1) => (2.9.2), since 7A is well defined for all ideals 7, and (2.9.2) =>

(2.9.3) by the comment preceding this theorem. Finally, if (2.9.3) holds, then

by (2.8)(a) there exist ideals Tí and 77 in A such that IK : K = I& = JA =

JH : 77. Therefore (2.8)(b) shows that 77i77 : KH = IA = JA = JKH : KH.

Let D = KH. Then D G A and ID = D(ID : D) = D(JD : D) = JD, hence

(2.9.3) =► (2.9.1).   Q.E.D.

3. The A-closure and the integral closure of an ideal

The notation in this section will be the same as in §2. Therefore A is a mult-

plicatively closed set of finitely generated nonzero ideals of a ring R, but often

A will be at least partly specified, and to save repetition, A will consistently

be used to denote the multiplictively closed set of all finitely generated ideals of

R that are not contained in any minimal prime ideal in R. In this section

we consider the relationship between the A-closure of an ideal and its integral

closure. The main results show that generally (but not always) the A-closure

is contained in the integral closure, and equality holds for most ideals when

A = A. We begin with the definition of, and some facts concerning the integral

closure of an ideal.

(3.1) Definition. If 7 is an ideal in P, then the integral closure Ia of I in

R is the set Ia = {x g R ; x satisfies an equation of the form x" + bxx"~ +

-h bn = 0, where b¡ G Í for i = I, ... ,n}.

It is well known that 7fl is an ideal in R such that 7 ç 7fl ç Rad(7). Also,

it is shown in [6, §6] that 7 —► Ia is a semiprime operation on the set of ideals

7 of R such that the following cancellation law holds: if (IK)a ç (JK)a , if

K = Fa for some finitely generated ideal F in R, and if 7 is contained in

every minimal prime ideal in P that contains K, then Ia ç Ja . This will be

used in the proof of (3.2.1).

(3.2) Theorem. Let A be the set of all finitely generated ideals in R that are

not contained in any minimal prime ideal. Then :

(3.2.1 ) If A ç A, then IA ç Ia for all ideals I in R.
(3.2.2) If AC A, then Ia ç 7A for all ideals I in R that contain an ideal in

A.
(3.2.3) If A = A, then Ia = IA for all ideals I in R that contain an ideal in

A.

Proof. For property (3.2.1) let 7 be an ideal in R and let x G IA, so there

exists an ideal  K  in A  such that  x G IK : K.   Now  (77Í : K)K = IK,
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so ((77i : Tí )7í ) = (IK)a, so by the hypothesis on the ideals in A it follows

from [6, §6] (see the comment preceding this theorem) that (IK : K)a ç 7fl.

Therefore x G IK : K C (IK : K)a C Ia , hence 7A ç Ia .

For (3.2.2) assume that 77 e A is contained in 7 and let x G Ia . Then to

show that x G IA , by (2.4.1) it may be assumed that x £ I, so x" + bxx"~ +

—\-bn = 0 for some integer n > 1 and for some elements b¡G I'. Now 7 has

a (possibly infinite) basis, and each element in a power I' of 7 is a (finite) linear

combination of products of i factors from these basis elements, so it follows

that there exists a finitely generated ideal J contained in 7 such that b¡ G J' for

i = l,...,n, so x" GJ(x,J)"'x. Let K = (x,H,J)R. Then K is finitely

generated and is not contained in any minimal prime ideal, so K g A ç A. Also,
K" = x"R + (H,J)Kn~x = (H,J)K"~X , since x" G J(x,J)"~x ç JKn~x .

Therefore x G K ç Tí" : Tí"-1 = (H,J)Kn~x : Tí"-1 ç 77í"_1 : K"~x ç 7A.

Thus  Xë/A,SO  la-^A-

(3.2.3) follows immediately from (3.2.1) and (3.2.2).   Q.E.D.

(3.6) gives some additional relations between Ia and 7A when 7 is contained

in at least one minimal prime ideal.

(3.3) Remark. Let A be as in (3.2) and let 7 be an ideal in P. Then:

(3.3.1) If 7 is integrally closed (for example, if 7 is a prime ideal in P),

then IK : K = I for all ideals K in A, hence 7A = 7 for all multiplicatively

closed subsets A of A.

(3.3.2) If 7 contains an ideal 77 in A and if 77i : Tí = 7 for all finitely

generated ideals K of the form (x, I0)" , where x G Ia, 70 is a finitely gener-

ated ideal that is contained in 7 and that contains 77, and n > 1, then 7 is

integrally closed.

Proof. For (3.3.1), if K G A, then 77i : K ç 7A. Also, 7A ç Ia (by (3.2.1)
applied to A = A) and Ia = I, by hypothesis, and it is clear that I ç IK : K .

Therefore I = IK : K, so if A is a multiplicatively closed subset of A, then

7A = 7 by (2.1). (For the parenthetical statement, it is readily checked that a

prime ideal is integrally closed.)

For (3.3.2), the proof of (3.2.2) shows that if x G Ia , (£ I, then xgIK : K ,

where x" + bxx"~x + ■■■ + bn = 0 and K = (x,H,J)"~X for some finitely

generated ideal J contained in 7 and n > 1 . Therefore the hypothesis implies

that Ia ç 7, and the opposite inclusion holds since 7 —» la is a semiprime

operations, by [6, §6].   Q.E.D.

The following corollary, applied to the case when P is an integral domain,

gives an interesting characterization of integrally closed nonzero ideals in P,

and this characterization also holds for 7 = (0), since (0)7i : Tí = (0) and

(0) = (0)a in an integral domain.
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(3.4) Corollary. Let I be an ideal in R that is not contained in any minimal

prime ideal and assume either that I is finitely generated or that there are only

finitely many minimal prime ideals in R. Then I = Ia if and only if IK : K = I

for all ideals K in A.

Proof. If 7 = Ia , then the conclusion is given by (3.3.1).

For the converse, it is well known that an ideal contained in a finite union of

prime ideals is contained in one of them. Therefore, since 7 is not contained

in any minimal prime ideal in P, it follows that if there are only finitely many

minimal prime ideals in R, then 7 contains an ideal 77 in A. And if 7 is

finitely generated, then I G A. Therefore, in either case it follows from (3.3.2)

that Ia = I.   Q.E.D.

The following corollary gives an interesting characterization of integrally

closed rings.

(3.5) Corollary. R is integrally closed if and only if bK : K = bR for all

regular principal ideals bR and for all finitely generated regular ideals K in R.

Proof. It is readily checked that a ring R is integrally closed if and only if

bR = (bR)a for all regular principal ideals bR of R. Therefore the corollary

follows immediately from (3.3.1) and (3.3.2).   Q.E.D.

It follows from (3.2.3) that if R is an integral domain, then 7 —» Ia is a

(very important) special case of 7 —> 7A. Unfortunately, this need no longer be

true when P is not a domain; this, among other things, is shown in (3.6).

(3.6) Remark. (3.6.1) If every ideal in A is regular (and finitely generated),

then (0)A = (0) and (0)a = Rad(P) (so 7A < Ia can hold when 7 is contained

in a minimal prime ideal (see (3.2.1); it will be shown in (4.2) that is also can

hold for regular ideals).

(3.6.2) If A ç A, then (0)A ç (Rad(P))A = Rad(P).

(3.6.3) If z is a minimal prime ideal in R, if there exists an ideal Tí in A

such that K ç z , and if 7 is an ideal in P such that 7 ç z , then IaÇ z and

7A d: z . Therefore (Ia)a = Ia< (Ia)A , so Ia < 7A can hold (with 7 = Ia) when

some K G A is contained in a minimal prime ideal (see (3.2.2)).

(3.6.4) If 7 contains a nonnilpotent element and A contains all finitely gen-

erated nonnilpotent ideals L contained in Ia, then Ia ç 7A and the equality

holds only if 7 is not contained in any minimal prime ideal (see (3.2.2)).

