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BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA

JOAN S. BIRMAN AND HANS WENZL

Abstract. A class function on the braid group is derived from the Kauffman

link invariant. This function is used to construct representations of the braid

groups depending on 2 parameters. The decomposition of the corresponding

algebras into irreducible components is given and it is shown how they are

related to Jones' algebras and to Brauer's centralizer algebras.

In [J,3] Vaughan Jones announced the discovery of a new polynomial invari-

ant of knots and links, which bore many similarities to the classical Alexander

polynomial, but was seen to detect properties of a link which could not be

detected by the Alexander invariants. The discovery was a real surprise, one

of those exciting moments in mathematics when two seemingly unrelated dis-

ciplines turn out to have deep interconnections. The discovery came about

in the following way. Jones' earlier contributions in the area of Operator Al-

gebras had produced, in [J,l], a family of algebras An(t), t G C, indexed

by the natural numbers «=1,2,3,..., and equipped with a trace function

t : An(t) -* C. His algebra An(t) was a quotient of the well-known Hecke al-

gebra of the symmetric group, which we denote by %?n(l,m) to delineate our

particular 2-parameter version of it. Jones had discovered, in [J,2], that there

were representations of Artin's braid group Bn in the algebra An(t), in fact

there were maps

Bn±.S?n(l,m)^An(t)

from   Bn   into the multiplicative group of  An(t)   which factored through

%,(!>**).

Links enter the picture via braids. Each oriented link L in oriented S   can

be represented by a (nonunique) element ß in some braid group Bn . There

is an equivalence relation on P^ = LI^I, P„ , known as Markov equivalence,

which determines a 1-1 correspondence between equivalence classes [ß] G B

and isotopy types of the associated oriented links L„.  Jones' discovery was

that with a small renormalization his trace function on A^t) = ]X?=XA (t)

could be made into a function which lifted to an invariant on Markov classes
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in P^ . That modified trace, described in [J,3] and in more detail in [J,4], is

the Jones polynomial VL(t). (It becomes a polynomial when the parameter t

is regarded as an indeterminate.)

The polynomial VL(t) was quickly generalized in a six-author paper

[FYHLMO], to a 2-variable polynomial PL(l,m). One of the authors was

A. Ocneanu. Ocneanu's interpretation of Pjj, m), as described in [FYHLMO]

and [J,4], is via a lift of the Jones trace to the Hecke algebra Si?n(l ,m). Others,

notably Lickorish and Mille« [L-M] and Hoste [H], had discovered the identi-

cal polynomial PL(l ,m) by combinatorial methods which had little to do with

braids, traces or algebras.

On the heels of PL(l ,m) came two additional polynomials, the Kauffman

polynomial KL(l,m) and a precurser later identified as KL(l,m). References

are [B-L-M and K,l]. These were proved to be well defined by various com-

binatorial methods, including not only generalizations of the methods used in

[L-M and H], but also new techniques in [K,l], which again bypassed braids.

The polynomials PL(l,m) and KL(l,m) were shown to be independent, with

each distinguishing links the other could not distinguish. On the other hand

(see [L]), VL(t) = KL(C31", - (tx/4 + T1/4)) = PL(it~x, - i(tx/2 - t~x'2)). (We

shall have more to say about this curious fact in §4 below.)

The purpose of this note is to reverse the process begun by Jones. We will

use the existence of KL(l ,m), and apply the methods used to construct it in

[K,l] to construct a new two-parameter family of finite-dimensional algebras,

{Wn(l,m); n = 1,2,3, ...}, complete with trace, such that KL(l,m) is, after

appropriate renormalization, that trace, just as PL(l,m), renormalized, was

shown by Ocneanu to be the trace on 7^n(l, m).

In §1 below, we will review the background. In §2 we define our algebra by

generators and relations, and explain our motivation, which is based upon Kauff-

man's work. In §3 we study the algebra Wn(l,m). We prove that W^l,m) =

LI^Z ^n(l, m) supports a nondegenerate trace. The existence of this trace is a

direct consequence of the fact that KL(l ,m) is a link type invariant. We use

the existence of the trace to uncover the structure of Wn(l ,m), by techniques

which derive from the "basic construction" of Jones in [J,l]. We prove that

Wn(l,m) is semisimple and is a direct sum ^ © ^ , where %7n = %7n(l,m).

The structure of ^' as an algebra over C[/, a], where m = a + oT , is deter-

mined inductively from the inclusion pattern £?_2 c ^_, . The dimension of

%?n(l,m) is n\ (see [J,4] for a proof of this well-know fact). It follows from

our structure theorem that the dimension of Wn(l, m) is 1 • 3 • 5 • • • (2n - 1).

The relationship between Wn(l,m) and the 1-parameter Jones algebra An(t)

is very interesting. We prove in §4 that there are two distinct homomorphisms

from Wn(l ,m) onto An(t). One of them factors through ¡%?n(l ,m), and is not

unexpected in view of the fact that %n(l ,m) = ^©^', with %?n(l ,m) mapping

in a known way onto An(t). The other does not factor through ^n(l,m).

The manner in which the irreducible representations of Wn(l,m) go over to
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irreducible representations of An(t) in the second homomorphism seems quite

remarkable. We discovered that there are two homomorphsims in our attempts

to understand the curious fact that VL(t) occurs both as PL(it~x ,i(t ' -t~ ))

andas KL(t-3/4,-tx/4-rx/4).

The existence of these two homomorphisms is not the only curious fact about

W (I, m). In §5 we discuss an algebra which was studied by R. Brauer in 1937

[Br]. Like Wn(l ,m), Brauer's algebra has dimension 1 • 3 • 5 • • • (2zz - 1). It is

defined by pictures which bear a striking similarity to our pictures, indeed his

pictures give a very easy way to find a basis for our algebra. We will show that

our algebras can be regarded as a deformation of Brauer's similarity as %?n(l ,n)

is a deformation of CSn . This was also observed independently by H. Morton

and P. Traczyk (see [MT]).

The final section of the paper, §6, discusses a possible application of our work

to the question of whether the braid group is a linear group.
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1. The braid group P , the algebra %? , and
n ' n '

THE LINK POLYNOMIAL  PL(l,m)

Let p = (px, ... ,pn) be an «-tuple of distinct points p¡ on the complex

plane, which for convenience may be assumed to lie along the x-axis. For

present purposes, a braid ß on zi-strands is an equivalence class [e] of level-

preserving embeddings of n disjoint copies of the unit interval I(n) = TJ"=1 T

in Cxi, where e sends the n copies of {0} (respectively {1}) to px {0}

(respectively px {1}). The equivalence relation is e « e if e is isotopic to

e rel dl . Multiplication is by concatenation and rescaling, and the identity

element is the constant embedding eft) = p. x t for each i G T , where e is

the ./th coordinate function, j = I, ... ,n . This makes the set of all zz-braids

into a group Bn , Artin 's braid group. A typical element of P4 is illustrated in
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Figure 1, via its projection onto the x-t plane, but with double points replaced

by overpasses and underpasses. From such pictures it is intuitively clear that

the elementary braids <r,,... ,an_{ shown in Figure 2 generate Bn. This was

proved by Artin in [Ar], who also proved that defining relations are:

(1) o¡o¡ = o¡o¡   if\i-j\>2,l<i,j<n-l;

(2) 0,Ol+xO¡ = Ol+x(T¡0¡+x 1 < i < n - 2 .

