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COSMICITY OF COMETRIZABLE SPACES

GARY GRUENHAGE

Abstract. A space X is cometrizable if X has a coarser metric topology such

that each point of X has a neighborhood base of metric closed sets. Most ex-

amples in the literature of spaces obtained by modifying the topology of the

plane or some other metric space are cometrizable. Assuming the Proper Forc-

ing Axiom (PFA) we show that the following statements are equivalent for a

cometrizable space X : (a) X is the continuous image of a separable metric

space; (b) Xw is hereditarily separable and hereditarily Lindelöf, (c) X2 has

no uncountable discrete subspaces; (d) X is a Lindelöf semimetric space; (e)

X has the pointed ccc. This result is a corollary to our main result which states

that, under PFA, if A- is a cometrizable space with no uncountable discrete

subspaces, then either X is the continuous image of a separable metric space

or X contains a copy of an uncountable subspace of the Sorgenfrey line.

1. INTRODUCTION

A space X is cosmic if it is the continuous image of a separable metric

space, or equivalently, if it has a countable network (i.e., a countable collection

JV such that whenever U is a neighborhood of a point x G X, then x G N c U

for some N G AT").

Several authors have asked whether a space X must be cosmic if X satisfies

some specific conditions; for example, is X cosmic if

(1) Xw is hereditarily separable and hereditarily Lindelöf?

(2) X is a Lindelöf semimetric    space?

(3)   X has the pointed ccc?

Question (2) is due to R. W. Heath [H]. E. Michael [M] used CH to construct

a counterexample which is a subset of the plane with the "bow-tie" topology.

Other examples have been constructed under CH by E. S. Berney [Br] and N. V.

Velicko [V]. Michael's example is also a counterexample to question (1), which

is due to A. V. Arhangel ' skii [A]. Michael also showed that under CH there is
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1 All spaces are regular and T\ .

2 X is a semimetric space if one can assign to each x e X a neighborhood base {b(x,n)}„eui

such that y e b(x, n) o- x € b(y, n). It is easy to check that this is equivalent to the usual definition

which says that there is a "metric" d on X that satisfies all the standard conditions except for the

triangle inequality such that «-balls about x G X form a neighborhood base at x .

© 1989 American Mathematical Society

0002-9947/89 $1.00+ $.25  per page

301



302 GARY GRUENHAGE

a subspace of the Sorgenfrey line which is a counterexample to (1). Question

(3) is due to Tkacenko [Tk]. Recall that X has the pointed ccc if, whenever

{xa}a<w C X and Ua is a neighborhood of xq for each a, there exists ß ^ a

with Xg G Ua and xa G U„. It is easy to see that Lindelöf semimetric spaces

have the pointed ccc; thus Michael's example is a counterexample to (3) also.

Recently, K. Ciesielski [C] showed that there is a counterexample to (1) and

(3) which is consistent with Martin's Axiom (MA) plus 2N° = N2. No ZFC

counterexamples are known.

A space X is cometrizable if there is a weaker metrizable topology on X such

that each point of X has a (not necessarily open) neighborhood base consisting

of sets which are closed in the metric topology. For example, the CH examples

mentioned above cometrizable, as are most of the examples constructed in the

50's and 60's by modifying the topology of the plane or some other metric space.

Other examples worth mentioning are the density topology [Ta], the Kunen line

[JKR], and van Douwen and Kunen's S- and L-subspaces of P(co) [vDK].

The purpose of this note is to show that the Proper Forcing Axiom (PFA) im-

plies positive answers to all three questions for the class of cometrizable spaces.

PFA is a strengthening of MAw which asserts that, given N, dense subsets of

a "proper" poset (partially ordered set) P, there is some filter contained in P

which meets them all. We shall not need to know the definition of "proper", but

only that countably closed posets and ccc posets are proper, and finite iterations

of proper posets are proper. For more about PFA, see Baumgartner [B,] or

Shelah [S].

Main Result. (PFA) Let X be a cometrizable space with no uncountable

discrete subspace. Then either

(a) X contains a copy of an uncountable subspace of the Sorgenfrey line; or

(b) X is cosmic.

