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PRESCRIBING ZEROS OF FUNCTIONS IN THE NEVANLINNA CLASS

ON WEAKLY PSEUDO-CONVEX DOMAINS IN C2

MEI-CHI SHAW

Abstract. Let D be a bounded weakly pseudo-convex domain in C2 of uni-

form strict type. For any positive divisor M of D with finite area, there exists

a holomorphic function / in the Nevanlinna class such that M is the zero set

of /. The proof is to study the solutions of 8 with Ll(dD) boundary values.

2
Let D be a bounded weakly pseudo-convex domain in C .In this paper we

study the Poincaré-Lelong equation

(1) iddu = a   onD

where a is a d-closed (1,1) form in D. In particular, we are interested in

solutions u such that the boundary values of u are in L (dD). This question

arises when one tries to prescribe zeros of functions in the Nevanlinna class

in D. It is also well known that the solutions of ( 1 ) are closely related to the

solutions of the Cauchy-Riemann equation.

(2) du = f   onD

where / is a ¿5-closed (0,1) from in D. When D is "strongly" pseudo-

convex in C", n > 2, Henkin [6] and Skoda [18] have studied equations (1)

and (2) independently and obtained precise estimates of the solutions u on the

boundary. From this they were able to completely characterize the zero sets of

the functions in the Nevanlinna class on strongly pseudo-convex domains. They

showed that a zero divisor is the zero set of a function in the Nevanlinna class if

and only if the zero divisor satisfies the Blaschke condition (see Definitions 1.3,

1.4 in §1). This generalized the classical Blaschke theorem in C1 to strongly

pseudo-convex domains in C" . (An excellent account of the Henkin-Skoda

theorem on the unit ball in C" can be found in Chapter 17 of Rudin's book

[16], see also Harvey-Polking [5].) When D is only weakly pseudo-convex, such

results are unknown except for the special case when D is a complex ellipsoid

(see Bonami-Charpentier [2]). In this case one can use dilation to study the

solutions of equations (1) and (2) from the known solutions for the ball. In

this paper we solve (1) and (2) with boundary values in Ls(dD) when D is a
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2
weakly pseudo-convex doamin in C which have smoothly varying holomorphic

support functions near the boundary 3D. In particular our results can be

applied to the case when D is a convex domain with real-analytic boundary in

C . Using these results we can construct functions in the Nevanlinna class with

given zeros provided the zero sets have finite area.

Our main results are the following theorems (all the definitions can be found

in §1).
•y

Theorem 1. Let D be a pseudo-convex domain in C of uniform strict type

m . Let f be a continuous (0, l)-form on D and df = 0, then there exists a

function U G A,,  (D) such that Bu = f and u satisfies the following estimates:

(i) II"IIz.1(D)<^(II/IIlI(d) + II^Iz.'(öd))-
(ii) ifp=\,

\\u\\L{m+i)nm+i)-t(dD) < c\\f\\o(dD) f°r everysmal1 e > °>

ifl<p<m + 2

IMIlvz» ̂ cP\\f\\ü(dD) where~ = --77777-2'

if p = m + 2

IImIIl''(öö) - CpWfWifwD)   for all p < 00,

ifm + 2<p<œ

H"llAl/m-(OT+2)/M,(ÔZ)) ^ CpWf\\L>(dD) '

(iii)   \\u\\ApJdD) < cp\\f\\LP{dD) for every 1 < p < 00 where c, cp are con-

stants depending only on D, m , p .

Let Hk(D,R) be the DeRham cohomology of degree k on D. We have the

following theorem on the solutions of equation (1).

Theorem 2. Let D be a pseudo-convex domain in C of uniform strict type m

and H2(D,R) = 0. Let a be a positive d-closed (1,1) form on D with smooth

coefficients, then there exists a smooth function u satisfying u = u, iddu = a

and

||M||¿(m+2>/c»+i>-£(ao) + llMll¿i(o) — L||a||¿i(0)

for any e > 0 small.