(3.6.5) If 7 contains a nonnilpotent element, if 7 is contained in some

minimal prime ideal z in P, if 7Pz ^ zRz, and if the zero ideal in P has a

finite primary decomposition, then Ia ^ 7A for all multiplicatively closed sets

A of finitely generated nonzero ideals of R.

Proof. For (3.6.1), if K is regular, then (0)K : K = (0) : K = (0), so (0)A = (0)

by (2.1), and it is readily checked that (0)fl = Rad(P).

For (3.6.2), (0)A ç ((Rad(P))A by (2.4.2). Also, if z is a minimal prime

ideal in P, then  zK : K = z  (since Tí <£ z implies that  z : Tí = z, so
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z ç zK : K ç z : Tí = z), so z& = z, by (2.1). Therefore , if T is the set of

minimal prime ideals in R , then

(Rad(P))A=(p|z)    =(Dza)    *'fW    by(2.5)(c),
Vzer  /A      \zer    /A     zer

= f] z = Rad(P).
zer

For (3.6.3), it has already been noted that prime ideals are integrally closed

and that 7 —► 7fl is a semiprime operation, so 7 ç z implies that /flCzfl = z.

Also, since Tí is finitely generated it follows that KnRz = (0) for some n > 1,

so it follows that (77i " : Kn)Rz = Rz, hence 7A ̂  z. Therefore, applying what

has already been shown to Ia in place of 7 it follows that (Ia)a — Ia < (Ia)A •

For (3.6.4), the proof that Ia ç 7A is similar to the proof of (3.2.2), but

with the nonnilpotent element playing the role of 77. For the last statement,

assume that 7 is contained in some minimal prime ideal z and let b be a

nonnilpotent element in 7. Then bR G A, by hypothesis, so (bR)A <£ z, by

(3.6.3). However, (bR)A ç 7A, so 7A <£ z , and Ia ç za = z , so 7A / Ia .

Finally, for (3.6.5) suppose that there exists a multiplicatively closed set A of

finitely generated nonzero ideals of P such that Ia = IA . It will be shown that

this leads to a contradiction by considering the two cases: (a) there exists an

ideal Tí in A such that Tí ç z, and (b) Tí £ z for all Tí e A. If (a) holds, then

(3.6.3) implies that IA <£ z and Ia ç z, and this contradicts the supposition.

Therefore (b) must hold, so KRZ = Rz for all K G A, hence it follows from

(5.1.2) below that 7AP, = 7Pz . Now the zero ideal in R has a finite primary

decomposition, so it follows that IaRz = (IRz)a , and (IRz)a — zRz, since z is

a minimal prime ideal. Finally, 7PT < zRz, by hypothesis, so the supposition

implies that zRz = IaRz = IARz — 7P_ < zRz, and this is a contradiction, so

it follows that there does not exist such a set A.   Q.E.D.

With the comment preceding (3.6) in mind, it seems worthwhile to give the

following two examples: (a) shows that 7 —► Ia and 7 —> 7A can coincide when

R is not an integral domain, and (b) is a specific example of (3.6.5).

(a) Let R = Z2 © Z3, where Zk denotes the integers modulo k. Then R

has exactly four ideals (including P ) and each is integrally closed, so / -> /a

and 7 —» 7A coincide for A = {P}. (A similar result holds whenever R is a

finite direct sum of fields.)

(b) Let R = Z4®Zi and let 7 = 4Z4 © Z3. Then it is readily checked that

P and 7 satisfy the hypotheses of (3.6.5), so Ia ^ IA for all choices of A.

It is worth noting that essentially the same proof as for (3.6.2) shows that if

no ideal K in A is contained in any prime ideal in P that is minimal with

respect to containing a given ideal 7, then 7A ç (Rad(7))A = Rad(7).

(3.7) (together with (2.4)) shows that 7 —» 7A is a prime operation on the set

of ideals 7 of R when R is integrally closed and A ç A.
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(3.7) Theorem. Assume that R is integrally closed and that A ç A. Then

(bI)A = bIA for all regular nonunits b in R and for all ideals I in R.

Proof. By (2.4.1) and (2.4.4) it suffices to show that (bI)A ç bIA. For this,

let x G (bI)A, so x G (bl)a, by (3.2.1), and (bl)a ç (bR)a = bR, since P is

integrally closed and b is regular, so it follows that x/b G R. Also, there exists

an ideal Tí in A such that x G bIK : Tí , so xTi ç ZzTTí , hence (x/b)K ç TTí .

Thus it follows that x/b G IK : K ç TA , and so x G bIA.   Q.E.D.

(3.7) will be sharpened in (6.10), where it is shown that I —> TA is a prime

operation on the set of ideals I of R if and only if P is A-closed (see (6.1)).

4. Some related results

This section contains a few additional results concerning the ideals TA , where,

as usual, A is a multiplicatively closed set of finitely generated nonzero ideals

of P.

(4.1)    Proposition. Let I be an ideal in R. Then:

(4.1.1) If J is an ideal in R such that I ç J c TA (inparticular, if J G D(7)),

then JA = IA.

(4.1.2) (0)A = [jKeA((0):K) and(0)A:K = (0)Aforall KgA.

(4.1.3) If I : Tí = I for all Kg A, then IA = I. The converse is false.

(4.1.4) (7A :J)A = IA:J for all ideals J in R.

(4.1.5) If bx, ... ,bn are regular nonunits in R, then (bx, ... ,bnR)A =

bx ■ ■ ■ bnR if and only if (b¡R)A = b¡R for i = I, ... ,n .

(4.1.6) If b is a regular nonunit in R such that (b R)A = b R for some

k>l, then (bnR)A = bnR for all n > 1.

(4.1.7) If no ideal in A is contained in a minimal prime ideal, then (a) if

I¿R, then Iá¿R, (b) (Ia)A = Ia, and (c) iflGA, then I ç I* ç I& ç Ia,

where I* = {J{In+x :l";n>l}.

(4.1.8) If Bx,... ,Bn are R-algebras such that (0) £ Q, = {KB¡;K G A} for

i = 1, ... ,n , if each B¡ satisfies the ACC on colon ideals, and if C¡ is a finite

collection of ideals in B¡ for i = 1, ... ,n, then there exists an ideal K in A

such that JKB¡ : KBt = J^ for all J G C¡   (i = 1, ... , n).

Proof. (4.1.1) is clear by (2.4.2) and (2.4.3).

For (4.1.2) note that (0)7i : K = (0) : K for all ideals K, so (0)A =

IW(0) : K) by (2.1). Also, if K G A, then (0)A : K = ((0)K)A : K = (0)A by

(2.6).
For (4.1.3), if I :K = I, then I ç IK : K ç I : K = I. Thus if I : K = I

for all Tí e A, then it follows from (2.1) that IA = I. To see that the converse

is false let b be a regular nonunit in 7 and let A = {bnR ; n > 1}. Then IA = I

and I :K = R for all KgA.

For (4.1.4) let x G (IA : J)A, so there exists an ideal KgA such that

xK c (I   : J)K. Therefore x G (K(IA : J)) : K ç ((KIA) : J) : K = (KIA) :
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TTi = ((7A7i ) : K) : J = (IA) : J by (2.6). Therefore (7A : /)A ç 7A : J, and the

opposite inclusion is given by (2.4.1).

