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INTEGRAL REPRESENTATIONS OF POSITIVE DEFINITE
MATRIX-VALUED DISTRIBUTIONS ON CYLINDERS

JÜRGEN FRIEDRICH

Abstract. The notion of a <7-continuous matrix-valued positive definite dis-

tribution on 5/v(2a) x RM x G is introduced, where G is an abelian separable

locally compact group and where Sp/(2a) is an open ball around zero in RA'

with radius la > 0 . This notion generalizes that one of strongly continuous

positive definite operator-valued functions. For these objects, a Bochner-type

theorem gives a suitable integral representation if N = \ or if the matrix-valued

distribution is invariant w.r.t. rotations in R^ . As a consequence, appropriate

extensions to the whole group are obtained. In particular, we show that a posi-

tive definite function on a certain cylinder in a separable real Hubert space H

may be extended to a characteristic function of a finite positive measure on H ,

if it is invariant w.r.t. rotations and continuous w.r.t. a suitable topology.

1. Introduction

In 1939 M. G. Krein [12] considered the following problem: Are there posi-

tive definite extensions of a continuous positive definite function on an interval

(-2a, 2a), 0 < a < oo, to the whole real axis? He answered this question in the

affirmative. Rudin showed in [20] that there is no positive definite extension of

a continuous positive definite function given on a square to the whole plane in

general. Various papers are related to the extendability of continuous positive

definite (also operator-valued) functions from subsets of the form (-2a, 2a) x G

to the whole group R x G, where G is a suitable abelian topological group (cf.

e.g. [15,4,9, 14,7]).

Despite the fact that there are no extensions of continuous positive definite

functions from squares to the plane in general, Rudin [21] proved that an ex-

tension is always possible, if the function in question is given on an open ball

around zero and if it is invariant w.r.t. rotations. Nussbaum extended this re-

sult to distributions [17, 18]. More precisely, he obtained a representation of

the given distribution as an integral over certain elementary positive definite

distributions. The latter ones may be extended to the whole space in an obvi-

ous way. Thus the appropriate integral representation describes an extension

of the original distribution. Conversely, the Bochner-Schwartz Theorem yields

an appropriate integral representation for each positive definite extension of the
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original distribution i.e., integral representations and positive definite extensions

are intimately related.

Generalizing the objects under consideration w.r.t. their ranges one is led

to functions taking sesquilinear forms over complex (topological) vector spaces

as values. Nevertheless, this situation is easily reduced to the case of functions

which values are bounded operators in a Hubert space [7, Lemma 1].

The aim of this paper is to show the extendability of such positive definite

operator-valued functions F defined on a stratum or on a cylindrical subset of

an abelian topological group to the whole group. In the latter case we assume

that F is invariant w.r.t. all rotations leaving the cylinder invariant.

To prove this result we follow essentially the scheme in [17]. Especially, we

want to use the nuclear spectral theorem to obtain a suitable integral representa-

tion. To bring nuclearity into play it is more useful to consider the matrix repre-

sentation of F w.r.t. a fixed basis in the Hubert space instead of the function F

itself. For the proof it is almost equal, whether we consider matrices of contin-

uous functions or even of distributions. Therefore we introduce G-continuous

positive definite matrix-valued distributions T? on SN(2a) xR x G, where

SN(2a) is the open ball around zero in RN with radius 2a > 0 and where G is

a separable locally compact abelian group (Definition 3). The entries of the in-

finite matrix 7? are distributions on SN(2a) x R , depending continuously on

the additional parameter g G G. If N = I or if all entries are invariant w.r.t.

rotations in R , we obtain a Bochner-like representation of 7? as the Fourier

transform of some nonnegative matrix-valued measure. This representation

implies the extendability of the appropriate matrix-valued distributions to the

whole group (Theorems 1 and 2). As a consequence, we can prove the existence

of positive definite extensions of operator-valued positive definite functions on

strata or cylinders (described above) to the whole group even if the latter is not

locally compact. In particular, we show that a positive definite function on the

cylinder SN(2a) x H2 in the real separable Hubert space H = R" x H2 may

be extended to a characteristic function of a finite positive Borel measure on

H, if it is invariant w.r.t. rotations in Hx = R and continuous w.r.t. to a

suitable topology. A similar result for positive definite functions on a stratum

was already obtained in [3].

The paper is organized as follows. In §§3 and 4 we consider simple facts

about positive definite operator-valued functions and matrix-valued distribu-

tions. In §5 we introduce certain auxiliary nuclear spaces and transfer positive

definiteness to positivity of certain linear functionals. In §6 we note a version

of the nuclear spectral theorem, which is used later on. Then we discuss ex-

tensions of symmetric operators commuting with unitary representations of an

abelian group and appropriate direct integral Hubert spaces. This provides the

operator theoretic background for the extensions of positive definite functions.

§§9 and 10 we deduce our main results and appropriate conclusions.
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2. Notations

The letters N(R,R+,C) denote the sets of positive integers (real numbers,

nonnegative real numbers, complex numbers). For a locally convex space E,

É denotes the vector space of continuous linear functionals on E. The value

of some e G É at e G E is written e'(e). The space of all matrices (ekl)"k l=x,

n G N U {00}, ekl G E, is denoted by M(n;E). The spaces M(n;E),

n G N, are considered as subspaces of M(oo;E) in the usual way. The

subspace \Jn€NM(n;E) of M(oo;E) is denoted by M(œ;E). If E = C,

we write simply M(n) and M(co) instead of M(n;C) and M(ca;C), n G

NU {00}.   If x = (xx,...,xN)   and £ = (¡7\x, ... ,7\N)  are points in  R   ,

]VeN,we abbreviate x ■£, = xx7\x -\-h xN7\N , \x\ = (x • x)x'  , and SN(a) =

{x G RN;\x\ < a}, 0 < a < 00. We define R° = {0}. The letter G is al-

ways used for an abelian group. Group operations are written additively and

0 denotes the natures element. If G is locally compact, C7* denotes the dual

group of G. The value of y G G* at g G G is [y,g]. Note that (RN)*

is isomorphic to RN. For x G R^ and 7, G (RN)* = RN we assume that

[£,.*] = exp(-z¿; ■ x). Let 0(N) denote the orthogonal group of R and dp

the Haar measure on O(N), normalized such that f0,N) dp = I. The im-

age of p G O(N) applied to x G R is px. If F is a mapping defined on

SN(a)xRMxG, we define pF , p G O(N),by (pF)(x ,y ,g) = F(p~xx ,y ,g).

F is called N-radial, if pF = F for all p G O(N). Let 3a = 77¡(SN(a) x RM)

denote the usual Schwartz space of infinitely differentiable functions on R +

with compact support on SN(a) x R , endowed with the usual Li7-topology.

Some / G 3>'a is called N-radial, if pf = f for all p G O(N), where pf is

defined by (pf)(tp) = f(p~X<p), <p G 3a . If / is a continuous complex-valued

function SN(a)xR x G, we define a A-radial function j by j(x,y, g) =

fo(N)f(Px>y>8}dp. If H is a Hubert space, we write (•,•) and || • || for its

inner product and its norm, resp. (We will use the same symbols for different

spaces, since there is no danger of confusion.) By D(A), A , A*, and ker(^4)

we denote the domain, closure, adjoint, and kernel of a linear operator A in

H. The space of all bounded operators in H is B(H).

3. Positive definite functions

Throughout this paper we consider an abelian group G, which contains a

vector space R + as subgroup, i.e., G = R + x G, where G is an abelian

group. We will always have to do with subsets C of G of the form SN(a) x

R x G, which will be called cylinders. If not necessary, we will not specify

the parameters and only use the letter C. We write briefly 2C instead of

SN(2a) xRM xG.
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Definition 1. Let H denote a Hubert space. A mapping F: 2C —> B(H) is

called positive definite (o.d.), if (F(g¡-gj))"¡ j=x is nonnegative in B(H)®M(n)

for all g,, ... ,g„€C, zîgN.

