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THE GROUP OF AUTOMORPHISMS OF Lx(0,1) IS CONNECTED

F. GHAHRAMANI

Abstract. It is shown that the group of the automorphisms of the radical

convolution algebra Ll(0,1) is connected in the operator norm topology, and

thus every automorphism is of the form exdeq , where A is a complex number,

d is the derivation df(x) = xf(x) and q is a quasinilpotent derivation.

Suppose in the Banach space ¿'(0,1) we define the "convolution" product

* by

(/**)(*)= ff(x-y)g(y)dy      (f,geLx(0,\),a.c.xe(0,\)).
Jo

Then V = Lx(0,1) with this product becomes a radical Banach algebra [6],

called the Volterra algebra. Kamowitz and Scheinberg in [6] investigated the

structure of the automorphisms and derivations on V. There was one problem

left open: is the automorphism group of V connected, in the operator norm

topology? We answer this question in the affirmative. We will use the fact

that the automorphisms and the derivations on V are continuous [4, Remark

(3a)]. Every automorphism of V has an extension to an automorphism of the

measure algebra M[0,1), which we will denote by the same symbol [5, §8].

On the space B(V) of all bounded linear operators on V, we consider strong

operator topology (SO) defined by: a net (Ta) of operators tends to an operator

T in (SO) if, and only if, TJ -► Tf in norm, for every / g V. Since M[0,1)
can be identified with the multiplier algebra of V [6, Remark 10] the topology

(SO) induces to M[0,1). We denote the induced topology by (so). Let C0[0,1)

be the space of continuous functions / on [0,1) with limx_tX_ f(x) = 0.

Then M[0,1) = C0[0,1)* . Let w* = a[M[0,1), C0[0,1)]. Then if (pa) is a

bounded net and p.a ^+ p., then pa ^ p. [1, Lemma 1-1].

In [1] we have shown that if an automorphism 6 of V is extended to

M[0,1 ), then there exists a complex number z, such that for every x G [0,1 ),

(1) e(âx) = ezxôx + px>

where a(px) > x and px({x}) = 0 (for every measure p., we denote the

infimum of the support of p. by a(p.) ).  Following the terminology used by
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S. Grabiner [2] for the automorphisms of the power series algebra we call an

automorphism 6 of V principal if z = 0 in (1). If an automorphism 6 of V

satisfies (1), then

(2) e-zde(Sx) = Sx + e-zdftx       (xg[0,1)),

with a(e~zdpx) > x and (e~zdpx)({x}) = 0. Therefore e~zd6 is a principal

automorphism and in order to show that every automorphism is of the form

ez eq , it suffices to show that every principal automorphism is in the component

of the identity.

Proposition 1. Suppose T is a bounded linear operator on V which can be ex-

tended to a bounded linear operator T on Af[0,l). IfT is (so)-(so) continuous,

then

||r|| = ||T|| = sup{||T(^)||:xG[0,l)}.

Proof. Let p G M[0,1), with \\p\\ < 1. By identifying T(p) with a multiplier
on V, given e > 0, there exists f g V with ||/|| < 1 and with

(1) \\T(p)\\<\\T(p)*f\\+e.

By [1, Lemma 1.2] and (so)-(so) continuity of T there exists a linear combi-

nation axXxôx^ + a.2k2ôXi H-h otnknôXn, with ax + a2 H-h an — 1, a, > 0,

|A(| = 1, 1 = 1,2,...,«, and with

(2) \\T(p) * /y < IIT^A,^ + • • • + anXnôXn) *f\\ + e.

From (1), (2) and ||/|| < 1 it follows that

(3) \\T(ß)\\<ax\\T(oXi)\\ + --- + an\\T(oXn)\\

<sup{||T(<g||:xe[0,l)}.

Thus

(4) ||T|| = suP{||T(¿J||:xg[0,1)}.

To prove ||T|| = ||!T||, let (en) be a bounded approximate identity of V

bounded by 1. Then Sx = (so)-lim¿^ *en . Hence T(ôx) = (so)-limT(ôx*en).

Hence by [1, Lemma 1.1] T(SX) = to*-lim T(SX * en).

Since

\\T(ôx*en)\\<\\T\\\\ôx*en\\<\\T\\,

we get 117(^)11 < [| y||. This together with (4) implies ||7|| = ||r||.

Remark. If D is the extension of a derivation of V to M[0,\) and 6 is

the extension of an automorphism of V to M[0,1), then from D(p) * f -

D(p*f)- D(f) * p and 6(p) *f=6(p* d~x(f)) (p G M[0,1), / G V) it
follows that D and 6 are (so)-(so) continuous.
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Lemma 1. Suppose 6 is an automorphism of V with

e(ôx)=eZXôx + flx (*€[0,1))

where px({x}) = 0 and a(px) > x. Then

(a) limn^ooe-nd8end(Sx) = ezxôx.

