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WEIGHTED NORM INEQUALITIES FOR
THE CONTINUOUS SQUARE FUNCTION

J. MICHAEL WILSON

This paper is dedicated to the memory of my friend
Frederick J. Zeig/er (1953-1988)

Abstract. We prove new weighted norm inequalities for real-variable ana-

logues of the Lusin area function. We apply our results to obtain new: (i)

weighted norm inequalities for singular integral operators; (ii) weighted Sobolev

inequalities; (iii) eigenvalue estimates for degenerate Schrödinger operators.

1. Introduction

Let tp e W (R ) be real and radial, nontrivial, satisfy / \p = 0, and have

support contained in {|x| < 1} . We may clearly assume that tp is normalized

so that

/•OO J.

(*) /   l*0£OI^ = i
Jo '

for all ¿¡ t¿ 0. (Here and in the sequel, A denotes the Fourier transform.) For

y > 0 we define \p (x) = y~ ip(^). For f e LxXoc(R ) and a > 0 we define

(i) srJf)MJi       i/.^oi^)"2.
\J\x-t\<ay y )

Equality ( 1 ) defines the square function of / with respect to ip of aperture a .

For ß = (ß{, ... ,ßd)  a multi-index, let \ß\ = J2ßr   ^OT N a positive
integer define

tfn = \<peW0°°(Rd): supp0c{|x|<l},
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and for feL¡JRd) set

GN(f)(x)=  sup \<f>*f(x)\,

y>0

the grand maximal function of / of order N.

In this paper we prove weighted norm inequalities for the form

(2) j\GN(f)\pVdx<C jsPVa(f)MVdx       (0<p<oo);

i.e., for each 0 < p < oo we exhibit a "maximal operator" (or class of operators)

M such that (2) holds for all / in some suitable test class (e.g., <ë0°°(Rd) or

LP(R ,dx)) and all nonnegative V e LxXoc(Rd), for appropriate y/, and A^ and

a large enough, with a constant C which does not depend on V or /. The

AT s we obtain are smaller than any previously known, and in particular they

do not (in general) have the Muckenhoupt A^ property. (Recall that a weight

V is said to have Ax if for all s > 0 there is a ô > 0 so that for all cubes Q

and subsets E c Q,

w\<s*Lv«Lv-
Q

See [M].) We show that, for every p, there is a k so that (2) holds for M =
k

M , where M is the Hardy-Littlewood maximal operator; moreover, when

0 < p < 2, we can take k = 1.

We apply our results in two directions.   When  1 < p < 2, an additional

argument lets us infer from (2) a new sufficient condition on weights V and

W for the Sobolev inequality

j\f\PVdx< j\Vf\pWdx

to hold for all / e ^°°(R ). When p = 2 we use this inequality to ex-

tend results of [F, CW1, and CWW], obtaining new eigenvalue estimates for

Schrödinger operators of the form L = - div(^4(x)V-) - V, where A(x) is a

symmetric, positive semidefinite, matrix-valued function of x € R  .

When 1 < p < oo, (2) plus results from [CW2] let us obtain new weighted

)im inequalities for Calderón-Zygmv

homogeneous of degree 0, and satisfy

Q(x)do(x) = 0.

norm inequalities for Calderón-Zygmund operators. Let Q e W°°(R \{0}) be

I'|*|=i
If, for / € U,<D<00 Lp(Rd , dx), we set

Tf(x) = lim[     f(x-y)^dy   a.e.
e—°-/|j'i>e \y\
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then T is called a Calderón-Zygmund operator (see [St]). We show that, if

1 < p < 2, then

f\Tf\"Vdx < C f \f\pM(MV)dx

for all / and all weights V. We obtain analogous, but more complicated,

results for 2 < p < oo.

Our theorems are based on results in [W2, W3], and the main idea of this pa-

per is the construction of a "machine" which allows us to translate the "dyadic"

results of those papers into the continuous setting. We describe the machine in

§2. Once the machine is in place, the Sobolev and singular integral inequalities

follow relatively (though not quite) routinely. In particular, in order to obtain

(2), it is enormously convenient to assume, at one point, an additional hypoth-

esis on \p ; namely, that \p is not too smooth. Using the methods of [FS2],

one can do without this assumption, but doing so does not seem to result in

any stronger theorems in the applications. Therefore we have stuck with our

assumption. However, in §6, we show how one may obtain the analogues of our

square functions results without it.

We prove all the square function results we need in §2. In §3 we prove the

results on Calderón-Zygmund operators. We prove the Sobolev inequalities in

§4 and the eigenvalue estimates are proved in §5. In §7 we tie up a loose end

which we leave hanging in §3, which is peripheral to the line of our argument

there.

2. Square function results

We shall say that a cube ßcR   is dyadic if it is of the form

for some integers k and j,, i = I, ... ,d . Dyadic cubes have the well-known

property that any two of them are either disjoint, or one of them is contained in

the other. We shall denote the collection of all dyadic cubes by 37 . If Q is as

above we say that Q has sidelength 2~k , and we denote this by l(Q) = 2~k .

For / e LxXoc(R ) and Q a cube, we set

the average value of / over Q. For zc an integer we set

Jk —      ¿_^t      JqT^Q '

i(Q)=2-k

and we define

f*(x) = sup\fk\,
k
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the dyadic maximal function of /. If Q is a dyadic cube and l(Q) = 2      we

define

aQ(f) = (fk+x-fk)xQ.

The dyadic square function is defined by

sif)=\ E
K(f)\\ï

1/2

x€Q<e3 '     '

In this section we show how to reduce the study of GO and 5" to that

of /* and S. In order to avoid getting lost in technicalities, we shall first

prove our theorems under the assumption that / e ^°°(R ) ; at the end (of

this section) we shall show how to remove this hypothesis.

The main device in our proof is the following lemma. By the triple of a cube,

we mean the cube concentric with it but with sidelength three times as big. We

shall always denote the triple of a given cube Q by Q.

Lemma 2.1. Let 77 be the collection of all triples of dyadic cubes. There exist

disjoint families 77x, ... ,77v such that 7F = \J !<7k, and, for every k, if Q,Q'
are in 77?k , then either they are disjoint or one is contained in the other. Moreover,

if Q is a proper subset of Q', then l(Q) < jl(Q') ■

Remark. This is a refinement of Lemma 3.2 from [CWW]. Also, it is implicit in

work of Carleson and Garnett on interpolating sequences in R++   [G, p. 416].

