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THE SPACE OF HARMONIC MAPS OF S2 INTO S4

BONAVENTURE LOO

Abstract. Every branched superminimal surface of area 4xd in S4 is shown

to arise from a pair of meromorphic functions (f\,ff) ofbidegree (d,d) such

that f and fi have the same ramification divisor. Conditions under which

branched superminimal surfaces can be generated from such pairs of functions

are derived. For each d > 1 the space of harmonic maps (i.e branched super-

minimal immersions) of S2 into S4 of harmonic degree d is shown to be a

connected space of complex dimension 2d + 4 .

Introduction

In a study of minimal surfaces in euclidean spheres, Calabi showed that every

minimal immersion of S in Sn arises from an isotropic map to projective

space [4], [5]. This work was used by Bryant who showed that every compact

Riemann surface can be superminimally immersed in S4 . There exist Calabi-

type theorems representing harmonic maps of S into other locally symmetric

spaces in essentially algebro-geometric terms. These are of interest to people

studying tr-models in physics. In this paper, we study the space of branched

superminimal immersions of compact Riemann surfaces into S .

In §1, we characterize branched superminimal surfaces in S by pairs of

meromorphic functions with the same ramification divisor.   This is done by
~ 3 11 M 3

constructing a contact map between P and PF(CP x CP ) where P is the

blow-up of CP along 2 skew lines. The bidegree of such a pair is related to

the degree of the canonical lift of the surface in CP3. We then show that if in

addition the surface is linearly full (i.e. not contained in any strict subspace of

R5 ) then the pair of meromorphic functions has bidegree (d, d) where d > 3

and where the 2 functions do not differ by a Möbius transformation.

In §11, we analyze the space of harmonic maps of S2 into S4 . By examin-

ing the projective geometry of certain Grassmann varieties, we show that the

space Sjd of harmonic maps of S into S of degree d is a connected space

of complex dimension 2d + 4. We also construct examples of unbranched

superminimal surfaces of genus 0 in S4 of area 4nd for d > 3.
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In §111, we consider branched superminimal surfaces of genus g. We discuss

conditions under which a pair of meromorphic functions on a Riemann surface

Z can give rise to a branched superminimal immersion of Z into S4 .

This paper is based on the author's Ph.D thesis [13]. The author would like

to thank Blaine Lawson for all the help and advice he has given me.

Preliminaries

Let X be a compact Riemann surface and ip : Z +> S an immersion into the

unit 4-sphere. Let B denote the second fundamental form of <p. Then \p is

a minimal immersion if the mean curvature H:= trace B vanishes identically.

More generally, ip is a branched minimal immersion if it is minimal away

from the set of isolated singular points. These are precisely the nonconstant

conformai harmonic maps. Observe that any harmonic map ip : S —► 5 is

automatically conformai. Thus, branched minimal immersions of S2 in S4

are just the nonconstant harmonic maps from S   to S4 (Eells-Lemaire [7]).

Let ip : Z «H S be a (branched) minimal immersion of a compact Riemann

surface in S . Let x and y denote the local isothermal coordinates on Z.

cp • cp dz   where

Consider the holomorphic quartic form O G H (Z;(fi')4)  defined by $ :=

and where " • " is the complex bilinear extension of the dot product to C .

We say that y/ is a ( branched ) superminimal immersion if 4> vanishes identi-

cally. This means that \p has a holomorphic horizontal lift, y/, to CP (Bryant

[3], Chern-Wolfson [6], Lawson [10]). Observe that since S has no nontriv-

ial holomorphic quartic differentials, every branched minimal immersion (i.e.

harmonic map) of S2 into S4 is automatically branched superminimal.

Consider the Calabi-Penrose fibration it: CP3 -» S4 = HP1 . This fibra-

tion can be obtained via a quotient of 2 Hopf maps. Choose homogeneous

coordinates (z0 ,zx,z2, z3) for CP3. Consider C4 = H2 as a quaternion vec-

tor space with left scalar multiplication, where the identification is given by

(z0 ,zx,z2, z3) »-> (z0 -l- zxj, z2 + z3j). The Kahler form of the Fubini-Study

metric is given by co = dd log ||z|| . The Calabi-Penrose fibration is then given

by the quotient

C4 - {0} - H2 - {0}

Hopfc HopfH

CP3      —n—^      HP1
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with fiber CP1 . The horizontal 2-plane field 3Í7 for n is given by a 1-form

whose lifting to C  - {0} is

" := TTlä^O dZ\ ~ Zl dZ0 + Z2 dZ3 ~ Z3 dZ2)-
\\z\\

4 4
Superminimal surfaces in S are just the projections to S of nonsingular

holomorphic curves in CP3 which are integral curves of £?. Unfortunately, it

is difficult to find integral curves of %7 directly. Our search for superminimal

surfaces would be vastly simplified if we can find a contact manifold (M, 7?)

birationally equivalent to CP3, where it is easy to find integral curves of the

contact plane field 7F. Robert Bryant has found a birational correspondence
3 2

between CP and the projectivized tangent bundle of CP carrying %? to the

contact plane field of PF(CP ). Using that, he was able to prove the following

result:

Theorem (Bryant [3]). Every compact Riemann surface admits a superminimal

immersion into S4.

In this paper, I will be using another contact manifold—PF(p' x P1). From

now on, I will let P" denote CP" .

I. Some projective geometry

1. Holomorphic contact structures. Let V be a complex (2« + l)-manifold. A

holomorphic contact structure on V is a nondegenerate holomorphic distribution

y of hyperplanes on V (i.e. the orthogonal spaces of some twisted holomorphic

1-form). (cf. Arnold [1], LeBrun [12]).

Let M be a complex «-manifold. Then the projectivized cotangent bundle

of M has a canonical holomorphic contact structure. Now let 7t : PT*M -> M

denote the projection map onto the base space. A point cp G PF*M defines a hy-

perplane F   in T..M. The contact hyperplane at cp is given by (?i~ ) (F').

Thus the canonical contact 2-plane field 377 at a point y G PF(P' xPx) =

PF*(P x P ) is given by (7r~' ) (L ) where L denotes the tangent line at

7t(y) corresponding to y.

The Calabi-Penrose fibration p : P3 —► S4 has a contact 2-plane field %?

orthogonal to the fibers of p with respect to the Fubini-Study metric. The 2-

plane field X for p is given by a 1-form whose lifting to C4 - {0} is Q =

||z|| (zQdzx-zxdz0 + z2dz3-z3dz2). Let co := dzQAdzx+dz2Adz3 denote

the standard holomorphic symplectic form on C4 . Let

Ô d d d
z°dz0 + zidzx +z*dz2 + zidz3

Then Q = ||z|f2£ J co.
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2. Projection to P1 x P1 . Consider the two distinguished skew lines in P3

defined by L, :=p-x(N) = { [0,0, z2,z3] | [z2,z3]eP'} and L2:=p~x(S) =

{ [z0,Z[ ,0,0] | [z0>zi] e p1} » where A^ and 5 denote the north and south

poles of S   respectively.