Let H2(D,Z) be the second Cech cohomology group with integer coeffi-

cients, then using Theorems 1 and 2 we have

Theorem 3. Let D be a pseudo-convex domain in C of uniform strict type and

H2(D,Z) = 0. Let M be a positive divisor of D such that M has finite area,

then there exists a holomorphic function f in the Nevanlinna class such that M

is the zero set of f.

When D is strongly pseudo-convex, this result was obtained by Gruman [4].
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In [20]. Stein showed that for any function / in the Nevanlinna class on

D, f has admissible limits at almost every boundary point. Using this and

Theorem 3, we have the following result concerning the boundary values of

meromorphic functions of bounded characteristic.

Corollary 3.1. Let D be the same as in Theorem 3. Let g be a meromorphic

function of bounded characteristic in D such that the pole sets of g have finite

area. Then one can find two holomorphic functions f and h in the Nevanlinna

class on D such that g = f/h . In particular, g has admissible limits at almost

every boundary points.

The plan of the paper is as follows: In § 1 we introduce the notation which

is used in the paper. Theorem 1 is proved in §11 using the Henkin kernel. The

Henkin kernel for the domains we considered was constructed by Range [14].

Our main task is to relate the boundary values of the solution to the solution of

the tangential Cauchy-Riemann equation db obtained by the author recently in

[17], thus providing the estimates on the boundary. We prove Theorems 2 and

3 in §111.

I. Notation and preliminaries

Let D be a bounded domain in C with smooth boundary dD. Let p be

a defining function for D such that D = {z G C2 | p(z) < 0} and \dp\ ^ 0

on 3D. In particular we shall take p = -dist(z,dD) when z G D and

p = dist(z,dD) when z £ D. If Ô > 0 is small, we define Ds = {z G C2 \

p(z) < 0} and U* = DS\D. Dô = {z g C2 | p(z) < -Ô). The Lebesgue

measure on D is denoted by dV the surface measure on dD and dDs is

denoted by dS, dSs respectively. The letter c will always denote a positive

constant which can vary from line to line.

Definition 1.1. D is pseudo-convex if on dD we have (ddp ,LAL) > 0 where

L is a nonzero tangential holomorphic vector field.

Definition 1.2. A domain D is called pseudo-convex of uniform strict type m ,

m G N, if D is pseudo-convex and there exists a C1 function F(Ç,z) on

U* x D6 such that

(i) F(C,-) is holomorphic on D ,

(ii) F(C,Q = 0, dzF\ç=z=dp(Oï0,

(iii) p(z)-p(Q>c\7-z\m for Ç G Uô, \z-7\<e and F(7,z) = 0 where

c and e are some positive constants.

Thus, if a domain D is of uniform strict type m , then there exists a smoothly

varying holomorphic support function near the boundary, and the holomorphic

curve defined by the zeros of the support function has order of contact m with

the boundary. (For related properties of uniform strict type, see Kohn [8] and

Range [14].) Simple examples of pseudo-convex domains of uniform strict type

are strongly pseudo-convex domains (m = 2), domains of strict type defined in
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Kohn [8] and the convex domains with real-analytic boundaries. If a pseudo-

convex domain is of uniform strict type m , then m must be even. We note

that there are pseudo-convex domains of finite type in C2 without holomorphic

support functions (see Kohn-Nirenberg [9]).
k

Let C (D) be the space of functions whose zcth derivatives are continuous

on D,  0 < k < oo.    LS(D),   1 < s < oo, denotes the space of functions

whose 5th power are absolutely integrable. As usual L°°(D) denotes the space

of bounded functions. Let L(D) be the space of finite regular measures on D.

If u G L(D) then we define \u\L,D) to be the total mass u(D). Any (p ,q) form

a on D is said to be in Ck(D), LS(D) or L(D), denoted by Cpq(D), Lspq(D)

and L    (D), if its coefficients are in those spaces and the norm of a form is the

sum of the norm of each coefficient. The functions spaces C (dD), L2(dD)

and L(dD) are defined similarly. We define the spaces Apa(dD), 0 < a < 1,

1 < p < oo, to be the function space with the following norm (see Stein [19])

\\u(x(t) - u(x(0))\\LP{dD)
Ma^OD) = WuWl'(od) +   SUP   -ûr-— <oo

x(t)€C \l\
0<l<

where C = {X(t) = t e [0,1] -► X(t) G dD, X(t) is C1 and \X'(t)\ < 1}.