Note that there is a natural way to orient a braid, determined by the orientation

on the unit interval. We orient our braids from top to bottom.

Figure 1 Figure 2

Links are obtained from braids when the free ends at the top and bottom of

a braid are joined up by n disjoint arcs as in Figure 3 to form a closed braid. If

ß G Bn , we denote the link so-obtained by L . It carries a natural orientation,

determined by the orientation on ß .

Two oriented links L, L' in oriented 3-space are equivalent if L is isotopic

to l!. The equivalence class is a link type. Alexander proved in [A 1 ] that

every oriented link is isotopic to L„ for some (nonunique) element ß G B^ ,

Pœ = TJ~ , Bn. Markov's theorem (see [B]) asserts that the equivalence relation

on P^ which is generated by the following two moves:

(i) ß~aßa~X , a,ßGBn;

(ii) Bn ~ Bn+l, by ß ~ ßo?
determines the equivalence class of all elements ß G B which close to determine

a given link type. Thus the problem of classifying link types is equivalent to

the algebraic problem of classifying Markov classes [ß] in P^ .

In view of Markov's first move ((i) above) a necessary condition for a function

with domain P„ to be invariant on Markov classes is that it be a class function

on each group Bn . We now review how Markov class invariants have been

constructed out of class functions on representations of the braid groups.
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Figure 3

The Hecke algebra 3^(1 ,m) of the symmetric group is a 2-parameter family

of algebras, with parameters I,m G C, and with n G N a fixed natural num-

ber. For our purposes the most convenient definition of ^n(l,m) will be by

generators and relations. Our generators will be denoted gx, ... ,gn i •

Notation. Instead of writing the relation g¡g. = g.g¡, \i - j\>2, ... ,we will

write (I) a, and similarly (2). for relation (2) in the variables gx, ... ,gn_x ■

With this convention, ß?n(l,m) has defining relations (l)-g, (2)~ and

(3)
7~ ,-1   ~-l

The algebra %7n = 3Tm(l ,m) has been studied by Ocneanu [O] with a full

account of the relevant features of his work given by Jones in [J,4]. The facts

which we will need here are summarized by

Proposition 1.1 [J,4]. The algebras {7t"n ; n G N} are ordered by inclusion %?x c

^c^c-", with J^ the subalgebra of ß?+x generated by gx, ... , gn_x .

The algebra ^ has dimension n\. Each %7n supports a trace function r : ̂  —>

C, which is characterized uniquely by the conditions:

(4) r(a + b) = r(a) + r(b) ;

(5)

(6)

t(ab) = r(ba) ;

t(1) = 1;

(7) r(wgn) = (m   '(/ + /  '))   Xr(w)    whenever w G ß?n c ß?n+x
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L+ L- Lo Loo

Figure 4

Note that (3), (4), (6) and (7) imply that:

(8) r(gi) = T(g-l) = (m-l(l + /"'))"',       I < í < « - 1.

The more common parametrization of %fn may be recovered by introducing

new generators g* = t~ g¡ where t is a new parameter, with / = it~x ,

m = i(tx/2 - r1/2). Then (3) becomes

(3)* (g-)2 = (t-l)g* + t.

This gives a 1-parameter version of the algebra ^(/ ,m) which we will denote

by the symbol £?n(t). A second parameter z can then be introduced via the

trace, if one replaces (7) by

(7)* t(wg*„) = zx(w)   whenever w G ßfn(t) C ^n+x(t).

Equations (3)*, (4), (6) and (7)* imply:

(8)* r(g*) = z!      T(g*-x) = rlz + rl-l

which is less convenient than (8) because of Markov's second move. This ex-

plains our choice of the generators g¡.

Since the trace is a class invariant in 4>(Bn), and since (by (7) and (8)) it

behaves nicely under the mapping Bn <-> Bn+X defined by Markov's second

move ((ii) above) one sees immediately that the function

(9) PL(l,m) = (m-x(l + rx))"-Xr(cp(ß))

is invariant on the Markov class of each ß G Bx . It is the six-author polynomial

of [FYHLMO].
Since the unknot is the closure of the 1-braid 1 G P, , one sees from (9) that

for an unknotted circle:

d«) ^unk„o,(^)=l-

Let L+,L ,L0 be links which are defined as the closures of zz-braids ß+ ,

yS_ , /30 , where the defining braids are products of the elementary braids which

are identical except for a single letter, with ß+ = ao¡, ß_ = ao~ , ß0 = a,

Q.G Bn, 1 </'<«- 1. This means that L ,L_, L0 have link diagrams which

are identical everywhere except in a small disc, where they differ in the manner

indicated in the first three pictures in Figure 4.  It follows immediately from



BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA 255

formula (3) and the linearity of the trace function that their polynomials are

related by the crossing change formula

(11) lPL+(l,m) + rxPL_(l,m) = mPLg(l,m).

This is Proposition 6.2 of [J,4].

The key idea in the papers of Lickorish and Millett [L-M] and Hoste [H] was

to use (10) and ( 11 ) as the basis of a definition of PL(l, m), thereby bypassing

algebras, traces and all of the attendent machinery and focusing on the com-

binatorics of link diagrams. Their proof that PL(l ,m) is a well-defined link

invariant is equivalent to Jones' proof of Proposition 1.1. Our idea in the next

section will be to reverse the procedure, using combinatorics to motivate a way

to define a new algebra.

2. The definition of Wn(l,m)

For each natural number n we define a 2-parameter family of algebras

fên(l,m) with generators Gx, ... ,Gn_x and relations (1)G, (2)G, and others

which involve elements Ex, ... ,En_x defined by

(12) Gl + G~X=m(l+Ei).

The additional relations are:

(13) E¡E¡±XE¡ = E¡,

(14) G¡±XG¡E¡±X=E¡G¡±XG¡ = E¡E¡±X,

(is) gi±xe,gi±x = g;xei±xg;x,

(16) g¡±xeiei±x=g;xe¡±x,

d?) e¡±xe¡g¡±x=ei±xg;x,

(18) Gfii = EiGi = riE¡,

(19) E¡G¡±XE¡ = IE¡.