Lemma 1. Consider a linear subspace D of H and a subgroup G0 of G. Let

C0 = SN(a) xR    x G0 and suppose that F: 2C0 -» B(H) satisfies

(1) ¿<F(g(.-g,)*,.,X,)>0
1.7=1

for all gx,...,gnGC0, Xx,...,XnGD, n G N.

Then

(i) |(F(g)*, 7)|2 < (F(0)X,X)(F(0)Y,Y) for g e2C0, X^eD.

(ii) If D = H, then F(g)* = F(-g)  and \\F(g)\\ < \\F(Q)\\,  g G 2CQ.
Moreover, F is p.d.

The proof of Lemma 1 is easy and therefore omitted.

Lemma 2. Suppose that G (hence G ) is a topological group. If F: 2C —► B(H)

is p.d. and weakly continuous at 0, then it is uniformly strongly continuous.

Proof. First consider a nonnegative (3, 3)-matrix

¡P   P   ß\
A = \ á   p    y    .

\ß    ?   PJ
2 2

The nonnegativity of A implies p > 0, p > 0, p • p. > \a\ , p ■ p > \ß\ ,

p>\y\, and detA = p ■ p2 + aßy + äßy - \a\2p - \ß\2p - \y\2p > 0. Especially,

p = 0 implies a = ß = y = 0 . Suppose that p ^ 0. Then

\a-ß\2 = \a\2-äß-aß + \ß\2

<(p-p  +aßy + äßy-\y\p)p~  - äß - aß

= p'X(p(p2 - \y\2) + aß(y -p) + äß(y - //.))

< p~xp(p2 -\y\2) + 2p\y - p\

= p((p + \y\)/p)(p-\y\) + 2p\y-p\

<2p(p-\y\) + 2p\y-p\

<4p\p-y\.

If p = 0, then both sides of the inequality are zero. In each case we have

(2) \a-ß\2<4p\p-y\.

Let g,, g2, g3 G C, Xx= X G H, X2 = X3 = Y G H. Since F is p.d., the

matrix A = ((F(g¡ - gj)X¡ ,Xj))3 j=x is nonnegative. Thus (2) yields

(3) \(F(gx-g2)X,Y)-(F(gx-g3)X,Y)\2

= 4(F(0)X,X)\(F(0)Y,Y) - (F(g2 - g3)Y,Y)\.
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Putting A = F(g2 - g,) - F(g3 - g¡) and X = AY we obtain from (3)

\\AY\\4 = (A*AY,Y)2 < 4|M||2||F(0)|| \\Y\\2\((F(0) - F(g2 - g3))Y,Y).

Since \\A\\ < 2||.F(0)|| by Lemma 1, (ii), we have

\\(F(g2 - It) - E(g3 - gx))Y\\4 < 16||JF(0)||3||y||2|<(JF(0) - F(g2 - g3))Y,Y)\,

which yields our assertion.

Definition 2. A p.d. function F: 2C —► B(H) is called a continuous positive

definite (c.p.d.) function, if it is weakly continuous at 0.

Note that Lemma 2 justifies the notation in Definition 2, since for p.d. func-

tions weak continuity at 0, weak continuity, strong continuity, and even ultra-

strong continuity coincide.

Lemma 3. Suppose that G0 is a dense subgroup of the abelian topological group

G and that D is a dense linear subset of H. If the mapping F0 : 2C0 = SN(2a) x

RM xG0^B(H) is such that the function (gi-+ (F0(g)X, X)) is continuous at

0 for all X G D and if (I) is satisfied with F0 in place of F, then there is a
unique c.p.d. extension F of F0 to 2C.

Proof. By Lemma 1, (ii), F0 is p.d. and the image of FQ is uniformly bounded.

Hence the continuity assumption implies in fact weak continuity of F0 at 0.

By Lemma 2, F0 is uniformly weakly continuous. Since the weak closure of the

image of F0 is weakly compact and hence weakly complete, there is a weakly

continuous extension F of FQ to 2C. It is clear that this extension is unique

and p.d.

4. Positive definite matrix-valued distributions

We start with the introduction of certain matrices of test functions.   For

q> g3t(RN+M), we define <p* by tp*(x,y) = q>(-x, - y), x GRN , y GRM .

Consider matrices <D = (<Pki)k¡efs¡ and *P = (Wk¡)kJe^ in M(œ;2f(RN+M)).

We define an involution in M(w;2)(RN+M)) by <D* = {ZM)kJ&i, tkl = <P*lk .

A convolution in M(co;7&(R )) is defined by O * *F = (nkl)k /eN, nk¡ =

J2j€N <pkj * Vji, where * is the latter sum denotes the usual convolution. Let

M(co;3r2a)+ denote the cone in M(tû;!7iï2a), which is generated by all ele-

ments of the form O* * O, 0 € M(w;&a). Each element 77 = (fkl)k /€N G

M(oo;7&'2a) defines a linear functional on M(o3;2¡2a) by

*■(*) = E /«(**>■
fc,/€N

We assume that M(oo;77$2a) carries the appropriate weak topology. Note that

the latter is Hausdorff. We say that y is positive (77 g M(oo;22a)+) iff

y(<P) > 0 for <ï> g M(co;7&2a)+. It is easy to see that 77 is positive iff

¿3/c tenfkt(Vk * V*) - Q ^or a^ nnite sequences (i.e., all but finitely many <pk
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are zero) (<Pk)keN ■ Writing elements of M(oo;22a)®M(n) as block matrices,

we may identify the latter space with M(oc;2>'2a). Thus M(oo;7772a) ® M(n)

inherits the order structure from M(oo;77f2a) and we may speak about pos-

itive elements in the tensor product. In more detail, ((fkl ¡A /€N)" ,-=1 G

M(oo;2f'2a) ® M(n) is positive, if Y,kj&i E"j=i fkij/'Ptk * ?;/) > ° for a11

finite sequences ((<Pik)keN)"=l in 3fa.

If now H is a separable Hubert space, (e„)n£N an orthonormal basis in H,

and if F : 2C —> B(H) is weakly continuous, we associate a continuous mapping

^F:GBg^(fklg)kj€NGM(œ;^a)

to F by

fkix^)-= (F(x,y,g)ek,e,)tp(x,y)dxdy,       <P£&2a-
JSs(2a)xRM

Lemma 4. F is p.d. iff (77F(g¡ — g¡))" ,=1 is positive in M(oo;3>2a)®M(n) for

all gx,... ,g„GG, n G N.

Proof. Let n,m G N, tpxx, ... ,<pnm G 7$a, and gx, ... ,gn G G. Then the

following equality holds.

(4)
n       m

E E/*/,*-*>»* *?>/)
,j=U,/=I

n       mII III r. i,

= E  E  / /       (F(x,y,g¡-gj)ek,ex)
,~~, ^1 .As\(2a)xR» ./V*«

x (pik(x-x ,y-y')(pß(-x', -y')dxdy dxdy

n        m       „ ~

= J212 / (F(x-x ,y-y ,gt-g])ek,ex)
i,j=\k,l=\ •/5.v(a)xR« ys.v(a)xR-"

x <plk(x ,y)(pj,(x' ,y') dx dy dxdy

= E/ / \F{x-x ,y-y igi-gj)
~~xJSs(a)xRM JSs(a)xR"  \

m

Zc=l

m

J2<Pjt(x',y')ex j dxdy'dxdy.
i=\ I

Suppose now that F is p.d. Approximating the integrals on the right-hand side

of (4) by suitable (e.g. equidistant) Riemann sums, we obtain its nonnegativity.