For (4.1.5) assume that (bx ■ ■ ■ bnR)A = bx--bnR, fix i = I, ... ,n, and

let x G (b¡R)A. Then there exists an ideal Tí in A such that xK ç b¡K, so

xbx ■ ■ • b¡_lb¡+x ■ ■ ■ bnK C bx-- bnK. Therefore xbx ■ ■ ■ b¡_xb¡+x ■bn G ¿>, • ■ •

bnK : K = bx- ■ ■ bnR, by the hypothesis and (2.1), so since each b¡ is regular it

follows that x G b¡R. Thus (b¡R)A Q b¡R, and the opposite inclusion is given

by (2.4.1).
Now assume that (b¡R)A = b¡R for i = 1, • • • , n. The proof that

(bx- ■ ■ bnR)A = bx ■ ■ ■ bnR will be by induction on n . The case n = 1 is clear,

so assume that n > 1 and that the result holds for n-l regular nonunits. Now

(bx--- bnR)A ç (bnR)A = bnR, by (2.4.2) and the hypothesis, so

(V • • KVa = (V ■ ■ KR)a n b„R = bn[(bx ■ ■ ■ bnR)A : bnR]

= MV-A-.*)a   by (2.6)
= bn(bx ■ ■ -bn_xR)   by induction

= bx--bnR.

(4.1.6) is a special case of (4.1.5).

For (4.1.7)(a), 7A ç 7fl , by (3.2.1), and it is readily seen that l G Ia if and

only if 7 = P. For (4.1.7)(b), 7A ç 7fl, as already noted, so Ia ç (7JA ç

(Ia)a = Ia , since 7 —► Ia is a semiprime operation. Finally, if 7 e A, then the

first two containments in (4.1.7)(c) are clear, and 7A ç Ia by (3.2.1).

Finally, for (4.1.8), the notation KB¡ denotes the ideal f¡(K)B¡, where f¡

is the natural homomorphism from P into B¡. Therefore it is readily seen

that each Q.¡ is a multiplicatively closed set of finitely generated nonzero ideals

of B¡. Therefore fix JX,J2G [j{C¡ ; i = 1,...,«}, say /, G C, and J2 G C2

(and possibly C, = C2). Then the hypothesis and (2.8)(a) (applied to each B7)

imply that there exist ideals 77, e A such that J¡A = JH¡B¡ : H¡B¡ for z = 1,2.
Then L = H{H2 G A and J¡A = J¡LB¡ : LB¡, since J¡A = J¡H¡Bi : H¡B¡ ç

JHXH2B¡ : HXH2B¡ ç J¡A for i = 1,2. The conclusion readily follows from

this by using induction on the cardinality of C, U ■ • • U Cn .    Q.E.D.

Concerning (4.1.7)(a), note that if z is a finitely generated minimal prime

ideal in P that is also a maximal ideal, and if z € A, then zA = R (since

zGzAQ7z by (2.4.1) and (3.6.3)).

The next two results are concerned with I* = \J{I"+ : I" ;n > 1} . For (4.2),

note that it is shown in (4.1.7)(c) that 7 ç 7* ç Ia. (4.2) is an example to

show that both containments may be proper; in particular, if A = {7" ; n > 1} ,

then (4.2) shows that I < IA = I* < Ia can hold even for a regular ideal in a

Noetherian domain (see (3.6.1)).

(4.2) Example. Let R be the polynomial ring F[X ,Y, Z], where X, Y, Z

are indeterminates and F is a field. Let

K = (X3,y\ Z3)(X3 ,y\z3, X2Y)R,

and let A={K";n>l}. Then K <K* =KA<Ka.
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Proof. It is clear that K* = KA. Also, it is shown in [4, (3.3)] that Tí <

(J{Tírt+ : Tí" ;n > 1} = K*. (The proof is not difficult, but it involves some

deep concepts.) Further, it is readily seen that Tifl = (X,Y,Z)6R and that

(X2Y2Z2)X6n <¿ K"+x  for all zz > 1 .   But X2Y2Z2 G Ka and X6n G Tí".

Therefore it follows that Ka £ Kn+X : Tí" for each n > 1, so Ka <£ KA , hence

KA<Ka by(4.1.7)(c).    Q.E.D.

(4.3) is concerned with the following question that I was not able to answer: if

I is an ideal in R that is not contained in any minimal prime ideal of R, then

for what ideals J between I and T   does there exist a A such that J = 7. ?
a A

Taking A = {R} gives 7A = 7, and (3.2.3) specifies a set A for 7A = Ia. Also,

for each J such that there exists an ideal K in R such that J : Kn = J for

all zî > 1, it follows from (4.1.3) that J = JA, where A = {Kn ;n > 1} . (4.3)

gives a little more information on this (for if J in (4.3) is not contained in any

minimal prime ideal in R, then I ç J ç T* = 7A ç 7a , by (4.3) and (3.2.1)).

(4.3) Proposition. Let I be a nonnilpotent ideal in R, assume that I is a

reduction of a finitely generated ideal J (so I ç J and IJn = Jn+X for some

positive integer n), and let A = {/" ; n > 1}. Then IA = J*.

Proof. Note first that (0) £ A, since 7 (and hence also J ) is nonnilpotent.

Therefore 7A = \J{IJn : J";n > 1} and J* = \J{Jn+x : Jn ;n > 1} = JA.

However, since 7 is a reduction of J it follows that 77" = T"+1 for all

large n, so since IJ" : Jn C IJn+x : Jn+X for all n > 0, it follows that

IA = J*.   Q.E.D.

This section will be closed by giving a negative answer to the following ques-

tion: if A, and A2 are distinct multiplicatively closed sets of finitely generated

nonzero ideals of R, then is there at least one ideal 7 in R such that 7A ^ 7Ai ?

Concerning this, it was noted following (2.2) that 7A = 7 for every multiplica-

tively closed set of the regular principal ideals of R, and it was noted in the

proof of (2.6) that 7A = 7A if A2 is the multiplicatively closed set generated by

A, and any subset of the set of regular principal ideals of R, so let us rule out

these cases (so R cannot be a valuation ring). But even now the answer is still

no. For example, let R = F[X, Y] and K = (X, Y)R, fix an integer k > 1,

and let A, = {Tí" ;n > 1} and A2 = {Kkn ;n > 1}, so A2 is a proper subset

of A[ . Then by (2.8)(a) for each ideal I in R there exist positive integers m

and n such that T. = IKm : Km and T. = IKkn : Kkn . Then it follows from

(2.8)(b) that IA¡ = IKmkn : Kmk" = TAi.

5. The A-closure in P-algebras

In this section we consider some rings B  related to R and some multi-

plicatively closed sets Q. of finitely generated nonzero ideals of B such that
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{KB ; K G A} c Q, and several relationships between the ideals 7A in R and

the ideals (IB)n are proved. (Here, as in the proof of (4.1.8), TiP = f(K)B,

where / is the natural homomorphism from R into B .)

(5.1)    Theorem. Let R be a ring and let A be a multiplicatively closed set of

finitely generated nonzero ideals of R. Then :

(5.1.1) If B is an R-algebra such that KB ¿ (0) for all ideals KgA (this

holds if R ç B), and if Q is a multiplicatively closed set of finitely generated

nonzero ideals of B such that {KB ; B G A} ç Q, then IAB ç (IB)a for all

ideals I in R, so IA ç (IB)a n P.

(5.1.2) If B is aflat R-algebra such that KB ¿ (0) for all KgA, and if
Q = {KB ;KgA}, then IAB = (IB)Q for all ideals I in R. Therefore, if B is
a faithfully flat R-algebra, then IAB = (IB)a and (7P)n n R = IA.

(5.1.3) If 77 is an ideal in R such that 77 r¿ Tí for all KgA, and if Q is a

multiplicatively closed set of finitely generated nonzero ideals of R/H such that

{(K + H)/H;K g A} C Q, then (IA + H)/H ç ((I + H)/H)a for all ideals I
in R.

(5.1.4) Let Z = (0)A, let 77 be an ideal in R such that 77 ç Z Jetan overbar

denote residue class modulo 77, and let Q = {Tí ; Tí e A}. Then (a) (0) : Tí ç Z

for all KgA, and (b) H ç 7A and IA = (î)a for all ideals I in R.

(5.1.5) Let I be an ideal in R, let R = R[u, tl], where t is an indeterminate

and u = l/t, and let Q = {KR;K G A}. Then (k"R)0 n P = (l")A for all
n > 1.