One easily obtains positive answers for cometrizable spaces to questions (2)

and (3) from this, because no uncountable subspace of the Sorgenfrey line has

the pointed ccc, and every Lindelöf semimetric space has the pointed ccc. To

get (1), observe that Baumgartner's result that, under PFA, all Nádense subsets

of the reals are order isomorphic (see [B2 or BJ) implies that the square

of an uncountable subset S of the Sorgenfrey line contains an uncountable

discrete set (because we may assume that x G S implies -x G S, so S D

{(x, - x):x G S}). Hence the statement "X2 has no uncountable discrete

subspace" is sufficient, under PFA, to imply that a cometrizable space X is

cosmic.

Martin's Axiom (MA) is not sufficient to obtain the main result (or the afore-

mentioned consequences). This is shown for general spaces by Ciesielski's ex-

ample. His example has the pointed ccc, hence has no uncountable discrete

or Sorgenfrey subspaces, and is not cosmic. However, this example does not

appear to be cometrizable. We can obtain a cometrizable counterexample to ( 1 )
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consistent with MA^ using the notion of an "increasing set" due to Abraham,

and Shelah [AS].

Definition. An uncountable subset A of the real line is increasing if whenever

n G œ and {aa = (aai)i<n'-a < ojx} is a collection of pairwise disjoint (as

unordered sets) «-tuples from A , there exists ß ^ a such that aßi < aai for

all i < n .

It is shown in [AS] that " MAW + 3 an increasing set" is consistent with ZFC;

another proof is given in [ARS].

Now observe that if A c R is increasing, and A is given the right half-

open interval topology, then A™ is hereditarily separable and hereditarily Lin-

delöf, 3 so we have a cometrizable counterexample to Arhangel ' skii's question

consistent with MAW . To prove this, it suffices to prove that A" is hereditar-

ily separable and hereditarily Lindelöf for each n G a>, and the definition of

"increasing" seems almost tailor-made for showing this—so we leave it as an

exercise for the reader.

To get the cometrizable counterexample to the main result (and questions (2)

and (3) on cosmicity as well) consistent with MAö , we use the notion of an

"2-entangled" set.

Definition. An uncountable subset A of R is 2-entangled if there is no un-

countable monotone function / from a subset of A to A with no fixed points.

Shelah showed in [AS] that the existence of a 2-entangled set is consistent

with MA

Now to get our example, let A = {aa = (aa0,aaX):a < o)x} be a collection

of ordered pairs from a 2-entangled set A such that aaj = a„. implies a = ß

and i = j. For a G A , let x G b(a,n) if and only if the Euclidean distance

from x to a is less than 1/2" , and x is either above and to the right of a, or

below and to the left of a . Then it is easy to check that A with this topology

generated by the b(a, n) 's is a semimetric space, and A is hereditarily separable

and hereditarily Lindelöf. It follows that A has the pointed ccc and does not

contain a copy of an uncountable subspace of the Sorgenfrey line. To see that

A is not cosmic, we use Michael's trick. Let A be a topology on A defined

the same way as above, but with the words "left" and "right" interchanged

in the definition of b(a,n). Then A is also hereditarily Lindelöf, but the

"diagonal" in Ax A is an uncountable discrete space. It is easy to check that

the product of a cosmic space and a hereditarily Lindelöf space is hereditarily

Lindelöf—hence A is not cosmic.

3 S. Todorcevic announced this fact at the topology conference in Eger, Hungary, 1983. He

also noticed independently the other examples we give here consistent with MAW| , and recently

he has shown [T03] that the existence of a counterexample to the Main Result is implied by

MA + 2<° / co2 .
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The above construction also provides a negative solution to a problem of

Juhasz. He asks (see [J]) if MAw implies that the pointed ccc property is

finitely productive—it is well known that this is true for the ccc property. Let

A and A be disjoint copies of the spaces defined in the preceding paragraph,

and let X be their free union. Then X has the pointed ccc, but X contains

an uncountable discrete space, so does not have the pointed ccc. The question

remains whether or not PFA (or maybe Martin's Maximum) implies that the

pointed ccc is finitely productive.

We do not know if the main result is valid without the "cometrizable" as-

sumption. This question is related to the question of the consistency of the

following statement, which is also discussed in [G]:

(*) Every uncountable first countable space contains an uncountable metriz-

able subspace or a copy of an uncountable subspace of the Sorgenfrey line.