Thus (EF(g¡- gj))"j=l is positive in M{oc;3>2a) ®M(n).
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Assume now that the matrix (77F(g¡ - g.))" j=x is positive in the tensor

product. Let Xx,...,Xn G D := l.h.{ek;k G N}. Fix m G N such that

aik := (X¡,ek) vanishes for k > m and all i = I, ... ,n. Now let <pjk run

through a sequence of test functions converging (as measures) weakly to the

point measure at (x¡,y¡) with mass a¡k . Since the term remains nonnegative

and converges to J2"J=1 (F(g¡ - gj)X¡, X¡), g¡ = (x¡ ,y¡, g¡), we see that (1) is

satisfied with C0 = C. By Lemma 1 (ii), F is p.d.

Lemma 4 motivates the introduction of matrix-valued distributions as gener-

alizations of operator-valued functions in the following definition. The notion

depends on the decomposition of G as a direct product of course. Since there

is no danger of confusion, we will not express this dependence in notation.

Definition 3. By a G-continuous matrix-valued distribution on 2C we mean

a continuous mapping 7: G —► M(oo;77t'2a). It is called N-radial, if each

entry of 7(g) is N-radial. The matrix-valued distribution 77 is called pos-

itive definite, if (7(g¡ - 8j))1jm\ ¡s positive in M(oo;73'2a) <g> M(n) for all

gx,...,gnGG, nGN.

I.e., 7 is p.d. iff for all n,mGH, gx, ... ,gnGG, and <pxx, ... , <pnm G 3a

the expression £"J=1 £/7,/=i fkLg^g](<Pik * <P*¡) is nonnegative.

5. Nuclear auxilary spaces

In this chapter we construct certain nuclear spaces, which provide a basis

for later applications of the nuclear spectral theorem. For general properties of

nuclear spaces we refer to [19]. Some of the following facts were proved in a

similar form in [17] already.

Suppose that G0 is a countable abelian group. In later applications G0 will

be a dense subgroup of an abelian separable topological group G.

Let

Ea = E(a;N,M,G0)=     0     Ekg
k€N ,g€G0

be the topological direct sum of vector spaces Ek = 3¡a . Let Jk'-3>a —►

Jkg(3>a) = Ek ç Ea denote the canonical injection. Similarly we define a

vector space

ë7a = ê7(a;N,M,G0)=      0      %klg,
k,l€N,geG0

where <77kl is topologically and algebraically isomorphic to 3¡2a . Let Jrk¡ : 2¡2a

—> T7ki g Ç ê?a denote the appropriate canonical injection. Informally speaking,

Ea and %a are spaces of sequences and of matrices of test functions, which

additionally depend on the parameter of g G G0 .

We introduce an involution in E„ and a convolution * : E„ x E„ —> I? by
a a a a      J

(Jkg<p)* = (Jk,-g<p*)-     (Jkg<p)*(Jihf)=Ski,g+h((p*v)>

k ,1 gN, g ,h g Gq, <p ,yj G2a, and by linear extension of these relations to

the whole spaces.
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Lemma 5. Involution and convolution defined above are continuous.

Proof. The continuity of the involution is obvious. To show the continuity of

the convolution it is sufficient to prove the continuity of the restricted mappings

*: ¿kg&a) x 'ih&a) - SkLg+h&ia) £ K (cf- t6' 7.7.11]). Hence we have to

prove the continuity of the usual convolution * : 3¡a x 3a —* 2¡2a . Since 3¡

is a DF-space (cf. [11, §40, 2]), it suffices to show that the convolution is

separately continuous.   The latter follows from a straightforward calculation

using seminorms.

Let 3a denote the subspace of all N-radial test functions in 3¡a . Moreover,

Ea := l.h.{Jk (tp) ;tp G3¡a , zc € N, g G G0} is a linear subspace of Ea .

Lemma 6.  Ea and E* are separable nuclear spaces.

Proof. Both spaces are countable direct sums of separable nuclear spaces 73a

resp. 3a . Thus they are also ofthat kind. (cf. [19, 5.2.2]).

Lemma 7. The set {tp * y/ ; tp, y/ G 2¡*a} is total in 777)2a.

Proof. Functions of the form tp ® y/, tp g 2(SN(a)), y/ G 2(RN), span a

dense subspace of 3>a. Since the mapping tp ® y/ i-> (tp ® y/) = tp <g> ^, is

continuous, elements of the form tp ® yi, tp G 2(SN(a)) :- {tp e 3(SN(a)) ;

tp radial}, y/ g 2>(Rm) , are total in 3*a . Because of (<px ® y/x) * (tp2<S> y/2) =

(<px*<p2)<8>(y/x*y/2) it is sufficient to prove that {px*<p2;<px ,<p2 G2>(SN(a)) } is

total in 2>(SN(2a)f and that {y/x * ̂ 2 ; ̂  , ̂ 2 € ^(R^)} is total in 2(RM).

The first assertion is Lemma 6.1 in [17] and the latter is clear.

Lemma 8. Every element of 773*' is the restriction to 777a of a unique N-radial

distribution of 3¡'.

Proof. The proof is quite similar to the case where M = 0, which was carried

out in [17, Proposition 1].

For y gRm and g G G0, we define a continuous linear operator V(y, g) in

Ea by V(y,g)Jkh<p = Jkyg+hV , where y/ is defined by

y/(x ,y) = (p(x ,y -y),       y>G&a,xGR  ,y GR   .

The mapping (y ,g) *-> V(y ,g) defines a representation of R x G0 in Ea .

Later on we will use V to define a strongly continuous unitary representation

of RM x G in a certain Hubert space, where G is a locally compact abelian

group containing G0 as a dense subgroup. The appropriate Hubert space will

be obtained by GNS-construction. To prepare this, we have to consider suitable

positive functionals T of %'a .

Definition 4.   T G %'a is called positive, if T(<D * <&*) > 0 for all <S>GEa.

The connection between positive definite G-continuous matrix-valued dis-

tributions and positive functionals is as follows.   For a given G-continuous
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matrix-valued distribution 77 on 2C and a fixed countable dense subgroup G0

of G we define a functional T^ G <§'a by T9-L/kl gq>) = fkl (tp), k ,1 G N,

g G G0, <p G 2¡a .

Lemma 9.  T^ is positive if and only if 7 = (fkl)k /eN is p.d.

Proof. Consider 4> g Ea , <D = ¿ZgeGo 2X1 Jk,g<Pkg > ?*, e ^a • ^ ^ ° only
for finitely many g 's, say #,,...,£„. Then

7>(fl>*4>') = 7>[ ¿  E^/«(^,*%)

fc,/=nj=i

Now the assertion is easy, since G0 is dense in G and y is G-continuous.

In the following we want to show that G-continuous matrix-valued positive

definite distributions and continuous operator-valued positive definite functions

possess a certain integral representation if N = 1 or if they are N-radial. This

will follow from the investigation of the appropriate functionals in £?'. This

integral representation will be obtained from a suitable direct integral Hubert

space and by applying the nuclear spectral theorem. The appropriate concepts

(in a form which applies to our situation) will be developed in the next three

paragraphs.

6. The nuclear spectral theorem

Theorems of the following kind are well known (cf. [8, 16, 2, 17]). Here

we give a special formulation, which will be proved for completeness. For the

concept of direct integrals we refer to [5].

Proposition 10. Suppose that E is a nuclear space and H = /® H(A) dv(X) a
separable direct integral Hubert space. If J': E —► H is a continuous linear

mapping, then there are continuous linear mappings Jx: E —> H(X) for all X G

A such that for each e G E the vector field (Jxe;k G A) belongs to H and

(Je)(k) = Jxe v-a.e. on A.

Proof. Since J is continuous, there is an equicontinuous sequence (^)„eN of

linear functionals on E (i.e. there is a continuous seminorm p on E such that

Wn(e)\ < p(e) for all e G E and n G N), a bounded sequence (Xn) N of

vectors in H, and a sequence (<7„)„€N of nonnegative numbers belonging to /[

(i-e- E„ênct„ < °°) such that Je = £~, cne'„(e)Xn for all e G E. Suppose

that Xn = f*Xn(k)dv().).-Novr
oo oo      .