When p = oo, we write A^(dD) = Aa(dD) also, which is the Holder space

of exponent a. It is well known that Apa(dD) c L (dD) and the inclusion is

compact.

The (p,q) forms on dD, denoted by B (dD), are the projection of

the (p,q) forms on D onto the parts which are orthogonal to dp. We

use t to denote this projection. The tangential Cauchy-Riemann operators

5b = Bp q(dD) —> Bp q+x(dD) are the induced complex of the Cauchy-Riemann

complex 9 onD. We refer the readers to Kohn-Rossi [ 10] for the basic prop-

erties of db.

A (p,q) current on D isa (p,q) form with distribution coefficients. A (1.1)

current a is called positive if for every compactly supported C^°, (D) from co,

we have

/.'

, co Act) . .
a A    -:—     >0.

■y
It is proved in Lelong [12] that if a (1.1) current a = J2¡ ,=i Q;, ̂ z, A dz is

positive, then a = á, a¡¡ = -a.. and all the a- are locally finite measures.

It also follows from Lelong [11] that the zero divisor Mf of a holomorphic

function f on D induces a (1.1) ¿-closed positive current, denote by [Mf]

on D. For details of these matters, see Lelong [11].

Let M be a positive divisor in D such that M = y ¡M- where M- 's are

irreducible 1 -dimensional complex variety and v   is a positive integer. If we

assume H2(D,Z) = 0, then there exists a holomorphic function / such that

/ determines M, i.e., / vanishes on M- to order y;.
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Definition 1.3. A divisor M = £ v.M. is said to have finite area if

JZYj i      dô(z) <oo

M is said to satisfy the Blaschke condition if

T'y, /       \p(z)\dô(z) <oo
j      JJz€Mj

where dô(z) is the area measure on M..

Definition 1.4. A holomorphic function / on D is in the Nevanlinna class,

denoted by N(D), if / satisfies

SUp/      lOg+\f(z)\dfSc(z)<00
£->OJdDr'dDc

where log+ \f(z)\ = max{log \f(z)\, 0} and dSe is the surface element of dD£.

Definition 1.5. A meromorphic function g is in the Nevanlinna class N(D)

(or of bounded characteristic) if

sup /    log+\g(z)\dSt (z) < 00

and the pole set of g satisfying the Blaschke condition, (see Nevanlinna [13],

Stoll [21])

It follows from Henkin [6], Skoda [18] that if / G N(D), then the zero

divisor Mj. of / must satisfy the Blaschlse condition. As Skoda pointed out

in [ 18] that this condition was first observed by Stoll and Gavot.

II. Solving ¿5 with Lp estimates on the boundary

In this section we shall prove the estimates in Theorem 1 using Henkin's

solution for ¿5 constructed by Range [14]. For the basic properties of Henkin

kernel, we refer the readers to Henkin-Leiterer [7] and Range [14] and Romanov

[15].

Proof of Theorem 1. By the assumption of uniform strict type m , it is proved

in [14, 17] that there is exists a C function <P(£,z) on U x D which is

holomorphic in z e D   and <P satisfies

(i) <D(C,C) = 0, O(C,0t¿0 for all |C-z|>e,
(ii) <t>(Ç.,z) = F(Ç,z)H(7,z) for |C - z\ < e, where H is a C1 function

with 0< A0 < \H\ <AX <oo.

By Hefer's theorem, we also have the decomposition

0(C,z) = ¿P,(C,*)(C, - z¡¡ = (P(0,7-z)
i=\
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where the functions Pt(C,z) are C   in C and holomorphic in z, P(Ç,z) =

(Px (7,z), P2(C, z)) is the Leray map which is holomorphic in z .