Since no counterexample to (*) can contain an uncountable discrete space,

this is really a question about hereditarily ccc spaces. It is easy to show that un-

der MAw , every uncountable cosmic space contains an uncountable metrizable

subspace (see §3). Hence our main result shows that (*) holds for cometrizable

spaces, even without the first-countable assumption. Indeed, we do not know

any counterexample to (*) even without assuming first-countability. We has-

ten to point out, however, that S- and L-spaces yield counterexamples to (*)

(consider right/left separated subspaces), so a proof of the consistency of (*)

without first-countability would establish the consistency of no L-spaces, which

is unknown. Another reason for leaving "first-countable" in is that, as shown

in [G], a proof of the consistency of (*) as stated would suffice to solve some

problems on perfectly normal compacta, which is what got us interested in (*)

to begin with. Note that with the first-countability assumption in, PFA implies

that any counterexample to (*) is both hereditarily separable and hereditarily

Lindelöf, since PFA implies there are no ¿'-spaces [To,], and MAœ implies

there are no first-countable L-spaces [Sz].

In §3, we make some further remarks concerning (*), including a proof that,

under MAw , if there is a counterexample to (*), then there is a submetrizable

one, i.e., one with a weaker metric topology. This indicates that if (*) fails in

general, then perhaps the cometrizable result is best possible.

The author wishes to thank Stewart Baldwin and Robert Beaudoin for valu-

able discussions concerning this material.

2. Cosmicity

The purpose of this section is to prove the main result as stated in the intro-

duction. First we establish some preliminary results.

Lemma 2.1.  (MAW ) Suppose X c R,  \X\ = Hx, and the topology x on X

is finer than the Sorgenfrey topology.   Suppose also that there is a countable

Todorcevic presented a  T2 counterexample at the '83 conference in Eger, Hungary.
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collection 7F of closed subsets of X such that, for each xgX , the set

Srx = {Fn[x, -^):xgF gTJ}

is a net at x (i.e., every neighborhood of x contains a member of Tf^).

Then there is an uncountable subset Y of X such that the topology x on Y

is the same as the Sorgenfrey topology on Y.

Proof. Let a be the separable metric topology on X generated by

where % is the Euclidean topology. Let /: (X, W) -* (X, a) be the identity

onl. By [Fr,, 23Af(f)], there is an uncountable Y c X such that / [ Y

is continuous, hence a homeomorphism from (Y,%7\Y) to (Y,o\Y). Then

y G Y and F G 77 implies F D [y,y + e) n Y for some e > 0, so x is the

same as the Sorgenfrey topology on Y.   D

The following lemma is due to D. H. Fremlin [Fr2]. For the sake of com-

pleteness, we give his proof.

Lemma 2.2 [Fr2]. Let X be a second countable space, and suppose UcX has

open vertical (or horizontal) cross-sections. Then there is a finer second-countable

topology on X with respect to which U is open.

Proof. If 778 is a countable base for a topology with respect to which U has

open vertical cross-sections, then the topology generated by 3S together with

the sets B = {x: B c {y: (x ,y) G U}} for B G 77§ is the desired finer second-

countable topology.   □

Lemma 2.3. (CH) Suppose X c R is uncountable, and for each x G X, we have

assigned a set Cx c [x, —►) which is closed in the Euclidean topology. Suppose

also that there does not exist an uncountable Y c X satisfying:

(a) y < y' G Y => y' G Cy .

Then there is a ccc poseí Q such that in VQ, there is an uncountable Z c X

satisfying:
(b) z<z eZ=>z $CZ.

Remark. Originally, we had a direct proof of Lemma 2.3. But Fremlin pointed

out to the author that Lemma 2.2 can be used to show that this lemma follows

form a similar lemma of Abraham, Rubin and Shelah which is used to prove

the consistency of their "semi-open coloring axiom (SOCA)".

SOCA. Let X be an uncountable second-countable space, and let U be a

symmetric open subset of X \A, where A is the diagonal. Then there is an

uncountable Y c X such that either Y2 n U = 0 or T2\A c U.

5 D. H. Fremlin [Fr2] observed that the arguments of this paper can be reworked to show that

our Main Result is implied by a stronger version of SOCA in which the conclusion is that either

X = \Jn£w Y„ such that Y2 n U = 0, or there is an uncountable Y c X with Y2\A c U .

This version of SOCA follows from PFA using arguments in [ARS]. (Except that the size of X is

unrestricted, it is the same as SOCA1 in [ARS].)
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The lemma from which the consistency of SOCA follows by standard argu-

ments is:

Lemma 2.4 [ARS]. (CH) Let X be a second countable space, and let U be a

symmetric open subset of X2\A. If there does not exist an uncountable Y c X

such that Y n U = 0, then there is a ccc poset Q of size N, such that in VQ,

there is an uncountable Z c X with Z'\Ac U.