E"J*J2 = Emäwii>w
n=\ n=lJA

JA_i

n=l

<oo.
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Thus there is a z/-null set JV such that £~, ffB||Arl|(A)|¿ < oo for all A G

A\J7. Without loss of generality we may assume that Xn(X) = 0 if A G JV.

Thus J2n°=\ an\\X„W\\l < °° for all A e A. (From now on, the vector fields

(Xn(X);X G A) are fixed.) We define linear mappings Jx: E —► H(X) by Jxe =

2~H^L\a„en(e)^nW' e^E.  Jx is continuous. Indeed,

oo

iiviia<EK(^i^/2ii^/2^wil
n=l

(oo        \ >/2   / oo

which shows the continuity of Jx .

Let e GE. We like to show that (Je)(X) = Jxe  v-a.e. Set

k

n=l

Since the sequence (Ske)k€N converges to Je in H, there exists a subsequence

(Sk„e)men such that ((Skii¡e)(X))meN converges to (Je)(X) in H(X) for i/-a.a.

A € A. [5, part II, Chapter 1, Proposition 5]. But, by the definition of Jx , the

sequence ((Sk e)(X))me>4 converges to Jxe, which yields the assertion.

We want to conclude this paragraph with the description of how one obtains a

suitable Hubert space from a positive functional T in If'. This construction is

very similar to the well-known GNS-construction. Let T denote a positive func-

tional of %' . We define a semiscalar product on Ea by (O,*?) := T(0 * *P*),

4>, 4* e Ea . By Lemma 5 this semiscalar product is simultaneously continuous

on Ea . Therefore N := {<P G Ea ; (0,0) = 0} is a closed subspace of Ea . Let

H denote the completion of EJN w.r.t. the norm (<S> + N) <-> ||<P + N|| :=

((<I>,<I>))1/2. Of course, H is a Hubert space. Let J: Ea^> H denote the natu-

ral injection, i.e., /<!> = <S> + N G H, O G Ea . By Lemma 5, J is a continuous

linear mapping. Hence we may apply Proposition 10 provided that H has a

direct integral structure. Suppose we are given a N-radial positive element of

iT'. Then we use the nuclear space Ea to construct a Hubert space H in a

quite similar way.

In the following paragraphs we show that a suitable direct integral represen-

tation can be given in case of N = 1 for a Hubert space %? containing H,

and for H   in the N-radial case.

7. Extensions of commuting operators

Similar assertions as in the following proposition were proved already in [10

and 22].

Proposition 11. Let H denote a separable Hubert space, G a topological abelian

group,  G0 a dense subgroup of G and A: D(A) —> H a symmetric operator.

■/■<■



POSITIVE DEFINITE EXTENSIONS 285

Suppose that U: G —» B(H) is a strongly continuous representation of G, which

strongly commutes with A in the following sense: U(g)D(A) ç D(A) for all

gGG0 and U(g)AX = AU(g)X for all g G G0 and X g D(A). Then there

are

(i) a separable Hubert space 7Í7 which contains H as a closed subspace.

(ii) a selfadfoint extension sf of A in ß?, and

(iii) a unitary strongly continuous representation %7 of G in ^ which co-

incides with U on H such that %(g)D(sf) c D(ss7) for all g G G and

Í7(g)s&7 = $ffl(g)8f for all g G G and S? g D(sé). If A is nonnega-
tive, we may choose ß? = H (thus % = U) and sé as the Friedrichs extension

of A.

Proof. 1. Since A is a symmetric and hence closable, A commutes strongly

with U(g) ,gGG0, i.e. U(g)l ç lU(g).

2. A commutes strongly with U(g), g G G. This follows from the conti-

nuity of U and the closedness of A .

3. Let %* := H®H, Ax := A®(-A) (i.e. especially D(AX) = D(Ä)®D(Ä)),
and 17 be given by ^(g) = U(g) © U(g), g G G. It is easy to see that Ax

is a densely defined closed symmetric operator which strongly commutes with

^7(g), g G G. Consider the deficiency spaces E± = {37 g D(A*);A*37 =

±iS7} and the Cayley transform C, : (Ax + i)D(Ax) 9 (Ax + i)S7 ^ (Ax - 1)%?

G (Ax - i)D(Ax) of Ax . We have ((Ax ± z)/)^,))^ = {(X,Y) G H@H;

(X,(l± i)z) = 0 and (Y, (1 t i)Z) = 0 for all Z e D(Ä)} = E^@E±. Thus
we may define a unitary operator W in ß? by W \ (Ax + i)D(Ax) = C, and

W(X, Y) = (Y,X) for X gE+ and Y G E_ . Hence W is a unitary operator

mapping 1%7 onto ^.

4. We show that ker(^ - 1) = {0} . As it was shown in 3., we may write an

arbitrary vector 27 of ß? as follows (Xx +(I+i)X2, Yx + (-A+i)Y2), XxgE+,

YxgE_, X2,Y2g D(A). Suppose that it belongs to ker (g*-1). Regarding the

first component of the resulting vector, we obtain Yx+(A-i)X2-Xx-(A+i)X2 =

Yx - Xx - 2iX2 = 0, which implies Xx = X2 = Yx = 0, since E+, E_,

and D(A) are linearly independent. (These spaces are even orthogonal w.r.t.

the graph topology of A*, as it is well known from the extension theory of

symmetric operators.) Similarly, Y2 = 0. Thus ker(f - 1) = {0} and we may

define a symmetric operator si by D(s/) = (W - l)%* and s/(W - l)^ =

-iCtF + l)Sf ,Sf G ¿T. Note that D(s/) is dense, since

(g^-l)^r = (ker(«'* - l)f = (&* \ier(W - l))x =&.

It is easy to see that sé is an extension of A, and hence of A . Moreover, s/

is selfadjoint, since its Cayley transform W is unitary.
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5. sé and 17(g), g G G, commute strongly, Indeed, consider an arbitrary-

vector Z of %?. Suppose that it is written as in 4. Then

1<7(g)%37 = 17(g)(Yx + (A-i)X2,Xx + (-A-i)Y2)

= (U(g)Yx + (A- i)U(g)X2 , U(g)Xx + (-A-i)U(g)Y2)
= WU(g)3T,

since U(g) strongly commutes with A. i.e. 17(g),g G G, and W commute,

which implies that 17(g) and sé commute strongly. This completes the proof

of the first part.

6. Suppose now that A is nonnegative. Then we obtain that A is non-

negative and commutes strongly with all U(g), g G G, according to 2. Con-

sider the *-algebra W = l.h.{U(g);g g G}. Consider a net (Bx)XeA in W,

which strongly converges to some B G B(H). Since BXD(A) ç D(A) and

ABXX = BX~AX for all A G A and X g D(Ä) ,we have BXX -* BX and ABXX =

BXAX -► BAX. Since A is closed, BX g D(A) and ABX = BÄX. Thus all

operators belonging to the von Neumann algebra W" commute strongly with

A . Fix any projection P G W" . Then H can be written as orthogonal direct

sum (l-P)H@PH. Since A commutes strongly with P, we have A = AX@A2,

Ax = ( 1 -P)1 \(l-P)D(Ä), A2 = PA\ PD(A). It is clear from the construc-

tion of the Friedrichs extensions AF = AF , AXF , and A2F of A,AX , and A2,

respectively, that AF = AXF © A2F . Especially, AF commutes strongly with

P. Since W" is the strong closure of the linear hull of all of its projections,

AF commutes with all operators of W" in the strong sense. Especially AF

commutes strongly with all U(g), g g G, which completes the proof.

Note that the extension of A in Proposition 11 is not unique in general.