Lemma 1.1. There is a well-defined projection map pr: P3 - (L, UL2) -»p'xP1

with P1 as fiber.

Proof. It suffices to show that there is a unique line L through each point

x G P - (L, U L2) which intersects Lx and L2. The intersection of L with

Lj and L2 (identifying Lx x L2 with P'xP1) gives us the desired projection

map. For each x G P -(LXUL2) consider the planes F, and F2 in P3 defined

by F, = spa^x,.^) and F2 = span(x,L2). Since Lx and L2 are skew, F(

and F2 intersect in a line L which contains the point x and which intersects

both ¿, and L2.   D

Proposition 1.2. The fibers of pr: P3 - (L, u L2) -»P'xP1 are horizontal with

respect to p (i.e. the fibers of pr are integral curves of 37 ).

Proof. Let (x ,y) G Lx x L2. Let L denote the line through x and y, i.e.

L = pr~x(x,y). Denote the inverse images of I, Lx, L2, x and y to

C  - {0} by P, Px, P2, lx and ly respectively.

Note. F, and F2 are orthogonal with respect to co. Let A G Px and B G P2.

Then A = (0,0,a,b) and B = (c,d ,0,0) for some a,b,c,d gC It is clear

from the definition of co that £u(/l, B) = 0. Since co is skew, we also have

co(A,A) = co(B,B) = 0.

Now pick nonzero vectors X G lx c Px and Y G I C P2. Observe that

F is spanned by X and Y. Now let Vx = aX + ßY and K, = yX + ÔY
be 2 vectors in F. Then by the note, co(Vx,V2) = 0. Thus co vanishes on

F. Let p: C4 - {0} -» P3. Since £ is tangent to the fibers of p and ft|L =

||z||~ (£ J co)\p, we see that ft vanishes on L. Thus L is horizontal with

respect to p.   D

3. The contact map. Let X denote the blow up of P3 along L, and L2, i.e.

X:={ (tZ0 ' Zl ' Z2 ' Z3l ' LVo '^J ' LV2 >y¡\) I Vl = Zl>Vj ' ^3 = Z3>;2 } ■ N°te that

X is a P'-bundle over P'xP1: Ä:I-»p'xP' where

Ä(tZ0'Zl'Z2'Z3]'LV0'>;i]'LV2'>;3]) = (^0 '^J ' ^2 »^D ■

For ease of notation, let Y denote PF^P1 xP1) s PF(p' xP1). Let ip: X -► F

be defined by

V (tzo. zi - z2 > Z3J' LVo'^J ' l>2 '^3])

= (Lv0, y, ], [v2, y3], [z0 rfy, - z, rfy0, z2 dy3 - z3 dy2]) .
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We have the following diagram:

P3 ̂ L_     x     -JU      Y

'1       4 I-
S4 P1 xP1 = P1 xP1

Observe that %? extends to all of X, and for x G X, ftt(Wx) is a tangent

line in F^P1 x Pl), i.e. Ä,(^) G PF^P1 x P1). Furthermore, ñ = noy/

where re is the projection to P'xP1. Now let / := ftt(ß^x). Then n~l(l) is

the contact plane at / G Y. Now / = fij¿í7¿) = (ïo v).(^) = ft» o V.(^) •

Thus, n~\l) = ipt(<%x).We thus have

Lemma 1.3.   \p is a contact map, i.e.  y/^ sends the horizontal plane field %? in

X to the contact plane field 377 in Y.

The blow ups, ax and o2, of the two distinguished skew lines Lx, L2 g P

are given by

ox := {([0,0,z2,z3],Lv0,y1],[z2,z3]) | Lv0,y,]€Pl and [z2,z3] g P1}

and

a2:= {([zo'z\'0'°h[z0,zA,[y2,y3],) | [z0,zx]gPx and \y2,y3] eP1} .

We observe that

W(^)^ {([yo^^^^^dUO^liy^y^GP1 and[z2,z3]GP1}

and

V(<72) = {([z0'zi]'[>;2'>;3]'t0,l]) Ifz^zJeP1 andb^^eP1}.

Proposition 1.4.   \p is a branched 2-fold covering map. It is branched precisely

along ox and o2

This proposition will be proved in the next subsection.

4. The involutions on X and S4. We first define an involution a : X —> X by

a([z0,zx,z2,z3],[y0,yx],[y2,y3]) = ([z0,zx, - z2, - z3],[y0,yx],[y2,y3]).

(Actually, a is an involution on P   which is extended to X in a trivial manner.)

Note.

(1) a\a¡ =Id, a|    =Id and a*ft = ft.

(2) By Note 1, a, maps the horizontal plane ^ at x G X to the horizontal

plane ßf,x, at a(x).

(3) Let u G L, and v G L2. Denote by lm the line in P3 uniquely defined

by u and v . Since a(u) = u and a(v) = v,we have ot(luv) = luv .
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Consequently, ñ oa = ñ . (This actually follows immediately from the defi-

nition of a and ñ .)

(1) Since ñ,(<^x) = n^o y/t(^x) = y/(x), we have

ip(a(x)) = ñt(^a{x)) = ñt(at^x)       by Note 2

= (ñoa)^x)

= ñt(JZx)       by Note 3

= W(x).

Thus y/ o a = y/, i.e.  y/ is a-invariant.

Notes 1-4 imply that y/ is at least 2 to 1 except along er, and o2. From

the definition of yi, it is clear that y/ is 1 -to-1 on ax and o2. Let us now

examine the map y/ explicitly in local coordinates. Assume that x ^ c, U o2.

We can then set zi=yi for 1 = 0,1,2,3. Without loss of generality, we can

suppose that z0 = y0 = 1 and z2 / 0. Set s = yx and t = y3/y2. Then

ds = dyx and dt = z~ (z2dy3 - z3dy2). Thus, z2dt = z2dy3 - z3dy2.

Hence, y/ ([ 1, z,, z2, z3], s, t) = (s, t, [ds, z\ dt]). We also have

y/([l, zx, - z2, - z3],s,t) = (s,t,[ds,z22dt\).

From the above local coordinate expression for y/, it is clear that y/ is 2-to-l

away from ox and o2. Now, y/ is a holomorphic map with finite fibers between

compact complex 3-folds. Thus, it is a branched covering map of degree 2. This

proves Proposition 1.4.

Let us now examine the inverse image of y/ locally. Choose a point y gY -

(5,U52) where Sx and S2 are the images under y/ of ox and o2 respectively.

Locally, y has coordinates (s,t,a). Recall that y/([l ,zx,z2, z3], s,t) =

(s,t,[ds,z\dt]) where s = z, and t = z3/z2 . Then

V~\y) = y~\s,t,a) = ([l,s,y/a~,y/a~t],s,t).

The involution aonl corresponds to a permutation of the roots. Thus,

Proposition 1.5. y/: X —* Y is equivalent to the projection map p: X —> X/l2

where the Inaction on X is given by the involution a.