Proof. For e = (e,, ... ,ed) e {0,1,2} and k an integer, let ß?k(e) be those

Q in 77 which are of the form

Q
3/1,+e,   3(«1 + l) + e,\ /3«¿ + £¿   3(nd + l) + ed_ /3«, +£,   3(nx + l) + e,\

-{—$—' 2k ) 2k      ' 2k

for some integers nx, ... ,nd. Itis clear that ß^k(e) n^k(S) = 0 if e ^ ô .

If we bisect a Q in %7k(¡7) into 2 congruent subcubes, the resulting cubes

belong to ß^k x(2e), where we are slightly abusing notation, and saying that

e, = e* if they are congruent modulo 3 . Also, every such Q arises from the

subdivision of a Q' e 7%7k_x(2E). Let us show this. It is sufficient to show that

every interval / = (3zi + e, 3« + 3 + e) is either the right or left half of an

interval (6«' + 2e', on + 6 + 2e), with e' = 2e . We consider cases:

(i) e = 0. If n = 2zc then take n = k, e = 0, and 7 is a left half. If

n = 2k + 1 then take n = k , e = 0, and J is a right half.

(ii) e = 1. If n = 2k, take n = k, e = 2, and J is a right half. If

zi = 2zc + 1 , take n = k , e =2, and 7 is a left half.

(iii) e = 2. If n = 2k , take n =k, e = 1 (which equals 2 • 2 modulo 3),

and 7 is a left half. If n = 2k + 1, take n = k, e = 1, and 7 is a right half.

Therefore if we set

7?(e) = \J¿rk(2We),
k

then these are the desired collections.   Q.E.D.
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For the time being, let us assume that / e ^°° (R ), and let tp be as in the

introduction (in particular, \p satisfies (*)) ; at the end of this section we shall

show how to extend our results to general / e Uo<p<oo ̂ (R > dx), where Hp

denotes the Fefferman-Stein real-variable Hardy space, as defined in [FS2]. Let

Rd++X = {(t ,y): t eRd ,y > 0} . We use A. P. Calderón's trick to write

/(*)=      f f*Vy(t)Vy(X-t)
J R.

dtdy

y

Since / e T7£°(R ), the integral converges absolutely, uniformly for all x, and

so we can cut it up however we please.

For Q a dyadic cube define

T(Q) = {(t,y)eRd++X:teQ,\l(Q)<y<l(Q)}

dtdy
and set

Q(f)= f     f*Vy(t)vy(x-t)-
Jt(Q)Ina)      "■"'        y

Clearly each äQ(f) is supported in Q, is smooth, and has integral 0. Also,

/ = Eàe(/)-
Q

For 1 < k < 3d , let 7§k be one of the collections obtained in Lemma 2.1. We

set

f(k) = E âe(/)

and we have
3"

/ = E4)-
Zc=l

The fik7s are sums of smooth functions which behave very much like the dya-

dia martingale differences aQ(f). We shall make this precise with the following

definitions. Let us say that a collection of cubes 7? is good if for all Q, Q' e 7?,

either Q n Q' = 0 or else one is contained in the other, and Q c Q', Q / Q'

implies l(Q) < \l(Q'). Given a cube Q, we will say that a function a(x) is

adapted to Q if suppacß, H^ < |ß|",/2, W^aW^ < l(Q)~x\Q\~x/2, and

/ a = 0. (This is different from the usual definition of an adapted function, as

in [GJ], where one requires suppa cß.) Finally, we will say that a function /

is of special form if there exist a good collection 7?, functions aQ(x) adapted

to Q e 7?, and constants XQ such that

(3) /=EVe-

We will say that such an / is of special form relative to 07.
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Note that each fk) is of special form relative to 7?k , where, for Q e 37,

Qe&k,-we can take

.idtdyV'2
\X~\<C(ip,d)(jT    \f*vy(t)t

'no)      y      y j
Whenever we deal with a sum like (3), it will be obvious that it converges

absolutely, uniformly for all x . Also, the family 7? will always be a subset of

one of our collections &k from the lemma. Since the only properties we will

use about the Q e 77? are those entailed in the definition of goodness, it will

never be any loss of generality to assume that 7? is a subset of 3 .

Now, let & c 3 and let / be as in (3). We define

n  ^ 1/2

sAif)=\ E Ü2L
\Q\

The function SA(f) "looks like" the dyadic square function S(f). The follow-

ing two lemmas explain how these functions are related.

Lemma 2.2. Let f and 7? be as above. There is a C(d) such that

(4) S(f) < C(d)SA(f)

for all x e Rd .

Proof. To avoid confusion, we shall denote the adapted functions in (3) by bQ .

Let Qe3 . We need to estimate ||aQ(/)||2 ■ Because the bQ 's have integral

0, we have

aQ_(fi= E WM-
QcQ'es?

Now, the smoothness of the bQ 's implies

Therefore,

\aQ(bQ,)\<C(d)\Q'\-x/2l(Q')   xl(Q).

^U^EJ^^)
This implies that

v   \\*Q(f)\\22    c.   v     v   IV2 KQ)
¿^ \Q\ -°W      Z. Z. |Q'|    /(£')

= c(d) y \}ol y im^^>       ¿^ |Q'| 2-.        UQ>)

Q'zS"

<c(d) e \*o>\2

,Q'I

which is (4).   Q.E.D.
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Remark. We shall need the following facts in §5, when we deal with Schrödinger

operators. For Q a dyadic cube, let fQ be the L2 projection of / onto those

functions which are linear + constant on Q. Define, for zc an integer,

fk -    ¿y    JqXq '
/«2)=2-*

and set äQ(f) = (fk+x-fk)xQ , for Qe3, l(Q) = 2~k . We notice that aQ(f)
is linear 4- constant on each of the immediate dyadic subcubes of Q, and is

orthogonal to any function which is linear + constant on all of Q. Define

x€Q        IWil

This is the square function which Fefferman uses in [F].

We claim that S(f) < C(d)S(f). We need to estimate aQ(f). Since the

äß(/) 's have integral 0, that is the same as

aQ     E a<y(f)
Vece'

so what we really need to estimate is aQ(äQ,(f)) for Q c Q'.

It is obvious that \aQ(äQ(f))\ < C\\äQ(f)\\00 . The other aö,(/)'s are linear

across Q, so it is easy to see that

|flfl(afl,(/))|<c||afl,(/)||00^

Therefore,

M/)ll22
,e,   ^EjiM/)t§i

<r ^ \\äQ,(f)\\l l(Q)
-     ^      lO'l     HQ')'QcQ,     \\¿ i     '\\¿ )

and now summing over Q 9 x yields the result.

This means that all of our inequalities for S work just as well for S.

