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AN HNN-EXTENSION WITH CYCLIC ASSOCIATED SUBGROUPS
AND WITH UNSOLVABLE CONJUGACY PROBLEM

JODY MEYER LOCKHART

Dedicated to memory of William Werner Boone

Abstract. In this paper, we consider the conjugacy problem for HNN-

extensions of groups with solvable conjugacy problem for which the associated

subgroups are cyclic. An example of such a group with unsolvable conjugacy

problem is constructed. A similar construction is given for free products with

amalgamation.

1. INTRODUCTION

It is known that an HNN-extension of a group with solvable conjugacy prob-

lem may have unsolvable conjugacy problem. Some restrictions placed on the

type of HNN-extensions force the conjugacy problem to be solvable. In this

paper, we investigate HNN-extensions with infinite cyclic associated subgroups.

That is, we consider HNN-extensions of the form

G = (H,t;t~xat = b),

where a,b G H are of infinite order. We also consider the analogous situation

of free products with cyclic amalgamated subgroups.

The conjugacy problem for HNN-extensions and free products with amalga-

mation of this type has been considered by M. Anshel and P. Stebe [1], L. P.

Comerford and B. Truffault [2], R. D. Hurwitz [3], and S. Lipschutz [4], among

others. All obtained results giving conditions which guarantee that such groups

have solvable conjugacy problem.

In this paper, we approach the problem from the opposite direction. An

example of an HNN-extension G = (H,t;t~ at = b) where H has solvable

conjugacy problem, G has solvable word problem, but G has unsolvable conju-

gacy problem is constructed. A similar example is given involving free products.

In §2, we show the existence of a one-to-one recursive function /: N —► N

with nonrecursive range such that Sn = {f(kn): k = 1,2,...} is recursive for
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each n = 2,3, ... . In §3, we use the function / to construct group presen-

tations H and G, each with a recursive set of generators and a recursively

enumerable set of defining relators. H has the following properties.

(i)   H has solvable conjugacy problem;

(ii)   H has an infinite cycle subgroup (d) such that

(a) there is no algorithm to decide if an arbitrary W in H is conju-

gate to an element of (d) ;

(b) the problem of membership in (d) is decidable;

(iii) If W g H then W is not conjugate in H to W~x .

Let G = (H,t;t~ dt = d~ ). The group G has solvable word problem by

(ii)(b). Straightforward arguments show that for any W g H, W is conjugate

to W~ in G if and only if W is conjugate in H to an element of (d). Thus

G has unsolvable conjugacy problem.

We then use the standard HNN embedding into a two-generator group to

obtain the result for recursively presented groups. Free products with amalga-

mation are also considered.

§4 contains the proofs of some assertions used but not proved in §3.

2. The function /

In this section, we prove the existence of a recursive function / with certain

special properties.

Lemma 1. There is a one-to-one recursive function f:N —► N with nonre-

cursive range such that Sn = {f(kn): k = 1,2,...} is recursive for each

« = 2,3,4, ... .

Proof. Let g be any one-to-one recursive function with nonrecursive range.

Let Pj be the fth prime number. Define / by

ft i \ i       /"/    a\     ai an \ <*1 (*2 Oty Ottj

7(1) = 1 ,/(/>,, Ph •••/>,„)= Pg{h)PgUl]+l2Pg{il)+h ■ ■ ■Pga^u

where z, < i2< ■■■ < in. The function / is clearly recursive.