(b) For each positive integer n, \\e~nd0end\\ < \\6\\.

Proof. We have

,,,      —ndn  nd, f  .. nx   —ndn/s x nx   —nd,   zx s s zx s nx   —nd
(1) e     0e   (Sx) = e   e     6(ôx) = e   e     (e   ox + px)-e   ox+e   e     px

and

Vj = I     e-"{y-x)d\px\(y) - 0,    as « - oo
J(x,l)

by Lebesgue dominated convergence theorem. This proves (a).

To prove (b) we note that for x G [0,1)

h   —ndn   nd, f .•■       .,   zx c nx   —nd      ..
\\e     de   (ôx)\\ = \\e   ôx + e   e     px\\

,   nx   -nd
le   e

= \ezx\+f     e~n(y-x) d\px\(y)
J(x,l)

<\ezx\+ f     d\iix\W = \\6(ôx]

Thus by Proposition 1, \\e nddend\\ < \\d\\, and the proof is complete.

Lemma 2. If 6 is a principal automorphism of V, then 6~x is a principal

automorphism.

Proof. Since the connected component of the identity in a topological group is

a normal subgroup [3, Theorem 7.1], from [6, Theorem 9] it follows that there

exists a complex number z and a quasinilpotent derivation q such that

(1) 6e-d6'x =ezdeq,

or equivalently,

(2) 6e-d = ezdeqd.

Now if we examine the image of ôx under the two sides of (2) we will see that

z = -1 (see the proof of Theorem 1.4 in [2]). Thus

(3) Qe-dQ~x = e~deq .

Since (de~dd'x)n = 9(e~"d)6~x, from (3) it follows

(4) 6e-ndd-x = (e-deq)n.

Hence

i-c\ n   —ndn—\   nd       ,   —d  q^n   nd
(5) de     6   e    = (e    e ) e    .
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Now suppose that 6 is a principal automorphism and

(6) 6(Sx) = 6x + /ix       (px({x}) = 0,a(px)>x),

and for some complex number X,

d'x(ôx) = eXxôx + vx,       x€[0,l),

where a(ux) > x and vx({x}) = 0.

Then by Lemma 1(a) and (5) we will have

(7) eXxôx + eXxpx = ekxd(ôx) = lim(*-V) Vrf(«g.

However for each n, the measure (e~deq)"end(Sx) has mass 1 at x. Thus

X = 0 and 6~x is a principal automorphism.

Lemma 3. If 6 is a principal automorphism of V then (so)- lim e~n 8en  =1.

The proof of this lemma is implicit in the proof of Theorem 1.2 of [1] and

is therefore omitted.

Lemma 4. If q is a quasinilpotent derivation on V, then lim^^ e~" qen = 0

(in operator norm topology).

Proof. Let q be given by q(f) = df*p (feV). Since p({0}) = 0 [6, Remark
1], given e > 0 there exists S > 0 such that |/i|([0,a)) < e. Let px and p2

be defined by px(E) - p(En[0,S)) and p2(E) = p(En[ô, 1)) for every Borel

subset E of [0,1) and define derivations qx and q2 by qx(f) = df*px and

Q2{ñ = df*p2   (fe V). Then

/. N m   — nd      nd,.    . i,   —nd       /id.   —nrf       nd,, .    ^
(1) ||e     ?i?   || < ||e     qxe   || + ||e     $2é>   ||,       « = 1,2,....

Since for every x G [0,1 ),

/<i\ ii   —id       nd/ ç.
(2) Ik   ?i<? O*,

we have, by Proposition 1,

(3) ||e     ^e   || <e.

Also for xe [0,1)

(4) \\e-"dq2end(ôx)\\ =xf        e~nyd\p2\(y) < e~nSx [ d\p2\(y).

Thus, by Proposition 1,

(5) H*-" V'H * e~"S SUP {* / d\^y) : * € [0,1)1 = e-nô\\q2\\,

where the last equality follows from the formula for the norm of a derivation

[6, Theorem 2].

From (1), (3) and (5) we get \imn^ooe~ndqend = 0, and the proof is com-

plete.

/<i\ h   —nd       nd t p \n       M    c —nd      M   .. n   —nd      M
(2) \\e     qxe   (Sx)\\ = \\x6x*e     px\\<\\e     px\\<&,
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Lemma 5. Suppose 6 is a principal automorphism of V. Then there exists a

quasinilpotent derivation q, such that

0 = SO-lim(<rV)V</.