The other fact we will need is this. Suppose that the adapted functions bQ

in Lemma 2.2 are constructed to satisfy / bQP(x) dx = 0 for all polynomials

P with degree < 1, and H^^ll^ < \Q\~lßl(Q)~2 for all |a| = 2. Then

EP^/(Qr2<cwEl^/(ß)-2
x€Q      lv¿l xeQ  lwr|

The proof is almost exactly like that of Lemma 2.2.   It uses the fact that

äQ(bQI) = 0  if Q (f. Q'  (this is because of bQI 's extra cancellation) and
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\äQ(bQI)\ < C(d)\Q'\  x/2(l(Q)/l(Q'))2 when Q c Q' (because of bQI 's extra

smoothness and the definition of äQ ).

Our next lemma is the continuous version of a somewhat strengthened form

of the (one and only) lemma from [W3]. In [Wl] we defined the functional

Y(Q,V) for cubes Q and nonnegative V e LxXoc(Rd) as follows:

r sQmxQv)
Y(Q,V) = { TF /eF>°'

IQ

[l, IQV = 0.

This functional measures the "peakiness" (un-^4^  behavior) of V  on  Q:

Y(Q, V) is large if, relative to Q,  V has most of its mass concentrated on

a small set.   In our next lemma we shall make use of a slightly less singular

version of Y(Q, V). For 0 < n < 1, and Q and V as above, define

( lQV(x)log"ie + V(x)/VQ)dx

Yn{Q,v)=l fQvdx '    JeK>u'

. 1, fQv = o.

Note that YX(Q, V) ~ Y(Q, V), i.e., their ratio is bounded above and below by

constants that depend only on d [St, p. 23].

Lemma 2.3. Let 0 < p < oc, 0 < n < I, and let A be a positive number.

Let & C 3. Let f be as in (3), and such that f* e Lp(Rd ,Vdx). Suppose

that V is a weight for which Y (Q,V) < A for all Q e 77?. Then there is a

C(p, d, n) < oo such that

j \f \pVdx<C(p,d,n)Ap/2ri JSPA(f)Vdx.

Remark. Essentially the same proof as the one given below shows that the dyadic

version of this lemma also holds.

Proof. Let V{- • •} denote the V dx measure of the set {■••}. It is enough to

show that, for all X > 0,

V{f* > 2X,SA(f) < yX) < e(p)V{f* > X}

for appropriate e(p), and with y > C(p, d, n)A~ ' n.

Let {Q'x} be the maximal dyadic cubes such that \fQ,\ > X. It is enough to

show that

V{x e Q[ : Í > 2X,SA(f) < yX} < e(p)V(Q[)

for all Q\ such that

,2

(5) e -|fr-7A
QlcQeS-
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An immediate consequence of (5)—and the size and smoothness condition on

the adapted functions aQ—is that we may assume \fQ,\ < (l.l)A.

Let {Qk} be maximal (and not necessarily proper) subcubes of Q[ which

belong to &. Suppose Q e 3 satisfies Q c Q\, but Q (¡L Qk for any k. A
moment's thought shows that we have \fQ - fQi\ < C(d)yX. Therefore, if we

take y small enough, the set we are trying to bound will be contained in

|J{x € Qk : (f- fQk)* > (.8)A,5A(/) < yX} = [JEk
k k

But Lemma 2.2 says that S(f) < C(d)SA(f). Therefore, Theorem 3.1 from

[CWW] says that, for each k ,

\M<Bexp(-Cy-2),

where B and C are positive constants that depend on d . Since Y (Qk , V) <

A , we will have V(Ek) < s(p)V(Qk) if we take y ~ A~x'2>'. This finishes the

proof.    Q.E.D.

The next lemma is a slightly strengthened form of Lemma 2 from [W2]. Be-

fore stating it we need another definition. Let p : [ 1, oo) —> [ 1, oo) be increasing

and satisfy p(2x) < Ap(x) for all x. We define

MpV(x) = sup p(Y(Q,V))VQ.

Our lemma is

x€Q

Lemma 2.4. Let p be as above. There is a C(A,d) so that for all nonnegative

weights V and all cubes Q,

P(Y(Q,V))J M(XQV)dx < C(A,d)j Mp(xQV)dx.

Proof. It is enough to prove the lemma for Q a dyadic cube and M the dyadic

Hardy-Littlewood maximal function.

Let Q, c Q be the maximal dyadic subcubes such that

Y(Q,,V)<{Y(Q,V).

Define

Clearly,

(6)

V(x. =-{
VQi,      xe ß,,

V(x),    xt\JQr

[ M(Xq V) dx < f M(xQ V)dx + Y,i M(xQ V) dx
JQ JQ ,   JQi U'

= j M(XQV) dx + J2 Y(Qi, V)V(Qi)

<-LM(xQV)dx+X-Y(Q,V)V(Q),
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But the left-hand side of (6) is just Y(Q, V)V(Q) ; therefore,

(7) j M(xQV)dx<2J M(xQV)dx.

It is obvious that

I M(x0 V) dx < 2d f     sup     V0. dx.
JQ JQ xeQ'GQ

Q'£{jQ,

All of the cubes in the "sup" satisfy Y(Q*, V) > \Y(Q,V). Combining this
with (7) and p 's doubling condition yields the lemma.   Q.E.D.

We are now ready to prove our main square function results.  Let us fix a

function \p as in the introduction. We shall prove two theorems:

Theorem 2.5. Let 0 < p < 2 and p/2 < n < 1. Let V and W be nonnegative

weights such that

Í V(x) log" le + -^ J dx < Í W(x)dx

es Q. There is a C(p ,d,n)

a> 3\fd,
for all cubes Q. There is a C(p, d, n) < oo so that for all f e ^°°(R ) and all

j\f\pVdx<C(p,d,n)jsPva(f)Wdx.

This theorem has an immediate consequence.

Corollary 2.6. Let 0 < p < 2 and a > 3\fd. There is a C(p ,d) such that

j \f\pVdx <C(p,d) JSpv a(f)MVdx

for all feW^°(R ) and weights V, where M is the Hardy-Littlewood maximal

operator.

Proof of Corollary 2.6. By an easy limiting argument, we can assume that V is

bounded. Then apply the previous theorem with n = 1 and W = MV. Q.E.D.

Theorem 2.7. Let 2 < p < oo. Let N : [0, oo) —* [ 1, oo) be increasing and satisfy

N(2x) < /4n(x) for all x. Assume that

E«w",/(p"1)<i--i/(p-i)
k=0

Set p(x) = N(logx)xp/2_1. Let V and W be weights such that

j Mp(xQV)dx<j Wdx
IQ JQ

for all cubes Q. There is a C(p ,d ,A) < oo such that

j\f\pVdx<C(p,d,A)jsPla(f)Wdx

for all f e %°°(Rd) and a>3Vd.
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Proof of Theorem 2.5. Let 7?k be the collections obtained in Lemma 2.1, and

write

f=Z^Ak)
k

where each fk) is of special form relative to 7?k .