We next show that / is one-to-one. Suppose

/..   qi    a-, an, /•/   ß\    /?"> ßm \

f(P    P   ' • ■ • P     ) =  f(P    P      ■ ■ -P      )■J v*/, r,2       yln i      j \yJ] yj2       rJm i

Then
a | «2 n« _      ßl ßl ßm

Pg(i\)Pg(i\) + h ' ' 'PgUt) + ir,   ~ Pg(jl)Pg(jû+J2  ' ' 'PgUi)+Jm'

Since g(ix) < g(ix) + i2< g(ix) + z3 < • • • < g(ix) + in and

g(Ji ) < g(J\ ) + h < SU\ ) + 7) < • • • < g(Ji )+Jm>
it follows that

g(i¡) = g(J¡), g(i¡) + h = g(j\) +J2, ••• »£(»'i) + in = gUi)+ Jn'

Therefore, m = n and ik = jk and ak = ßk for all k = l, ... ,n. Hence,

Oi     a; a„ ßt     ßl ßm

p. p.   •••p.   = p   p    ■ ■ p    .fl¡ ^12 yl„ yJ\ yJl yj„,
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Now consider the range of /.

' iff/?, = f(p7¡ for some j ,

p¡ G range fl iff p, = pg(j) for some j,

i iff i G range g.

Since the range of g is nonrecursive, the range of / is nonrecursive.

Next consider Sn where n is prime. We claim that

PhPh-Pit   €SP,

if and only if

(i)  7, = <?(0 and y, >;',_,>•••> ;2 > /', + / ; or

(ii)  ;'| = /?(*') for some i' < i,j)> ■■■ > f2 > jx + i , and js - j\ = i for

some s between 2 and /.

It follows immediately from the claim that Sn is recursive if n is prime.

We now prove the claim. First assume that pTpV ■•P°¡1 is in Sn . Then

paipa2---pai =f(pß'pß2---pßl)

yj¡ F ¡2 yjl J Xy'l  y>2 y'l   '

for some pf'pß2--pßl  where i. < L < ••• < i, and i = i, for some t =
l\       l2 ll I . * ' t

I, ... ,1. There are two cases to consider: ( 1 ) t = 1 and (2) t > 2.

Case (I). If

then
„ai nai na< nßl     T.&2 „ßl

PhPh ''Pit =Pg(i)Pg(iAi2---pg(i)+il-

Therefore, jx = g(i) and j2 > jx + i ; that is, (i) holds.

Case (2). If

then
Ot]      Cti Q/ ß\ ßl ßt ßl

Ph Ph   ' '    Pjl    = Pg('l)Pg(h) + Í2 ' ' 'Pg(h) + i ' ' 'Pg(ix) + i,'

Therefore, jx = g(ix) for some ix < i, j2 > jx + ix, and i = j( - /, for some

t between 2 and /. That is, (ii) holds.

Now suppose n = p"'p"2 •••/>?' satisfies (i) or (ii). We will show that n G Sp. .

Suppose « satisfies (i). Let tm = jm- jx for m = 2, ... ,1. Therefore, (i)

gives t¡ > t¡_x > ■ ■■ > t2> i. We have

J(P¡   Ph Ph   •••Pt¡)- Pg{i)Pg(i)+t2P'g'i)+t} ' ' 'Pg(i)+t,
a I    a-,    otx oti= P    P    P      ■■   P-  .

yJ\ y}2 yJi yJl

Hence, n G S„
Pi

Suppose n satisfies (ii).   Let tm = jm- jx  for m = 2,3,...,/.   Then

t¡ > t¡_x > • • • > t3 > U > ? where g(i') = jx. Therefore,

ri   ci\   a?   as Q/v a\       0:2 oti

f{p¡. p,;ph •••/>,,)= pg{npg{n+t2 ■ ■ -Pgw+t,
ai    a2 cxi= P    P      • ■ ■ P -

y)\ y)2 yJl
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and since js - jx = i for some s, we have ts = i for some s.  Therefore,

n G S. This completes the proof of the claim.

To complete the proof of the lemma, we need to show that Sn is recursive

if n > 1 and n is not prime. Let p be any prime divisor of n . Then, x G Sn

implies x G S . To determine if x G Sn , first determine if x G S . If not,

then x £ Sn . If so, we can effectively find the unique number a such that

x = f(ap). If n divides ap then x GSn. Otherwise, x g Sn .   G

3. The groups

In this section, we give an example of a recursive group presentation N with

solvable conjugacy problem and with infinite cyclic subgroups Ax and A2 such

that the HNN-extension of G associating Ax and A2 has unsolvable conjugacy

problem.