Proof. For (5.1.1),

iab = [J2(IK ■K))B = £(('*: K)B) ç E((/ß)(^): KB) £ (/5)o>
\K€A ) K€A KeA

by (2.1 ) applied to 7P and Q.. Therefore, since J ç JB C\R holds for all

ideals J of P, it follows that 7A C IABf)R Q (IB)anR. (For the parenthetical

statement, if R ç B , then K ç KB n P for all ideals Tí in R and (0)5 n R =

(0)R , so KB ^ (0) for all KgA .)

For (5.1.2), the hypothesis implies that ÍÍ is a multiplicatively closed set

of finitely generated nonzero ideals in B. Therefore by (5.1.1), to prove the

first statement it suffices to show that (IB)a ç 7AP. For this if x G (IB)a,

then by the definition of Q there exists an ideal K in A such that x G

(IB)(KB) : KB = (IK : K)B, since K is finitely generated and B is a flat

P-algebra. Also, 7Tí : K ç TA, so x G (IK : K)B C IAB, so (IB)n ç IAB, as

desired. The last statement in (5.1.2) is clear from this.

For (5.1.3) let an overbar denote residue class modulo 77. Then 7A =

{x ; xK ç 77í for some KgA}. Therefore it follows that if x G IA, then

x G IK : K ç (7)n , since K e £!, hence it follows that 7^ ç (7)Q.

For (5.1.4), it was noted in (4.1.2) that (0)A : Tí = (0)A for all Tí e A, so

H ç Z = (0)A implies that (Ü) : K Q 1 for all K g A. Therefore Q is a

multiplicatively closed set of finitely generated nonzero ideals in R = R/H.
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Also, Z = (0)A ç 7A for all ideals 7 in P, by (2.4.2), so 77 c 7A for all ideals

7. Finally, by (5.1.3) it remains to show that (7)a ç 7A . For this let x G (7)a ,

so by the definition of Q there exists an ideal Tí in A such that xTi ç 77í , and

so xK CIK + H C (IK)A + Z = (IK)A, since Z = (0)A ç (IK)A. Therefore

x G (IK)A : K = IA by (2.6), hence x G IA as desired.

Finally, if r 6 (u"R)Q n R, then r G (uR)a, so there exists an ideal Tí

in A such that r(TiR) ç u"(KR). Now R ç R[u,t] = R[t, l/t] and / is an

indeterminate, so rTíRnP = rK, and since u"{KR) is a homogeneous ideal

it is readily checked that u"(KR) n P = l"K, so r G InK : K ç (T")A. For

the opposite inclusion, if r G (l")A , then there exists an ideal K G A such that

rK C I"K, so r(TiR) c l"(KR) c u"(KR), hence r G (u"(KR) : (KR)) n P Q
{unR)QnR.   Q.E.D.

In (5.1.4), even if TT = Z (so (0) : K = (Ü) for each KgA) and K is

finitely generated, it may not be assumed that Tí is a regular ideal. For example,

it is shown in [1, Example 3, p. 63] that there can exist a nonregular ideal Tí

that is finitely generated and that satisfies (0) : K = (0).

The ring R[u,tl] in (5.1.5) is called the Rees ring ofR with respect to I.

One of the properties of such rings is u"R[u, tl] n P = 7" for all n > 1, and

quite often this can be used to extend to arbitrary ideals a result that is known

for principal ideals. They will be used in this manner in the proof of (6.8.2).

(5.2) Corollary. With the notation of (5.1) let I be an ideal in R such that

I = IA- Then:

(5.2.1) If B is aflat R-algebra such that KB f (0) for all K G A and if
Q = {KB ;KgA}, then IB = (IB)n.

(5.2.2) If 77 is an ideal in R such that 77 ç Z = (0)A and if Q =

{(K + H)/H;KgA}, then (I + H)/H = ((I + H)/H)Q.

Proof. (5.2.1) follows immediately from (5.1.2), and (5.2.2) follows immedi-

ately from (5.1.4).   Q.E.D.

6. The A-closure of a ring

In this section it is shown that if A is a multiplicatively closed set of finitely

generated nonzero ideals of a ring R, then P has a natural A-closure. And it is

then shown that A —» A is a closure operation on the set {A ; R is a subring of

A and if B is an intermediate ring between R and A, then regular elements

in B remain regular in A}. It is also shown that PA plays a role relative to

the ideals 7A that is analogous to the role played by the integral closure of R

relative to the ideals Ia, and that 7 —► 7A is a prime operation on the set of

ideals 7 of P if and only if P is A-closed. We begin with the definition of

PA . (It should be noted that the notation RA would not be appropriate for the

ring defined in (6.1), since R = RA is the A-closure of the ideal R.)

(6.1) Definition. Let A be a multiplicatively closed set of finitely generated

nonzero ideals of a ring R and let T be the total quotient ring of P . Then a
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A-extension ring of R is an extension ring A of R such that bA n R ç (bR)A

for all regular nonunits b in R and some nonzero multiple of each nonzero

element in A is integral over P. The A-closure R of R is the largest A-

extension ring of R that is contained in T, and R is said to be A-closed if

Concerning (6.1), it is known that if A is an integral extension ring of R,

then bAnR ç (bR)a for all regular nonunits b in P, so it follows from (3.2.3)

that every integral extension ring of R is a A-extension ring of R (for A = A,

where A is as in (3.2)). Also, if A is an extension ring of R that is contained

in T, then it is clear that some nonzero multiple of each nonzero element in A

is integral over P (in fact, is in R), so in this case, to see if A is a A-extension

it is only necessary to show that bAC\R ç (bR)A for each regular nonunit b in

P ; this will be implicitly used in the remainder of this paper.

It is clear that P satisfies the conditions on A in (6.1 ), so there exist maximal

such rings contained in T by Zorn's lemma. We now show that there is, in

fact, a largest such ring, as the last part of (6.1) suggests.

(6.2) Theorem. Let A be a multiplicatively closed set of finitely generated

nonzero ideals of a ring R and let S = {c/b ; b is a regular nonunit in R

and c G (bR)A} . Then RA = S = R[S] is the A-closure of R.

Proof. It will first be shown that:

(6.2.1 ) if x = v/u G S with u,v G R such that u is regular, then v G (uR)A .

For this, by the definition of S there exist b, c in R such that b is regular,

x = c/b, and c g (bR)A , so there exists an ideal K in A such that cK ç bK,

so (v/u)K = (c/b)K ç Tí, hence vK ç uK, and so v G uK : K ç (uR)A.

Therefore (6.2.1) holds.

Also, if x = c/b and y = v/u are in S (with b,c,u,v in R such that b

and u are regular), then x + y = (cu + bv)/(bu) and xy = (cv)/(bu) are in

S, since ce (bR)A and v G (uR)A imply that cu + bv and cv are in (buR)A

by (2.4.1) and (2.4.4). Therefore -S is a ring, and it is clear that R Q S c T,

so S = R[S].

Further, if b is a regular nonunit in R and c G bS n P, then c/b G S, so

c G (bR)A by (6.2.1). Therefore bSnR ç (bR)A , so S is a A-extension of R.

Finally, let A be a ring between R and T such that bAnR ç (bR)A for

all regular nonunits b in R. Let x G A . Then there exist b, c in R such

that b is regular and x = c/b, and it then follows that c G bAnR g (bR)A .

Therefore x = c/b G S, so ACS, hence S is the A-closure of P.   Q.E.D.

(6.3) Corollary.

(6.3.1) bR  r\R = (bR)A for all regular nonunits b in R.

(6.3.2) R = RA (that is, R is A-closed) if and only if bR = (bR)A for all
regular nonunits b in R.

(6.3.3) If no ideal in A ¿s contained in a minimal prime ideal in R, then

R   ç R', the integral closure of R, and the equality holds if A is the set of all
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finitely generated nonzero ideals of R that are not contained in any minimal

prime ideal.