Let us temporarily fix zc, setting / = fk).  For j a nonnegative integer

define

7j = {Qe^k:2i <Yri(Q,V)<2j+x}.

Set

fj = E Ve
Q€*~j

where the an are the adapted functions. Define

<<r<fj)*[   E
Vc

P/2 (

KQ'ÇQe9] loi E
\*c

,  Q'CQ€9]
\   Q'jtQ

\Q\

P/2

J
for any Q' e S?k . Observe that SA(/)) = ZxeQcQ(fj), and that cß(/.) = 0 if

Q £ 77. Let f* denote the "dyadic" maximal function, relative to &k , of /.

And write

J\f*\pVdx<C¿2(l+J)2f\fJfVdx

(8) <C(p,¿,z,)E(l+;")22jW2" [sPA(fj)Vdx
j J

= C(P,d,n)J2(x-+J)22JP/2"j   E   cQ(/j)Vdx

(9)

xeQeP]

= C(p,d,n)¿2(l+J)22Jf"2" E cQ{fj)V(Q)
J Qe^j

< C(p,d,n)^+J)22JiP/2'''i) E CqWjWÍQ)

Q€^j

C(p,d,n)J2(x-+J)22JiP,2''-l) j'sPA(fj)lVdx

(10) <C(p ,d,n)j SPA(f)Wdx,

where (8) is from Lemma 2.3, (9) is from the definition of Y (Q, V) and the

hypothesis on V and W, and (10) is from the fact that p/2n - I <0.

We have thus proved the theorem for each SA(fk)). But is is obvious that

T,SA(f{k)) < C(d)Sva(f) if a > 3sfd. This finishes the proof.    Q.E.D.
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Proof of Theorem 2.7. Let us fix k as before. After setting n = 1, let us define

7^j,fj, and cQ(f) as we did above. We write

J\f\PVdx<^2W)j\f*\PVdx
j

<C(p,d)^2W)2Jp/2jsPA(fJ)Vdx

j

= C(p,d)J2W)2JP/2 E cQ(fjW(Q)
J Q€.9]

(H) <C(p,<M)E EccM) / Mp(xQV)dx
j   Qe?, jQ

<C(p,d,A)Y,cQ(f)W(Q)
Qe$k

<C(p,d,A) j SPA(f)Wdx,

where the next-to-last line follows from the fact that p > 2, and line (11) is

because of Lemma 2.4. The theorem is proved.   Q.E.D.

The maximal function M , at first sight, looks quite bizarre. However, it is

not so bad as it appears. In fact, it is less than or equal to C(p ,d ,A)M ^ V,
k

where M    denotes the zc-fold application of the Hardy-Littlewood maximal

operator, A is N's doubling constant, and we define zc(p) = [p/2 + 1].  We

only need to prove this fact for p > 2. Let us normalize N so that N(0) = 1.

Observe that N(x) < C(/l)(l +x),/, for some positive y = y(A), and therefore,

for appropriate 0 < ö < 1 (large enough to ensure p/2 - ô < [p/2]),

MpV(x) <C(p,d,A) sup Y(Q, V)p'2-6V
F x€Q

< C(p,d, A) sup ±- f M*l2\xQV)dt
x€Q lyi JQ *

<C(p,d,A)Mlp,2+x]V(x)

= C(p,d,A)Mk{p)V(x),

where we have used Holder's inequality and the fact that

j Mk(xQV)dx~ j F(x)log* \e + ^p-\ dx

(see [St]).
In Theorems 2.5 and 2.7, and Lemma 2.6, the left-hand sides of the asserted

inequalities are all integrals in \f\p . But in the introduction we claimed that

we would get integrals in \GN(f)\p . We shall now show how to do this. It is

here that we place an additional condition on \p , which we shall assume holds

for the rest of this section.
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We shall say that \p is rough enough if there are positive constants C and

ß so that

(12) j~\ip(t,0,...,0)\2^>C(l + \s\)-ß

for all 5 > 0. We shall denote the left-hand side of (12) by 6(5).

Define
r°° dv

H(x) = j^    ¥y*¥y(x)^.

A computation shows that, as a distribution, //(£) - ®(l£l) • Therefore if we

take tp sufficiently smooth (but still satisfying (12)) then H will be a continuous

function. We shall henceforth assume that tp is sufficiently smooth.

Suprisingly, the function H has compact support (the first to observe this

remarkable fact appears to be Uchiyama: see [U, p. 238]). The proof is, fortu-

nately, quite simple. From (*) we have that, as a distribution,

dy
H(x) = S0-       V * V (x)

Jo y

where ô0 is the Dirac mass at 0. But the x-support of the integral is obviously

contained in {|x| < 2} . Therefore supp// c {|x| < 2} .

The lemma we must now prove is

Lemma 2.8. Let ip be as above, and satisfy (12).  There is an N'(ß,d) such

that, for all N > N',

GN(f)(x)<C(N,ß,d)   sup   \H *f(t)\
\x-t\<3y      y

for all f e LxXoc(Rd) and all x e Rd .

Proof. Let us take / e L,'oc(Rd). It is enough to show that

\f *<p(0)\<C(N,ß,d) sup \H*f(t)\
|f|<3

for all cp e s/N . So take <p e ¿rfN. If N > ß + d then there is a g e L2(Rd)

(with \\g\\2<C(N,ß,d)) suchthat <j> = g * H, i.e.,

(13) <p(x) = J g(s)H(x-s)ds.

Since suppr/> c {|x| < 1} and supp// c {|x| < 2}, the integral in (13) is

unchanged if we replace g by g = g • //ix|<3} • Therefore,

\f*cp(0)\ = \f*H*g(0)\

=   f     f*H(-s)g(s)ds
/|i|<3

< sup |/*H(5)| ||*||,
l*l<3

<C(N,ß,d) sup \f*H(s)\.    Q.E.D.
I*l<3
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Let us define

H*(f)(x) =    sup    \H*f(t)
\x-t\<3y      y

Given / e ^o°°(R ), let /fc) be those functions obtained via Limma 2.1, and let

f*k) be their corresponding "dyadic" maximal functions. Then, because of the

preceding lemma, our grand maximal function results will follow immediately

once we show that

H*(f)<c\Y,K+sv,a(f)
A=\

for a > 3\fd.
We begin by observing that

(14)
dtdn

H*f(x)=f    f*¥(t)w(x-t)^
Jr¡>y r¡

d+\
It is an easy consequence of (14) that, for any (x ,y) eR+    ,

sup   \H *f(x)-H *f(t)\<CS    (f)(x),
\x-t\<ly

sup    \H * f(x) - H   * f(x)\ < CS   a(f)(x)y'<y<2y'      y y V 'a

for a bigger than, say, 20. Therefore we only need to estimate H+(f)(x) =

sup_
oo<y<oo \H2J * f(x)\. So we write

Hv*f(x)=f f *   Vy(t)Vy(X   -   t)
Jv>V y y

dtdy

(15)

ly>V

3¿

k=\     Q€S>k
Z(ö)>3-2^

where the XQ and aQ are the appropriate constants and adapted functions

which belong to the fk). Fix zc, and let Q' be the minimal cube in 77?k such

that x e Q' and l(Q') > 3-2-'. The same sort of argument as the one in Lemma

2.2 shows that

E VeW-(4))c
Q€S?k
Q'QQ

<C(d)SA(f(k)).