Proof of Lemma 2.3. Let X and {Cx:x G X} be as hypothesized. Define

U C X \A by putting (x,y) G U if and only if x < y and y £ Cx , or y < x

and x & C . The hypotheses of Lemma 2.3 imply that there is no uncountable

Y c X with Y n U = 0. Now U is the union of a set with open vertical

cross-sections and a set with open horizontal cross-sections. By Lemma 2.2, U

is open in some finer second countable topology. Thus Lemma 2.4 applies, and

Lemma 2.3 follows.   D

Lemma 2.5.     (SOCA) There do not exist cometrizable S- or L-spaces.

Proof. Suppose X is a cometrizable ¿-space. Then there is an uncountable

left-separated subspace {xa:a < a>x} (i.e., xq £ {x„:ß<a} for each a <

tu,). By passing to a subspace if necessary, we may assume X c R and X is

cometrizable with respect to the Euclidean topology. For each a < mx , choose

a Euclidean closed Cx containing xa such that Cx n{x„:/f < a} = 0. Now

a double application of SOCA in the same way that Lemma 2.4 was applied to

obtain Lemma 2.3 shows that there exists an uncountable Y c {xtt:a < a>x}

such that for y ^ y G Y, whether y g C'v or not depends only on whether

y < y or not. But this is easily seen to be impossible. Thus there are no

cometrizable ¿-spaces; the proof that there are no cometrizable L-spaces is

similar.   D

Much of the work of the proof of the main result is done in the following

proposition:

Proposition 2.6. (PFA) Let X be an uncountable cometrizable space. Then X

contains either an uncountable metrizable subspace or a copy of an uncountable

subspace of the Sorgenfrey line.

Proof. Suppose (X,x) is a counterexample. Then X has no uncountable dis-

crete subspaces, hence any weaker metric topology is separable. So by passing

to a subspace if necessary, we may assume X c R and X is cometrizable with

respect to the Euclidean topology.

6 For the proof of the Main Result, one could just as well use the fact that there are no cometriz-

able S- or L-spaces under MA,U| . This fact was noticed independently by J. Chaber and S.

Todorcevic, the latter of whom pointed out that this follows directly from Lemma 13 in [T02].
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Let t+ (resp., x~ ) be the topology on X generated by x together with the

right (resp., left) half-open interval topology. Since no uncountable subspace of

X is metrizable or Sorgenfrey, either

(i) no uncountable subspace of (X,x+) is Sorgenfrey or discrets; or

(ii) there exists an uncountable X' c X such that no uncountable subspace

of (X1 ,x~) is (left) Sorgenfrey or discrete.

Without loss of generality, we assume (i).

Let P be a countably closed poset collapsing the continuum c to cox ; then

Ve lh CH. Now our plan is to use CH in V to set up an application of

Lemma 2.3, obtaining a ccc poset Q such that, in VP*Q, (X ,x+) contains

an uncountable discrete subspace. Once we have done this, PFA implies that

there exists in V an uncountable discrete subspace of (X ,x+), because P * Q

is proper and only N,-many dense sets are needed to determine a discrete set

of size N, and the open neighborhoods which witness discreteness. But this

contradicts (i) above.

By Lemma 2.5, since (X, x+) has no uncountable discrete subspaces, (X, x+)

is hereditarily separable and hereditarily Lindelöf in V. We need to know that
, p

(X, x ) remains hereditarily separable and hereditarily Lindelöf in V . This

is done by a standard argument for countably closed forcings. If, for example,

(X, x ) is not hereditarily separable in V , then it contains an uncountable

left-separated subspace Y = {y(t:a < a>x} . Let Y be a name for Y . We can

inductively construct (in V ) sequences {xa:a < cox} c X and {pa'-a < &>,} c

P such that pa < Pg for ß < a, and pa lh xq g Y and xq £ {xß:ß < a}.

Since a basis for (X ,x+) in V is also a basis in V , we see that {xa:a<a>,}

must be a left-separated subspace of X in V , and we have a contradiction.