Proof. (6.3.1) and (6.3.2) follow easily from (6.2) and the formula therein for

RA. For (6.3.3), the hypothesis and (3.2.1) imply that (bR)A ç (bR)a for all
regular nonunits b in P, and by (3.2.3) the equality holds if A is the set of all

finitely generated nonzero ideals of P that are not contained in any minimal

prime ideal. Therefore (6.3.3) follows from the formula for RA in (6.2) and the

fact that P' = R[{c/b ; b is a regular nonunit in P and c G (bR)J].   Q.E.D.

Concerning (6.3.3), it will be shown in (8.1) that every ring between R and

P' is the A-closure of P for an appropriate set A.

There is now an obvious question: is P A-closed? It will be shown in (6.6)

that the answer is yes, and to prove this we need the following characterization

of RA.

(6.4) Theorem. Let R be a ring, let T be the total quotient ring of R, and let

A be a multiplicatively closed set of finitely generated nonzero ideals of R. Then

RA is the largest ring A such that (a) P ç A ç T, and (b) for each subring B

of A that is finitely generated over R there exists an ideal K in A that is an

ideal in B.

Proof. It follows from (6.1) that PA satisfies (a). To see that RA satisfies (b)

let B = R[xx, ... ,xn] be a finitely generated subring of P . Then each x¡ is

in P , so there exist b¡,c¡ in R such that b¡ is regular, x¡ = c¡/b¡, and c¡ G

(b¡R)A by the formula for R in (6.2). Therefore for i = I, ... ,n there exists

an ideal K¡ in A such that c¡ G b¡K¡ :K¡. Let K = Kx • • Kn . Then c¡ G btK :
K for i = 1, ... ,n, so it follows that (c¡/b¡)K ç K. It now readily follows

that xex'--xen"K = (cx/bx)e' ■■■(cn/bn)e"K C K for all nonnegative integers

ex, ... ,en, hence K is an ideal in B .

Finally, if A is a ring that satisfies (a) and (b), and if x G A , then there

exists an ideal K in A such that Tí is an ideal in R[x]. Let x = c/b with

b and c in P. Then it follows that (c/b)K ç Tí , so c G bK : K ç (bR)A.

Therefore x = c/b G RA , so it follows that A ç RA .   Q.E.D.

(6.5) Remark. It is interesting to note that for each finitely generated nonnilpo-

tent ideal T in P there exists a uniquely determined largest ring A containing

R and contained in T such that, for all finitely generated subrings B of A , I"

is an ideal in B for some positive integer n . (This follows from (6.4) by taking

A = {7" ; n > 1} , and then it follows that A = PA .) It follows from (4.1.3) that

if A = {7" ;n > 1} and if bR : I" = bR for all regular principal ideals bR

and positive integers n , then A = R. However, the converse is false, since if

A = {b"R;n > 1} and I = bR for some regular nonunit b in P, then it is

clear that A = R, but bR : I" = R for all n > 1.

It will now be shown that A —► A is a closure operation on a large set of

rings A that contain P as a subring (see (6.7)). To prove this, the following
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notational convention will be adopted for the remainder of this paper, if A is

a mulitplicatively closed set of finitely generated nonzero ideals of R, if B is

an P-algebra such that (0) £ AB = {f(K)B;K G A} (where / is the natural

homomorphism from P into B ), and if I is an ideal in B, then TA will be

used to denote the closure in B of I relative to AP and B will be used to

denote the AP-closure of P . (That is, TA will be used to denote 1^ and B
AD

will be used to denote P .) In this regard, note that the preceding results for

P and A hold for B and AP (since only the hypotheses that R is a ring and

A is a multiplicatively closed set of finitely generated nonzero ideals of R were

used to prove these results).

(6.6) Theorem. Let R bearing, let A be a multiplicatively closed set of finitely

generated nonzero ideals of R, and let A and B be R-algebras such that (0) £

AA and (0) <¿ AB. Then

(6.6.1) ACAA.

(6.6.2) If A ç B and if regular elements in A remain regular in B, then

AACBA.

(6.6.3) (AA)A = AA.

(6.6.4) If A ç B ç AA, then BA = AA.

Proof. (6.6.1) is clear by the definition of AA (see (6.1)), and if AC B, then

it follows from (5.1.1) that (bA)A ç (bB)A , so (6.6.2) follows from the formula

for RA (applied to A and P) in (6.2) (since regular elements in A remain

regular in P).

For (6.6.3), by (6.6.1) and (6.6.2) it suffices to show that (AA)A ç AA. For

this, let c/b G (AA)A (with b,c in A such that b is regular), so c G (bAA)A.

Therefore there exists an ideal Tí in A such that c(KAA) ç b(KAA). By

hypothesis, KA has a finite basis (since Tí does), say x,, ... ,xn, so it fol-

lows that for i = I, ... ,n there exist elements f¡. G AA such that cx¡ =

E"=i bfijXj . Let C = A[{fu}¡j=x    J . Then it follows that c(KC) c b(KC).

Also, C is finitely generated over A and C ç AA, so by (6.4) (applied to

A in place of R) there exists an ideal 77 in A such that TTC = (HA)C

ç HA, so c(TiTT^) ç c(KHC) ç b(KHC) C b(KHA). Therefore c G

b(KHA) : (KHA) ç (bA)A , so c/b G AA, hence (AA)A c AA.

Finally, (6.6.4) follows immediately from (6.6.2) and (6.6.3).   Q.E.D.

(6.7) Corollary. A —> A is a closure operation on the set A = {A;A is a

ring, R is a subring of A, and if C is a ring between R and A, then regular

elements in C remain regular in A} .

Proof. If A G A, then (0) £ AA as noted in (5.1.1). Also, if C is a ring

between A and its total quotient ring, then C G A, so A g A implies that

A   g A, so the conclusion readily follows from (6.6).   Q.E.D.
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It is known that if 7 is an ideal in a ring P and P' is the integral closure

of P , then (IR')a n R = Ia . (6.8.2) shows that the analogous result holds for

PA and 7A ; this verifies the comment concerning P in the first paragraph of

this section.

(6.8) Theorem. If R is a ring and A is a multiplicatively closed set of finitely

generated nonzero ideals of R, then :

(6.8.1) (bRA)A = bRA for all regular nonunits b in R  .

(6.8.2) (7PA)A nR = IA for all ideals I in R.

Proof. (6.8.1) follows immediately from (6.6.3) and (6.3.2).

For (6.8.2) let 7 be an ideal in P and let R = R[u,tl], where / is an

indeterminate and u = l/t. Also, let S = P [u,tIR ], so R ç S. Now it

follows from (5.1.5) that 7A = (uR)A n P and (7PA)A = (mS)a n PA . Also, it

follows from (6.6.2) that RA CRA, so it follows that S ç RA, hence SA = RA

by (6.6.4). Finally, uSA n S = («S)A and uRA n R = (uR)A by (6.3.1), so it

follows that (7PA)A n P = 7A.   Q.E.D.

Note that it follows from (6.8.2) that if 7 is an ideal in P, then 7 ç IRAnR ç

IARA RP c(IAR\nR = (IR\nR (using (5.1.1)) =7A.

In (6.4) P    is characterized as being the largest ring A between P and its

total quotient ring T that has a certain property.  A characterization of P

from the opposite extreme is given in (6.9), namely P   is the smallest ring A

between P and T such that (bA)A = bA for all regular nonunits b in P.

(6.9) Theorem. Let R be a ring, let T be the total quotient ring of R, and

let A be a multiplicatively closed set of finitely generated nonzero ideals of R.

Then RA is the smallest ring A such that (a) P ç A C T, and (b) (bA)A = bA

for all regular nonunits b in R.

Proof. It follows from (6.1) and (6.8.1) that PA satisfies (a) and (b), so let A

be another ring that satisfies (a) and (b) and let c/b G RA (with b,c in P such

that b is regular). Then c G (bR)A by (6.2.1), and (bR)A ç (bA)A = bA, by

(5.1.1) and the hypothesis on A . Therefore c/b G A , so R   ÇA.   Q.E.D.