These imply the further relations:

(20) E¡Ej = EjE¡   if \i-j\> 2,

(2i) E} = (m-l(i + rl)-i)E„

(22) G] = m(Gl + rXE¡)-l.

In every case the indices are chosen from I < i ,j < n - I to be all for which

the relation in question makes sense.

Remark. Our choice of / and m as parameters suggests (as we will prove in

§3) that Wn(l,m) is a quotient of Wn(l,m). The homomorphism eft : Bn —►

%?n(l,m)  defined earlier will be seen to factor through W(l,m), via a  —»

r'G^èr
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The rest of this section will be devoted to explaining our motivation in writing

down these particular defining relations for <&n(l ,m), using ideas from [K,l].

The reader who has not studied that paper may wish to omit the rest of this sec-

tion on a first reading. The underlying idea is that we want to define our algebra

in such a way as to force it to admit a trace, with the Kauffman polynomial a

renormalization of that trace.

Recall that in §1 we showed that PL(l ,m) satisfied the crossing-change for-

mula (11). A similar situation exists for KL(l, m), but it requires a digression.

Let L be an oriented link which is defined by a link diagram D, i.e. a regu-

lar planar projection. Let e be the algebraic crossing number of the diagram,

where crossings are counted as being positive (or negative) to correspond to the

first (or second) picture in Figure 4. Kauffman defines in [K, 1 ] a precurser of

the polynomial KL(l, m), which he calls the " ¿-polynomial". We denote it by

KD(l, m), defining it by:

(23.1) KD(l,m) = lcKL(l,m).

Note that KD(l, m) cannot be a link type invariant if KL(l, m) is, because the

addition of a trivial loop in a link diagram, for example using Markov's second

move, must leave KL(l, m) invariant but must then change KD(l, m). In fact,

it must be true that:

(23.2) If D and D' are diagrams which are identical except for the

addition of a trivial loop in D1 , which increases the algebraic

crossing number, then KD, (I ,m) = IKD(1, m).

Continuing, let D+,D_,D0, D^ be 4 link diagrams which are identical except

inside a small disc, where they differ in the manner indicated in the four pictures

in Figure 4. The /^-polynomials KD , KD ,KD ,KD which are associated

to these diagrams are related by a crossing change formula, vis:

(23.3) KD+(l ,m) + KD_(l ,m) = m(KDo(l ,m) + KDJl ,m)).

Two other properties of KD(l, m) are:

(23.4) If D is a planar circle, then KD(l,m) = 1 ;

(23.5) If D,D' are diagrams which are related by regular isotopy in

the plane (see [K,l]), then KD(l,m) = KD,(l,m).

The 5 axioms (23.2)-(23.5) suffice to determine KD(l,m) on all diagrams,

and (adding (23.1)) to define KL(l,m) on all links. It is proved in [K,l] that

KAl,m) is well defined and a link type invariant, and that KD(l,m) is well

defined on diagrams, and is an invariant of equivalence classes of diagrams,

under "regular isotopy" of diagrams in the plane (see [K,l] for the definition of

regular isotopy).

Our idea is as follows.   Let ß = r/1 • • • oCr be a braid which closes to an
Pl Pi

oriented link L = LR. The braid determines a diagram D = Dß for the link
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L, and associated to this diagram is the polynomial KD(l ,m). Eventually, we

will define the trace (see §3) so that

trace(Gl---(f^) = (m-X(l + rx)-l)x-"kD(l,m).

Since KD(l,m) is well defined on diagrams, the trace will be seen to be well

defined on monomials in the algebra. Then, if g¡ = FXG¡, I < i < n- I, and

if e = e, + e2 H-h en_,, this is equivalent to

trace(g£;>---g£;r) = (m-X(l + rx)-l)x-"KL(l,m),

or (cf equation (9) above):

KL(l,m) = (m-x(l + rx)-l)"-xtrace(gl---gl).

We now return to our algebra Wn(l ,m), and to our attempts to motivate

the relations in Wn(l,m). Recall from the discussion in § 1 that if L+,L_,L0

are as defined there, and if L+  is the closure of a braid ß+ G Bn, then it

must be true that ß+ = ao¡, ß_ = ao~x , ß0 = a, for some a g Bn, up

to cyclic permutation of the defining braid. There seems to be no such braid

interpretations for L^ , indeed L^ cannot be defined by a braid in the usual

sense.

'-        _        i    i + 1   _n
^-'

y-..
E

Figure 5

We introduce (n-l) new elements Ex, ... ,E y , using (12) as our defini-

tion of E¡. Clearly E¡ ought to have come from a braid-like object in a "braid

monoid", namely the embedding on I(n) = TJ"=1 /. in C x I which goes with

the picture in Figure 5, and it will be helpful to think of it in this way [Bo, Y,

K,2 and K,3].

There is no difficulty in composing such generalized braids with one another

and with ordinary braids by concatenation. This allows us to interpret relations

such as E¡E¡+XE¡ = E¡ (relation (13)) and G¡+XG¡E¡+X « E¡E¡+X (relation

(14)) by pictures (Figure 6). Note that relations (13), (14), (15), (16), (17) are

all associated to pictures which involve only regular isotopy. On the other hand,

relations (18) and (19) require something more, because on the passage from

the left side of ( 18) or ( 19) to the right we must delete a trivial loop, and axiom

(23.2) asserts that this must be accounted for by the addition of a multiplicative
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TZ7

EiEi+1Ei

AD~

m
G{+\GiEi E{Ei+i

Figure 6

i±ifactor / . See Figure 7. The remaining relations (20)-(22) are consequences

of the others. Relation (20) follows from (l)c and the definition of P. in (12).

To obtain (21), multiply each term in (12) by E¡ and solve for E2, using (18).

To obtain (22), multiply each term in (12) by G¡ and solve for G2, using (18).

This accounts for all of the relations in Wn(l ,m), and explains how we were

led to our definition. In the next section we will study the algebra.

3. Properties of Wn(l,m)

Lemma 3.1. Wn(l ,m) is finite dimensional. Its dimension is bounded below

by n\. Each element of Wn(l ,m) can be written as a linear combination of

elements of the form wxyw2 with y G {Gn_x ,En_x, 1} and wx ,w2 monomials

in 1, G., E. ,G„_T,En

Proof. The mapping y/ : Wn(l, m) -> ̂ (/, m) defined by G¡ —> lg¡, P; -» 0 is

a homomorphism, so dim Wn(l, m) > dimßfn(l ,m) = n\.