Since P is countably closed, any eosequence of elements of V in V is

in fact in V. Thus in V , there is no countable collection 7F satisfying the

conditions of Lemma 2.1 : otherwise, each F g 7? , being the complement of

a countable union of members of a base for x+ , would be in V , so 77 itself

would be in V.

Still in F , let {Za:a < <y,} enumerate all countable subsets of X . Induc-

tively choose xn G X and a Euclidean closed neighborhood Cx c [xn, —►) of

x   such that:
a

ß<a=>(xnt Zß or Zß n [xa , -») ç CJ.

This can be done because {Zß:ß < a} cannot satisfy the conditions of the

collection 77 of Lemma 2.1.

Let X' = {xit:a < tox}. We show that {Cx:x G X1} satisfies the conditions

of Lemma 2.3. Suppose Y c X is uncountable, and y < y' G Y implies

y' 6 C'. For some ß < cox , Zß is a dense subset of Y . Choose xa G Y with

a > ß. Then x ( G Zß , and Zß n [xa, -►) C Cv ,soZßn [Xa, -*) C Cx ,

which contradicts the way the Xa 's and Cv 's were chosen.
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Thus there is a ccc poset Q such that in VP*Q there is an uncountable

Z c X' such that z < z G Z implies z G Cz. This means (Z,x+) is

discrete. So PFA implies that in V, (X ,x+) contains an uncountable discrete

subset (as we discussed earlier), which is a contradiction.   D

Proof of Main Result. Suppose X is cometrizable, with no uncountable discrete

subspace and no countable network. Our aim is to show that X has an uncount-

able weakly separated subset Z ; i.e., there are neighborhoods {Uz:z g Z} such

that, for z ,z gZ , z G Uz and z ± z implies z £ Uz , or z & Uz. Then no

uncountable subspace of Z is metrizable, so by Proposition 2.6, Z contains a

copy of an uncountable subspace of the Sorgenfrey line.

Let P be a countably closed poset collapsing c to tax. As in the proof of

Proposition 2.6, X remains hereditarily separable and hereditarily Lindelöf in

V . One also easily shows that X cannot have a countable network in F , or

it would in V, too.
p

In V , let {Za:a < cox} index all countable subsets of X, and inductively

choose xq G X and a metric-closed neighborhood Cx of xa such that: "there

does not exist ß < a with xa G Zß c Cx ". (We can do this because {Zß:ß <

a} is not a network for X.)

Let X = {xa:a < cox}. By passing to a subspace if necessary, we may

assume that X' c R ; and each Cx n X', x G X', is Euclidean closed.

Claim. There is an uncountable Y ç X1 such that either

(i) no uncountable Z c Y satisfies " z < z g Z => z G Cz "; or

(ii) no uncountable Z c Y satisfies " z < z G Z =>• z G Cz, ".

To see the claim, if taking Y = X' does not work, take an uncountable

Z c X' satisfying the condition of (i), and let Y = Z . This Y satisfies (ii),

for if W c Y satisfies the condition in (ii), then

"W¿w'GW=>WGCwr,

so Cw D W for each w G W. Now some Z„ is dense in W, and if xa G W

with a > ß , then xq G Z „ c Cx , a contradiction.

Now by Lemma 2.3, there is a ccc poset Q such that in V , there is an

uncountable Z c Y so that either

(iii)   z < z G Z =>• z £ C, ; or

(iv)   z < z' G Z —► z £ Cz,.

In particular,

"z # z G Z =► z' g Cz or z g Cz,".

Since P * ß is proper and PFA holds, such an uncountable set Z and

assignment {Cz:z G Z} exists in V. The proof is completed as discussed

earlier.   D

We now show that the main result holds for a somewhat different class of

spaces.   This class of spaces is more general than the "butterfly spaces" of



COSMICITY OF COMETRIZABLE SPACES 309

D. Burke and E. van Douwen [BvD]. In their paper they make a statement

weaker than

"In ZFC, there is probably no semimetrizable Lindelöf butterfly space which

is not cosmic."

The next proposition shows that their hunch was correct.

Proposition 2.7. (PFA) Let X be a space having a weaker metrizable topology

such that for each point x G X, the collection {U: U\{x} is metric open} con-

tains a base at x. If X contains no uncountable discrete subspace and no copy

of an uncountable subspace of the Sorgenfrey line, then X is cosmic.

Proof. The proof follows in the same way as the proof of the Main Result, using

the next lemma in place of Lemma 2.1.