It is well known that from P(Ç,z) and the Bochner-Martinelli-Koppelman

formula one can construct the Henkin kernel for the ¿5-equation. Let

B(C =)-   l   (^-^)dt2-(t;2-z2)dzx

(2ni)2 \C-z\4

be the Bochner-Martinelli kernel and

1     Px(7,z)d^zP2(i:,z)-P2(7,z)d!.iZPx(7,z)

(2ni)2 (P(7,z),7-z)2

and

R(C,z,A) = -±-2-[nx(7.,z,l)A(dl.z + dA)n2(C,z,l)
(2nt)

-n2(7,z,X)A(dl.z + dx)nx(i;,z,n)]

where

We define for / 6 CQA(D), zgD

BDf(z) = f f(C) A B(7, z) A dix A d72 ,
JD

and

*W(*) =  f       f(7)AR(r,z,X)Ad7xAdL:2.
J   dDdD

0</Kl

Integrating over X, we have

RaDf(z) - /  f(0 A *(i ' z)A rfd A d^2
JdD

where

(2ni)2 (D(i,z)|C-2|2

It follows from the construction of Henkin that u = BDf(z) + RdDf(z) is

a solution to the equation du = f on D and w G AlXjm(D) (see p. 249 in

Range [14]). To prove the estimate (i) in Theorem 1, we estimate BDf and

RdDf separately.

Since \B(Ç,z)\ < c/\7 - z|3, it is easy to see B(Ç,z) is a kernel of weak

type 4/3. (For definition of weak type, see Folland-Stein [3].) Thus BDf is

a bounded operator from LX(D) to L4,i~e(D) for every small £ > 0. In

particular, \\BDf\\Ll(D) < C\\f\\V(D).



THE NEVANLINNA CLASS ON WEAKLY PSEUDO-CONVEX DOMAINS IN C2 413

To estimate RaDf, we notice that for fixed Ç G dD, the kernel K(Ç, z) has

singularity only when z = Ç. If we fix a ball B£(Q , centered at Ç with radius

e, it is easy to see

(2.2) / \K(C,z)\dV(z)<C í \ dV(z)<C
Jd\b,(C)                                  Jd\bm) |<P(í¡,z)|K-z|

uniformly in 7. Thus we only need to estimate JB,¡)\K(C,z)\dV(z). On

BE we introduce a special coordinate chart (tx,t2,t3,y) = (t,y) such that

y = \p(z)\, t3 = ImO(C,z) and (tx,t2) = t' is chosen so that t'(z) = t'(z)

where z e dD is the normal projection of z onto dD. It follows from [17,

Lemma 3.3] that |<P(C,z)| > c(\7 - z\m + \p(z)\ + |Im<P(i ,z)\). Thus under

the special coordinate chart, we have |<P(Ç, z)\ > c(\t'\m + |i3| + y). We choose

a large number R, then

(2.3) / \K(C,z)\dV(z)<  [ <u>r + \t\ + vMU'Udt^dtidy
JDCtfiM) J\(t,y)\<R(\t\     +V7\+y)(\t |)

< c

independent of Ç.

Using (2.2), (2.3), we have

\RöDf\\v{D}<  f f   \K(7,z)\\f(Q\dS(QdV(z)
v JDJdD

< ldD^JD\K(C,z)\dV(z)\f(Q\^ dS(Q

<cf   |/(C)I<W(C) = c||/||L1
JdD,dD -,(öfl)'

Combining (2.1) and the above, we have proved (i).

In order to estimate the boundary values of u in terms of the boundary

values of /, we express the integral BDf in a different manner using L(Ç, z)

when z G dD.