The involution on P3 descends to an involution on S . Identifying 5 with

HP1, the stereographic projections to R4 = H1 from the south and north poles

are respectively given by <px ([<?, ,q2]) = q7lQ2 and M^i '^l) = <h Q\ > wi™

transition functions q*-*q~ \\q\\~ 9- Now p([z0,zx ,z2,z3]) = [zQ + zxj,z2 +

z3j] G HP1 , where [zQ ,zx,z2, z3] G CP3. Thus,

p(a[z0,zx,z2,z3]) =p([z0,zx, - z2, -z3]) = [zQ + zxj, - (z2 + z3j)].

The involution a thus descends to an involution on S = HP as follows:

a([<7, ,Q2]) = [<7i > - 42] for all [qx ,q2] G HP1. (We will let a denote the

involution on both X as well as S .)
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Now, cpx oa([qx,q2]) = <px([qx, - q2]) = -qx Xq2 and <p2 o a([qx,q2]) =

<P2^ai ' ~ a2^> = ~(h XQ\ ■ Hence the action of a on a point x G S4 is just the

antipodal map on the S c S4 obtained by the intersection of the horizontal

4-plane through x with S4. (This S3 is the "latitudinal S3 ".) Thus, the

geodesic 3-sphere in S4 passing through the north and south poles is invariant

under a.

5. Some degree computations. We now compute the degree of the total preimage

in P3 of a holomorphic curve in Y. Recall the diagram:

P3 ^—      X      —?U       Y

i i

pl       n Ï'
S4 P1 xP1 = P1 xP1

Let /, and l2 (resp. l\ and l2 ) denote the preimages in X (resp. Y) of the

first and second factors of P1 x P1 respectively under the map ft : X —> P1 x P1

(resp. n: Y —► P x P ). Let Sx and S2 denote the 2 distinguished sections

of Y corresponding to lines tangent to the second and first factors of P1 x P1

respectively. Recall that y/t(ox) = Sx and y/t(o2) = S2. Note that y/t(l¡) =

2l'¡, i = 1,2. Let H be a hyperplane in P . Then ß*H = ax + /, = o2 + l2 .

Thus ox- o2 = l2-lx. Also, Sx - S2 = y/t(ox - o2) = y/t(l2 - /,) = 2(/2 - l'~).

Hence, the Picard group of X and Y are given by

Pic(X) = Z{/, ,l2,ox, o2} I (ox -o2 = l2-lx)

and

Pic(Y) = l{l'x,l'2,Sx ,S2}/(SX-S2 = 2(l'2-l\)).

Let Z be a compact Riemann surface of genus g. Let <p: Z -> P1 be a

holomorphic map of degree d. A point x G Z is a ramification point of <p

if dcp(x) = 0, and its image <p(x) G P1 is called a branch point of <p. By

the Riemann-Hurwitz Theorem the number of branch points of <$> (counting

multiplicities) is 2g + 2d - 2. The ramification divisor of <p is the formal sum

J2 a¡Pj where pi is a ramification point of cp with multiplicity ai, and where

the sum is taken over all ramification points of <p. We will let Ram(0) denote

the ramification divisor of <f>.

Let F = (/,, f2) : Z —> P x P be a holomorphic map of bidegree («, m).

Then the curve C = F(Z) is of class (m, n). Let F denote the canonical lift

(i.e. Gauss lift) of F to F and let C' := F(Z). (The lift of a point jceCis

the tangent line to C at x.) If we assume that C is nonsingular, then

degF*(/!) = m,        degF*(/') = «,

degF (S.) = # branch points of /. = 2g - 2 + 2« and

degF*(S2) = # branch points of f2 = 2g - 2 + 2m
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where 'deg' refers to the intersection number of F(Z) with the relevant gen-

erators. Let C := y/~X(C') c X and y := ßt(C) c P3. Then for a generic

hyperplane H in P , we have

degy = H-ßt(C) = ß'H-C = (a, + /,) • (<//"'C')

= y,.(ox+lx).C' = (Sx+2Íx).F¿Y)

= degF*(Sx +2l'x) = 2g-2 + 2n + 2m.

Súpose deg/j = deg/2 = d and Ram(/,) = Ram(/2). Then the curve C =

F(Z) has singular points with the property that degF*(51) = degF*(5'2) = 0.

Consequently, deg y = 2d.

6. Conjugate branched superminimal surfaces. Let us suppose that f: Z <+> S4

is a branched superminimal immersion of a compact Riemann surface in S4.

Generically, /(Z) misses a pair of antipodal points in S4 (say the north and

south poles). Also, generically, a(/(Z)) ¿ /(Z), i.e. /(Z) is not a-invariant.

Let /: Z ->■ P3 be the holomorphic horizontal lift of / to P3.

Proposition 1.6. A generic branched superminimal surface /(Z) in S4 has the

property that its lift f(L) in P   is not a-invariant.

Proof. The proposition follows immediately from the definition of the invo-

lution a and the fact that a-invariance in P   descends to a-invariance in

S4.    D
2

Note. The converse is not necessarily true. For example, the totally geodesic S

of area 47i contained in the equator of S   is obviously a-invariant. However,

its lift in P   is a curve y of degree 1 (and hence y = P1 ) which avoids Lx

and L2 , and thus is not a-invariant. Observe that a(y) projects down to the

same geodesic S   (but with the opposite orientation).

Corollary 1.7. Given a generic branched superminimal surface f(L) in S , we

obtain a conjugate branched superminimal surface, a o /(Z), in S .

Proof. Since /(Z) is generic, it avoids the poles and hence its lift /(Z) avoids

Lx and L2. Thus, /(Z) is diffeomorphic to its image f(L) in X under

the blow up of P3 along L, and L2. Now by notes 1-4 in §1.4, we have

ft o /"(Z) = ñ o (a o /'(Z)) and that a o /(Z) is holomorphic and horizontal in

P3 and thus projects to a branched superminimal surface in 5 , i.e. we obtain

conjugate branched superminimal surfaces for free!   G

7. Bidegrees and ramification divisors. Let f(Z) be a generic branched super-

minimal surface in S . Its lift /(Z) is a holomorphic horizontal curve y in P .
3 3

The homology degree of y c P   is the fundamental class [y] G H2(P ; Z) = Z .
2   . 3

This degree is also the intersection number of y with a generic P in P (i.e.

homology degree = algebraic degree). Let ñ = (ñx ,ñ2) denote the projection

map of P3 - (Lx U L2) to P'xP1. Define /,, f2 : Z -* P1 by /, := ft, of and

f2:=ñ2of.
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Proposition 1.8. Suppose that deg(y) = d. Then the holomorphic curve C =

fto/(Z) in P'xP1 has bidegree (d,d), i.e. deg/, = deg/2 = d. Furthermore,

Ram(/,) = Ram(/2).

Proof. Let x, G F,. The fiber ñ\~x(xx) c P3 is the plane F, = span(x, ,L2).

Since deg y = d, F, has d intersection points with y. Similarly, for x2gL2,

the plane F2 = ñ2x(x2) has d intersection points with y. Thus C = ñ(y) has

bidegree (d ,d).