Lemma 2.8. (MAw ) Suppose X c R, \X\ = #X, the topology x on X is finer

than the Sorgenfrey topology, and each point x G X has a base of sets of the

form U such that U\{x} is Euclidean open. If there is a countable collection

77 of closed subsets of X such that, for each x G X, the Euclidean closure of

any given neighborhood of x contains a member of

{Fn[x, ->):xgFg77},

then there is an uncountable Y c X such that the topology x on Y is the same

as the Sorgenfrey topology on Y.

Proof. As in the proof of Lemma 2.1, there is an uncountable Y c X such that

the Euclidean closure of each neighborhood of y G Y contains [y ,y + e)r¡Y

for some e > 0. It is not difficult to use 7 to show that X is hereditarily

separable and hereditarily Lindelöf. Thus we may assume that Y is N, -dense

(with respect to t).

Using the facts that (X, x) contains no uncountable discrete subspaces, and

that each x G X has a base of neighborhoods of the form U with £/\{x}

Euclidean open, it is easy to check that

\cl^(A)\clT(A)\ < N0

for any A c X. It follows that the t-closure of each neighborhood of y G Y

contains \y ,y + e)C\Y for some e > 0, and so by regularity the topology x on

Y is the same as the Sorgenfrey topology.     D

As the reader is probably aware, the consistency of PFA implies the con-

sistency of large cardinals, hence PFA cannot be proven consistent from ZFC

alone. Thus any result obtained under the assumption of PFA begs the question

of whether a large cardinal assumption is really necessary, i.e., can the result

be shown consistent assuming only the consistency of ZFC. In a letter to the

author, S. Todorcevic showed that large cardinals are not necessary. With his

kind permission, we outline his argument here.

The appropriate model is obtained from a model of CH plus

<0>w {ô < œ2:cfô = a»,}, via a finite support iteration  (Pn,Qa:a < a>2)  of
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ccc posets of size Nt . As we shall see, the diamond principle will allow us to

carry out a kind of reflection argument in which supposed counterexamples in

the final model get destroyed at some earlier stage.

At successor stages, force with ccc posets that will result in MA and SOCA

holding in the final model. At stage ô with cf ô = œx , suppose 0 gives us a

/'¿-name for a hereditarily separable and hereditarily Lindelöf space X with no

countable network which is a subset of R and is cometrizable with respect to

the Euclidean topology. (Of course, we are using an appropriate coding of the

diamond principle.)

If X contains an uncountable subspace Z whose topology is finer than the

left or right Sorgenfrey topology, but there is no countable collection of closed

sets satisfying the conditions of Lemma 2.1 with respect to Z , then the proof

of Proposition 2.6 shows that there is a ccc poset Qxs which forces Z to have

an uncountable discrete subspace. (Note that CH holds in Vp".) If on the

other hand X does not contain any subspace Z whose topology is finer than

the left or right Sorgenfrey topology, then the proof of the Main Result shows

that there is a ccc poset Qä which forces one. We let Qs = Q's, whichever

applies; if neither applies, let Qs = {1}.

Now suppose that in V t°2 we have a cometrizable counterexample X to the

Main Result. We may assume that X is a subset of R and is cometrizable with

respect to the Euclidean topology. Since SOCA holds, we may also assume X is

hereditarily separable and hereditarily Lindelöf (MAM suffices—see footnote

6).

Let {xa:a < 8}, where 6 G {œx ,œ2}, be a one-to-one enumeration of X,

and let {Fß:ß < 6, a < X}, where X G {tox,co2}, enumerate closed subsets

of R such that {Fß n R: a < X} is a neighborhood base at xß . Note that

there are club many <5's in œ2 of cofinality cox such that {xß:ß < 6 nö},

{Fß:ß <dno,a<Xnö} is a Pj-name for a cometrizable space. Since

CH holds and we are forcing with ccc posets of size N1 , and since X has

no countable network, there are club many ô < a>2 of cofinality o)x with the

following property N :

(N) For every Péname (Hn: n < to) for a countable sequence of Euclidean

closed sets, there exist ß G 6 <la, aslnJ, and {yn: n < of} c 8 n S such

that x« ,x (n < to), Fß are all /¿-names and Ps forces that x G Hn\Fß

whenever xß G Hn .

Thus for club many S 's, X\ö is a /¿-name of a cometrizable space with no

countable network; stationarily often, this will be what C" gives us.