Therefore, the sum in (15) is dominated by

3"

cv)E(4) + sa(4))<
k=l

This proves our inequality. The "grand maximal" versions of our results follow

immediately.
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It is now easy to extend our results to arbitrary f e Hp . First choose ip

sufficiently smooth (depending on p ), but still rough enough, so that /* \p (t)

is well-behaved. Then, for M a positive integer, define

AM),  ^ - f r   .„ it\„. i       ,\dtdy(x)= [ f * Vy(t)Vy(x - t)-
J2~M<v<2M

F
<<y<2M

We can now decompose each F( J into 3 functions f?k) , each of special

form relative to 7?k . The adapted funtions we get will live on cubes with side-

lengths between 3 • 2~M and 3-2 , so there will be no problem about sum-

ming them up; and the cubes' disjointness properties imply that, if Q e 07k and

l(Q) > 3 • 2M , then ¡Q fffl = 0. This means that, for each k ,

fK))T\pvdx=   E    /|(C*q)T™*,
Q€&k     JQ

/«2)=3*2*/

and each integral in the sum is finite. Now we only need to apply our previous

arguments, let M —► oo, and apply Fatou's Lemma, to get our result.

Remark. The reader should notice that we do not need Lemma 2.3 to prove

Theorems 2.5 and 2.7: these theorems are immediate consequences of their

dyadic analogues and Lemma 2.2. We have chosen to prove them this way for

the sake of unity, because we will need Lemma 2.3 when we get to §4.

3. Singular integral operators

Let 1 < p < oo. In §2 we saw that

(16) j\f\pVdx<C(p,d)jsPva(f)MVdx

if 1 < p < 2, and

(17) I\f\PV dx < C(p ,d ,A) I SPva(f)MpV dx

if 2 < p < oo , for appropriate p (A is p 's doubling constant), a sufficiently

large, and all / e Ui<p<oo Lp(Rd ,dx) and weights V . Let T be a Calderón-

Zygmund operator as defined in the introduction. In this section we will show

that, for 1 < p < oo,

f | Tf\p Vdx<C Í \f\pMV dx

for all / and V as above, for appropriate "maximal functions" M (which

depend on p ). In particular, we will show that when 1 < p < 2 we may take

M = M , and when p = 2 we may take M = M . (Unfortunately, when

2 < p < oo, we do not know whether we are able to take M = Mq for some

q = <I(P) ■)
Our main tool here will be a pair of theorems which are essentially due to

Chanillo and Wheeden [CW2].   In order to state them we shall need some
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notation.   Let (p e ^°°(R )  be real and radial, have support contained in

{|x| < 1/2} , and satisfy j (j> = 0. We define

^^'(L^^iirw^)
"dtdyV12

yd+x

Chanillo's and Wheeden's theorems are

Theorem 3.1. Let X > 3 and 1 < p < 2. There is a C = C(p, d, X) such that

j(g¡(f))PVdx<C j\f\pMVdx

for all weights V and all locally integrable f.

Theorem 3.2. Let X > 1 and 2 < p < oo. There is a C = C(p ,d,X) such that

j(g¡(f))PVdx<C j\f\pMV-(^PjPi   ' dx

for all V and all locally integrable f.

Remark. Theorem 3.2 actually is proved by Chanillo and Wheeden. Theorem

3.1, while not proved (or claimed) in their paper, follows by an easy adaptation

of their method (see §7).

The theorems we shall prove are the following:

Theorem 3.3. Let T be a Caldewn-Zygmund operator, and let 1 < p < 2.

There is a C(p ,T) such that

j | Tff Vdx< C(p, T) j \f\pM(MV) dx

for all weights V and all f e (Jx<p<00 Lp(Rd , dx).

Theorem 3.4. Let T be a Caldewn-Zygmund operator and let 2 < p < oo. Let

M   be as defined in §2 (depending on p ). There is a C(p ,T ,A) such that

fM(MV)
p/2-l

j\Tf\pVdx<C(p,T,A)j\f\pM(MpV).i    M py    j dx

for all V and all f e(jx<p<0OLp(Rd ,dx) (A is the doubling constant of p).

Remark. We assume that f e Lp  for some p >  1   to ensure that   Tf e
4c(Rrf) •

Remark. Theorem 3.3 does not hold for p > 2. First of all, it clearly fails for

p > 2, since it implies that, if / G L°° , then Tf belongs to the exponential

Lp' class, which is false when p > 2 . However, we can see this more easily—

and that it fails for p = 2—with the following counterexample. Let T = the

Hubert transform, V = x,0 X), and / = (logx)-1 x{e en) ■ A computation shows

that |70/"|>clogzz on (0,1), and therefore

/
\Tf\pVdx>c(logn)
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But M(MV) ~ log(2 + |x|)/(2 + |x|) ; hence

/ \f\"M(MV) dx<c ^  -^—=- ,
J   '■"        V ' Je     X(l0gx)p-X

which contradicts Theorem 3.3 as n —► oo.

Let us choose <p as above, but such that / (p(x)P(x) dx = 0 for every poly-

nomial P of degree < 2d. Let \p = <t> * 4>. Then, after multiplication by a

suitable positive constant (to get (*)), y/ satisfies the hypotheses stated in the

beginning of the introduction. Therefore, it will be enough to show that

Sll/JTf)(x)<C(a,^,X)g¡(f)(x)

for all a > 0 and / as above, for some X > 3. By dilation invariance, this

will follow immediately from

(18) \Tf* ip(x)\ < C(4>,X) (| |/* 0(O|2(1 +\x- t\)-dÁdt^j      .

But (18) is elementary. We have

\Tf*V(x)\ = \f*<p*T<p{x)\<j\f*<p(t)\\T<Kx-t)\dt.

It is easy to see that |7>(x)| < C(T,<p)(l + \x\)~3d~x. Now (18) follows from

an application of the Cauchy-Schwarz inequality. This proves Theorems 3.3

and 3.4.