Proof. The proof of Lemma 2 showed that for every principal automorphism

8 there exists a quasinilpotent derivation q on V such that for every positive

integer n ,

,.s n   —ndn — \   nd       ,   —d   q.n   nd
(1) de     0   e    = (e   e ) e    .

Hence by Lemma 3

(2) 6(f) = lim 6(e-nde-xend)(f) = lim(<r V) V^/),
n—»oo

and the proof is complete.

The following result relates the convergence of an infinite product of opera-

tors to the absolute convergence of a related infinite series. The proof is almost

the same as the proof for infinite products of complex numbers. However, we

have been unable to find a reference for the result in the required form, so we

include a proof, for completeness.

Proposition 2. Suppose (Tn) is a sequence of bounded operators on a Banach

space X and I is the identity operator on X. If the series ^2\\Tn\\ is convergent,

then the sequence Pn = (I + TX)---(I + Tn), n = 1,2, .... is convergent in the

norm topology of the bounded linear operators on X.

Proof. For n = 1,2, ... , we have

H^B<(» + lli'1||)(i + Hr2||)...(i + ||7;B)ae"r,"+-+,Iil.

Thus (ll-PJI) is bounded, by an upper bound M say. If m > n , then

l|/>M-/'J = ll(/+7'1)-..(/+rw)-(/-r-r1).--(/+r„)||

<ll(/+r1)...(/+rB)||||(/+rl,+1)--.(/+rM)-i||

<M[(i + ||7;+1||)...(i + ||rm||)-i],

by the norm inequality for the Banach algebras. Since J2\\Tn\\ < oo the

infinite product fl„=1(l + ||rj) is convergent. Therefore [(1 + ||7;+1||)---

(1 + 117^11) - 1] -» 0, as m and n-»oo. Thus (Pn) is a Cauchy sequence and

thus convergent.

Lemma 6. Suppose 6 is a principal automorphism of V. Let q be the quasinil-

potent derivation related to 6 as in Lemma 5, and let p be the locally finite

measure representing the derivation q by q(f) = df * p (f G V). Then for

each 0 < S < 1, we have

(t) /     ±-d\p\(x)<oo.
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Proof. First we show that there is a j0 such that one has

(1) X>-'V*(<gil<2l|0||||0"
J=Jo

-idnJdfor every x G [0,1). By Lemma 4, lim.  ^e     qe    =0 (in norm) so there

-Jd„Jd\
exists j0 such that for j > j0, \\e     qe' || < 1/4. We have

(2)    \\(e-Jdeqejd-I)(ôx)\\ =
-id    jd,, . , e j q2ej  .. .

e     qe1 (Sx) +-¿j-(Sx)

i

+ ...+ —¡L— (Sx) +

For j > j0 we then have

(3)
^'W,,,             e-Jdqkejd/x,

(ôx)+ ■■■ + --!-(Sx) +
2! k\

•-'VV'Vwy+• • •+»-"«"t-yw^+
2! fe!

-Jv^»ii(Mî)+Mî)2-4(î)
i-1

<|e

< he-Jdqejd(Sx)

+

From (3) and

(4)       \\e-Jdqejd(Sx)\\ < e-jdqejd(ôx) + -.- + e-jdyjd(ôx) +

+

it follows,

(5) He-'V"^)|| < 2

e-Jdpd(Sx) + --- + e-jdyd(Sx) + .-

e-jdqejd(ôx) + --- + e-jdg¥ejd(ôx) + .-.

= 2\\(e-jdeqejd-I)(ôx

for ;' > jQ.

Thus to prove ( 1 ) it suffices to prove that

(6) ¿2\\(e-jdeqejd-I)(âx)\\<œ

7=1

To prove (6), from de d6  ' = e deq we get

(V) e~jdeqejd - / = e~U-X)d6e(]-X) VW" - /.
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Hence,

(8) \\(e-jdeqejd-I)(Sx)\\

= \\e-u-X)dee(i-X)d(e-jde-xeid-e-{i-X)de-xe(i-X)d)(öx)\\

<|e-w-I)rftet/-|)rf|||(e-/'«-|**,-í-í/-I)V1«í/-1,')(íjr)||

<\\e\\\\(e-Jdd'xeid-e-(j-x)dd-xeu-x)d)(öx)\\,

by Lemma 1(b). Now since 8~x is a principal automorphism (by Lemma 2)

we have

6~X(ôx) = ôx + vx, with a(vx) > x, andz/x({x}) = 0, for every x G [0,1).

Thus

rcs\    i   -Jda-\   jd        -(i-l)d0-\   (j-l)ds,s  \ >*   ->rf (/—1)JC   -(>-l)d
(9) (e     6   e    - e u   ' 0   t?u       )(ox) = e   e     vx - eu   ' e "    ■ i/x.