To prove that dim^f (/,m) < oo, it suffices to prove that each w G Wn =

^n(l,m) is a sum of monomials of the form w'yw" where w ,w" belong to

the subalgebra Wni of Cn generated by I ,GX, ... ,Gn_x and where y = Gn ,

or G~x. or E    . or 1 . The statement of the lemma then follows, because we
n—i n—i 7

can use (12) to eliminate G\ , ... ,G~_, .

If n = 2 the assertion is trivially true, so assume n > 2. Let w be a

monomial in Wn. Then w = w0y0wxyx ■■■wryr, where each w. G <S?n_l  and
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each y = G , , E , or 1. If r = 0 we are done, so assume r > 1. Then

w = w0y0wxyxz , where z = w2y2 ■ ■ ■ wryr. Since wx G &n_x , induction on r

yields wx = vQavx , where v0,vx G Cn_2 and a = Gn_2 or En_2 or 1. Then

v0,vx commute with y0,y, by (l)c so w = (w0v0)(y0ayx)(vxz), and it suffices

to prove that the product y0ayx is a sum of monomials which involve Gn_x or

En_x once, for all y0,yx G {Gn_x ,En_x} and for a G {I ,Gn_2,En_2} .

If a = 1, then relations (18), (21), (22) suffice to reduce each of these as

claimed. Assume a/1. Then

Y0ayx G {Gn_xGn_2Gn_x, Gn_xGn_2En_x

?„_,, Gn_xEn_

En-iG„-2En-i' En_xFn_2Gn_x, En_xEn_2En_x} .

iEn_2Gn_x, Gn_xEn_2En_x, En_xGn_2Gn_x

Using relations (2)G, (12), (13), (14), (15), (16), (17), and (19) each of these

can be reduced to a sum of monomials, each of which contains En_x or GnX

once. Induction on r completes the proof.   D

Remark. See Theorem 3.7 for a precise formula for dim£P (/, m).

We now show that our algebras support a trace function. The trace is most

conveniently defined if we rescale the generators, so let g¡ = l~ G¡, 1 < i <

n-l.

Theorem 3.2. Each Wn(l,m) supports a trace function x : c07n —► C which is

characterized by the properties:

(4)' x(a + b) = x'(a) + x'(b),

(5)' x'(ab) = x'(ba),

(6)' x'( 1 ) = 1    where 1 G Wn for any n G N,

(7)' r'(wgn) = x'(wg7 ) = x'(wEn) = zx(w) if w g subalgebra of

Wn generated by gx, ... , gn_x , where z~  = m~ (I +1~ ) — 1.

Proof. There is an algebra homomorphism A : CPn —» Wn = Wn(l,m) which

sends ot to g¡. For any monomial w = g^ ge¿ ■ ■ ■ ge^ G Wn, let W = <t*¡ ae¿ • • •

oe' G A- (w). The braid W determines a closed braid W and so a link which

we also refer to as W, with Kauffman polynomial K(W). Let

(24) x (w) = z"~xK(W),    where z"1 =m~X(l + Tx)- 1,

and extend linearly to all of Wn(l,m).

For later use, note that by (23.1) the link W has diagram polynomial K(W)

= le,+e2+"+e'K(W).

Assuming for the moment that x is well defined, independently of the choice

of W gA7 (w) , we note that x  satisfies properties (4)'-(7)': Property (4)' is
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satisfied by definition. Property (5)' holds because the closed braid W depends

only on the cyclic word W. Property (6)' follows from the fact that 1 G Wn lifts

to 1 G Bn, and Î is the unlink of «-components, with Kauffman polynomial

zx~". Thus t'(1) = z"~xzx~" = 1 . Property (7') follows from the fact that the

links defined by closing the braids W g Bn and Won ' G Bn+X are equivalent,

and so have the same Kauffman polynomial. It is immediate that these four

properties determine x .

It remains to prove that x is well defined. For this it suffices to show that

K takes the value 0 on the kernel of A. Recall that CBn is generated by

ox, ... ,on_x , with defining relations (l)a and (2)a , while Wn is generated by
-i

Gx, ... ,Gn_x, with defining relations (12)-( 19). Set f, = m    (lo¡ + l    o¡   )-

lGBn. Then A(ff.) = E¡. Lift G¡ to lo¡. Then A(o¡) = l~xG¡.
Each of the relations in ( 13)—( 19) lifts to an element in the kernel of A,

say P (j = I, ... ,q), and the kernel of A is the smallest two-sided ideal in

CPn spanned by the elements Rx, ... ,R . Each R. is a linear combination

of monomials in CBn . For example, one of the relations in (18) yields:

*i-**»£-«/■

If we use the symbol  WR}  for the sum of the closed braids determined by

left-multiplying P   by an arbitrary monomial  W g CBn , we must prove that

K(WR.) = 0.  Note that we need only use left multiplication because closed

braids belong to cyclic words in Bn .

GiEi rlEt

Figure 7

We do the calculation in the case of Rx , defined above. Recall that Rx came

from the relation (18), which was motivated by the pictures in Figure 7. We

will use Figure 7 in a roundabout way, to be described. First, if we replace £,

in P, by its expression as a sum of elementary braids ol and o~   we obtain:

wP, l2[lo2 + rx -moi]-[lo¡ + l xa\ ' m\

Therefore, we must prove that

l[l2K(Wo2) + K(W) - mlK(Wo¡)] - [lK(Wo¡) + rXK(Wo~X)- mK(W)] = 0.

Equivalently, via (23.1), we must prove that:

l[K(Wo2) + K(W) - mK(Wo¡)] - [K(Wo¡) + K(Wo~x) - mK(W)] = 0.
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To do so, we first turn to Figure 4, and recall the crossing-change formula

(23.3) which relates the diagram polynomials of four links L+,L_,L0,Loo

which are defined by diagrams which differ only in a small region, where the

difference is as specified in Figure 4. Note that the closed braid diagrams for

Wo2, W, Wo¡ make up one such triplet L+,L_, L0 and that Wo¡, Wo~~ , W

make up another L'+ , L1 , L'Q . Therefore if we bring the links L^ and L^

(with obvious notation) into the picture, we must show that

IK(LJ-K(L'J = 0

where our links L^ and L^ are defined by diagrams which are identical

everywhere except inside a region where they differ in the manner indicated

in Figure 7, the picture on the left corresponding to L^ and that on the right

to L'qq . Since Kauffman's axiom (23.2) asserts that ^(L'^) = /¿(I^) as

required, and the proof is complete for Rx .

The other relations can be checked in the same way as the previous example.

Note that it is enough to show that x'(R.) = 0. Indeed, if W g Bn and P   is

one of our relators, the links corresponding to WR; are the same everywhere

except in a small area in which they differ from each other in the same way as the

ones corresponding to P . So we can show that K(WR.) = 0 using the same

crossing change rules coming from the definition of Kauffman's polynomial as

we use for showing K(R.) = 0. This implies x'(WR.) = 0.