If Wx and W2 are words, we use Wx = W2 to mean that W{ and W2 are

identical words,  Wx = W2 to mean that Wx and W2 are equal as elements

of the group G,  W. = W7 to mean that W.  and W7 are freely equal, and
Fr

Wx ~ W2 to mean that Wx and W2 are conjugate as elements of G.
G

Let / be the function of Lemma 1 and let

c/(<)tl — (Xx , Zj ,X2 , Z2, . . . ,   Zj    Xj-,j,Zj — Z x    X|Z|,   (I — Z , j ,H , . .. )).

We begin with some definitions.

Definition. If W = x"1 z, ■•■ Xe*"z¡  , where a, , ß,   are integers, then W is
'I        71 ln       Jn K K

said to be in condensed form if ßk = 0 implies ik ^ ik+x and ak = 0 implies

Definition. If W = x"'zß[ ■ ■ ■ x"azßn, where a.,ß,   are integers, then  W is
l\       J\ ¡n      Jn K K

said to be reduced if

(i)   W is freely reduced;

(ii)   is Í f(Js-i) for s = 2,3, ... ,n, is ¿ f(js) for í = 1,2,... ,n and

i'l # f(J„) ; and
(iii) no nontrivial subword of W or of any cyclic permutation of W equals

1 in H.

Notice that the free group presented by

B = (XjU & range/) ,xx,zx ,z2, ... ; )

is isomorphic to the group presented by H.

We first show that H has solvable word problem from which it follows that

there is an effective procedure to determine if a word is reduced.

Lemma 2.  H has solvable word problem.

Proof. Assume W = xa' zßl ■ ■■ xa"zß" is freely reduced and in condensed form.
J 'I       Vl ¡n       Jn

= 1  if and only if W =
H B

If ix, ... , in are not in the range of /, then W = I  if and only if W = 1



HNN-EXTENSION 337

generality, that a' ^ 1. By Lemma 1, Sa, is recursive. Determine if i G Sa,.

If not, then (ii) is not satisfied. If so, effectively find a = mo' with i = f(a).

The only possible value for b then is (aa)/o. If j = f(aa/o), then (ii) is

satisfied. Otherwise, (ii) is not satisfied.   G

Theorem 1. There is a group presentation H with a recursive set of generators

and a recursively enumerable set of defining relators with solvable conjugacy prob-

lem and an HNN-extension G of H associating infinite cyclic subgroups of H

that has unsolvable conjugacy problem.

Proof. Let H = (xx,zx,x2,z2, ...;z~lxf(i)zi = z~xx\zx (i = 2,3, ...)) be

the group of Lemma 4 and let

G = (H,t;t~ z\~ xxzxt = z~ xx~ zx).

Note that z7 x.z.  has infinite order.  We claim that x. ~ x~x  if and only
'Il J     Q        J

if j G range of /, from which it immediately follows that G has unsolvable

conjugacy problem.

We now prove the claim. If j g range of /, then in G
_ —1   n       —1        -in -l   -n

Xj =Xf(n)~ ZnZ\   X\Z[Zn    ~Z\   X\Z\~Z\   X\    Z\

-1    -n        -1 -1    _     -1

~Z«Z1    X\     Z\Zn     =Xf(n)=Xj    ■

If x, ~ x~  , then using the facts that x,,  x~   G H and G is an HNN-
J      Q J J J

extension of H, either

(i)  Xj~x~l,or

(ii) there is a sequence of words VX,V2, ... ,V2   with x¡ = Vx and xj  =

V2p such that V2j+X ~ V2j+2 for j = 0, ... ,p - 1 and, for each / =

I, ... ,p - I, there is an e = ±1 with t~cV2jt£ = K+1.