If we choose <f> e fê (R ), and rough enough, then \p will also be rough

enough, and we may obtain appropriate "grand maximal" versions of Theroems

3.3 and 3.4. We leave the statements and proofs of these theorems to the

interested reader. We note in passing that these results have a nice corollary.

Let us define

T* f(x) = sup
£>0

flCr)

l\y\>*' ' \y\d
Í     f(x-y)

J\v\>e
dy

It is shown in [St, pp. 67-68] that, if / e Lp , 1 < p < oo, then

T*f<C(T)[GN(Tf) + Mf]

pointwise, where M is the Hardy-Littlewood maximal function. Since we have

[FS1]

J(Mf)p Vdx< C(p, d) J \f\pMV dx,

whenever 1 < p < oo, we have the following corollary to the results of this

section:

Theorems 3.3 and 3.4 remain true if Tf is replaced by T* f.

4.  SOBOLEV INEQUALITIES

In this section we shall assume that 1 < p < 2, and all the / 's we deal with

will belong to %°°(Rd).
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We will prove two theorems, one for the case p < 2 and the other for p = 2.

Let us first recall a definition. We say that a weight W is in the Muckenhoupt

class A    ( 1 < p < oo) if

s(rà/e-')(râ/a^,/"T,-"^<-
The value of the supremum is the A   "norm" of W (see [M]).

Theorem 4.1. Let 1 < p < 2 and let W e A . Let n > p/2. if V is a weight

for which

l(Q)p j V(x) log" le + ^ j dx < f W(x) dx

for every cube Q then

j\f\"Vdx<C j\Vf\pWdx

for all f e ^°°(R ), with a constant C that depends only on n,p,d, and the

An norm of W.
p J

Theorem 4.2. Let p = 2 and let M   be as in Theorem 2.7 (for the case p = 2).

Let W eA2. If V satisfies

(16) l(Q)2 j Mp(xQV)dx < j Wdx

for every cube Q then

f\f\2Vdx<C f\Vf\2Wdx

for all /6^°°(R ). The constant C depends on d,A  (p's doubling constant),

and the A2 norm of W.

The only significant difference between the proofs of these two theorems is

that the second one is simpler. Therefore we shall only prove Theorem 4.1.

Proof of Theorem 4.1. Let  tp be as in the introduction.   For z = 1, ... ,d,

dtdy

define 4>¡ = d>p/dxi. For fe^(Rd) set

'^/•(WWW*-^ y
By Fourier transforms, / = c(\p) £0 g, ■ The theorem will be proved if we can

show, for each i,

j\gfVdx<C j\^Wdx.

So let us now fix i, and set g = gi and tp = <f>,.  Let ^ and g(k) be the

families and functions obtained via Lemma 2.1. For each k we have

*<*) = E Ve
ees*
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where we may set, for Qe7?k,

1/2^ALv'^ld¥) ■

We shall for the moment fix k and set g = g,k). Let 77,,g,, and cQ(g¡) be

as defined in the proof of Theorem 2.5. The argument given there yields

i\g\PVdx<C(p,d,n)^(l+j)22J^-X)^cQl(Q)-pW(Q),
J QeTj

Now, since p/2 < 1 ,

cQ«Q)-p=[ E
^QÇQ'€.9]

\lQ,\2l(Q)~:

Iß'l

I
E

, QcQ'€9]
V   Q*Q7

iyi2/«2)~2

" Iß'l

P/2

2un's-2\pl2

KQCQ'€9-¡

iyr/«2)
Iß'l

P/2

E
iyi2/«2r2

, QcQ'eFj
;

(Here we are using the fact that (x + a)a - xa < (y + a)a - ya if x ,y , and a

are nonnegative, x > y , and 0 < a < 1. In our case,

P ^        |Aß,|2/(ß)"2

QcQ'cf]
Q¿Q'

Iß'l

^     IV2/(ß')-2 l^Q|2/(ß)"2

Q<zQ'e^]
Q¿Q'

Iß'l

We get equality if p = 2 .)

Set 1q = Xq- l(Q)~  . Summing on k and j yields, for each i,

(17)

\?q\
f\gi\PVdx<C(p,d,n)f[    £

\Q\
Wdx

<C(p,d,n)[([ \fH(t>)(t)y-\ld^A     wdx
J   \J\x-t\<iJTy y ya+l J

-1
But f*(4>T)y(t)y     = dt/dx, * tpy(t).  Therefore the right-hand side of (17)
equals a constant times
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and it is well-known [RF, K] that this is less than or equal to

C ¡\ir-    Wdx
J \dx,

when WeAp.   Q.E.D.

We wish to make an observation about Theorem 4.2 which will be useful in

the following section. Let p be as in the theorem. We claim that the conclusion

of the theorem holds if W e A2 and if, for all cubes Q,

(18)

l(Q)2J F(x)logU + ^jp(loglog(lO+^)j dx<[ Wdx.

The reason for this is that we only need for the "dyadic" version of (16) to hold,

for each family ^ . But the argument from [W2] shows that

j Mp(xQV)dx < C j F(x)log L+?p\ p hog log ( 10 + ̂  J j dx

is true in that case. This proves our assertion.

5.  SCHRÖDINGER OPERATORS

In this section we shall assume that d > 2. We shall also assume that tp

(see the introduction) satisfies / ^(x)P(x) dx - 0 for all polynomials P with

degree < 1 , and that \p e fê (R ) for k > 3. It is easy to see that the adapted

functions bQ defined via this  tp inherit  \p 's cancellation property and also

satisfy ll/^H^ < C|ßr'/2/(ß)"2 for all multi-indices |a| = 2.

Let A(x) = (a Ax)) be a d x d real matrix-valued function of x e Rd.

We assume that A(x) is symmetric and positive semidefinite, with eigenvalues

Àj(x) < • •• < Xd(x). We assume furthermore that there exist positive constants

c, and c2, and an A2 weight W such that

(19) cxW(x)<Xx <Xd <c2W(x)

for all x e R  . For V nonnegative in L,'oc(R ), we consider the Schrdinger

operator L, defined by

Lf=-div(A(x)Vf)-V-f.

We assume that V and  W are sufficiently regular so that everything we say

about L makes sense.