Let z0 be a ramification point of /,. Let p G y denote the point f(z0).

Then the point x := ft,(/z) is a branch point of /j. Let y := ñ2(p) and

let L     denote the line in P3 through x and y. Finally, let Hx denote the

plane {v G TpP | ft,„(u) = 0} . Now x is a branch point of /, and y is an

integral curve of ^ , so the tangent line to the curve y at p must be Lxy—the

intersection of %? and Hx . We thus have ftu(L ) = ñ2t(L ) = 0. Hence, y

is a branch point of f2 and so z0 is in the ramification locus of both /, and

f2. By genericity, Ram(/¡) = Ram(f2).     D

Lemma 1.9. A holomorphic map F = (fx ,f2): Z -► P1 x P1  has a canonical

Gauss lift F to Y = PF(P* x P1).

Proof. First suppose (dfx (z), df2(z)) / (0,0). Then the lift is given by F(z) =

(f\ (z) > f-i(z) » if\(z) > ̂2(Z)D • ^e are l^us ^e^ w^ a nnite set °f singular points.

Without loss of generality, suppose 0 is a singular point. Then fx(z) = zpgx(z)

and f2(z) = zqg2(z) for some p, q and where g,(0) ^ 0 and g2(0) ^ 0. We

may assume that 1 < p < q. So

F(z)=(fx(z),f2(z),[gx(z),zq-pg2(z)])

for z in a neighborhood of 0.   D

Proposition 1.10. Suppose f: Z s-> 5 is a generic superminimal immersion.

Let /:I-»P3 be the holomorphic horizontal lift of f, and let fx := ft, of and

f2 := ft2 of. Suppose that deg/, = deg/2 = d > 2. Then f2 ^ A o fx for any
AgPSL(2,C).

Proof. Suppose f2 = A o fx for some A g PSL(2,C). Then F = (/, ,/2) =

(/, ,A ofx): Z — P1 x P1 factors through P1 as follows:

Z^P'^^P'XP1.

Since G has bidegree (1,1), it is nonsingular and its canonical lift G to Y

avoids the two sections Sx and S2. The map /, is necessarily branched since

deg /, > 2. Hence, the canonical lift F of F is a branched covering map of Z

into C7(P') = P1, i.e. F(Z) is branched. Consequently, its lift to P3, #(Z), is

branched and hence projects to a branched superminimal surface in S . This

contradicts the assumption that /(Z) c 54 is unbranched.     D
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Note that for d = 1, Z must have genus zero and so /(Z) is totally geodesic

in S4.

We thus have

Theorem A. Every superminimal immersion f: Z <r+ S   arises from a pair of

meromorphic functions fx,f2 on Z such that

(1) deg/, = deg/, = d for some integer d > 1.

(2) Ram(/1) = Ram(/2)

(3) For d>2, /, ¿Aof2 for any AgPSL(2,C).

We would like to generate superminimal surfaces in S by considering pairs

of meromorphic functions on Z which satisfy the three conditions in Theorem

A. Suppose F = (/, ,/2) is such a pair. Let C = F(Z) c Y. Our degree

computations in §1.5 show that the total preimage curve y = ß o y/~x(C) in P

has degree 2d. Suppose y consists of 2 connected (or irreducible) components

yx and y2. Then a(yx) = y2 and consequently degy, = degy2 = d. Under

suitable conditions (to be discussed later), y, and y2 will project to a conjugate

pair of superminimal surfaces in S .

II. Genus zero

1.   Meromorphic functions, Grassmannians and resultants. Let /: P   —► P

be a holomorphic map of degree d  (i.e. / is a meromorphic function of

degree d ).   Then / can be expressed as a rational function of the form

+ ■■■ + axz + a0 and Q(z) =
d-\

P(z)IQ(z) where P(z) = adzd + ad_xzd~x

hdzd+bd_x2 -\-\-bxz + b0, ai,bi G C. Note that the map / is of degree d
if min{deg P(z), degö(z)} = d and if the resultant of the 2 polynomials does

not vanish. Let F = (ad,ad_x, ... ,ax,a0) and Q = (bd,bd_x, ... ,bx,b0) de-
note the coefficient vectors of P(z) and Q(z) respectively. Then the resultant

£%(P ,Q) of P(z) and Q(z) is the determinant of the matrix

where

(ad

0
*</-!

V o    o

M

M

-\BX    B2J

(  an

A2 =

aj wd-\

0

2d-2

0

aJ

*.=

(bd   bd_x

V o    o

M
b-,

bj

B2 =

(  b0 0

bn

V*,_i   *rf-2

0

bj
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The resultant is a homogeneous polynomial of bidegree (d, d) in the ai and

the bj . Furthermore, 32 (P ,Q) is irreducible over any arbitrary field (cf. [18]).

We thus require that (P,Q) G Cd+X x Cd+X - 31, where 37 is the irreducible

resultant divisor. Observe that (XP, XQ) describes the same function as (F, Q)

for any X G C*. Thus the space of meromorphic functions of degree d is

Md:=P(Cd+xxCd+x-3?)cP2d+X.

We next define an action of C7L(2,C) on C +1 x C +1 as follows:

g-(P,Q):=(aP + ßQ,yP + SQ)   for*=("   ß^GGL(2,C).

Let Nd := Cd+X x Cd+X - A where A = {(P,Q) | F A Q = 0} . Observe that

for (P,Q)GNd, g -(P ,Q) = (aP + ßQ,yP + ÔQ) = (PX,QX), and F,Aß, =
(aP + ßQ)A(yP + SQ) = (aS-ßy)PAQ^O. Thus, GL(2,C) acts on Nd. In
fact, we have a free action on Nd: g-(P,Q) = (aP + ßQ,yP + SQ) = (P,Q)

implies that g = I since F A ß ^ 0. Note that we can identify Nd with the

Stiefel manifold of 2-frames in Cd+X . For (P,Q) G Nd , let [F A Q] denote

the 2-plane in Cd+X spanned by P and Q. Let F,, Qx G [FAß]. Then

F, =aP + ßQ and ß, =yP + ôQ for some a, ß,y,S gC. If F, Aß, ^0,

then 0 5¿ F, A ß, = (aô - ßy)P Aß, i.e. (aÔ - ßy) ¿ 0. Thus, C7L(2,C)

acts transitively on pairs of noncollinear vectors in [FAß]. It follows that

Nd/GL(2,C) = G(2,d+l) and n: Nd -> G(2,d+ 1) is a principal C7L(2,C)-
bundle (where n(P, Q) = [P A Q] ).

Lemma 2.1. 3l(g • (P, Q)) = (det g)d3?(P, Q).