8. Direct integral Hilbert spaces

Definition 5 (cf. [1]). Let S7 denote a locally compact topological space and

H a Hilbert space. A projection-valued measure P on 727 is a mapping which

assigns to each Borel subset A of ^ a projection P(A) such that the following

conditions are satisfied:

(i) P(0) = 0 and P(ä?) is the identity of H.

(ii) P(AX)P(A2) = P(AX n A2) for all Borel sets A, , A2.

(iii) P is cr-additive w.r.t. the weak operator topology,

(iv) P is regular, i.e., P(A) = inf{P(Q) ;Q.çSf open, ACfi}.

Proposition 12. Suppose that U is a strongly continuous unitary representation

of a locally compact abelian group G in a separable Hilbert space H and that

A is a selfadjoint operator in H, which strongly commutes with U(g), g G G.

Then there are a finite regular measure p on R x G*, and a family H(x,y),

x G R, y G G*, of Hilbert spaces such that

(i) H = f®xG.H(r,y)dp(z,y),
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(ii) U(g)X = ï®xG.[y,g]x(T,y)dp(T,y),for X = f®xG.X(T,y)dp(T,y)G
H, g g G, and

(iii) AX = ¡®xG. rX(r ,y)dp(r,y) for X = ¡®xG. X(t,y)dp(T,y) G D(A).

If A is nonnegative, we have p((R\R+) x G*) = 0.

Proof. The one-parametric group t (-»■ exp(-z'L4) commutes with U(g), since

A strongly commutes with U(g), g G G. Thus (t,g) i-> exp(-itA)U(g)

defines a strongly continuous unitary representation of R x G. According to the

SNAG-Theorem (cf. e.g. [1]) there is a projection-valued measure P on R x G*

such that

(exp(-itA)U(g)X ,Y)= f      exp(-z7T)[y, g](dP(r, y)X, Y),
JrxG'

t GR, g G G, X ,Y G H. For g = 0 and X G D(A), we differentiate both

sides and obtain

(5) (AX,Y)= f       T(dP(r,y)X,Y),       xgD(A),YgH.
JrxG'

For t = 0, we obtain

(6) (U(g)X,Y)=f      [y,g](dP(r,y)X,Y),       gGG,X,YGH.
JRxG'

Following [23] there is a finite regular Borel measure p on Rx G* and a field

of Hilbert spaces H(t ,y), z gR, y G G*, such that

H=[      H(r,y)dp(x,y)   and   P(A) = f      *A(T,y)l(T y)dp(x,y),
JRxG' JrxG-

where #A denotes the characteristic function of the Borel set A and 1 (T , the

identity in H(r ,y). Now the assertions (ii) and (iii) follow from (5) and (6).

9. Positive definite distributions on a strip

Recall that we fixed a decomposition RN+M x G of the group G. A regular

Borel measure /ion R + x G* = G* is said to be polynomially bounded, if

the function

G*3(7-,n,y)^(l + \7\2 + \n\2)-"

is |//I-integrable for some n G N. Let J7 denote the set of all such measures.

M = (pkl)k /eN G M(oo;J7) is said to be positive, if each of the matrices

(pk¡(A))"k ¡=x , n G N, A ç G* measurable, is nonnegative. M G M(oo;J7)

defines a G-continuous matrix-valued distribution 7 = (fk/)k /eN by

fki,g(9) = j[Y,gmZ,l)dtikl(g),       <PG&(RN+M),

where

tp(7\,n)= l       exo(-i7\.x-in.y)<p(x,y)dxdy.
/R/V+«
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We call 77 the Fourier transform of M and write 77 = M. If 77 is a matrix-

valued distribution on 2C and the above equality holds for tp g 32a, we

write 77 ç M. One easily checks that M is p.d. if M is positive. For M G

M(oo;J7) we can choose a fixed positive finite measure p and measurable

functions ak¡ on G* such that pk¡ = ak¡ • p, k, l G N. We will frequently

use such a representation in the following. If M is positive, we can choose the

functions ak/ such that all matrices (akl(7\, n, y))"k ¡=x, (7,, n, y) g G*, zi g N,

are nonnegative. We are now ready to state the following result.

Theorem 1. Let G denote a separable locally compact abelian group and G =

R x RM x G,  M G N U {0}  (i.e.,  N = 1).   Suppose that 7 = (fk¡)k /gN  is

a G-continuous p.d. matrix-valued distribution on 2C = (-2a,2a) xRM xG,

0 < a < oo. Then there is a positive M g M(oo\J7) such that 7 CM.

Proof. 1. Let G0 denote a countable dense subgroup of G. Consider the

functional T = Tgr associated with 77 (cf. Lemma 9). Since T is positive, we

can construct a Hilbert space H as in §6. We define a unitary representation

U0 of RM x G0 in H by

(7) U0(y,g)J<t> = JV(y,g)^>,       y G RM, g G G0,O G Ea.

Of course, U0 is densely defined and straightforward calculation shows that the

representation operators are unitary. Since 77 is G-continuous, the mapping

(y>g),-^(U0(y,g)JO,Jy/) is continuous for all $,¥e£fl. Since U0(y,g)

is contained in the unit ball Bx of B(H) and since JEa is dense in H, UQ

is weakly continuous. Thus U0 is uniformly weakly continuous on R x G0 .

Since Bx is weakly complete, there is a unique weakly continuous extension of

UQ to R x G. Obviously it has to be unitary, and we denote it by U. Hence

U becomes a strongly continuous unitary representation of R x G in H.

2. We define a linear operator A in H by D(A) = JEa and

(8) AJJkgtp = JJkg(çi^<p)j,       kGN, gGG0, tpG3¡a.

We show that A is symmetric. First consider tp, y/ G 2¡a . One has

(dtp/dx) *y/ = -tp* (dy//dx).

Thus

(¿>"k¿9."ij,V) = T(jkJ(-i£¿f)*(JijlV)'')

i-fc^U-'è'

= T[Skltg_h{tp*\ci

= (J Jkgtp,AJ Jxhyi)

*£')•))



positive definite extensions 289

for k, l G N, g, h G G0 , and tp , y/ g 2¡a . By linearity we obtain the desired

symmetry.

3. It is easy to see that the representation operators U(y, g), y G R ,

g G G0, commute with A in the strong sense. By Proposition 11 we find a

larger Hilbert space 777 D H, a self adjoint extension sé of A in 3?, and an

extension 17 of the representation U which commutes strongly with sé . Now

we use the direct integral decomposition of %7 according to Proposition 12.

(9) X=i JT(ï:,n,y)dp(c:,n,y).

According to Proposition 10 there are continuous linear mappings  J,(     , :

Ea !-»• ̂(7,,n,y) such that

J*= T        J{i„y)<!>dp(c;,n,y)   forOeiv
JRM^xG'   l--;"'y

4. Suppose that {<p" ; n G N} is a countable dense subset of Ea and {Yn ; n G

N} a countable dense subset of R    . Since

W{yn,g)J*k=  r exV(-in.yn)[y,g]J        Q>kdp(^,n,y)
jR<"+'xG' v»*f>

= JV(yn,g)<i>k,

there is a /¿-null set J7k n     such that

for(Ç,n,y)G(RM+xxG*)\yykng.

Setting J7 = \}{A7k n g; k,n gN, g G G0} , we obtain that the latter relation

is true for all n, k g N, g e G0 , and all (f, r¡, y) G (UM+X x G*)\A". Without

loss of generality we assume that ^(¡T,, n, y) = {0} for (£, n, y) G JV. Thus the

relation is valid for all (7\,n ,y) G RM+X x G*. Since the mapping y *-* V(y, g)<I>

is continuous for all O g Ea , we obtain

(") J((,r,,v)v(y'gw = exp(-iri-y^>gV(i,ri,y)<s>

forall(¿:,z/,y)eRM+1 x G*, <D e Ea , y G RM, and g G Gn.