The fact that x'(R .) = 0 follows essentially from the definition of our rela-

tions which were motivated by pictures coming from the definition of Kauff-

man's link invariant (see the end of §2).   D

We now go on to determine the algebraic structure of Wn(l ,m). Our main

tool will be a generalized version of Jones' basic construction in [J,l]. For this,

we will first have to extend methods already developed in [J, 1 and W]. Our main

observation is that the positivity assumptions in those papers are not necessary

for our purposes. The only assumption will be that our traces are nondegenerate.

This is made precise below.

We will assume throughout this section that A < B are finite dimensional

algebras over a field S of characteristic zero. Let Mk (S) be the algebra of all

k x k matrices with entries from S. Assume that A = 0/t(/>, B = ®P0)

with AU) = Ma(S), BU) = Mb(S) with aj,bJ G N. The vectors a = (a¡) and

b = (bj) are called the dimension vectors of A resp.  P .

Let tr be a nondegenerate trace on B, i.e.

(25) tr(xy) = 0   Vy G B       implies x = 0.

It is well known and easy to check that, in our case, this is equivalent to tr(p) ^ 0

for every minimal idempotent p G B. Let us also recall that if tr is nondegen-

erate, the map B 3 b y-> tr(b-) G B* , the dual of B , is an isomorphism between
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B and B* (as usual, tr(b-), denotes the map x (-► tr(¿>x) ), i.e. for any linear

map tp: B —► S there is a unique b G B such that q>(x) = tr(bx) for all x G B.

Let us also assume that the restriction of tr onto A is nondegenerate. Then,

using the isomorphism above for A and A*, there exists for every b G B a

necessarily unique eA(b) G A suchthat

tr(b-)\A=tr(eA(b)-)\A.

It can be checked easily that the map B 3 b ^ eA(b) G A is linear and that

(26) tr(6) = tr(^(¿z)),

(27) eA(axba2) = axeA(b)a2,       ax,a2GA,bGB.

We call eA the trace preserving conditional expectation from B to A . Let us

represent B via the left regular representation onto itself. To avoid confusion

we write B. if we regard P as the representation space and b¿ for an element

of Pi . Let 7f7(Bç) be the set of all linear maps on B( . For any algebra C on

B( let

C' = {xg 27'(Bç), xc = ex, Vc G C} .

It is well known (and can be checked by explicit matrix multiplications) that

C is isomorphic to a direct sum of full matrix algebras iff C' is isomorphic

to a direct sum of full matrix algebras. If P (and P{ ) is finite dimensional it

follows that (B1)' = B (see for instance [La, XVIII, 3, Theorem 1]).

By our assumptions on the structure of P, we can regard B as a concrete

matrix algebra such that with b G B, its transpose, denoted here by b*, is in B .

Moreover, we can choose this matrix representation such that with a also a* is

in A c B. Note that * : P —» B, b *-* b* is an involution with (ab)* = b*a*.

We can then define a map J : B( —+ B. by J(bA = bl.  A straightforward

computation shows that JBJ ç B'. On the other hand, if b' G B1 such that

b'(l^) = bç, we have b'(a() = ab^ = (Jb* J)(a¿) for any a G B. Hence

JBJ = B'. As in [J,l], we define eA G L(B() by eA(b^) = (eA(b))( .

Lemma 3.3.  With the above notation, we have

(i) eAxeA = eA(x)eAforx GB.

(ii) Let x G B. Then x G A iff eAx = xeA .

(iii) A' = {B'u{eA}}".

(iv) J commutes with eA .

Proof. See [J, (3.1.4)]. For (ii), replace the statement "¿; is separating" by "the

map B 3 b —> b* G P, is injective".

Obviously, a simple BU)  module is also an A module.   Let gtj be the

number of simple A modules in its decomposition into simple A modules.

The matrix G = (g¡¡) is called the inclusion matrix for A c B. If A and B

have the same identity element, we have

(28) b = G'a.
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Under these assumptions we can give a precise description of (B ,eA), the alge-

bra generated by B and eA . As in [J,l], we call (B ,eA) the basic construction

for A c B .

Proposition 3.4. (i) (B ,eA) = a7 In particular, (B,eA) is isomorphic to a direct

sum of full matrix algebras.

(ii) There exists a canonical 1-1 correspondence between the direct summands

of A and (B,eA) such that if q is a minimal idempotent of A^'], eAq is a

minimal idempotent of (B, eAy'].

(iii) The inclusion matrix for B c (B ,eA) is G .

(iv) Every element x G (B, eA) can be written in the form x = J2 a¡eA^i + c •

where a¡, b¡c G B.

Proof, (i) As A* = A , it follows as in [J,l, (3.1.5)] that (B,eA) = JA'J.

(ii)-(iv) follow from [J,l, (3.3.1)].   D

The following theorem is an extension of [W, Proposition ( 1.2)] to semisimple

algebras.

Theorem 3.5. Let A, B, tr and eA be as above. Assume that B is contained in

an algebra C and there is an element e G C such that

(i) e2 = e,

(ii) exe = eA(x)e = eeA(x) for all x G B,

(iii)  The map a G A >-► ae G (B ,e)  is an infective homomorphism with

el = e.

Then the 2-sided ideal (e) c (B,e) generated by e is isomorphic to (B,eA)

as an algebra. The quotient (B,e)/(e) is isomorphic to a subalgebra ofB and

splits as a direct summand in (B, e).

Proof. For convenience, let us not distinguish between B c C and the isomor-
phic image of B in the representation on B( . Let us define <p : Bu{e} —► 77? (B¿)

by b i-> b. G 777 (B() and e ^> eA. We claim that <p extends to a well-defined

homomorphsim from (B ,e) onto (B ,eA). The only nontrivial part is to show

that (p is well defined. Let x = £a¡eb¡ + c = 0, a¡,b¡,c G B. (It follows from

(i)-(iii) that this is the most general form of an element of (B ,e) ; see also

[J,l].) Let y. G B and let x = ^^^(¿z^) + cy. Then 0 = eyxe = eA(yx)e

Vy. G B. By (iii), eA(yx) = 0 and therefore also tr(yx) = 0 for all y. G B.

Hence x = 0 and we obtain

<p(xm)=xt~o.

As y was arbitrary, tp(x) = 0.

On the other hand, let x = ,>7ia¡eb¡ + c. G ketp. Then 0 = tp(x)(y(;) =

(E£!/£^,i') + O0£  Vj> = P . Hence Y,a¡eA(b¡y) + cy = 0 and in particular,

(*) xye = 0      VyGB.
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But then we also have

tr {y (E a,eA(b¡y) + cy)) =tr (£ ^(y«,)^(M)+y°y)

= ir(J2EA(ya,)bi+yc)y) = °

for all y ,y.G B .