Proof. Let (F,Q) denote g-(P,Q). The resultant of (F,ß) is given by the

determinant of the matrix

*-(í Í)'
Since (F,ß) = (aP + ßQ,yP + ôQ), we observe that

Äx=aAx+ßBx,        Ä2 = aA2 + ßB2,

Bx=yAx+ÔB.,        B7 = yA7 + SB7,

(Äx    Ä2\ = (al   ßI\(Ax    A2\

\BX    B2J      {yl    öl)   \BX    B2)

where / G GL(d, C) is the identity matrix. It is straightforward to verify that

det(y/  ßOI)=(^-ßy)d = (detg)d.

Thus, detM = (det£)d-detA/,i.e. 31 (g ■ (P,Q)) = (detg)d -3ê(P,Q).   u

It follows that 31 c Cd+X x Cd+X  is fixed under the action of GL(2,C).

Let Reg(^) denote the regular part of 3i . Since 31 is irreducible, Reg(^)
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is connected. Note that A = {(P,Q) | P AQ = 0} c 37 and that A has

codimension d in C +1 x C +1. So A cannot disconnect Reg(^) (which has

dimension 2d+l). Consequently, (Reg(^)) n Nd is connected, i.e. 32 f) Nd

is irreducible. For ease of notation, we shall let 32 to denote 32f)Nd also. By

Lemma 2.1, dim(^/GL(2,C)) = dim(7r(^')) = 2d - 3. Furthermore, since

Reg(^) is connected and n: Nd-+G(2,d+l) is a principal C7L(2,C)-bundle,

7r(Reg(^)) = Reg(n(32)) is connected. Thus, n(32) is an irreducible divisor

in G(2,d+l).
Observe that the space of meromorphic functions of degree d is Md =

P(Nd-32). We thus have a free action of PSL(2,C) on Md . Furthermore,

Md/PSL(2,C)cG(2,d+l),the Grassmannian of 2-planes in Cd+X.

2. The ramification divisor. Let /: P —► P be a holomorphic map of degree d.

Recall that z„eP' is a ramification point of / if ft(v) = 0 for all v g TzPx .

Expressing / as a rational function P(z)/Q(z), we have f(z) = (Q(z)P'(z)-

F(z)ß'(z))/(ß(z)) . Then the ramification points of / are given by the zero

locus of Q(z)P'(z) - P(z)Q'(z), a polynomial of degree 2d -2. Observe that

if deg(ß(z)F'(z) - P(z)Q'(z)) = k < 2d - 2, then oo is a ramification point

of order 2d - 2 - k '.
Define a map ¥ : Md = P(Nd -31)-* P2d'2 by

[(F, Q)] ~ [coeff{ß(z)P'(z) - P(z)Q'(z)}],

where coeff{F(z)} denotes the coefficient vector of the polynomial R(z). The

ramification map *r   is well defined since

(XP,XQ) ~ [X2 ■ coeff{ß(z)F'(z) - P(z)Q'(z)}]

= [coeff{Q(z)P'(z)-P(z)Q'(z)}],

and if Q(z)P'(z) - P(z)Q'(z) = 0, we have

^M = |M      i.e.    logP(z) = logQ(z) + C = log(CQ(z)).

Thus P(z) = CQ(z) and so [(P,Q)] $ Md .

Lemma 2.2.  F5L(2, C) preserves the fibers of ¥

Proof. Let g G PSL(2,C) .Let (" ßs) be a representative of g. Then

v* {g • [(P, Q)]) = V([<*p(z) + ßQ(z). yP(z) + SQ(Z)\)

= [coeff{ (yP(z) + ÔQ(z)) (aP'(z) + ßQ'(z))

- (aP(z) + ßQ(z))(yP'(z) + ÔQ'(z))}}

= [coeff{(aô - ßy)(Q(z)P'(z) - P(z)Q'(z)}}

= [coeff{ß(z)F'(z) - P(z)Q'(z)}]

^¥([(P,Q)])-   a
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Corollary 2.3.  PSX(2, C) acts freely on the fibers of 4^ .

Proof. PSL(2, C) acts freely on Md = P(Cd+x x Cd+X - 32), and by Lemma

2.2, it preserves fibers.     D

We thus have an induced map 4^: G(2,d + 1) -► P2d~2 where

[F A Q] ~ [coeff{ß(z)F'(z) - P(z)Q'(z)}].

This map is well defined.

Note that for d = 2, G(2,3) = G(l,3) = P2.

Proposition 2.4.  *¥2 : C7(2,3) = P2 -> P2 is a biholomorphism.

Proof. Let [F A Q] G G(2,3). Then [F A ß] can be represented by one of the
following matrices:

(I   0   a\ (la   0\ (0   1   0\
VO   1   b) '        Vo   0   I)    or       \0   0   l)

where F and ß correspond to the rows of the matrices. For the first matrix,

P(z) = z2 + a, and Q(z) = z + b. Then

¥2([P A ß]) = [coeff{ß(z)F'(z) - P(z)Q'(z)}]

= [coeff{(z + ¿z)(2z)-(z2 + a)}] =[l,2b, -a]

i.e.

(o   Ï   ab)»V^b,-a].

Similarly, we have

(o o î)-[°'2'fll and   (o o Î)-[o.o.i]-

Note that in the second case, oo is a ramification point and that the third case

is a degenerate case since (P, Q) G 31. From the explicit computations, it is

clear that *F2 is one-to-one, nonsingular and is hence a biholomorphism.     D

A consequence of the proposition is that *F : M2 —> P   has connected fibers.

Thus,

Corollary 2.5. Let fbe a meromorphic function of degree 2. Let g be any other

meromorphic function of degree 2 with the property that Ram(/) = Ram(g).

Then g = Aof for some A g PSL(2, C).

Corollary 2.6. There is no superminimal surface in S4 whose lifting to P3 ¿s a

curve of degree 2.

Proof. The genus 0 case follows immediately from Proposition 1.10 and Corol-

lary 2.5. The following argument proves the general case. Let y be a holomor-

phic horizontal curve in P of degree 2. Suppose y is not a projective line.

Pick any 3 noncollinear points A, B, C on y. Let LAB and LAC denote the
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lines through A&B and A&C respectively. Let F denote the plane spanned

by these two lines. Since deg(y) = 2 and F contains the points A, B and C,

necessarily, y c F, i.e. y is planar. Since there are no horizontal planes in P3

(otherwise, that horizontal P2 would be diffeomorphic to S4 !), F (and hence

y ) is in fact a projective line. Since deg(y) = 2, y is necessarily branched.

(Nevertheless, y projects to a totally geodesic surface in S4 .)   G

3. The orbits in the fibers of 4^. Let N = \(d + 2)(d - I) = (d+2) - 1 -

dim(P (A2 Cd+X )). Let P = (ad, ... ,a0) and Q = (bd, ... , b0) be two vectors

in C +1 which span a plane, (£), in C +1 . Then the Plücker embedding

G(2,d+l)^PN = P(/\2Cd+x) is given by Q .-» [F A Q]. Choose Plücker

coordinates x. on P^ where i > j, i = I,... ,d, j = 0, ... ,d - I. Let

P(z) = adzd + --- + axz + a0 and Q(z) = bdzd + --- + b0. Then

Q(z)P'(z) - P(z)Q'(z) = a2d_2z2d~2 + ... + anzn + -.. + axz + a0

where

an=     J2    ('-./>,■,•,        n = 0,...,2d-2.
i+j=n+l

¡>j

Consider the linear map L : C +  —► C   ~   given by

(x0)^(Q2a._2,...,an,...,a0).