Changing the field of Hilbert spaces (if necessary) on a /¿-null set, we obtain

similarly

(12)

J((,n,7) (-''Ic*) -^«.».rt*   for a11 (í.'/.y) eRW+1 x G* and<De£a.

(Here i(d/dx)<& is defined by i(d/dx)Jk gtp := Jk g(i(d/dx)tp), teN, g G

Go-)
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5. By [5, Proposition II. 1.1], we have the following:

(i) The set Zp of (£, n, y) G RM+X x G* such that the dimension d(7\, n, y)

of %7(l\,n,y) is equal to p is measurable.

(ii) There exists a sequence (e„)„eN of measurable vector fields possessing

the following properties:

(a) if d(7\,n,y) = N0, (en(Ç,n,y))n€N, is an orthonormal basis of

*(Z,ri,y),

(b) if d = d(7\,n,y) < ^0,(en(4,n,y)dn=x is an orthonormal basis of

^(7, ,n,y) and en(¿;,n,y) = 0, if n > d .

6. Now the mapping 3fa3 tp ■-> B(q>), B(tp) := (J(^nj)J,fi<P^n(i,n,y)),

defines a distribution B G 3í'a . Using (11) and (12) we compute

[le8) M = -B (£') = -W   f0r^6^'

i.e. (d/dx)B = -i<7B (in the distributive sense). Similarly we obtain (d/dy¡)B

= -it]jB, j = I, ... ,M. Thus B is a regular distribution given by

B((p) = a",(7\,n,y) /      exp(-i^x)-exp(-in-y)tp(x ,y)dxdy
Jrm+ï

= a"(7,,n,y)(p(7,,n),

where a"(7, ,n,y) is a suitable constant. Hence we may comprise the result as

follows:

(13) (J(í,n,y)Jifi(P^n(^,'l,y)) = a¡(7,,n,y)(p(7¡,ti)

for /,zz G N, (£, n,y) G RM+X x G*, tp e 2¡a . Note that the function (i,n,y)^

ß"(£ ; 1 > y) must be //-measurable since the left-hand side of (13) is /¿-measur-

able and since there are elements tp of 3¡a such that the appropriate Fourier

transform is different from zero on arbitrarily large compact subsets of R   + .

7. Since

■Wy)F(°'S)//,o«' = "Wy)7/,**' = ÏÏ>8tyt,n,y)Ji,o'P>

we conclude from (13)

(14) ^J(i,n,y)Ji,g(p 'e«^ ' f 'y^ = a"^ ' * ' y^y ' gWß ' ^

for/.neN, (7.,n,y)GRM+X xG*, gcG0, y>G3a.

Hence

(J((,r,,y)Jl,g'P'Jli,rl,y)Jk,hy/)
oo

=s£</«.,.y)'/rU*''e«(í»»í.3'))-<«'r«.,.,)/*>*^'«««.(í»Ií.l')}

n=l

= a/it({, z/,y)[y,g - h]tp(c¡, r¡)y/(c\,n)

= fl/tíí, n, Y)[y, g - h](tp * y/*)(7., r¡),
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where the function a,,  is defined by

(is) alk(t,ri,y) = ¿2<*l,(Z>i>yK(Z>i>y)-
n=\

Since
oo

ii7« ,n,y)Jk .oí'ii2 = E Kg 'v ' y^2^ * ̂ *)K. n) < °° >
n=l

we obtain that the sum in (15) is absolutely converging and alk is a finite

measurable function. Now we calculate for g g G0 ,

fki,g(<P*V*) = T((Jk,g'P)*(Ji,o1/)*) = (J Jk,g1>>J JifiV)

= f^^yii^ySk^'^^^ifirid^'^y)

= /        ly.glfl/t/(í,'/.y)(í»*y*)(<í,'/)^(í»»i.3')-
•/RM+'xG"

i.e. we have

(16)      fk,Ây>*¥*)=l [y,g]aki(Ç,1,Y)-(<P*V*)(Ç,l)dp(7.,n,y)
JR«+IxG*

for all g GG0, k, l G N, tp, yi g 3¡a .

8. Since for fixed k G N, the distribution fkk 0G 2¡'2a is p.d. the representing

measure akk • p must be polynomially bounded (cf. [17, p. 382 ff]. There the

assertion was proved for radial distributions. The proof in the general case is

quite similar.) It follows immediately from (15) that thus all measures ak/-p:=

pk¡, k,l G N, are polynomially bounded, i.e., M := (pk¡)k /6N G M(oo;J7),

and that M is positive. Moreover, we obtain that both sides in (16) define

elements of 32a , which coincide on the dense subset l.h.{çz * y/ ; <p, y/ G 77¡a} of

32a and are therefore equal. Consider an arbitrary test function tp g 77¡2a in

place of (tp * y/*) in (16). Then the left-hand side is continuous on G0 (w.r.t.

the topology induced from G ) by assumption, whereas the continuity of the

right hand side is easily checked. Thus this equality extends to all of G, which

completes the proof.

Corollary 1. Let G denote a locally compact abelian separable group. Suppose

that F: (-2a,2a) x G —> B(H), 0 < a < œ, is a c.p.d. (operator-valued)

function. Let (e„)n£N denote an orthonormal basis in the separable Hilbert

space H. Then there are

(i) a finite regular Borel measure p on RxG* and

(ii) complex-valued functions ak¡ G L (RxG*,//), k, l g N, with the property

that the matrix (ak¡(C,y))k /6N is nonnegative for all i\ G R, y G G* such that

( 17) (F(x, g)ek , e,) f       exp(-i7x)[y, g}ak,(7., y) dp(t,, y)
JRxG"

for all x G (-2a ,2a), gGG, k, l G N.
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Proof. Consider the G-continuous matrix-valued distribution 77 = 7F (cf.

§4). Since 77 is G-continuous and positive definite, we obtain an integral

representation according to Theorem 1. Since the appropriate distributions

are regular and since (F(0,0)ek ,ek) = /RxG. akk(7,, y) dp(7\, y) is finite, akk G

Lx(RxG*,p) for zee N. It follows from (15) that then also akl G Lx (RxG*,//)

and that the matrix (ak¡(£, y))k /6N is nonnegative for all ¿j e R and y G G*.

The representation (17) is now clear.

Corollary 2. Suppose that the assumptions of Corollary 1 are satisfied and that,

in addition, F(0,0) is a trace class operator. Then there are

(i) a finite regular Borel measure p on Rx G* and

(ii) a weakly measurable function A: R x G* —► B(H) with the property that

A(7\,y) is a nonnegative trace class operator and tr(A(£,,y)) = 1 for p-a.a.

(Ç,y) gR x G*, such that

(18) (F(x,g)X,Y)= f       exp(-iï.-x)[y,g](A(â.,y)X,Y)dp(7.,y)
JRxG-

for all x G (-2a ,2a), gGG, X,YgH.

Proof. Since

oo

tr(F(0,0))=^(F(0,0)e„,e„)
n=l

oo     f

= E/       ann(Z,y)dp(S,y)
„=xJrxg-

Í       °°
= /        Y^ann(^,y)dp(^,y) <oo,

a(Z,n) := E^i0««^) is finite for all ({j)e(Rx G*)\AT, where jr

is a //-null set. Without loss of generality we assume that akl(£\,y) = 0 for

all (7\,y) G JV and k,1 g N. All measures akl(7\,y)dp(7,,y) are absolutely

continuous w.r.t. the measure a(7, ,y)dp(7,,y), i.e. we may replace p by the

latter, i.e. we may assume in the following that a(7,, y) = 1 p-a.e. We define

a linear operator on D := l.h.{en ; n G N} by (A(i7, t])ek, e¡) = ak,(7,, n). One

easily checks that \\X\\2 > (A(7,,n)X,X) >0forl6Ö. This implies that
A(7\,y) has a unique continuous extension, i.e. defines a bounded operator in

H, which we denote by the same symbol. By construction, A(7\,y) is even a

trace class operator and tr(A(7\,y)) = 1 p-a.e. Since A(Z\,y) is nonnegative

on the dense set D, it is a nonnegative operator. (18) is obviously satisfied for

X,Y G D. But because of 1 > tr(^(^,>-)) > p(£,y)|| and since p is finite

(p(RxG*) = tr(F(0,0))), (18) is true for all X ,Y gH.