We will first show that (i) is impossible. If j & range/, then x ~ xj   if

and only if x, ~ x~   which is clearly impossible. If / = f(n), then
J Fr    J

■a- —1    n -1 —1    — n -1
„  xnzz.   x.z,z„   ~ zz,   x,   z,z„

n   i       i    i   n    pr    n   \ in
X;   ~   X;

1 H    J     \   iffx",   ~X7"
1  Fr"\

-1
which is impossible since n ^ 0. Therefore, if x¡ ~ x,   , (ii) must occur and

J  G     J

so x. must be conjugate in H to an element of the form z~xxxzx where n is

some integer. If / 4. range / and x, ~ z\  x?z., then x ~ z7Xxn,z, which is
' H     '        '     ' J Fr     '        '     '

impossible. Therefore, x ~x_1 implies that j G range/,   a
J  G    •*

We mention without proof that G has solvable word problem.

We now extend the above result to recursive presentations by using the stan-

dard HNN embedding into a two-generator group and checking that the appro-

priate properties are preserved.
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Lemma 5. Let H = (hx ,h2, ... ;sx,s2, ...) be a presentation with a recursive

set of generators and a recursively enumerable set of defining relators such that

(i)   H has solvable conjugacy problem;

(ii)   h^l for all i= 1,2,3,...;
(iii)   h^hjforall i¿j, i,j = 1,2,3, ... ; and

(iv) there is an algorithm which given a word W of H decides if W = h\hà

for some i, j = 1,2, ... and some s, ô = ±1 or 0 and, if so, which

ones.

Let F = H*(a,b) and

N=(F,t;t~xat = b, fxb~'ablt = h^'ba  (i = 1,2, ...)).

Then N has solvable conjugacy problem.

Proof. It is known that N has solvable word problem. Let Gx be the group

generated by {a,b~'abl (i = 1,2,...)} and let G2 be the group generated

by {¿z,/z(£i_'¿za' (i = 1,2,...)}. Let (¡> be the isomorphism from Gx to G2

defined by 4>(a) = b and 4>(b~lab') = hta~lbal for i = 1,2,... . We need the

following assertions whose proofs will be delayed until §4.

(1) There is an algorithm to decide if elements of Gx LiG2 are conjugate in

N.

(2) There is an algorithm to decide, given V g F , if V is conjugate in F

to an element of C7, u G2 and, if so, to find such an element.

(3) There is an effective procedure to determine, for arbitrary X, Y G F,

if there is a Z G G2 such that XZY G Gx and, if so, to produce the

finite number of possible Z .

(4) If X, Y G F - G2 , DgG2 is reduced, and XDY g G2 , then #b(D) <

#b(X) + #b(Y) + 2, where #b(A) is the number of occurrences of the

symbol b in the word A .

Since ¿-reduction is effective, we may assume that we are dealing with cycli-

cally /-reduced words and we may consider the base and nonbase cases sepa-

rately.

Base Case. We first consider conjugacy in N of elements of F. Suppose

U , V G F .By Collins' Lemma, U ~ V if and only if
N

(a) U ~ V ; or

(b) there exist words Wx, ... ,Wk such that U ~ Wx ~ W2 ~ W3 ~ • • • ~

Wk ~ V where Wx, ... ,Wk gGxuG2 and ~ indicates conjugation by

t or t~X .

Case (a) can be decided since F has solvable conjugacy problem. Case

(b) holds if and only if there exist  W , Wk g C7. u G2 such that  U ~ Wx ,

V ~ Wk , and   W{  ~  Wk .   By assertions ( 1 ) and (2) this can be decided.
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NonbaseCase. We now consider conjugacy in AT of elements of N—F. Assume

that

U = */' • ■xmte"xm+l    and V = y/' ■ -ymt*»ym+l

both cyclically i-reduced. We consider three cases:

(i)   m = 1 ;

(ii)   m > 1 and the e¡ do not cyclically alternate; i.e.   em = ex or there is

an i, 1 < i < m - 1, such that e. = e(+1 ;

(iii)   m > 1 and the e;. do cyclically alternate.