The final result in this section shows that the condition of P being A-closed

is characterized by 7 —> 7A being a prime operation on the set of ideals 7 of

P.

(6.10) Theorem. The operation I —> 7A is a prime operation on the set of ideals

I of R if and only if R = RA.

Proof. If (bI)A = bIA for all regular nonunits b and ideals 7 in P, then by

taking 7 = P it follows that (bR)A = bRA = bR, so R = RA by (6.3.2).

For the converse, by (2.4) it suffices to show that (bI)A ç bIA for all regular

nonunits b and ideals 7 in P. For this, if * G (bI)A, then x G (bR)A, by
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(2.4.2) (since bl ç bR), so x/b G P, by hypothesis, hence it follows as in the

proof of (3.7) that (bI)A ç bIA.   Q.E.D.

7. The A-closure of P-algebras

In this section it is shown that the A-closure analogues of several standard

results concerning the integral closure of P-algebras are valid. Throughout this

section, the notational convention specified between (6.5) and (6.6) will be used.

(7.1) Theorem. Let A be a multiplicatively closed set of finitely generated

nonzero ideals of a ring R and let T be the total quotient ring of R. Then :

(7.1.1) If S is a multiplicatively closed set in R such that 0 g ARS, then

(R )s Q (Rs)  , and the equality holds if Rs ç T.

(7.1.2) 7/P is a faithfully flat R-algebra, then BAnT = RA and (xBA)AnT =

xR   for all regular nonunits x G R  .

(7.1.3) If {X¡}¡er is a set of indeterminates, then R[{X¡}¡€r]AnT[{X¡}¡er] =

RA[{X;}l€r]-

(7.1.4) 7/77 is an ideal in T such that HQZ = (0T)A, then (P/(77nP))A

n(r/77) = pA/77.

Proof. For (7.1.1) let / be the natural homomorphism from P into Rs and let

x G (R )s. Then there exist c/b G R    (with b,c G R such that b is regular)

and s G S such that x = (c/b)/'s . Now c/b G R implies that c G (bR)A by

(6.2.1), so f(c) G (f(b)Rs)A by (5.1.1), and f(b)Rs = f(bs)Rs , since f(s) is

a unit in Rs . Therefore (c/b)/'s = c/bs = f(c)/f(bs) G (RS)A by the formula

for PA in (6.2), hence (P\ ç (RS)A .

Now assume that Rs ç T, so Rs ç (RA)S ç (RS)A by (6.6.1) and the

preceding paragraph, so (RS)A ç ((RA)S)A ç ((RS)A)A = (RS)A, by (6.6.2)

and (6.6.3), so it suffices to show that ((RA)S)A = (RA)S. For this, since the

hypothesis implies that ((RA)S)A ç T, let c/b G ((RA)S)A, where b,cGR with

b regular. Then

c G (b(RA)s)A = (bRA)A(RA)s   by (5.1.2) (applied to RA in place of R)

= (bRA)(RA)s    by (6.8.1)

= b((RA)s).

Therefore c/b G (R )s, so ((P )S)A ç (RA)S, and the opposite inclusion is

given by (6.6.1). Therefore (RS)A = (RA)S , so (7.1.1) holds.

For (7.1.2), if B is a faithfully flat P-algebra, then regular elements in R

remain regular in P, so it follows from (6.6.2) that PA ç BA n T, hence to

prove that RA = BA n T it suffices to show that PA n T ç PA. For this let

c/b G B  ni, where c G R and b is a regular element in R. Then c/b G BA ,
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so cG(bB)A by (6.2.1), so c G (bB)A n R = (bR)A by (5.1.2). Thus c/bGRA

by the formula for PA in (6.2), so BAnTCRA.

Now let x be a regular nonunit in P and let t G (xB )A n T, so t G

BA n T = RA by the preceding paragraph. Also, (xB )A = xB by (6.8.1), so

t G (xBA)A implies that t/x G BA n T = RA. Therefore t G xRA, so (7.1.2)

holds.

For (7.1.3), R[{X¡}¡er] is a faithfully flat P-algebra, so R[{X¡}ierfnT = RA

by (7.1.2). Therefore

¿to/erl = (*[W,er]A n T)[{X,}i€r] = P[{X;}/er]A n r[{^}/er].
Finally, to prove (7.1.4) note first that 77 n P ç (0P)A .   (For,  77 n P ç

(0P)A n P, and if r g (0T)a n P, then there exists an ideal Tí g A such that

rKT = (0) in T, so rK = (0) in P , and so rG (0)^K ç (0P)A .) Now let an

overbar denote residue class modulo 77 and let x G R , so there exist b ,c G R

such that b is regular, c/b G RA, and x = c/b . Now T is a localization of P

and ¿> is a unit in P, so it follows that c/b = c/b . Also, c G (bR)A by (6.2.1),

so c G (bR)A by (5.1.4). Therefore x = c/b G R   by the formula for P    in

(6.2), so it follows that RA ç PA. Therefore PA ç RA n 7, so it remains to

show that the opposite inclusion holds.

For this let x G R n 7. Now x G T, so there exist b,c c R such that

¿z is regular, x = c/b G T, and x = c/¿>, so x = c/b (as in the preceding

paragraph). Then c/b G~R , so c G (bR)A by (6.2.1), hence it follows from

(5.1.4) that c G (bR)A . Thus c/b G RA , since b is regular in R, so x = c/¿ =

cJbGRA, hence PA D PA n 7.   Q.E.D.

This section will be closed with the following two corollaries of (7.1). Con-

cerning (7.2), it is well known that if R is an integral domain, then the hypoth-

esis that R'[XX ,...,Xn] = R[XX ,...,Xj holds.

(7.2) Corollary. Let A be a multiplicatively closed set of finitely generated

nonzero ideals of a ring R, let Xx, ... , Xn be indeter minâtes, and assume that

R'[XX, ... ,Xn] = R[XX, ... ,Xj and that no ideal in A is contained in a

minimal prime ideal in R. Then R[XX, ... ,Xn]A = RA[XX, ... ,X ].

Proof. Let A = R[XX, ... ,Xn]. Since no ideal in A is contained in a minimal

prime ideal in R, it readily follows that no ideal in AA is contained in a

minimal prime ideal in A , so it follows from (6.3.3) that AA ç A'. Therefore

A ç A' = R'[XX, ... ,Xn] ç T[XX, ... ,Xn], so the conclusion follows from

(7.1.3).   Q.E.D.

(7.3) Corollary. With the notation of (l.l) let I be an ideal in R and let B

be a faithfully flat R-algebra. Then (IBA)A nT = (IRA)A .

Proof. (IBA)A n T ç BA n T = RA by (7.1.2), so (7PA)A n T = (IBA)A n RA .

Also, (7PA)A ç (7PA)A nPA by (5.1.1), so it remains to show that the opposite
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inclusion holds. For this let c/b G (IBA)AnRA , where b ,c G R with b regular.

Then c G b(IBA)A ç (¿>7PA)A by (2.4.1) and (2.4.4). Therefore

cG(bIBA)AnBnR = (bIB)AnR   by (6.8.2)

= (bI)A   by (5.1.2).

Thus

cG(bI)ARAQ(bIRA)A   by (5.1.1)

= ¿>(7PA)A   by (6.6.3) and (6.10),

so c/b G (IRA)A , hence (7PA)A n T ç (7PA)A .   Q.E.D.

8. Some examples

If P is a ring, then many specific types of extension rings of R have been

studied in the literature. The main result in this section, (8.1), shows that each

such extension ring that is contained in the integral closure P' of R is the

A-closure of P for a suitable choice of A. In fact, every ring A such that

PC A C R' is RA for an appropriate A.