Introducing kernels R*(7,,z,X), K*(7.,z) and L*(Ç,z) where

R*(7,z,X) = R(z,7,X),        K*(C,z) = K(z,Q,        L*(Ç,z) = L(z,Q ,

then R*(Ç,z,X), K*(7,z) and L*(7,z) are well defined for 7, G D and ze

U . Since R(7,z,X) satisfies the homotopy formula (see Lemma 2.5 in Shaw

[17] for a proof) (d¡.z + dk)R(7,z,X) = 0 for zgD, 7 G Us , we have

(2.4) (diz + dJR*(Ç,z,X) = 0   forÇGD, zgUS.
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For z G U , it follows from (2.4) and the fact L*(7,z) is holomorphic in

7 G D, we have by Stokes' theorem,

/       f(7)AdrR*(7,z,X)Ad7xAd72

0<A<I

= /       f(OAdizR*(7,z,X)AdÇxAdÇ2

0</Kl

= /       dk[f(QAR7(7,z,X)Ad7xAd72]
J ceo

0<A<1

=  f    f(QAR7(7,z,X)Ad7xAd72

= f     /(C) A [B(7, z) - L*(C, z)] A rfC, A ¿i2
•/Ceo

= /     f(Ç)AB(Ç,z)AdÇxAdÇx.
JC&DireD

Thus for z e <9£>, we have df=0

(2.5)

f     f(OAB((,z)AdÇ.xAdÇ2= - f       dAf(7)AR7(7,z,X)]Adi.xAd72
JC€D J  1<ED

0</Kl

= -/       f(Ç)AR*(t;,z,X)AdÇxAdÇ2.
J redDAedD

0</l<l

Substituting (2.5) in u we obtained the following formula for u if z G dD :

u(z)= [       f(QAR(C,z,X)AdCxAdCx
JfedD'CedD
o<a<i

- (       f(Ç)ARt(7,z,X)AdÇxAdc:2
J tedD'redD

0<A<1

= RaDf(z)-R9Df(z).

Let /(z) = ft+fn where ft = xf on dD where t is defined in §1 and fn = gdp

for some function g on dD. Then

Raofn=  I      g(OAdpAK(7,z)AdÇxAd72
JrçdD

=  f       g(QAdpAK(7,z)Ad7xAd72
JC<EODIr&dD

= 0.

Thus R0Df(z) = R0Df,(z). Similarly R0Df(z) = R0Dft{z). Thus we have

(2.6) u(z) = R0Dft(z) - R-Df,(z)
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i.e. the boundary values of u depends only on the tangential part of / on

dD. Formulas (2.6) coincides with the formula (2.15) in [17], which solves the

tangential Cauchy-Riemann equation dbu = ft on dD.

It is proved in Lemma 3.22 of [17] that the kernels K(7,, z) and K*(7, z) are

of weak type ^±y on dD. Thus we have all the results in (ii). The estimates

(iii) follows from Theorem 2 in [17]. Thus our theorem is proved.

III. PoINCARÉ-LeLONG EQUATION AND ITS APPLICATIONS

In this section we shall prove the estimates for the Poincaré-Lelong equation

and its applications (Theorems 2 and 3). To prove Theorem 2 we decompose

Equation ( 1 ) into two steps, first applying the Poincaré lemma and then solving

a ¿5-equation using Theorem 1. Theorem 3 follows from Theorems 1 and 2

using an approximation argument and the Poincaré-Lelong formula.

Proof of Theorem 2. We first assume D is star-shaped and Oefl. Using

Poincaré lemma, we define

P«(Q=^fej*t«ij(tz)dtzXdzj

-LIE/  tatj{tz)dtt\ dzi

then dPa(z) = a(z). Since a is positive, it follows from Lelong that a.. =

-q. . Thus we define

/u) = e(e/0V7(^'z,W

then Pa(z) = f(z) + f(z) and we have df = df = 0. Furthermore,

^czZ i \au^\dV^ = c\a\v(Dy
\J Jd

It is easy to see ||/||L,(D) < c||a||ll(D).

Thus applying Theorem 1, we can find a function v satisfying dv = f and

the estimates

H***, + IMir2)/(w+1)-£(^) < c(\\f\\V(D) + \\f\\Lt(dD))

j    v ,   -o

^ Cllallz.i(D)-

Since

a = d(f + f) = df + df = d(dv) + d(dv) = idd (^-^-\
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Let u = (v -v)/i, then u = u and Theorem 2 is proved when D is star-shaped.