First consider (i); m = 1. By Collins' Lemma, we may assume that U = xt;

V = yt; and U ~ V if and only if there is a C gG2 such that C~ xiC = yi.

But C~xxtC = yt implies that t~x y~x C~x xtC = 1. Therefore, x and y G F,
N n

C~x G G2, and y~xC~xx G Gx . By assertion (3), there are only finitely many

possible C and they can be effectively found. Since N has solvable word

problem, C~xxtC = yt can be effectively tested for each possible C and so
N

U ~ V can be decided in case (i).
N

Now consider (ii); m > 1 and the e( do not cyclically alternate. We may, by

Collins'Lemma and by using U~x and V~ instead of U and V if necessary,

assume that em  . = em = -1 and xm,, = v   ,, = 1 . Then U ~ F if and only
/n—l m w+i       ■'m+i ,y «*

if there is a C G C, such that

(*) c   xlt,--x„f_lt   xmt    Ctymtym_x---t    yx    = 1.

By considering the first two i-pinches on the left-hand side of (*), one ob-

tains that C~'t/C = V implies xm4>(C)y~x G Gx . Therefore, any conjugating

element C has the properties

(a) 4>(C) G G2 and (b) x„<KC)y-1 G Gx .

By assertion (3), there is an effective procedure that will either determine

that no such C exists or produce a finite list containing all C satisfying (a)

and (b). As in case (i), U ~ V can be decided.
N

Now consider (iii); the e( cyclically alternate. We may, without loss of

generality, assume that

V = yxty2t~Xy^ty,t~X ■■■yn_xtynrx ;

n is even; and U ~ V if and only if there is a C G G. such that C~XUC = V.
N ' N

Define the homomorphism p:F —> (a,b) by p(h) = 1 for all h G H,

p(a) = a and p(b) = b. Define the homomorphism x:F -* F by x(h) = h
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for all h G H, r(a) = b , and r(b) = a . Now,

C~XlfC = V ^C~Xx.txA~X ■ ■ ■ xt~xCty~xt~Xy~X, ■ ■ ■ t~Xy7X = 1
N l     i n J n Jn—\ '     JV

=>

C~Xxx(p~x(x2(p(x^---(p(xn_x(p~X(xn(p(C)y7x)y7x_x---y7x)y2x)y7X = 1
r

p(c~X xx(p~X (x2(p(x^- ■ ■ (p(xn_x4>~x (xn(p(c)y7x)y~x_x- ■ ■ y7x)y~x)y7x)   =   1

C'XUXC  =   U2, where Ux = p(xx)(zop)(x2)p(x^)(xop)(x ) ■ ■ • (to p)(x)
(a,b)     í ' ' L J H "

and U2 = p(yx)(r o p)(y2)p(y3)(r o p)(y4) .-.(to p)(yn)

C   =   WmD, where D and W are words on {a,b\ suchthat D~XU,D   =
(a,b) '       (a,b)

C/, and U.   =   W   for some k.

Since such W^ and D can be effectively found, it remains only to find a bound

for m. For then we will have effectively found the finite number of possible

conjugating elements and each can be tested. We know that xn ,yn g G2 for

otherwise U, V would not be reduced. If C~XUC = V, then <j>(C) g G2 and

xn<t>(C)ynl € C72. By assertion (4), #b(<j>(C)) < #b(xn) + #b(yn) + 2. Hence, a

bound for m can be found completing the proof for case (iii).   a

Lemma 6. Let H and N be as in Lemma 5 and suppose G = (H ,v ;v~ dv =

e) has solvable conjugacy problem where d and e are elements of H of infinite

order. Let L = (N ,v ;v~xdv = e). Then L has unsolvable conjugacy problem.