So, as tr is nondegenerate, we obtain YieA(ya¡)b¡ +yc = 0 and in particular

(**) eyx = 0      Vy.GB.

Hence if x G kertp and y G BeB, we have xy = yx - 0 by (*) and (**).

In particular, if z g ker <p n BeB, z is annihilated both by BeB and ker tp .

As q>(BeB) = (B,eA) (see Proposition 3.4, (iv)), BeB and kertp generate

(B, e). So z = 1 z = 0, as by (iii) 1 G P is also the multiplicative identity in

(P, e). It follows from this that BeB = (B, eA), which is a direct sum of full

matrix algebras.

By (i)-(iii), (e) = BeB . Obviously, the quotient (B ,e)/(e) is already gener-

ated by the image of P, hence it is isomorphic to a subalgebra of the semisimple

algebra P . It is well known that in this case

(B,e) = (e)®(B,e)/(e).

Lemma 3.6. Let en = zEn, where z= l/(m~x(l + l~x)-l) and assume that x

is nondegenerate on Cn_x and Cn. Then en has properties (i)—(iii) ofTheorem

3.5 for Cn_x c Cn and Cn_x is isomorphic to the subalgebra of Cn generated

by Gx, ... ,Gn_2, /i,, ... ,En_2.

Proof. Using Theorem 3.2, (7)' and the fact that x is nondegenerate we can

show easily that <£n_x 3 x t—► xen G 8? + 1 is injective. From this follows the

last statement of the lemma and property (iii). By Lemma 3.1, any element of

Wn{l ,m) can be written as a linear combination of elements of the form axb

with a,bGWn_x(l,m) and x e {1, (?„_, ,£„_,} .

By Theorem 3.2, (7)' we obtain for x as above and c Gffn_x(l,m)

x'((axb)c) = x (x)x (abc).

Hence e(axb) = x {x)ab where

e:&n(l,m)->W„_l(l,m)

is the trace preserving conditional expectation. On the other hand

2 Í z aEnb     if x - En_x,
en(aXb)en = z aEnXEnb = i

\lzaEnb   if* = (/„_,,

= x'(x)aben = e(axb)en .

This shows property (ii). Property (i) follows from (21).   □

We can now determine the structure of Cn as an algebra over an appropriate

field.



BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA 265

Theorem 3.7. Let us regard Cn+X = Cn+X(l ,m) as an algebra over C(l ,a) where

m = a + a~x. Then Cx=C(l,a), C2 = C(l,a)3 and

Cn+^Hn+x@(Cn,eCn_),

where //„_,_, = H„^Al,a + a~x) and the second summand is Jones' basic con-

structionfor CnX c Cn , which is semisimple. In particular Cn+X is semisimple,

it has dimension 1 • 3 • 5 ■ ■ • (2n + 1) and x , the trace as defined in Theorem

3.2, is nondegenerate.

Proof. Clearly, Cx = C(l, a). Let z be the rational function in / and m =

a + a~x as defined in the previous lemma and let

G — ot                                  G — oí
px = zEx,       P2 = ^Ti-(l-/>i)   and   P3 = —-— (I-P^-

cí     — a                                      a — a

Then it follows from (12), (18) and (21) that p2 = p¡, p¡p} = 0 for i,f =

1,2,3, and i ^ j and that px+p2+p3 = I ■ Using property (7)' of Theorem

(3.2) one sees that x'(p¡) ^0 for i = 1,2,3 which shows the assumptions for

C2.

It has already been pointed out earlier that the additional relation E¡ = 0

reduces the generating relations of Cn to the defining relations of the Hecke

algebra TTn. We thus obtain a homomorphism y/ from Cn onto TTn. By

definition of y/, its kernel is equal to the ideal I generated by the E¡ 's. By a

theorem of Benson and Curtis (see [Lu, Theorem (3.1)])

(*) CJkerip = Hn=C(l,a)Sn,

where Sn denotes the symmetric group on n letters.

Using relation (13) repeatedly, we obtain

E, — E¡Ej+x ■ ■ ■ En_xEnEn_x ■ ■ -E¡+XE¡.

Hence I coincides with the ideal (En) c Cn+X generated by En. Using rela-

tions (13), (16) and (17), we show as in Lemma 3.1 that (En) is the linear span

of products of generators of the form wxEnw2 with wx ,w2 g Cn . It follows

from this, Theorem 3.5 and Lemma 3.6 that

ker y/ = (En) = CnEnCn = (Cn,ec¡).

We shall show at the end of this section by a simple dimension argument that

(Cn,ec _ ) = (Cn,ec )". So by Proposition (3.4), (i) kery/ is semisimple

which is also true for trie quotient Cn+i/kery/ by (*). Hence

Cn+l=Hn+x®CnEnCn.

It remains to show that x is nondegenerate. Let p be a minimal projection

of Cn_x . Then x'(enp) = z x'(p) ^ 0 by induction assumption. So x is

nondegenerate on CnEnCn  by Proposition (3.4), (ii) and the remark below

(25).
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Note that if I = I and a = i, z(l ,i) = 0 and x'(p2)(l, i) = x'(p3)(l, i) =

1/2 . By the induction assumption x'(p)(l ,i) = 0 for any minimal projection

in Cn_2En_2Cn_2 and x'(p)(l, i) ^ 0 for any minimal projection in the HnX

summand of Cn_, . It follows as in the previous paragraph that x (p)(l, i) = 0

for any minimal projection in CnEnCn . So x can be considered as a trace

on Hn+X having Markov property (7)'. These traces are uniquely determined

by q = -a and n = (tr(g¡) + 1)/(1 + q). For our special choice of values we

obtain q = 1 and n = 1/4. But then it follows from Ocneanu's classification

of positive traces on H^ that x'(p)(l ,i)>0 for all minimal projections in

TTn+1 (see [W, proof of Theorem (3.5), (i), a]). Hence x'(p) ^¿ 0 for any

minimal projection p in the TTn+1-summand of Cn+X . This shows that x is

nondegenerate on C   ,.

We next describe how to use "Bratteli diagrams" to determine the structure

of Cn(l,a). These diagrams allow one to compute the irreducible represen-

tations of these algebras by an iterative procedure. We will first assume that

(G„,er    ) = (C ,er    )" , where the right-hand side is semisimple by Proposi-
ft        \^n — | fl        l_;j—j

tion 3.4. We will then show by computing dimensions that the left-hand side

cannot be a proper subalgebra of the right-hand side. An example will be given

after we describe the basic setup. Related constructions are to be found in [J,2]

(for the algebra we called An(t) in the introduction) and in [W] (for %?n(t)).