Such operators have recieved a great deal of attention recently. In particular,

the case where A = I, the identity, was studied in [F, CWW, and KS]; while

the case of nonconstant A was treated in [CW1]. We shall describe some of

these results and show their relation to our own. Since [F] was the earliest of

these papers, and it established the basic procedure which the other researchers

have followed, our discussion of [F] will be the most complete.
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In studying the spectrum of operators like L, the central question is: When

is L nonnegative? In the case when A is the identity matrix, integration by

parts shows that L 's nonnegativity is equivalent to

(20) j\f\2Vdx<j\Vf\2dx,

for all / e ^,°°(R ). In [F], the following is shown; given p > 1 there is a

y(p, d) > 0 so that if, for all cubes Q,

<2,) m)1{mhv'dxï"iy{p-d)

then L is nonnegative. Using this result, one is able to get rather precise es-

timates of the size of L 's lowest (negative) eigenvalue, in the case when L is

not nonnegative. Call this eigenvalue XX(L). One has

i/p
c,sup[Vn-cJ(Q)    ] < -XAL) < c\ sup

Q     U Q
(hhv"dx) ~c'm

where the positive constants c, depend only on p and d.

One can also count the negative eigenvalues of L, in the following sense.

Let X > 0. If there exist cubes Qx, ... ,QN with disjoint doubles such that,

for each i, VQ¡ > cxl(Q,)~2, l(Q() < c2X~x/2, where the ci > 0 depend on d,

then L has at least N eigenvalues less then or equal to -X. And: if L has N

negative eigenvalues, and p > 1, then there exist cxN disjoint cubes Qi such

that

Vdx^j   P >c2l(QT)-2,       l(Q,)<c,X-X'2.,

for each i, where, again, the c, are positive constants that depend on p and

d.
In order to sharpen these resutls, one first of all wants to find something

strictly weaker than (21) which will imply L > 0. One such condition is given

in [CWW]. Let <p: [0,oo) —► [1 ,oo) be increasing and satisfy </>(4x) < A<p(x)

for all x, for some A < 2d~2. In [CWW] it is shown that if

\\Qi\SQi

¡;
dx    <x

X(j)(x)

and

(22) supl(Q)2 f V(x)<p(l(Q)2V(x))dx<c(d,A)
Q JQ

then L > 0. At first sight, (20) may not seem to be the right extension of (21),

since the homogeneity appears to be wrong. The right extension, one thinks,

should be

(23) supl(Q)2 J V(x)4> \^p\dx<c(d,A).
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But, in fact, (23) implies (22), since (23) implies that VQ < c(d ,A)l(Q)~2 . By

means of the same procedure as that in [F], the analogous eigenvalue estimates

now follow.

In [KS], Kerman and Sawyer found (modulo a positive multiplicative con-

stant) a highly nontrivial necessary and sufficient condition on V for L to be

nonnegative. Define

MxV(x) = sup1^- f Vdt.
x€Q   |V¿I   JQ

Their result is the following: There is a Cx < oo such that

j\f\2Vdx<Cxj\Vf\2dx

for all test functions /, if and only if there is a C2 < oo such that

j [Mx(XqV)]2 dx < C2 j Vdx
IQ - JQ

for all cubes Q, where Cx/C2 is bounded above and below by positive constants

that depend only on the dimension. They obtain results, analogous to those of

[F], in which fQ[Mx(xQV)]2/ fQ V plays the role of l(Q)2(^ fQ Vp)x/p . '

Now let L be as in the first paragraph of this section, but with A ^ /.

Integration by parts shows that L > 0 follows from the inequality

(24) [\f\2Vdx<c / |V/l V dx

for all test functions /, for c > 0 sufficiently small. The methods of [KS] show

that (24) holds if and only if

(25) / Wx(xQV)]2W-x dx<C [ Vdx
JQ JQ

for all cubes Q . This is because, if W e A2, (24) is equivalent to an inequality

involving Riesz potentials, to which the methods of [KS] apply.

Unfortunately, although (25) is an inequality that only needs to be tested

over cubes, if V is not simple, this can still be rather difficult to verify, even if

W = 1. Therefore it is desirable to find a condition on V and W which, while

less sharp than (25), looks more like those in [CWW and F], and is therefore

easier to check.

One way to do this is to apply the method of [CWW] directly to the weighted

case. This has been done by Chanillo and Wheeden [CW1]. Let (p: [0,oo) —*

[l,oo) be increasing. Suppose that <j> satisfies

dt

W)(26) Í

1 The Fefferman-Phong and Kerman-Sawyer results have also been obtained, through different

means, by Schechter [Sch].
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Chanillo and Wheeden show that if V and W are weights such that

(27) l(Q)2 ¡Q <t> (^P) V(x) dx < ¡q W(x) dx

for all cubes Q then (24) holds, with a constant c that depends on </>, d, W 's

A2 norm, and the constants in (19). By choosing (j> = (1 + t)e they are able to

show that (24) follows if

m2{mhv')'"-C{p'd)w°

for all cubes Q, for any p > 1. This is the right generalization of the Fefferman-

Phong condition; in particular, it has the correct homogeneity. Following [F],

Chanillo and Wheeden are able to get the appropriate eigenvalue estimates for

L. However, there does not seem any way to transform (27), for general </),

into the appropriate homogeneous form.

The other approach to this problem is to derive (24) from a two-weight square

function inequality, and this is what we have done. Let p: [0,oo) —► [1 ,oo) be

increasing and satisfy p(2x) < Ap(x)  for all x.   Furthermore assume that

J2 l/p(k) < 1. In the previous section it was shown that if

(28)

l(Q)2 j *"(*) log (e + ̂  J p flog log ( 10 + ̂ p- j J dx < j W(x)dx

for all cubes Q, then (24) holds with a constant c that depends on A, d,

the A2 norm of W, and the constants in (19). It should be noticed that

<p = log(e = x)p(loglog(10+x)) satisfies (26). Therefore (28) is the appropriate

homogeneous form of the Chanillo-Wheeden result, and is thus the appropriate

weighted form of the result from [CWW].

Let us know fix p for the rest of this section, and define

n*)\ „/,.„„,  /lf,, nxA(Q,V) = j F(x)log (e + ^ J p iloglog ( 10 +

We are now ready to state our theorems (A will henceforth refer to p 's doubling

constant).

Theorem 5.1. Let A(x) be as in the first paragraph of this section, with W e A2.

let L = -div(^(x)-) - V(x)-, and let XX(L) be L 's lowest nonpositive eigen-

value. There are constants cx,c2,c3, c4 which depend on A,d, the constants in

(19), and W 's A2 norm, such that

(29)
1     w^    .„ „^-2,

supcx{VQ-c2l(Q)  ¿^0]<-A1(L)<supc3   ^A(Q,V) - c,l(Q)  'WQ

Remark. The upper bound in (29) is the analogue to an estimate obtained in

[CW1, Theorem 1.10].   However, it is assume there that  W e D   for p <
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1 + 2/d, where we say that W eDß if there is a finite C so that

W(Q) < C(|ß|/|ß'|) V(ö')

for all cubes Q D Q'. Since we are assuming W e A2, we have W e Dß for

some ß > 0. But our result holds without assuming an upper bound on ß .