Observe that since an contains only the x. 's which satisfy the condition i +

j = n + I, L has maximal rank. Let K denote the kernel of L. Then

dimK = \(d2 + d) - 2d + 1 = \(d - 2)(d - 1). Let k := PK, a projective

\d(d - 3)-plane in p" . Note that the image of G(2,d + 1) in PN , G2d~2 ,

does not intersect k by construction. Thus the map 4^ can be given in Plücker

coordinates by

4y[FAß]) = [a2a._2,...,a„,...,a0].

So 4^ can be thought of as the restriction to G2 ~2 of a "map" from P

to P2d~2.   We can extend 4^ to a map from PN - k to P2d~2.   Let P*

denote the blow-up of P^ along zc. Let q G P2d~2. Let 4*rf denote the map

induced on P^ . Then A   = (4^')(g) is a projective ¿(d - 2)(d - l)-plane

in P , i.e. a plane of dimension complementary to that of G ~ . Therefore

the number of points of intersection of A   with G   ~   is the degree of G

in PN , which is (2d - 2)\/(d - l)\d\. As a consequence, there are generically

(2d - 2)1/(d - ly.dl distinct PSL(2, C)-orbits of holomorphic maps of degree

d from P1 to P1 which have the same ramification divisor. We thus have

Theorem B. Let f be a generic meromorphic function of degree d > 2. Then,

under the action of PSL(2, C), there are (2d - 2)\/(d - 1 )\d\ distinct orbits of

meromorphic functions of degree d with ramification divisor Ram(/).
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Note that when d = 2 we have only 1 orbit.  This is consistent with our

previous result (Corollary 2.5).

4. The space Sjd. Let F = (/, ,/2): P1 -► P1 x P1 be a holomorphic map of

bidegree (d ,d) such that Ram(/,) = Ram^). By our previous results, the

curve F(P') c Y = PF(P* x P1) avoids the 2 distinguished sections, Sx and

S2 of Y. Since ^ : P3 - (^ U <r2) -+ Y - (Sx U S2) is a covering map of degree

2 and since 7r,(P') = 0, the map F lifts to a map F: P1 -»• P3 - (<t, U r/2).

Let y, := ß o F(PX) and y2:= ß oaoF(P ) = a(yx). Then y, and y2 project

to a conjugate pair of branched superminimal surfaces, Z, and Z2, in S .If

F is an immersion, then the pair of surfaces are unbranched. We also showed

that for d > 2, a necessary condition for Z, and Z2 to be unbranched is that

/, and f2 belong to different orbits of PSL(2, C). Our search for unbranched

superminimal surfaces is thus aided by the following immediate consequence

of Theorem B:

Theorem C. For each d > 3, there is a branched superminimal surface of genus

0 in S4 which arises from a pair of meromorphic functions (fx,f2), each of

degree d such that Ram(/,) = Ram(/2) and that /, and f2 belong to distinct

PSL(2, C)-orbits.

Proof. By Theorem B, there are (2d - 2)1/(d - l)\d\ distinct orbits for each

generic ramification divisor.     D

Recall that a branched superminimal immersion of S into S is just a

harmonic map. Also, a (branched) superminimal surface of degree d in S is

a surface of area 4nd whose lifting to P is a holomorphic, horizontal curve

of degree d. We say that a harmonic map /: S -+ S has harmonic degree

d if f(S ) has area 4nd. Let Sjd denote the space of harmonic maps of S

into S   of harmonic degree d.

Theorem D. For each d > 1, S)d is parametrized by a space of complex dimen-

sion 2d + 4.

Proof. A meromorphic function of degree d is determined by 2d + 1 complex

parameters. The theorem follows immediately from the fact that the fibers of

4*   are 3-dimensional.     D

Note. Theorem D is in agreement with the results of Verdier [17]. Verdier

in fact shows that Sjd is naturally equipped with the structure of a complex

algebraic variety of pure dimension 2d + 4, and for d > 3, Sjd possesses three

irreducible components. We will show that ijd is connected.

5. Connectivity of f)d . Recall that a meromorphic function of degree d can

be considered as an element of Md = P(Nd) - 32 where Nd = Cd+X x Cd+X -

{(P ,Q) | P A Q = 0} and where £ft is the resultant divisor. We have a ram-

ification map 4^: Md -> P2d~2. The action of PSL(2,C) on Md induces a
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map *¥d:G(2,d+l)- n(32) -► P2d~2, where n(32) = 32/PSL(2,C) is an

irreducible variety of codimension 1. For ease of notation, we will let 32 and

32' denote 7t(32) and *¥d(n(32)) respectively for the rest of this section. Now,

4^: G(2,d + 1) -► p2rf_2 is a branched covering map. Let 5H and 25 denote

the ramification locus of xPd and the branch locus of 4*rf respectively. Then

*¥d:G(2,d+l)-m-32 ^P2d~2 -<B-32'

is a covering map. Now consider the diagonal map

S:p2d-2_^p2d-2xf¿d-2

Let J7d := G(2, d + 1) - 32 . From the diagram

8*(J7dxJ7lf) J7dxJ7d

i
VdY.Vd

p2d-2 _>  p2rf-2 x p2rf-2

ô

we see that modulo the action of PSL(2 ,C), an element of à*(J£d x J?d) is a

pair of meromorphic functions of degree d with the same ramification divisor.

We will show that the space à*(J7d x ^d) is connected and as a consequence

f)d, the space of pairs of meromorphic functions of degree d with the same

ramification divisor, is connected.

Lemma 2.7. 7M is not a component of ÍK. Thus, dim(9t n 32) < 2d - 4.

Proof. In §11.1, we showed that 32 is irreducible. Thus, it suffices to show that

there exists an x G 32 such that x £ 9Î. Now in ambient coordinates,

where

Vd(P,Q) = ¥(ad,...,aQ,bd,...,b0) = (c2d_2,...,c0)

m+\

cm = £(2y-'»-i)û,A»-J,+.
j=Q

m+l

= 'Z(m-2k+l)am_k+xbk,       m = 0,...,2d-2.
k=o

Thus,

dcM_ ( (2j - m - l)bm_J+x,    for / = 0, ... ,m+l;m-j+l <d,

dû:   "\0, for j > m+l,

and

dc        ( (m-2k+l)am_k+x,    for k = 0, ... ,m+l;m - k + I <d,

Jk

f (rr

10,db,      1 0, for /c> m + l
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Let P(z) = zd + z2, Q(z) = z. Certainly [F A Q] G 32 c G(2,d + 1). Then

dcm

düj
t¿0,       ifj = m = 0,2,3,...,d.