For the general case when   D   is not star-shaped,  by the assumption

H (D,R) = 0, one can use the well-known global construction of Weil for

the DeRham cohomology and the theorem is proved.

Proof of Theorem 3. Let aM be the closed (1.1) current associated with the zero

set M, i.e., if h is a holomorphic function on D which has zero set M, then

j¡ddlog\h\ = aM by the Poincaré-Lelong formula. Let <pe(x) G C™(R) be a

family of functions such that ç>£(x) > 0 for all x G R, <pe(x) is supported on

\x\ < e/2 and J_x>00<Pe(x)dx = 1. We define Ve(z) = log|/z| * tpE, it follows

that Ve(z)GC°°(De) and Ve(z) -» log \h(z)\. We define V£(z) to be a smooth

extension of V£(z) to a neighborhood of D then V£(z) is a smooth function

on D and Ve(z) -* log|/z(z)| a.e.

We define a£ = ^ddVe, it follows that a£ G CX°°X(D), ae is ¿-closed and

positive.

In particular, q, - V). ._. a,¡ dz-Adz., a. —> a in measure a*,. < a*,. -I-a*

Thus there exists a constant ^4 such that
77

(3-D KIIluz» * c E KIIl.») ^ czZK\\v{D) <A-
/,;=l i

Applying Theorem 2 to ae, we can find a smooth u£ = u£, ^dde = a£ and

(3-2) II"Jlí(od) + IIm£Hl'(0) - CHa£llL'(0)-

We define g, = uc - v„, then gc  is pluriharmonic on D.   Thus  ?   is the
C G C G G

real part of a holomorphic function.   Since log|/z| is plurisubharmonic, it is

locally integrable. We have that for any compact subset K of D, there exists

a constant C^.

JÍve\ dV < CK   uniformly in e.
K

Following (3.1), (3.2), we also have for some constant C

\ue\dV < C   uniformly in e.
id

Thus for every compact subset K of D, there exists a constant C such that

/.

/,
ge\dV < C   uniformly in e.

K

It follows that ge is uniformly bounded on every subset of D. Thus it is a

normal family and there exists a convergent subsequence of ge that converges

to a function g uniformly on compact subsets of D. The function g is also

pluriharmonic.

Let u = log|/z| + g, then u(z) = lim«£(z) and ugL (D) and u satisfies

^ddu = aM in the distribution sense. Using Theorem 1, we have

\\Ue\\Al/n,(dD)^C\\ae\\v(D)^A>



THE NEVANLINNA CLASS ON WEAKLY PSEUDO-CONVEX DOMAINS IN C2 417

there exists a subsequence of uE that converges strongly in L (dD) to u and

we have fdD\u(z)\ds < oo. Since g = Re G for some holomorphic function

G on D, we can write

u = log\h\ + ReG = log\he |.

Let f = he , it follows from Poincaré-Lelong equation the zero set of / is the

same as h and / 6 N(D). Thus the theorem is proved.

Proof of Corollary 3.1. Let g = f/h for some holomorphic function / and

h . By assumption the zero set of h , has finite area. Thus by Theorem 3 there

exists a function h G N(D) such that h = hQ for some holomorphic function

Q which never vanishes on D. Let / = g • h , then it is easy to see that / is

holomorphic in D and

sup /    log+ |/(z)| dSe < sup f    log+ \g(z)\dSe
£    JdDt E    JdDt

-l-sup/     log+\h(z)\dS < 00.
£    JdDe

Using Theorem II, p. 48 in Stein [20], both / and h have nonzero admissible

limits at almost every boundary point, it follows that g has admissible limits

at almost every boundary point.

Remark. When D is a ball in C2, under the same assumption as in Theorem

3, Berndtsson [1] has proved that there exists a bounded holomorphic function

with zeros M. It is still unknown if this is true even for the general strongly

pseudo-convex domains in C .
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