Since for every Borel subset E of [0,1)

(10) [eJxe-]dux-e-{i-x)xe-(i-x)dux](E) = I [e'^-e-(J-X](y-x)]dux(y),
JE

we have

/ii\ n  jx   -jd —U—\)x   —(/—l)d     h
(ii) ik *?    vx-e        *        vj\

'(x,l)

From (8), (9) and (11) it follows

oo
-idjiJd

= f    [e-u-X){y-x)-e-j{y-x)]d\vx\(y),
J(x.\)

(12)

J=Jo

oo

oo

oo      .

11*11 E/   [^"'^'-^'^Vl^Ky)

= 11*11 /    E^'^^-^^Vl^Kv)

= ||0|| /     e~u°-x)(y-x) d\vx\(y)
J(x,l)

<\\0\\f    ¿My)<l|0||||0"Vjll< 11*11 II*-1 II-
J(x,l)

Therefore (1) holds.

Now to obtain the growth condition (f) we note that

(13)    \\(e-Jdqejd)(Sx)\\ = ^|k_^(^)|| = xejx f     e~jy d\ôx * p\(y)

f     e-jyd(ôx*\p\(y))=x f        e~jyd\p\(y).
J(x,l) J(0,\-x)

= xe
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From (12) and (13) and 5, for x = 1 - S we get

f • 1
(14) £/     e-}yd\p\(y)<^^\\e\\\\d

or equivalently,

J=Jo

L
e~Joy    .        2

-^|(V)<-—1|0||||0 -1,

(0,<5) 1 -e y l-S

Since near 0, e~Joy/(l - e~y) ~ 1/v, we get the growth condition (f) for the

measure p.

Theorem. // 0 is an automorphism of V, then there exists a complex number

X, and a quasinilpotent derivation q, such that 0 = e eq . Thus the group of

automorphisms of V is connected in the operator norm topology.

Proof. It suffices to assume that 0 is a principal automorphism. By Lemma 5

we have 0 = (SO)-lim(e- eq)"en , where q is not necessarily the same as the

q in the statement of the Theorem. Since for each n, (e~ dq)nen belongs

to the connected component of the identity (in the norm topology) and the

connected component of the identity is closed, the proof will be complete if

we show that the above limit exists in the operator norm topology. Now if

Pn = (e-deq)"end, n = 1,2,... , then

(1) Pn - (e-deqed)(e-2deqe2d)(e-3deqe3d) ■ ■ ■ (e-"deqènd)

,   —d     d, /   -2d     2d.. ,   — nd     nds
= exp(e   qe )exp(e     qe   )■■■ exp(e     qe   ).

For every j let exp(t?--' qe} ) = I + T., where

(2) TjmrM^ + <£^í + ... + S£^í + ....

Since lim.   ^ e~JdqeJd — 0 (Lemma 4), there exists j0 such that for j > j0

(3) \\Tj\\<2\\e-jdqeJd\\.

For n > jQ we then have

(4) Pn= fn«rf*-'Vl')j (I + Tjo+x)...(I + Tn).

Whence by (3) and Proposition 2 it suffices to show that

(5) £  ||e->V'||<oo.
yWo+l

Let q be represented by the locally finite measure p, q(f) = df * p. Fix

0 < Ô < 1.   Then by Lemma 6, /(0 s, £ d\p\(x) < oo.   Let px  and p2 be
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defined by px(E) = p(En[0,o)), p2(E) - p([ô, l)DE), for every Borel subset

E of [0,1). Define qx and q2 by qx(f) = df *px and q2(f) = df *p2, for
every / G V. Then q = qx + q2. Thus

oo oo oo

(6) £  \\e-jdqejd\\<   E  II'"'W  E  Ik'V'll-
;'=;'o+i 7=70+1 7=70+1

We have

(7) We-Vq^W = supiHe-'V'ogil : JC € [0,1)}

= sup \xf        e jyd\p\(y):xe[0,l)\
{    JlS.l-x) J

Thus

< e~jS sup (x /        d\p\(y) : x € [0,1)1 = e-7<5||?2||.

E ii^Vik»-
7=70+1

An analogous calculation shows that \\e~jdqxejd\\ < f,0 S)e~)y d\p\(y). How-

ever the series
oo      - ~ oo

E/     e-jyd\p\(y)= ¿2e-jyd\p\(y),

converges since ^ satisfies the growth condition /(0 s, ¿d\p\(y) < oo. Hence

the series YfJLi \\e~J 1\e¡ II converges, and the proof is complete.
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