Proof. We first show that, for yx, y2 g H, yx ~ y2 if and only if yx ~ y2 . The

statement is clear from left to right. If yx ~ y2, then either

(1) v,~v2 or

(2) y.~W.~W7~W%-Wn ~ y7 .w    ''f       '(       2 F       3Í t       » F     2

If (1), then clearly yx ~ y2. If (2), then yx ~ U G Gx U G2. This is impossible

unless yx = 1 in which case y2 = 1 and yx ~y2.

We will next show that, for Vx,V2gG,  Vx ~ V2 if and only if Vx ~ V2,
G L

thus showing that L has unsolvable conjugacy problem. The statement from

left to right is clear. Suppose that VX~V2. We may, without loss of generality,

assume that Vx and V2 are v -reduced in G.

If Vx,V2gH, then either

(i)   F¡~K2;or

(ii)   K.-irf" orem)7(em or dm) ~ (/ or e¿) ~ •• ■ ~ F2.
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Using the fact that, for yx,y2GH, yx ~ y2 implies yx ~ y2, both (i) and (ii)

yield Vt-~V¿. Now suppose Vx ~ V2 and Vx,V2gG-H. If Vx ~ V2 then

there are cyclic permutations V[ and F2 of Vx and K, , respectively, with the

same u-structures such that d~ V'd = V2 or e~ Vxe = V2 for some k.

Since all words involved are words of G and since G is embedded in L, one

of the equalities must hold in G. Hence, VX~V2. Therefore, for Vx,V2gG ,

Vx ~ V2 if and only if Vx ~ V2 and so L has unsolvable conjugacy problem,   a
L G

Theorem 2. There is a finitely generated group N with solvable conjugacy prob-

lem and an HNN-extension L = (N,v;v~ dv = e) where d and e are ele-

ments of N of infinite order such that L has unsolvable conjugacy problem.

Proof. Take H and G to be the infinitely generated groups of Theorem 1 and

N to be the group of Lemma 5 constructed from this H. By Lemma 6, L

has unsolvable conjugacy problem. By Lemma 5, to show that N has solvable

conjugacy problem it suffices to verify conditions (ii), (iii), and (iv). (Condition

(i) is already known to be true.)

Condition (ii). Generators in H are not equal to 1 in H: If i' £ range/,

then x¡ = 1 implies xt = 1 which is impossible. If i = f(j), then

x, = 1 => z,z~7 xiz.z~  = 1 => x{ = 1 => j = 0
' H J    '       '    '   J     Fr X Fr J

which is impossible.  Therefore, x¡ ^ 1  for all i = 1,2, ... .  Since z. = 1
h H

implies z. = 1, it is clear that z.^l for all i = 1,2, ... .
Fr H

Condition (iii).   Distinct generators of H are not equal in H:  If i,j' £

range /, then

X ■ = X ■ => X,■ = X ■ => i = j.
• H    J ' Fr    J

If i £ range/ and j = f(k), then

_ _       — i   Jt      — i

Xi h Xj ^ Xi F~r ZtZl    Xl Zl Zk

which is impossible. If i ,j G range /, it is easy to see that x( = x¡ implies

i = j. It is also easy to see that z, = z, implies i = j and that x = z. is

impossible.

Therefore, distinct generators of H are not equal in H.

Condition (iv). Given a word W of H, we must decide if W is a product

of one or two generators or inverses of generators.

Semireduce W to obtain W' (see proof of Lemma 2 for definition of semire-

duction). Then
/ 1 \        TI7 6|       £"> TJ7-' £]       E~>(1)     W = Z.'zr ■«• W   as Z, Z,   .
v   ' //     'I     '2 Fr     'l     '2

ca..   u^'        . £   <5 ii^' -1    k -1
(2) If = x,cz, &W1 = x]z. or If' = z,z.  x, z.z,   z,. where f(k) = i.

H    i   J Fr        J Fr J

(3) W = x*x.  can be dealt with similarly.
H     '    J
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Therefore, H satisfies conditions (ii), (iii), and (iv) of Lemma 5.   G

Theorem 3. There exist group presentations Nx and N2 each with a finite num-

ber of generators and a recursively enumerable set of defining relators and each

having solvable conjugacy problem such that there is a free product with amalga-

mation M of Nx and N2 with unsolvable conjugacy problem that amalgamates

cyclic subgroups.