Corollary 3. Let G denote a separable topological abelian group and H a sep-

arable Hilbert space. Then a c.p.d. function F: (-2a,2a) x G —► B(H) has a

c.p.d. extension to RxG.
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Proof. Consider a countable dense subgroup G0 of G, which will be equipped

with the discrete topology for the moment. From Corollary 1, (17), we obtain

an integral representation for Fx := F \ (-2a, 2a) x G0 . We use (17) to extend

Fx to R x G0. Denote this extension by F2. Note that we define the operators

F2(x,g) only on vectors of D = l.h.{en ;n G N} . But because of Lemma 1,

(i), all these operators are really bounded. By Lemma 3 there is a unique c.p.d.

extension F3 of F2 to RxG, since F2 coincides on a neighborhood of (0,0)

with Fx and thus is continuous. Since F3 is continuous, it coincides with F

on (-2a ,2a) x G, i.e. F3 is the desired extension.

Corollary 4. Suppose that G is a locally compact separable abelian group, H

a separable Hilbert space, and (en)n€N a fixed orthonormal basis in H. Let

F = (fkl)k /€N denote a G-continuous positive definite matrix-valued distribution

on (-2a,2a)xR xG. Then there are an operator-valued c.p.d. function F:G =

R + x G —* B(H), tr(.F(0)) < oo, a sequence of nonnegative integers (r„)n€N ,

and a sequence of positive real numbers (Cn)neN , such that

fki g(<P) = CkCi I     (F(x,y,g)ek,el)((l-A)rk+r'tp)(x,y)dxdy,

2 2
k,l GN, g G G, tp G 2>2a . (Here we abbreviated the differential term d /dx +

d2/dy2 + --- + d2/dy2M by A.)

Proof. Let pkl = akl ■ p denote the measures as in Theorem 1. Since they are

polynomially bounded, we may choose rn G N, cn > 0, such that

/ (l + \(Ç,n)\2)-r"dpnn(ï,n,y)<2-"Cn.
JG'

The matrix (bkl)k /eN , where the entries bkl are functions on G*, defined by

bkl(C,n,y) = Ck-xC;x(l + \(C,r1)\2)-r'-rkakl(£.,,1,y)

is nonnegative and trace class for p-a.a. arguments. As in the proof of Corollary

2, the relation

(E(x,y,g)eke¡)= / exp(-i7\x)exp(-iny)[y ,g]bkl(7.,n ,y)dp(7,,n ,y)
./RW+'xG

defines a c.p.d. operator-valued function on RM+X x G. For tp G 32a we obtain

from Theorem 1 :

fkig(9)=  [ [y,g]CkCl(l + \(C,n)\2)rk+r'bkl(7.,n,ym,n)dp(e,r1,y)

- CkC, f [y,g]bkl(7,n,y)((HA^^KC-n)dp(S,n,y),
•/RW+'xG-

which yields our assertion.

We conclude this chapter with the remark that Theorem 1 yields, in particu-

lar, the existence of a p.d. extension M of F to a G-continuous p.d. matrix-

valued distribution on G.
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10.    N-RADIAL POSITIVE DEFINITE DISTRIBUTIONS ON A CYLINDER

Now we consider a group G = R x R x G, where N g N and M g

Nu{0} are arbitrary. Recall that J7 denotes the set of all regular polynomially

bounded measures on G*. A measure p G J7 is said to be N-radial, if it is

invariant w.r.t. rotations in R = (R )*. A matrix M G M(oo;J7) is called

N-radial, if each of is entries is N-radial.   By QN : R+ —► R we denote the

Bessel function with Q^fljcl) = L,x exp(-z'<¡; • x) doN(77), x e Rw, where oN

is the surface measure of the unit sphere {^ G R   ;|£| = 1} normalized such

that / doN(Ç) = 1. For tp g 3(Rn+m) , we abbreviate

tp(Tl/2 .„):= /      ÇiN(xx/2\x\)exp{-in-y)tp(x,y)dxdy.
JRN+M

A measure p on R+ x R    x G* is said to be polynomially bounded, if there is

some «eN such that the function (r,n,y) i-> (1+t +\n\ )~" is |//|-integrable.

Note that the following theorem does not contain Theorem 1 as a special

case. In particular, in case of N = 1 it says that a symmetric (w.r.t. x >-* -x)

p.d. distribution possesses a symmetric p.d. extension.

Theorem 2. Let G denote a separable locally compact abelian group. Suppose

that F = (fkl)k i€N is a G-continuous N-radial p.d. matrix-valued distribution

on 2C = SN(2a) x RM x G,  0 < a < oo.   Then there is a positive N-radial

M G M(oo;J7) such that F ç M.   '

Proof. The proof is in large parts very similar to that of Theorem 1.  So we

will not repeat all arguments but refer to appropriate steps of the proof of that

theorem.

1. Fix a countable dense subgroup G0 of G and consider the N-radial

G-continuous functional T = TF G %'a . Similarly as in Step 2 (Theorem 1), we

obtain that

for k,l G N, g,h € G0 , tp, y/ G2¡a , and j = I, ... ,N. Since T is positive,

where  (d/dx^,  O e £fl, is defined by  (d/dXj)Jkgtp ---- Jkg(d/dx])<p,

tp G3)a,k G N, g G GQ.   Denote A^ = d2/dx2 + ■■■ + d2/dx2N.  Thus we

fix the following:

;i9) T((-Ax^)*d>*) >0   for all <P e £a.

2. Now we use the functional T and the nuclear space Ea to construct a

Hilbert space H* as in §6. Similarly as in Step 1 (Theorem 1) we obtain a

strongly continuous unitary representation U of R    x G in H .
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3. Since -AXE* ç E*a , we may define an operator A in H* by D(A) = JEa

and AJO = J(-Ax$>). (As before J is the canonical imbedding of Ea in H .

By (19), A is a symmetric nonnegative operator.

4. One easily checks that the unitary operators U(y, g), y e R , g G G0,

commute strongly with A. By Proposition 11, the Friedrichs extension sé

commutes with all U(y ,g), y G RM , g G G, in the strong sense. Now we use

the direct integral representation of H   according to Proposition 12:

(20) H*=f H(r,n,y)dp(x,n,y).
Jr+xRmxG'

According to Proposition 10 there are continuous linear mappings  7(r     . :

Ea -> H(t,n,y) such that

(21) J<¡>=¡ J       <t>dp(T,n,y)   for<t>GE*a.
JR+xRMxG'

5. Arguing as in Step 4 (Theorem 1), we may assume without loss of gener-

ality that

(22) J{r,n,y)V(y>g)<S> = ™V(-in-y)\.y>gV(r,rl,y)®

forall(x,n,y)GR+xRM xG*, <De E*a, y g RM, and g g G0,

and

(23) /(T,,,),)(-AJt.*) = T/(t>)?(J,)«I>   forall(t,//,y)GR+xRMxG*and<DG<.

6. We choose a sequence (en)n€N of measurable vector fields as in Step 5

(Theorem 1 ) and consider the continuous linear functional B on 3* given by

B(tp) := (J{T^>y)J\ of'en(T'n'yn- By Lemma 8 there is an unique N-radial

distribution Bx G 3'a whose restriction to 3* is B.   Now tp i-> B(-Axy>)

defines a continuous linear functional on 3a . Since -AXBX is a radial distri-

bution which extends the latter and since there is only one such extension, we

obtain as in Step 6 (Theorem 1)

(24) -AxBx=tBx.