(8.1) Example. Let P be a ring and let A be a ring between R and P'. For

each regular nonunit b in R let b = bAnR, and let A be the set of all finite

products of the ideals in {(b,x)R;b is a regular nonunit in P and x G b } .

Then (bR)A = b* for all regular nonunits b in P and P   = A .

Proof. It is clear that A is a multplicatively closed set of finitely generated

nonzero ideals of R. Also, if b is a regular nonunit in R and x G b , then

bA ç (b ,x)A ç b A = (bA n R)A ç bA, so it follows that KA is a regular

principal ideal for all Tí G A. Further, if x G (bR)A, then there exists an ideal

Tí in A such that x G bK : K. Therefore x G bK : K ç (bK : K)A ç bKA :

KA = bA, since KA is a regular principal ideal, so x G bAn R = b , hence

(bR)A ç b*.

To see that the opposite inclusion holds, note that A ç p', so b = bAnR G

bR'nR = (bR)a . Therefore if x g b* , then xm + rxxm~x +■ ■ -+rm = 0 for some

m > 1 and for some elements r¡ G b'R for z = 1, ... , m, so it follows that

(b,x)mR = b(b,x)m~xR. Therefore (b,x)R ç b(b,x)m~xR : (b,x)m~xR ç

(bR)A (by the definition of A), hence b c (bR)A for all regular nonunits b

in P.

Finally, A = R[{c/b ; b is a regular nonunit in R and c G b }], since the

definition of b shows that A contains each such c/b, and if v/u G A (with

u,v G R such that u is regular), then v G uA n R = u . Therefore, since

(bR)A = b* , it follows from the formula for PA in (6.2) that RA = A .   Q.E.D.

If P is a Noetherian domain, then the following specific rings A as in (8.1)

have appeared in many papers in the literature:
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(a) A = P(1) = f){Rp ;p is a height one prime ideal in P} . (To have A ç p'

it must be assumed that height one prime ideals in P' lie over height one prime

ideals in R.)

(b) A = R{w) = f){Rp ;p is a nonmaximal prime ideal in R}. (To have

A ç R' it must be assumed that height one maximal ideals in P' lie over

height one maximal ideals in P.)

(c) 7 is an ideal P and A = 7(7) = f){Rp;p is a prime ideal in P such

that 7 $£ />}, so ^ is the I-transform of R. (It must be assumed that /Í ç p',

but this does hold for many choices of 7.)

(d) B is an arbitrary extension ring of P and A = B n P'.

(e) ¿ = P\

In (a)-(e), since P is Noetherian, the ideals b = bA n P are finitely gen-

erated, and then essentially the same proof as for (8.1) shows that A can be

chosen to be the set of all finite products of the ideals b* (rather than the finite

products of all (b ,x)R with x G b ).

(8.2) Remark. With the notation of (8.1):

(8.2.1) IA = IAA = (IA)A for all ideals 7 in P .

(8.2.2) If Q is a multiplicatively closed set of finitely generated nonzero

ideals of P such that (bR)n = (bR)A for all regular principal ideals bR, then

there may still exist ideals 7 in P such that In ^ 7A .

Proof. For (8.2.1), it follows from (2.4.1) that IA ç IAA , and 7A^ ç (IA)A by

(5.2.1). Finally, it was shown in the first paragraph of the proof of (8.1) that

AA consists of principal ideals, so (7^)A = IA .

For (8.2.2) let R = A = P' in (8.1) and assume that P is a Noetherian

domain. Then it follows that A in (8.1) is the set of nonzero principal ideals of

P, hence 7A = 7 for all ideals 7 in R. Fix a nonprincipal ideal K in P such

that K ¿ 7í"+1 : K" for some n > 1 and let Q = {Tí" ;n > 1}, so Ka¿ K.

Then (3.3.1) implies that (¿>P)n = bR for each nonzero principal ideal bR

(since bR = (bR)a), so (bR)A = bR = (bR)a and KA = K¿Ka.   Q.E.D.

If b is a regular nonunit in P, then the ring P' n R[l/b] has appeared in

many research papers. It is characterized as the smallest ring B between P

and its total quotient ring such that (bB)a = bB, and then (b"B)a = bnB for

all n > 1. (8.3) considers the related ring P nRb ; as noted just above, special

cases of PA can include P(1), R{w), 7(7), P', and any ring between P and

R'.

(8.3) Example. Let b be a regular nonunit in a ring P, let A be a multiplica-

tively closed set of finitely generated nonzero ideals of R such that no Tí in A

is contained in a minimal prime ideal in P, and let A = R n R[l/b]. Then

A is the smallest ring P between R and its total quotient ring 7 such that

(bB)A = bB, and then (b"A)A = b" A for all n > 1 . Moreover, if Í2 is the
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set of all finite products of the ideals (b" ,x)R, where n > 0 and x G (b"R)A ,

then A = Ra.

Proof. It will first be shown that (bnA)A = b"A for all n > 1 . For this, if

x G (b"A)A, then x/b" G AA by the formula for PA in (6.2), and AA = RA

by (6.6.4). Also, x/b" G A[l/b) = R[l/b], so x/b" G RAnR[l/b] = A, so
x G bnA. Therefore (b"A)A ç b"A, and the opposite inclusion is given by

(2.4.1).
To show that A is the smallest such ring let B be a ring between P and 7

such that (bB)A = bB. Let x G A = R n R[l/b], so there exist an element

r in P and a positive integer n such that x = r/b" , and then r g (b"R)A

by (6.2.1). However, (b"R)A ç (b"B)AnR by (5.1.1), and it follows from the

hypothesis on bB and (4.1.6) that (b"B)A = bnB , so r G b"B n P. Therefore

x = r/b" G B , so AGB.

To prove the last statement, note first that A ç P , so A = R by (6.6.4),

so it follows from (6.3.1) that (b"R)A = bnRAnR and (bnA)A = b"RAnA , and

it has already been shown that (b"A)A = b"A , so (b"R)AA ç b"A . Therefore

it follows that (b"R)AA = b"A for all « > 1, so it follows from the definition

of Q that KA is a regular principal ideal for all Tí G Q. Also, if c is a regular

nonunit in R and r G (cR)a, then there exists an ideal Tí in fi such that

r g cK : K. Then r G (cK : K)A ç cKA : KA = cA, since KA is a regular

principal ideal, so it follows that (cR)n ç cA. Therefore if x G P , then

x = v/u for some u,v g R such that v G (uR)n ç uA, so x = v/u G A,

hence R   ÇA. Thus it remains to show that AÇ R   .

For this, it follows from the hypothesis on the ideals Tí in A and (3.2.1)

that (bR)A ç (bR)a for all regular nonunits b in P. Therefore it follows as in

the second paragraph of the proof of (8.1) that if x G (b"R)A, then there exists

a positive integer m such that (b" ,x)R ç b"(b",x)m~xR : (b",x)m~xR ç

(b"R)n  (by the definition of Q), so (b"R)A ç (b"R)n.   Also, if x G A =
A n

R n P[1/m] , then as in the second paragraph of this proof x = r/b for some

r g (b"R)A. It therefore follows that r g (b"R)n, so x = r/b" G p" , by the

formula for RA in (6.2). Therefore A ç Rn , so A = Rn .    Q.E.D.

(8.4) Corollary. Let b be a regular nonunit in a ring R and let A be a mul-

tiplicatively closed set of finitely generated nonzero ideals of R such that no K

in A is contained in a minimal prime ideal in R. Assume that RA ç R[l/b]

and let Q be the set of all finite products of the ideals (b" ,x)R, where n > 0

and x G (b"R)A. Then (cR)Q = (cR)A for all regular nonunits c in R and
Rn = RA.

Proof. Since A = RA n R[l/b] = RA, it follows immediately from (8.2) that

Pn = RA. Therefore it follows from (6.3.1) that (cR)n = cRnnR = cRAnR =

(cR)A.   Q.E.D.