Proof. Let Nx = (a, t;rx,r2, ...) and N2 = (à,î;fx,f2, ...) be copies of the

group N of Theorem 2. Recall that

H = (xx,zx,x2,z2, ... ;zjxxf(i)zi = z~Xx\zx (i = 2,3, ...)).

Let a and ß be the usual embeddings of H into Nx and H into N2, respec-

tively. Let W. = a(Xj) and W. = ß(x). Let

M=(NX*N2;WX = Wx).

We claim that W. ~ W. if and only if ; G range /. If j G range /, then

j - f(k) f°r some k and

W. = a(zkz;Xxxzxz;X) ~ a(xkx) = < = w\

= ß(xx) ~ ß(zkz~xXx\zxz-kX) = W.

Therefore, if j G range/ then W. ~ W..
J M      J

Now suppose  W. ~ W..   Since M is a free product with amalgamation,

there is a sequence of words VX,V2, ... ,Vk such that

J '«l      Z«!      ■'«J Qfc-i      K J

where V2, ... ,Vk_x are in the amalgamated part and the a- alternate between

Nx and A^ . Therefore,

W. ~ W." for some n => a(x;) ~ a(xf ) for some zi

x ~ x" for some n => j G range/.

The second implication follows from the fact that, for yx, y2 g H, yx ~ y2

if and only if y, ~ y, (see proof of Lemma 6). Since If, ~ W. if and only
1   V     2 J  M      J

if y G range/ and range / is nonrecursive,  M has unsolvable conjugacy

problem.   G

4. Proof of assertions

We now prove the assertions needed in Lemma 5.

(1) There is an algorithm to decide if elements of C7, U G2 are conjugate in

N.
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Proof. Suppose U , V G Gx U G2 ; then U ~ V if and only if

(i)   U ~ V ; or
F

(ii) there are words Wx, ... ,Wm such that U ~ Wx ~ W2 ~ W3 ~ ■ ■ ■ ~

wm~v.
Since (i) can be decided we need only consider (ii). By considering cyclic reduc-

tions with respect to * (i.e. with respect to the free product F = H * (a,b)),

it can be seen that if 1 ^ A G Gx and 1 ^ B G G2 then A and B are not

conjugate in F. Therefore, W2k_x and W2k must be in the same G..

Suppose first that U, V g Gx . Then Wx,W2g G2 and W3,W4gGx. It can

be seen that U ~ If, and U ~ W4. Continuing in this fashion, we get
G\ G,

Uu»W*-*u»**   forall,c=l,...,[m/4].
(a ,b) (a ,b)

Since V G G, , F is W.,   . or W..  for some k and so U   ~   K. Therefore,
1 ™~l 4K (a ,b)

(ii) occurs if and only if U ~ F and so conjugacy in N of elements of G,  is
F

decidable.

Now suppose  £/, V g G2.   Then  Wx G Gx,   Wm g Gx, and  Wx ~ Wm.

By the above,   W.    ~    If .   So, for U ,V g G7, (ii) occurs if and only if
1   (a,b)       m 2 '

<t>-\u) rè-\v).
(a ,b)

The case U gGx and V g G2 is similar,   a

(2) There is an algorithm to decide, given V G F, if V is conjugate in F

to an element of Gx U G2 and, if so, to find such an element.

Proof. Let V G F . We may assume that V is cyclically reduced with respect to

* . First (effectively) decide if V g (a,b). If so, by assumptions (ii) and (iii),

V ~ U G Gx U G2 if and only if V ~ U G Gx or V ~ ¿/" which can be decided.