(P,Q)

Also,
dc

m

dbk
^0,    if m = d + k - I ,or m = k + I

(P,Q)

i.e. this derivative does not vanish for k = 0,m = I; k = 0,m = d-l;

k = I ,m = d ; ... ; k = d-l,m = 2d-2. Consequently, d*r\,p Q, has

maximal rank. Thus, [F A Q] $ ÍH.     D

Recall that an element of à*(J7d xJ7d) is (up to a Möbius transformation) a

pair of meromorphic functions of degree d with the same ramification divisor.

Thus, if q G J7d , the diagonal pair (q, q) is obviously in à*(J7d x J7d). Since

J7d is connected, it is clear that a diagonal point (q,q) G ô*(J7d x J7^) is

path connected to any other diagonal point (q ,q) G à*(J7d x J7f). Thus, to

show that à*(J7d x J7d) is path connected, it suffices to show that any point

(x,y) G à*(J?d x J7d) is path connected to the point (y ,y).

Now let (x,y) G ô*(J7d x J7d). Let 4'a.(x) - *Vd(y) = * g P2d~2 - 32'.

Without loss of generality, * G P2d~2 -*&-32', and so, x, y <£ ÍH. (If * G 03,

we can find a path C in PM_2 - 32' so that C(0) = • and C(l) = *' £ 03 ).

Since G(2,d+2)-32-W. is connected, there is a path y c G(2,d+l)-32-m so

that y(0) = x , y(l) = y. Then y := 4/(/(y) is a based loop in P2rf"2 - 03 -32',

i.e. [y]e7r,(PM_2-03-^',*). Thus y: Sx ^P2d~2-<B-32' cP2d~2. Since

P _ is simply connected, we can extend y to a map y : D —> P . By

Thorn transversality and Lemma 2.7, we can make y transversal to Reg(03),

Reg(¿?') and ^d(^KV\32) = 03 V\32', i.e.

y'(D2) n {Sing(03) U Sing(^') u {03 n32'}} = 0.

Then y'(D ) intersects Reg(03) and Reg(^') in a finite number of points,

say y\D2) n Reg(03) = {zx,...,zj and y'(D2) n Reg(^') = {£,,..., Cm}

where z( ^ £. for any i,j. Let rr( and t be tiny based loops around z;

and C, respectively. Then y is homotopic to a composition of the <j; 's and

the t 's. Observe that the t 's act trivially on F = 4*^ (*). Let x, := x

and xn+1 := y . Since [y](x) = y, we have [cr,]^,) = x2 , [a2](x2) = x3, ... ,

[a„](x„) = xn+x = y for some x2, ... ,xn G F . Let ¿r be the lifting of <r( so

that à((0) = x( and ¿r((l) = x/+1 . As o¡ traces along the boundary of a tiny

disc D¡ around the branch point z(, dj traces a path around some ramification

point y{ G 4*"x(zi). Let F>( denote the contractible disc in G(2,d + 1) - M

around yi which projects to Dr Suppose o^t) traces dDi for t G[ta ,tA.

Let w( = 9¡(t ) and w; = cr((^) • Let a; be a path from u¡ to yy and let /?( be



à\(t) =

98 BONAVENTURE LOO

a path from y¡ to vt. Say a,(ía) = u., ß.(tß) = v, and ät(tt.) - £.(rS/) - y,.

for some í£ e (ta¡, tß,). Consider the modified path à\ defined as follows:

'¿.(O, forre[0,ral,

0,(0, for t g [ta,te],

ß,(t), fortG[tEi,tßi],

\ä,(t), fortG[tßi,l].

Let a\ := ^d(à\). Observe that a¡ is a homotopically trivial loop in P2rf_2 -

32'. Let à" denote the lifting of o\ so that er("(0) = ö"i(l)=y. Let yi denote

the path (a'¡,a'¡'j in à*(J7dxJ7d) from (jcf,y) to (xi+x,y). We have thus

constructed a path y„ ° y„_, o • • • o y, in ô*(J7d x J7d) from (x,y) to (y ,y).

Thus,

Theorem E. For each d > I, f)d is connected.

6. Examples. Consider the map Fd = (/, ,/2): P1 -> P1 x P1   (ii > 2) where

P{(z) __        zd + dz + l

Qi(z)      zd~x + z + (d-2)
/'(z) = ,7m = >r-     ..   -     and

/2(z)
P2(z) _        zd -dz+l

Q2(z)      zd-x+z-(d-2)

We will show that for d > 2, Fd gives rise to a conjugate pair of unbranched

superminimal surfaces in S4 .

Observe that /, and f2 belong to different FSX(2,C)-orbits.

Lemma 2.8. For d > 2,  Fd  has bidegree (d,d).   Furthermore,  Ram(/,) =

Ram(/2).

Proof. We must first show that P¡(z) and ß,(z) have no common zeroes ( i =

1,2).
Suppose C is a common zero of Px(z) and ß,(z). Certainly ¡7 must be a

zero of P(z) = zQx(z) - F,(z) = z2 - 2z - 1. But P(z) has roots 1 ± y/2

which are certainly not roots of Px(z) or ß,(z). Thus, deg(/,) = d. A similar

argument shows that deg(/2) = d. Now

(Jf .      R(z)      z2d-2 + (d - l)zd -(d-l)zd~2 + d(d-2)-l
J\(z) =

and

" Q\(z)~ [zd-x+z + (d-2)]2

ftz\ = *(z) = z2d'2 + (d-l)zd -(d- l)zd~2 + d(d-2)-l

2 Q¡(z)= [zd~i+z-(d-2)]2

Thus, Ram(/,) = Ram(/2).   D
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Proposition 2.9. The map Fd is generically one-to-one onto its image. Hence, it

is not a branched covering map.

Proof.

Note that 0 is not a ramification point of either /, or f2. We shall compute

Fd'' [d-2,d-2j

This amounts to solving the simultaneous equations

zd + dz +1 1 zd -dz+l
and

zd-x

We obtain

■ + z + (d-2)     d-2 z*-x + z-{d-2)     d~T

(d - 2)(zd + dz+l)-(zd  X + z + (d-2)) = 0       and

(d - 2)(zd -dz+l)- (zd~X + z-(d-2)) = 0.

Thus, we have to solve the simultaneous equations

gx(z) = (d- 2)zd - zd~X + (d(d - 2) - l)z = 0       and

g2(z) = (d- 2)zd + zd~X - (d(d - 2) - l)z = 0.

Observe that if Ç is a common zero of gx and g2, then certainly it is a zero

°f (#i + g2>(z) - 2(d - 2)z    (d > 2). But gx + g2 has 0 as its only zero. Thus

F"' Í-L- ^-) =W,

i.e. Fd is generically one to one onto its image,     a

Proposition 2.10.  The map Fd: P1 -+ PF(P' x P1) is nonsingular.

Proof. It suffices to show that Fdt¡ does not vanish at the ramification points.

We will consider three cases.

Case I. Assume that the zeroes of Qx(z) and Q2(z) are not ramification points.