Now we see that X must contain an uncountable subspace Z with a topology

finer than the left or right Sorgenfrey topology, for otherwise we would have
p

forced this at some stage. Since MA,, holds in V '"2 , there is no countable

collection 7 of Euclidean closed sets satisfying the conditions of Lemma 2.1
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with respect to Z . As above, for club many ô < co2 of cofinality cox the same

will be true for Z\6. But then at some stage we will have forced Z , and hence

X, to have an uncountable discrete subspace. This contradiction completes the

proof.

One can also use the above technique to show that the consistency of the

version of SOCA stated in footnote 5 follows from Con(ZFC).

3. Some remarks on (*)

In this section we make some further remarks concerning the consistency of

the statement:

(*) Every uncountable first countable space contains an uncountable metriz-

able subspace or a copy of an uncountable subspace of the Sorgenfrey line.

Since a ZFC counterexample to (*) is likely to be hereditarily separable and

hereditarily Lindelöf (see the Introduction), one might begin by asking whether

(*) holds for the class of cosmic spaces. Since no uncountable subspace of the

Sorgenfrey line is cosmic, we are asking if every uncountable (first countable)

cosmic space contains an uncountable metrizable subspace. The next result

shows that this is consistent with and independent of ZFC.

Theorem 3.1. (a) (MA ) Every uncountable cosmic space contains an uncount-

able metrizable subspace.

(b) (CH) There is an uncountable first-countable cosmic space with no un-

countable metrizable subspace.

Proof, (a) This is easy, and has been noticed before by Junilla and probably

others. Let (X ,x) be a cosmic space of size N, . Let ax be the separable

metric topology on X generated by a countable network. X also has some

weaker metric topology o2 .

Let   f:(X,a2)   —>   (X,ax)   be the identity on the set   X.     By   [Fr,,

23A/(f)], there is an uncountable Y c X such that f\Y is continuous. Then

ox, a2, and x agree on Y.

(b) This follows from the next two lemmas. Let X be any first-countable

nonmetrizable cosmic space of size N, . By Lemma 3.3, Xe" is not a countable

union of metrizable subsets, so by Lemma 3.2, there is an uncountable Y c X

such that no uncountable subspace of Y is metrizable.

Lemma 3.2. (CH) Suppose X is hereditarily separable, of size and weight < N,,

and suppose X is not a countable union of metrizable subspaces. Then there is

an uncountable Y c X such that no uncountable subset of Y is metrizable.

Proof. Let {Xa:a < cox} index all countable subsets of X, and let {Ba:a <

cox} be a base for X. Also let 7%a = {Bß: ß < a) , and if A c X, let

^JA = {BnA:BG^J.
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For a < œx, inductively choose xa £ {xß:ß < a} such that, if ß < a and

xa G Xß , then ¿&a\Xß u {xq} does not contain a base for xa in the subspace

Xß U {xj ■

We claim that such an xa always exists. If not, for each x G ̂ \{x„: ß < a}

let y?x < a be such that x G X^ and 7%a\Xß u {x} contains a base for x

in X„ U {x} . Then {x: ßx = ß} is metrizable, so X is a countable union of

metrizable spaces, contrary to our hypothesis.

Let Y = {xa:a < cox}. Suppose A c Y is uncountable and metrizable.

Then A is separable metric, so 77§\A is a base for A for some y < cox . Also,

some X„ is dense in A. Let a > ß u y such that xa G A. Then xa G X7

and ¿8a\Xß u {xa} contains a base for xq , which contradicts the way xa was

chosen.   G

Lemma 3.3. If X is not metrizable, then Xw is not a countable union of sepa-

rable metrizable subspaces.

Proof. Suppose X is not a metrizable space, but Xw = \Jn€(0 Mn, where each

Mn is a separable metrizable space.

Let 7tk:Xw —► X be the projection. Choose, if possible, n0 G a> and ct0 g

Xn° such that o0 £ nn (M0). Then choose, if possible, nx > n0 and ox G Xn¡

such that ox\n0 = o0 and ax & nn (Mx). This cannot go on indefinitely, or

we would have defined a point not in M £ M . So there exists n. G co and

ok G X"k such that, if n > nk , a G X" , and a\nk = ak , then a g nn(Mk).