If V(¿(a,b) then F - [/ G Gj U G2 if and only if V ~U cG2. Suppose that

V = AxHx-AmHm where A¡ G (a,b) and //. G //. If V ~ c/ G G2 then

by assumptions (ii) and (iii) each ^(. is a product of at most three words of

the forms a~'b xaJ or b (k' an integer). It can be effectively determined if

each Ai is such a product and, if so, each A¡ can be effectively written as such

a product. The only possible cyclically reduced U (up to cyclic permutations)

can then be determined and tested,   a

(3) There is an effective procedure to determine, for arbitrary X, Y G F, if

there is a Z G G2 such that XZ Y G Gx and, if so, to produce the finite number

of possible Z.

Proof. Suppose X = AXHX ■■■AmHmAm+x and Y = BXKX ■■■B¡K¡B¡+X where

A¡, Bf G (a, b) and //,, Kt g H. Since XZ Y g Gx , all H factors must cancel

and either

W   Z = A-x+xH-xA-mX-H;xZ'K7XB7X-K;xB;XGG2 and AXZ'B,+ X

G Gx ; or



344 J. M. LOCKHART

W z = Am\^Am-HiXz'K:lB:X-Kx-xB7XGG2 where 2</<

m, l<q<l-l, Z' is A-free and AXHX ■ ■ ■ Aj_xHj_xAjZl Bq+xKq+x

■■■BiKl+xBl+x GGX.

If (a) then H~l = /zf'/z?2  and K7X = tí]tí2  for some S,,t, = ±1  and
v    ' 1 'I      '2 I )\     12 2 '    1

Sx ,t2 = 0 or ±1. By assumption (iv), there is an effective procedure to de-

termine if Hx~ and Kf can be written as such and, if so, to so write them.

Since Z' is h-free and Z G G2, there are four possibilities: hfz'h'j G G2,

Z hj G G2, hfZ G G2, Z G G2. Since AXZ'B¡+X g Gx implies that the ex-

ponent sum of b in AXZ Bl+, is zero, each of these four possibilities give rise

to finitely many possible Z' which in turn give rise to finitely many possible

Z.

If (b) then A,Z'Bn..   =   1 which implies that
3 q+x (a,b)

Z = Alx+lH-jA-m{...HjxA-xB-qlxK-xB-qX...K:lB-x,

again giving rise to only finitely many possible Z .   a

(4) If X, Y G F - G2, if D G G2  is reduced and if XDY G G2, then

#b(D)<#b(X) + #b(Y) + 2.

Proof. Let V = v, • • • vm where vi G {b±x, (fyiT'W)*1 (i = 1,2, ...)} . Sup-
pose V is freely reduced with respect to the free group G2 and #b(V) >3. It

is easy to see that if W is obtained from V by freely reducing with respect to

the free product H*(a,b), then the subword of V containing the three b can

be uniquely recovered from W.

Suppose D G G2, XDY G G2 and #b(D) > #b(X) + #b(Y) + 3. Assume
further that X, D, and Y are reduced with respect to * . It suffices to show

that X gG2. Consider the cancellation that occurs in the product XDY . Let

X = XXX2; D = X~XDXY~x ; and Y = YxY2.

We have that XXDX Y2 G G2 is reduced with respect to * and #b(Dx) > 3 . By

the comment above, the shortest words X" and Y2 such that Xx = X'XXX , Y2 =

Y'2Y'2 and X"XDXY2 G G2 can be effectively found. Since X'x and Y2 are

unique, X'xX'[DxY'2Y2 g G2, and X"DXY¡ g G2, it follows that X[ and

Y2 G G2. Since X" is the shortest word such that X'XDX Y2 G G2 and since

X2XDXY~X G G2, it follows that X~x ends in X". That is, X~x = X3X"

and X3gG2. Therefore, X = X'XX"XX2 = X\X~X G G2 since X\ G G2 and

X3GG2.   g

5. Conclusion

The existence of a finitely presented group H and an HNN-extension G =

(H,t;t~xat = b) where H has solvable conjugacy problem but G has unsolv-

able conjugacy problem is open. The analogous question for free products with

amalgamation is also open.
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