Then Fd can be described locally by

Fd(z) = (fx(z),f2(z),G(z))

where

G{z)J^)J^Az-(d-2)
2

f2(z)      \zd-i+z + (d-2)J

It suffices to show that G' does not vanish at the ramification points. Now

d-\

G\z) = 2      Zd\+Z-{d-2\ )-2(d- 2)h(z)
\(zd-x+z + (d-2))i)
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where h(z) = (d - l)zd 2 + 1 . Observe that h(z) vanishes when zd 2 =

-l/(d- 1). Let C be a ( d - 2 )th root of -l/(d- 1). Then

R(Q = C2d~2 + (d- \)C -(d- l)7d'2 + d(d-2)-l

= c2(C2(rf_2) + (d- l)C~2) -(d- l)(d~2 + d(d-2)-l

^2((^)2-l)+d(d-2)^0.

Thus, the zeroes of G' do not coincide with the ramification points, i.e. Fd is

nonsingular.

Case 2. Suppose C is a common zero of R(z) and ß,(z). Let fx(z) =

Qx(z)/Px(z). Then locally,

Fd(z) = (fx(z),f2(z),G(z))   where G(z) = ^ = - (|^)   .

Then G'(z) = -2[ß2(z)/F,3(z)] • A(z) where

A(z) = F,(z)ß2(z)-ß2(z)F;(z)

= -z2d~2 + (l- d)zd + d(2d - A)zd~x + (d - l)zd~2 + d + d(d-2) + l.

Let S(z) = R(z) + A(z) = d(2d-4)zd'x+2d(d-2). First observe that ß,(z)

and Q2(z) have no common zeroes since ß,(z) + ß2(z) = 2(d - 2) ^ 0 for

d > 2. Thus G'(Q = 0 if and only if A(Q = 0. Suppose that Ç is a common

zero of A and R. Then Ç must be a zero of S. But S(z) vanishes when

zd~x = -2d(d - 2)/d(2d - 4) = -1 . Then 7 must be a ( d - 1 )th root of -1 .

But Q,(C) = -1 + C + (d - 2) = C + d - 3 ^ 0 for d > 2, contradicting our

assumption that 7 was a zero of ß,(z). Thus, G'(7) 7¿ 0.

Case 3. Suppose Ç is a common zero of .R(z) and ß2(z). Let ^(z) =

Q2(z)/P2(z). Then locally,

/,W-W.>./lW.<*„,   »here <„„_ g _-($>)'.

Then G'(z) = -2[F2(z)/ß3(z)] • A(z) where

A(z) = ß,(z)F2'(z)-F2(z)ß;(z)

= zM_2 + (¿ - l)zd + d(2d - A)zd~x -(d- l)zd~2 -d(d-2)-l.

Let S(z) = R(z)-A(z) = -d(2d-4)zd~x+2d(d-2). If C is a common zero

of A and F, certainly it is a zero of 5. But S(z) vanishes when z ~ =

2í/(í/ - 2)/rf(2(i - 4) = 1, i.e. C is a (d - l)th root of 1. But ß2(C) =

£ - (d + 3) ¿ 0 for d > 2, a contradiction. Thus, <?'(£) ̂  0.   D
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Thus the total preimage ß o y/ x(Fd(Px)) is a conjugate pair of nonsingu-

lar holomorphic, horizontal curves in P which project to a conjugate pair of

superminimal surfaces, each of area 4nd, in S   ( d > 3 ).

HI. Higher genus

We now consider branched superminimal immersions of a compact Riemann

surface Z of genus g > 0 into S .

Let /: Z <H S be a branched superminimal immersion such that /(Z) has

area 4nd. Recall that generically, /(Z) misses a pair of antipodal points on

S , say the north and south poles. We have shown that / arises from a pair

of meromorphic functions (fx,f2) of bidegree (d,d) suchthat Ram(/,) =

Ram(/,). Moreover, / is linearly full (i.e. /(Z) is not contained in any strict

linear subspace of R5 ) provided d > 3 and /2 ^ Aofx for any A G PSL(2, C).

For each d > 3, we wish to construct linearly full branched superminimal

immersions from such pairs of functions. Let F = (/,, f2) be such a pair of

functions. Let C denote the curve F(Z). We require that y/~ (C) consist

of two connected components, y, and y2, such that a(y,) = y2 and y/(yx) =

y/(y2) = C. If this is the case, then the curves y, and y2 project to a conjugate

pair of (branched) superminimal surfaces in S .

Let X := P3 - (a, U(T2) = P3 - (L, UL2) and Y := PF(P' x P1) - (Sx US2).

Note that nxX = 0 and y/: X —> Y is a covering map of degree 2. The maps

that we are considering, F = (/, ,/2): Z —► P1 x P1 , are such that F(Z) c Y.

Observe that F lifts to a map F: Z —► X if and only if Ft(7txI.) = 0. If

Ft(7tx'L) = 0, then we have 2 maps, F and a o F , from Z to X. Thus

Theorem F. Suppose F = (/,, f2) : Z —► P1 xP1 isa holomorphic map of bidegree

(d,d) of a compact Riemann surface of genus g to P'xP1 suchthat Ram(/,) =

Ram(/2) and f2¿Aofx for any A g PSL(2,C). Let F: Z ^ PF(P' x P1) -

(5, U52) be the canonical Gauss lift of F.  Then F gives rise to a conjugate

pair of linearly full branched superminimal surfaces of genus g in S provided

Ft(7txl) = 0.

Note. The condition /^(/i^Z) = 0 is automatically satisfied if Z has genus 0.

However, if Fm(nX~L) ̂ 0, then we do not have a lift of Z to X. Nevertheless,

there is a two-fold cover Z of Z which lifts to X (where genus (Z) = 2g - 1).

We then obtain a branched superminimal surface in S4 of genus 2g - 1.

An easy way to satisfy the lifting criterion is by factoring through P1 :

F = (F,,F2):^P'  ^l P'xP1

where cp is a holomorphic map of degree dx and (fx,f2) is a holomorphic map

of bidegree (d2,d2) which gives rise to a linearly full branched superminimal

immersion of P   into S . Note that F has bidegree (dxd2,dxd2). Certainly,
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Ram(Fj) = Ram(F2) and F2 ± A o F, for any A G PSL(2,C) (since (/, ,/2)

is linearly full). Let F: Z -► F be the canonical Gauss lift of F. Then

Ft(^,Z) = 0 and by Theorem F, F lifts to a holomorphic horizontal map,

F, to P . Note however that F(Z) is necessarily branched. Nevertheless, it

projects to a branched superminimal surface in S"4 of area 4ndxd2. We thus

have lots of branched superminimal immersions of Z into S4 .

The construction in the previous paragraph gives us superminimal surfaces

of genus g > 0 in S which were necessarily branched. It would be interesting

if the map F can be deformed (in the space of branched superminimal immer-

sions of Z into S of degree dx d2 ) to a map F' so that F' gives rise to an

unbranched superminimal surface in S4 .

It has come to the author's attention that Verdier has obtained a result similar

to Theorem E (which was his conjecture in [17]).
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