Let Y = {x G Mk:x\nk = ok}. If U:XW —» X is the projection onto the

«¿.th coordinate, then n|7: Y —► X is open. Y is separable metric, so X is

too, a contradiction.    D

As mentioned in the introduction, the consistency of (*) would imply the

consistency of

"Every uncountable first countable space contains an uncountable submetriz-

able subspace",

and we do not know if even this is consistent. However, we have the following

result:

Theorem 3.4. (MAW ) If there is a counterexample to statement (*), then there

is a submetrizable one.

Proof. Suppose (X, x) is a counterexample to (*), with |A"| = N, , and suppose

also that X contains no uncountable submetrizable subspace. We may assume

X c R (as a set). Let f be the topology on X generated by x together with

the Euclidean topology.

We claim that (X, y) is also a counterexample. First of all, (X, y) contains

no uncountable discrete subspaces, for otherwise (X, x) would, too. Now sup-

pose (X, x) contains an uncountable (separable) metrizable subspace X'. Then
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(X', x) is cosmic, so contains an uncountable metrizable subspace by Lemma

3.1.
Finally, suppose Y c X is uncountable, and (Y ,x) is homeomorphic to an

uncountable subspace of the Sorgenfrey line. Applying [Frt, 23A/(f)] as in

the proof of Lemma 3.1(a), we may assume that the separable metric topology

on Y with respect to which (Y ,x) is Sorgenfrey is the same as the Euclidean

topology.

We aim for a contradiction by showing that ( Y, x) contains an uncountable

submetrizable subspace. Let 7771 be a countable base for Y with the Euclidean

topology f . For y G Y, let

Cy = {y g Y: y G clrB whenever y G B G 38}.

Note that C   is Euclidean closed.

Claim.  C   is countable.

If \Cy\ > N0, let y G Cy\{y} be a f-limit point of C . Let U be a f-

neighborhood of y such that U\{y'} is Euclidean open and y & clT(C/). Pick

y" G (U\{y'}) n Cy . Then y" g B c U for some B G 38 ; but y <£ c\B, which

contradicts y" G C .

According to [Fr, , 42D], under MA^ there exists an uncountable Y1 c Y

such that

yx / y2 G Y' => yx & clTB for some B G 38 containing Y2.

Now for y gY' , let

Dy = {y g Y1: clxB n clTC ¿ 0 whenever y g B g38 and y' gC g38}.

Claim. clg.(Dy) is countable.

If not, let y G &%(Dy) such that y ^ y and y is a f-limit point of clr(Z) ).

Let y G B G 38 such that y & clT B. Choose a î-neighborhood U of y such

that U\{y'} is Euclidean open and clT U n clTB = 0 (use the regularity of x

here). Since (U\{y'}) n clf{Dy) ± 0, we can pick y" G (U\{y'}) n £>y . Then

y" G C c U for some CeJ, and clTC n cl^B = 0, a contradiction.

By the claims, assuming MAW we can pass to an uncountable X" c Y1

such that distinct points of X" have Euclidean neighborhoods with disjoint

T-closures. We may assume that X" = {xa:a < œx}, that \B n X"\ = N, for

each B g 38 , and that 38 is closed under finite unions.

Let (P, <) be the poset consisting of all pairs (77, F), where 7 g [&]<h°

and F G [X"]<H° satisfying:

(i)   (F, d) is isomorphic to an initial part of the Cantor tree <w2 of the

form <n2, for some n G œ ;

(ii) If B, B' g 7 are on the same level, then clTB n clr2?' = 0 ;

(iii) Each x G F is in the intersection of some branch of {7, D).
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We define (7' ,F') < (7 ,F) iff 7' D 7 and F' D F.

Since [&]<H° is countable, it is clear that (P, <) is ccc.

For a < ojx , let

Da = {(7,F) G P:xß G F for some ß > a},

and for x G X", let

Ex = {(7, F): x $ F or B n F = {x} for some B G 7}.

Clearly the Da 's and Ex 's are dense. Let 3? be a filter meeting them all, let

Z = \J{F:(7 ,F) g S? for some 7 c 38},

and let

g? = \J{7: (7, F) g 7 for some F c X").

Then (W, d) is isomorphic to a Cantor tree, and each y G Y is in the intersec-

tion of some branch. Since & meets each Ex , the intersection of each branch

contains at most one point of Z . By property (ii), each CnZ for Ce? is

T-open and Euclidean closed. Hence {CnZ:C gW} is a base for a metrizable

topology on Z with respect to which (Z ,x\Z) is cometrizable.   D
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