See also [J,4], where the underlying construction for the group algebra CSn of

the symmetric group by "Young diagrams" is described in a particularly lucid

manner.

The Bratteli diagram for Wn(l,m) is a graph which we now describe. See

Figure 8. The vertices are arranged in horizontal rows, those in the «th row

from the top being in 1-1 correspondence with the irreducible representations

of Wn(l,m), « = 1,2,3,.... A vertex in row « is joined to one in row

« - 1 by k edges if the restriction of the corresponding representation of <Wn

to ^,_, , under the natural inclusion ^_, <-» Wn, contains that irreducible

representation of S?_, k times. The vertices are labeled by integers which

denote the dimension; the dimension of a representation of cën is the sum

of the dimensions of all those representations of ^n_ x which are joined to it

by edges. Note that g? = J^' ©J^ by Theorem 3.7, where ^' is ^P„^,.

We now describe how to construct row « of the diagram from row « - 1,

« > 3. One first reflects that part of the diagram which consists of the vertices

in rows « - 2 and « - 1 and all edges joining them about the horizontal line

corresponding to the representations of 3?_, . One then inserts the dimension

of the representations of fên_x, and assigns to each representation of ^ the

sum of the dimensions of the representations lying above it. See Figure 8. This

determines that part of <%n which we have called ^'. One then augments it

by adding more vertices, one for each irreducible representation of %?n , using

the conventions in [W] (or in [J,2]; see especially §3 of [J,2]). This makes sense
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because each g7, j < n , has already been constructed as ß^' © ̂ , so that the

Bratteli diagram for {ß?n ; « = 1,2,3,...} is embedded as a subdiagram of

that for {W ;n= 1,2,3, ...} . Finally, we note that the inductive construction

begins with the unique 1-dimensional trivial representation of Wx, and three

1-dimensional representations of ^ , one belonging to %?2 and the other two

to ^.

Figure 8 illustrates the Bratteli diagram through « = 4, and shows the con-

struction of TVT, from that of ^ and ^ . Later, in §6, we will use this diagram

to obtain explicit matrix representations of P3 and P4 .

(a) The construction of H'n® Hn, 1 < n < 4

(b) The construction of H'n, n = 5

Figure 8
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We now show the missing part in the proof of Theorem 3.7, namely that

(Cn,ec _)  =  (Cn,ec _)".    It is a well-known combinatorial fact that the

algebras constructed by this procedure (i.e.    with   (Cn,er    )"   instead of
"        Cfl_ |

(Cn,ec _ )) have dimension 1 • 3■ • • (2« + 1) (see for instance [S, Lemma 8.7]).

On the other hand, we shall see in §5 that for a special choice of (slightly mod-

ified) parameters Cn+X(l,a) specializes to Brauer's algebra Dn+X(x) which has

dimension 1 • 3 • • • (2« + 1). So also the dimension of Cn+X(l,a) has to be

at least that number. This shows again by induction on « that (Cn ,ec    ) =

<c„>ec„j"-   D

4.  HOMOMORPHISMS ONTO   An(t)

Let An(t) denote the one-parameter family of algebras studied by Jones in

[J,2], with idempotent generators ex, ... ,en_x and defining relations:

(29) eiei±xei = (tl/2 + rx,2)-2ei,

(30) e2 = e¡,

(31) e¡eJ = eje¡   if \i-j\> 2.

Jones shows that An(t) is semisimple, and that its irreducible representations

are in 1-1 correspondence with those irreducible representations of %?n(l ,m)

which are associated to Young diagrams having one or two rows. Thus An(t)

is a homomorphic image of ß?n(l ,m). He also shows that there are homo-

morphisms from Bn into An(t) which map the elementary braid a¡ to an

appropriate linear combination of e¡ and 1 , which we will denote by g¡ here.

We now show that there are two inequivalent homomorphisms p and y/

from Wn(l ,m) -* An(t). Inequivalent means that there cannot be an isomor-

phism i of Wn(l, m) with p = yi oi.

(i) Define px : %(l,m) - &n(l,m) by />,(£,) = 0, px(g¡) = g¡, and

p2:%>n(l,m)->An(t) by p2(g¡) = tx,2g¡, and (l,m) = (it'1 ,i(tx/2 - f1/2)).

Let p = p2 o px . The homomorphism p was studied in detail in [J,2]. Using

the Bratteli diagram for Wn(l ,m) which is described in Figure 8 above, the map

px may be realized by deleting those representations which belong to vertices

which are not labeled by Young diagrams, while p2 deletes those from among

the remaining representations in which the Young diagrams have more than two

rows.

(ii) It has been shown by Lickorish (see [Li]) that the Jones polynomial can

be obtained from the Kauffman polynomial for the special choice of parameters

(I ,m) = (t~3/4, - tx/4 - rl/4). Hence, by factoring over the ideal In defined

by

In = {aGCn(t-3/4,-tx'4-rx/4),x'(ab) = 0

forallbGCn(t-3/4,-tx/4-rX/4)},
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we obtain a well-defined surjective homomorphism

y : Cn(t-3'4, - tx'4 - rxl4) ~ Cn(f3'4, - tx>4 - rx/4)/In » An(t).

This homomorphism can be described explicitly by (see also [J,2, §3])

V(G¡) = rx/4((l+t)e¡-l),

which implies
V(E¡) = -(tx/2 + rx/2)e¡.

The last equality shows that *F does not factor through Hn . An explicit

computation shows that x   annihilates the idempotent p3 as defined in the

proof of Theorem 3.7 for the special choice a = -t and I = t~ ' . Hence

the hypotheses of Theorem 3.5 are no longer satisfied. In particular, we can no

longer construct Bratteli diagrams as in Theorem 3.7. Similar phenomena with

Brauer's centralizer algebras (see next section and [W,2]) suggest that C3 (and

also higher Cn 's) will no longer be semisimple for this special choice of / and

m. Thus the kernel of *F sits in a complicated way in Cn(l ,m) completely

different from our first kernel.

5. Brauer's centralizer algebras

In 1937 R. Brauer introduced, in [Br], a family of algebras which we denote

by {7&n(x)} , where « is a positive integer and x a parameter or indeterminate.