244 L. J. RATLIFF, JR.

9. The A-closure and associated primes

During the past few years several dozen papers concerning the associated

primes of large powers of ideals in Noetherian rings have appeared in the litera-

ture. Together, these papers show that there are (at least) three parallel theories

concerning the prime ideals associated with ideals in Noetherian rings, namely

the standard theory (with associated primes, P-sequences, classical grade, and

Cohen-Macaulay rings), the asymptotic theory (with asymptotic prime divisors,

asymptotic sequences, asymptotic grade, and locally quasi-unmixed Noether-

ian rings), and the essential theory (with essential prime divisors, essential se-

quences, essential grade, and locally unmixed Noetherian rings). These papers

also show that a result for one of these theories usually has a valid analogous

result for the other two.

In this last section, as one application of A-closures, it is shown that several

important theorems in the asymptotic theory are special cases of A-prime divi-

sors. As in the previous sections, A is an arbitrary multiplicatively closed set

of finitely generated nonzero ideals of a ring P, but here we restrict attention

to the case when P is Noetherian, and we consider the prime divisors (= as-

sociated primes) of TA. Among the results, it is shown that the prime divisors

of TA remain prime divisors of IAK and of (IK)A for all ideals K in A. We

begin with the following definition.

(9.1) Definition. If I is an ideal in a Noetherian ring P, then Ass(P/T) =

{P;P is a prime ideal in P, TCP, and there exists an element x in P

such that I : xR = P}. The members of P are called the prime divisors (or

associated primes) of I.

It is well known that Ass(P/7) is a finite set, and Ass(P/7) is a one-point

set if and only if 7 is a primary ideal. It is also known (and readily checked)

that if there exists an ideal 77 in P such that either 7 : 77 = P or P is a prime

divisor of 7 : 77, then P G Ass(P/7). These results will be used implicitly in

this section.

(9.2) is one of the main results in this section; it will be seen that it implies

several known theorems in the literature concerning asymptotic prime divisors.

(9.2) Theorem. If I ç P are ideals in a Noetherian ring R such that P G

Ass(P/7A), and if K g A is such that IA = IK : K, then the following hold for

all ideals H in A:

(9.2.1 ) P G Ass(P/7A77) n Ass(P/(T7T)A).

(9.2.2) PgAss(R/IKH).

Proof. ( R satisfies the ACC on all its ideals, since P is Noetherian, so it follows

that (2.8) is applicable, and (2.8)(a) shows that there exists an ideal K in A

such that IA = IK : K .) Since P G Ass(P/7A), there exists an element b in

P such that IA:bR = P. Therefore P = 7A : bR ç IAH : bH ç (IH)A : bH,

by (2.4.1) and (2.4.4), = ((777)A : 77) : bR = IA : bR, by (2.6), = P. (9.2.1)
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follows immediately from this. Also, P = IA : bR = (IKH : KH) : bR, by
(2.8)(b), = IKH : bKH, and so (9.2.2) holds.   Q.E.D.

(9.3) Corollary. If I ç P are ideals in a Noetherian ring R such that height(7)

> 1 and Pg Ass(R/Ia), then P G Ass(R/IaK)nAss(R/(IK)a) for all ideals K

in R such that height(TC) > 1.

Proof. Let A be the (multiplicatively closed) set of ideals Tí in P such that

height(Ti ) > 1. Then la = IA for all ideals I in P such that height(T) > 1 by

(3.2.3), so the conclusion follows immediately from (9.2.1).   Q.E.D.

It should be noted that two important results concerning asymptotic prime

divisors are special cases of (9.3). Specifically: (a) [7, (2.4)] if P g Ass(P/(T")a)

for some positive integer n, then P G Ass(P/(Tm)a) for all m > n; and

(b) [9, (2.8)] if P G Ass(P/(T")J for some positive integer n, then P G

Ass(P/(TTí m)a) for all regular ideals Tí in P and for all large integers m .

The following remark gives two other results that follow from (9.2). (9.4.2)

is another important result concerning asymptotic prime divisors. In several

recent papers the ideal (Ik)* is called the relevant component of T . It is

known that if I is regular, then (I )* = I for all large k, so in this case

(9.4.2) implies Brodmann's theorem: the sets Ass(P/T") are equal for all large

n.

(9.4) Remark. Let I ç P be ideals in a Noetherian ring P such that P is

prime. Then:

(9.4.1) If P G Ass(P/T), then P G Ass(R/bI) for all regular nonunits b in

P.

(9.4.2) If P G Ass(R/(Ik)*) for some k > 1, where

(Ik)* = \J{Ik+":l";n>0},

then Pg Ass(R/(Ik)*l")nAss(R/(Ik+")*) for all zz > 1.

Proof. For (9.4.1) take A = {bR;b is a regular nonunit in P} in (9.2) (so

7A = 7 and (bI)A = bl), and for (9.4.2) take A = {7n;zz > 1} in (9.2) (so

(T*)A = (/*)* for all k > 1).   Q.E.D.

(9.5) is a variation of (9.2).

(9.5) Proposition. If I ç P are ideals in a Noetherian ring R such that P

is a minimal prime divisor of I : bR and of IA : bR for some b G R, then

P G Ass(P/77í ) for all ideals K in A.

Proof. If KgA, then I :bRC IK :bK = (IK : K) :bRç IA:bR. Therefore
it follows from the hypothesis that P is a minimal prime divisor of IK : bK ,

so P G Ass(R/IK).   Q.E.D.
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(9.6) Corollary. Let I ç P be ideals in a Noetherian ring R such that P is

prime. Then:

(9.6.1) If P is a minimal prime divisor of I : bR and I* : bR for some

bGR, then P G Ass(P/7") for all n > 1.

(9.6.2) If height(7) > 1 and P is a minimal prime divisor of I : bR and of

Ia : bR for some bGR, then P G Ass(P/77í ) for all ideals K in R such that

height(7i ) > 1.

Proof. For (9.6.1) let A = {l";n > 1} in (9.5). Then IA = I*, so (9.6.1)
follows readily from (9.5). And for (9.6.2) let A = {K ;height(Ti) > 1} in

(9.5). Then TA = Ia by (3.2.3), so (9.6.2) follows easily from (9.5).   Q.E.D.

As noted in (3.2.3), if A is the set of all ideals Tí in P such that height(Ti ) >

1, then IA = Ia, and the associated primes of Ia have been studied in a number

of papers, so many results are known concerning them. The final result, (9.7),

gives several analogous results concerning the associated primes of 7A .

(9.7) Proposition. If I ç P are ideals in a Noetherian ring R such that P is

prime, then:

(9.7.1 ) If P is a minimal prime divisor of I, then P G Ass(P/7A) if and only

if(0)<¿ARp.
(9.7.2) Ass(P/7A) ç Ass(R/(IK)A) for all ideals KgA.

(9.7.3) If B is a Noetherian flat extension ring of R such that (0) g" AP,

then Ass(P/(TP)A) = Ass(B/(IAB)) = {P*;P* G Ass(P/PP) for some P G

Ass(R/IA)} and Ass(R/IA) 2 {P* nR;P* G Ass(B/(IB)A)} with the equality

holding if B is faithfully flat.
(9.7.4) Let Z = (0)A, let 77 be an ideal in R such that 77 ç Z, and

let an overbar denote residue class modulo 77. Then Ass(P/7A) = {P;P G

Ass(P/7A)}.

Proof. For (9.7.1) let KgA such that IA = IK : K and let P be a prime ideal

in P that contains I. Then IARp = IRpKRp : KRp, so since Rp is local it

follows that IARP is proper if and only if KRp ^ (0). (9.7.1) follows from

this and (2.8)(b).

(9.7.2) follows immediately from (9.2.1).

For (9.7.3), Ass(P/(TP)A) = Ass(B/(IAB)) by (5.1.2), and the remaining

parts of (9.7.3) follow readily from this and known properties of flat extensions.

Finally, (9.7.4) follows readily from (5.1.4).   Q.E.D.
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