In a similar way we obtain

(25) JLBx=-itljBx,        j=l,...,M.

The only N-radial distribution Bx satisfying (24) and (25) is given by

Bx(tp) = a"x(7:,n,y) /      Q^(T1/2|x|)exp(-zz/ -y).
JfíN + .M

1/2
<p(x,y) dx dy = a"(7,, n, y)<p(t ,n), where a" (7, ,n,y) is a suitable constant,

(cf. [17, p. 367]). Hence we have

(26) (J{Ti^y)Ji ß<P ,en(r ,n ,y)) = a?(T ,n ,y)tp(rx/2 ,n),

l,n&N,tpG3*, (x,n,y)GR+xRM xG*.
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As in Step 6 (Theorem 1) we can see that the functions (t , n, y) >-> a"(x, n, y)

are measurable.

7. Now we obtain from (26) as in Step 7 (Theorem 1)

(27) (J(T n f)J,<g<p,en(x,n,y)) = a"(x,n,y)[y,g]<p(xx/2,n),

l,nGN, (x,n,y)GR+xRM xG*, gGG0, y>G3*. By

L

(28) a,k(x,n,y) = Y^ a"(x, n, y)a"k(x ,n,y)

we obtain measurable functions. Note that the sum in (28) converges absolutely

for all arguments. The matrix (akl(x,n,y))k /eN is nonnegative by construc-

tion. For the subsequent calculation we will use the identity

(29) <p(xX/2 ,n)yï(xx'2 ,n) = (tpTy,*)^1'2 ,n)   for <p,ve3r!

(cf. [17, (23)]). Thus we obtain for g g G0 and tp, y/ G 3a ,

fkl,g(<P * V*) = T((Jk.g(P) * (Ji$V)*) = (J Jk,g<P'J Jl,oV)

RM    Mr,rl,y)Jk,g<P^(x,rl,y)Jl^)dp(x,n,y)
R+xRMxG*

= / [y,g]akl(r,n,y)((p*y/*)(xx'2 ,n)dp(x,n,y).
Jr+xRmxG'

Thus we may comprise the latter to

(3°) fki g(<P * V*) = [y,g]aki(r,n,y)-(tp*y/*)(xx/2,n)dp(x,n,y)
Jr+xRmxG-

for all gGG0, k,lGN, tp,y/G3*a.
8. Since for fixed k g N the distribution fkk 0 is positive definite, the

appropriate representing measure is polynomially bounded (cf. [17, p. 382]).

Using (28) we obtain that this is true for all measures \akl(x,n,y)\dp(x,n,y).

Hence both sides in (30) define functionals belonging to 32a , which coincide

on the subspace l.h.{tp * y/ ; tp, y/ G 3a } . Since it is dense in 32a by Lemma 7,

relation (30) holds for all tp G 32a in place of (tp * y/*). Obviously we obtain

a N-radial extension of the right-hand side, if arbitrary function of 32a are

taken instead of (tp * y/*). But since there is only one radial extension, it has

to be equal to fkl   . Thus we have the equality

(31)       f    (tp)= [y,g]akl(t,n,y)-<p(xx/2,n)dp(x,n,y)
'* JR+xR"xG'

for g G G0, k, l G N and tp G 32a . For fixed tp G 32a , the left-hand side

in (31) is continuous by assumption and the continuity of the right-hand side

w.r.t. the topology induced from G on G0 is easy. Thus the equality is satisfied

for all g G G. Now we can rewrite (31) using a N-radial pkl G J7 instead of

akl • p, which completes the proof.

The proofs for the next four corollaries of Theorem 2 are quite similar to the

proofs of the appropriate corollaries of Theorem 1 and therefore omitted.
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Corollary 5. Let G denote a locally compact abelian separable group. Suppose

that F : SN(2a) x G -> B(H), NeN, 0 <a<oo,isa N-radial c.p.d. (operator-

valued) function. Let (en)n€N denote an orthonormal basis of the separable

Hilbert space H. Then there are

(i) a finite regular Borel measure p on R+x G* and

(ii) complex-valued functions ak¡ G L (R+ x G* ,p), k, l g N, with the prop-

erty that the matrix (akl(x, y))k /gN, is nonnegative for all x gR+, y G G* such

that

(F(x,g)ek,e,)= / CiN(xl,2\x\)[y,g]akl(x,y)dp(x,y)
JR+xG'

for all gGG*, XG SN(2a), and k ,1 G N.

Corollary 6. Suppose that the assumptions of Corollary 5 are satisfied and that

F(0,0) is a trace class operator. Then there are

(i) a finite regular Borel measure p on R+x G* and

(ii) a weakly measurable function A: R+ x G* —» B(H) with the property

that A(x, y) is a nonnegative trace class operator and tr(A(x, y)) = 1 for p-a.a.

(x, y) G R+ x G*, such that

(F(x,g)X,Y)= f        CiN(x^2\x\)[y,g](A(x,y)X,Y)dp(x,y)
Jr+xG'

for all xGSN(2a),gGG, and X ,Y G H.

Corollary 7. Let G denote a separable topological abelian group and H a sepa-

rable Hilbert space. Then each c.p.d. N-radial function F: SN(2a) x G —» B(H)

has a c.p.d. N-radial extension to RN x G.

Corollary 8. Let G denote a separable locally compact abelian group, H a

separable Hilbert space, and (e„)„€N a fixed orthonormal basis in H. Suppose

that 7 = (fkl)k /eN is a G-continuous p.d.  N-radial matrix-valued distribution

on SN(2a) xRM xG. Then there are an operator-valued c.p.d. N-radial function

F : R x G -* B(H), tr(F(0,0,0)) < oo, a sequence of nonnegative integers

(rn)n€N, and a sequence of positive real numbers (Cn)n€N, such that

fkl g(<P) = CkCi I      (F(x,y,g)ek,el) • ((1 -A)n+r'tp)(x,y)dxdy,

k ,1 g N, gGG, tp G 32a. Hence 7 has a G-continuous N-radial p.d.

matrix-valued extension to RN+M x G. (In this case, A is the abbreviation for

d2/dx2 + ■■■ + d2/dx2N + d2/dy\ + ■■■ + d2/dy2M.)

We conclude our considerations with a result which is related to a theorem

of Minlos, Sazonov, and Gross. We use the terminology from [13]. Suppose

that H is a separable real Hilbert space. Let F denote the set of all finite

dimensional orthonormal projections in H. A subset E of H is called a

cylindrical set, if E = {x G H;Px G F} for some P G F and some Borel
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set F ç PH. On the ring of cylindrical sets the Gaussian measure p on H

is defined by p(E) = (2n)~"/2 ¡Fexp(-\\x\\2/2)dx, where n = dimPH and

E, F, and P are as above, and dx denotes the usual Lebesgue measure on

PH. A continuous seminorm q on H is called measurable, if for each e > 0

there is a P0 G F such that p(q(Px) > e) < s for all P gF , PPQ = 0. Let

xm denote the weakest vector space topology on H such that all measurable

seminorms are continuous.

Corollary 9 (cf. [3, p. 452]). Suppose that H = HX®H2, Hx finite dimensional,

and that Bx is an open ball around zero in Hx. If k is a positive definite

function on Bx © H2 with the following properties:

(i) k is xm-continuous at zero;

(ii) k(xx + x2) = k(x\ + x2) for all xx, x[ G Bx, ||x, || = \\x'x \\, x2 G H ; then

k admits a representation k(x) = fHexp(i(x,X))dp(X), where p is a finite

positive Borel measure on H.

Proof. H endowed with the topology xm is a separable topological group. By

Corollary 7 there is an extension k* of k to all of H, which is continuous

(w.r.t. xm ) and p.d. Thus it is the characteristic function of a positive finite

Borel measure p on H by the Theorem of Minlos, Sazonov, and Gross [13,

Theorem 6.7], which completes the proof.
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