His algebras are ordered by inclusion, 3¡x(x) C 3¡2(x) C • • • . We will show that

our algebras are perturbations or deformations of 3¡n(x) in much the same way

as the Hecke algebra 7^(7) of type An_x is a deformation or perturbation of

CS„.
First, we explain what we mean about M?n(t) and CSn . The group algebra

CSn  is generated by elements sx, ... ,sn_x , where s¡ denotes the transposi-

tion (i,i+l). It has defining relations (1)J,(2)J and s¡ =1. On the other

hand, the algebra 3?n(t) is generated by g*, ... ,g*_x , with defining relations

(1) . ,(2) and (g*) = (t - l)g* + t. In particular, this last relation tells us

that %?n ( 1 ) is isomorphic to CSn . Even more, we can use similar pictures to

describe monomials in ß?n(t) and in CSn . Recall the geometric definition of

a braid in § 1 above as an equivalence class of embeddings of r' in Cxi.

Similarly, a permutation a G Sn may be regarded as an equivalence class of

immersions of I(n) in RxTcCxT. See Figure 9. Multiplication is by concate-

nation and rescaling, as for braids. There are «! possible equivalence classes

of embeddings, and CSn is the free algebra on these n\ possible patterns.

Pictures similar to those we have just given in CSn were used by R. Brauer

in [Br] to describe another algebra 2>n(x) which contains CSn as a subalgebra.

One has the same 2« base points, i.e. n in R x {0} and « in R x {1} , only

now the immersions of T(n) in RxT are allowed to join these 2« points in pairs

in an arbitrary fashion, that is we no longer require that the arcs join a point
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on R x {0} to a point on R x {1} . One then obtains a set of 1 • 3 • 5 • • ■ (2« - 1 )

pictures because the first point can be joined to 2« - 1 others, the second to

2« - 3 others, etc. Multiplication is as before by concatenation, erasure of

the middle line and rescaling, but there is a new phenomenon. If S, T are

two such graphs, let U be the graph obtained by concatenation and erasure as

above. Note that on concatenation there may be closed loops which arise in the

middle. Let m(S,T) be the number of such loops. Then ST = (x)m(SJ)U,

where x is a parameter. The free algebra on the 1 • 3 • 5 • • ■ (2« - 1) generalized

patterns with this product rule, is Brauer's algebra 3¡n(x). It is easy to see that

it is generated by 2« - 2 elements sx, ... ,snX , ex, ... ,en_x where s¡ and ei

are the patterns shown in Figure 9.

i + 1

Si

i     i + 1

Figure 9

Note that for the point / = i, m = 0 in the parameter space of our algebra

E2 cannot be determined by relation (21). We will avoid this singularity by

choosing different parameters (which results in "blowing up" the point (i, 0)

to a line). After these substitutions it will be easy to see how our algebras are

connected with Brauer's. So let us define elements G¡, E- and parameters /

and x by

G] = iG¡

or, if we solve for x

EJ = ~EJ

x = m

I = -il   and   m

'(/ + r')-i

x+ 1

It is immediate that whenever x and m are well defined, the algebra Wn(l,x)

generated by Gx ,ÊX,... , Gn_,, £„_, is equal to Wn(l,m). Note that relations

(13)-(20) also hold for G. and E} instead of G} and E}, while (21) becomes

È2 = xÊ . If we set / = 1 , we obtain from (22) G2 = 1. One may now

check (by pictures) that G -» í. and P -+ e¡ can be extended to a homomor-

phism from Wn(l ,x) onto 7&n(x). Comparing the dimensions, it follows that
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W (I ,x) is isomorphic to 2>n(x). So Brauer's algebra can be considered as a

special case of our algebra. We finally remark that this does not determine the

structure of 3¡n(x). As we have seen in §4, the algebras at special values of

the parameters can have quite a different structure. The above mentioned prob-

lem is studied in a separate paper [W,2] which uses the connections of Brauer's

algebra with the representation theory of orthogonal groups.

6. Matrix representations of Bn

A classical open problem is whether the braid groups {Bn;n = 1,2,3, ...}

are linear groups. For « = 1,2,3 the answer is known to be "yes", but for

« > 3 the problem is unsolved. Since our work gives new linear representations

of Bn it seems worthwhile to give some of the new representations explicitly.

There are three mutually nonisomorphic 1-dimensional representations of C2

belonging to the idempotents px ,p2 and p3 as defined in the proof of Theorem

3.7.
We now turn to P3.   It follows directly from the defining relations that

Ex ,E2EX  and G2EX  form a basis of a minimal left ideal of C2E2C2

this basis, we obtain the following new matrix representations of P3 :

Using

r1
o
o

m

m
-I

0 0
o rx
1 0

-1
1-1/    m

m

Theorem 3.7 determines the structure of W3(l ,m) inductively. See Figure 8,

or proceed as follows. We know that

W2^^2@WXEXWX =C(l,a)3.

The inclusion matrix G for Wx c W2 is a 3 x 1 matrix given by

C7 =

Using (28) and Proposition 3.4, (iii) we obtain that

W2E2W2 = M3(C(l,a)).

This shows that the matrices above generate the full matrix algebra of 3 x 3

matrices. On the other hand ^ = C[/, a]S3, the group algebra of the symmetric

group on 3 letters. Hence

2    _      ,V     ,»| NX
^=C(/,a)

Similarly, we can determine

M2(C(l,a)).

&3E3W3 S M6(C(/, a)) © M6(C(l, a)) © MA\C(l, a)).

Iso 8jP3^ , a direct sum of two six-dimer

and one 3-dimensional representation. Since the representations of B4 in ^

Then ^4   is also fê^E^ , a direct sum of two six-dimensional representations
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are known to be determined by the Burau representation of P4 (see [J,2]), we

focus on J^'. The 3-dimensional representation of P4 factors through P3,

and so it cannot be faithful, but the 6-dimensional ones stand a chance. We

therefore describe one of them in detail.
-i

As above, let m = a + a    , and let

ei = -i-
m~'(/ + /"')-!

O
E2vE3

Then, a basis for the 6-dimensional part which

, G2vE3, ExE2vE3, GxE2vE3, and

C7,
GxG2vE3

Let v = (Gx -a)(l
we investigate is vE3,

Allowing the generators GX,G2,G3 of y/(B4) to act on this basis on the left,

and using the defining relations for C4 , we obtain the following two parameter

matrix representations of P4 :

0
0
0

a

0

0
0
0
0

0
0
1

0

0

0

0
0
0
0
1

0

0
r1
0

0

0

0

0

/"
0

0

0
0
0
0
0

ZZ7

in
-1

0
0

0

-1

ml

m

0
0

0

0

1

0
0
0
0

-1

0
ml~

m

0

0
m

0

m

0

0
-1

ami'

0
m

0

0
0
0
o

a

0

0
o
-1

i

o
o

o
o
o
1

o
o
oT m

0
0
o
m
-1

We ask the question: Is this representation faithful? By the methods de-

scribed in [Bi] it would probably suffice to prove that the matrix group generated

by oxa3 and o2oxo3 is free of rank 2.
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