In order to apply the Fefferman-Phong recipe to L we shall need to assume,

at one point, an additional hypothesis on W. Let us say that W eRDß (reverse

doubling of order ß > 0) if there is a finite C so that for all cubes Q c Q',

W(Q)<C(\Q\/\Q'\)ßW(Q').

Theorem 5.2. Let L be as above. There are constants cx,c2,c3, depending

on A,d, the constants in (19), and W 's A2 norm, such that the following

statements hold:

(i) If there are cubes Qx, ... , QN. with disjoint doubles such that

l(Ql)2V(Ql)>cxW(Qi)

for each i, then L has at least N negative eigenvalues;

(ii) Assume that, in addition, W e RD„ for some ß > 2/d. If L has at least

N < oo negative eigenvalues, then there are disjoint cubes Qx, ... , QM, where

M >c2N, such that

l(QJ)2A(QJ,V)>c,W(Qj)

for each j.

Proof of Theorem 5.1. We will only prove the right-hand inequality in (29) (the

left-hand one is elementary: see [F, CW1]). Assume that, for all cubes Q,

(30) ±.A(Q,v)-c4l(Q)-2WQ<B,

where c4 will be chosen later. We will show that L > —cB, for some positive

constant c.

Inequality (30) implies that

A(Q,V)<c4l(Q)-2W(Q) + B\Q\

for all Q. Now take / e %°°(Rd) and write f = c(ip) E,,fc(^)(fc) > where the

(g,),k) are as in the proof of Theorem 4.1. For each (g,),k<, we have

/

IV2
\(g¡){k)\2vdx<cJ2-^-MQ,v)

Q&k

\X I2
(31) <CJ2 ^r[c4l(Q)-2W(Q) + B\QW

Qe&k   IW!|

<Cc4 j\Vf\2Wdx + cB J\f\2dx,
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where (31) follows from the arguments in §4 and the fact that the square func-

tion is bounded on L2(Rd ,dx). Summing on i and k implies

[\f\2Vdx< Cc4 j\Vf\2Wdx + cBJ l/l2 dx.

Thus, if c4 is small enough, we get L > -cB .   Q.E.D.

Proof of Theorem 5.2. Since (i) is obvious (see [F]), we will only prove (ii). We

shall first assume, much as in [F], that V < RW, for some R > 0, and that V

has compact support; the bounds we get will not depend on R or the size of the

support; at the end we will show how to remove this restriction. For 1 < k < 3

let {Qk} be the minimal Q e &k such that A(Q,V) > c3l(Q)~2W(Q), where

c3 > 0 is to be determined.2 Let nk be the number of such cubes. The cubes

in the conclusion of the theorem will be the minimal ßef. for which «; is

largest; we will show that L has at most C^2nk negative eigenvalues.

Let us temporarily fix k . Following the procedure described in [F], we pick

additional cubes {ßfo} c 77k . We can do this because the cubes in 7?k have the

same inclusion properties as the dyadic cubes. It is shown in [F] that we get no

more than C  nk additional cubes. Take the union of {Qj} and {ß(7)} , and

call resulting set {ß } . For 1 < i < d and 1 < k < 3   let us defined bounded

linear operators /, k : L2(Rd ,dx) -> L2(R ,dx) by /;. k(f) = (g,)(k), where the

(g,),k) are as in the proof of Theorem 4.1. We define a closed subspace H c L

by saying that f e H if, for each i and k,

(33) ( lik(f)P(x)dx = 0   Vße{ß*},
Jq   '

for all polynomials P of degree < 1. Clearly H has codimension < c J2 nk .

We will be done once we show that

(34) j\f\2Vdx<c j\Vf\2Wdx

for all / e H n W^°(Rd), for sufficiently small c. So let us take such an / and

write f = c(tp)Y7.(gi)(k), where each (g,)(k) satisfies (33).

We shall follow the arguments in [F and CW1]. Define ß0 = R . For each

1 < k < 3d, let 3Bk be those ß e %k such that A(Q,V) > cil(Q)~2W(Q).

For each Qe{Qk) define

E(Q) = Q\    U    Q),
j-Q'cq

Q)*Q

2 These minimal cubes exist if V < RW , since W e Ax implies A(ß, V) < CRA(Q, W) <

C • CrW(Q) . Similarly, the analogous maximal cubes exist because W e RDß (ß > 2/d) and

V has compact support.
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and set
E(Qk) = Rd\ (J Qk .

j>o

We will have (34) once we show the following two statements:

(i) If ß € &k and ß <JL Q) for any j then A(Q,V)<C- c3l(Q)-2W(Q)
(note: we shall call this family of cubes ^0 ).

(ii) If ß e &k and ß C Qk for some ;, but ß £ Qk, for any Qk, strictly

contained in Qk , then A(Q,VxE(Qk)) < C ■c3l(Q)~2W(Q) (note: we shall call

this family of cubes 77%, ).

We shall first show that (i) and (ii) imply (34). Let us set Qk = Rd , and fix

g = (gi){k). For ß e S?k , let äQ(g) be the corresponding "dyadic" martingale

difference as defined in the remark following the proof of Lemma 2.2. Let S()

denote the corresponding dyadic square function. Set, for j > 0,

Sj=  E aQ^)-
Qe&j

Since g satisfies (33), we have g = g. on E(Qk), for all ;'. Also, the E(Qk) 's

make a partition of R  . Therefore,

f\g\2Vdx = YJ¡      \gj\2Vdx
J j  Je(&¡)

(35) scEEÜ&í.f^)

(36) ïc-ciEY, ^^'(ßr2^(ß)

(37)

\àQ(g)\\2 u

161

<c.C3/E^ÄßrW

2

<c-c,JYl^(Qr2wdx
xeQ

df
<c-c3is;a[^\

<C-c3 I a/2
dx-

Wdx.

where (35) and (37) are from the remark following the proof of Lemma 2.2

((35) holds because the same good- X inequality argument works for S as for

S ; see [W2]), (36) is from (i) and (ii), and the last line is because W e A2.

Therefore we only need to prove (i) and (ii).
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Our argument follows that in [F] almost verbatim.   We can assusme that

ß e 778k and, because of Lemma 5.3 and the argument in [F], we only need to
k k

check the case where Qe77%., Q ^ Qj , and ß7 is (in the sense of [F]) not

branching. We let ß e 77?k be the (unique) maximal subcube of ß which

is either branching or minimal. As in [F], if ß e 778k and ß n E(Q,) / 0,

then ß'cß and Q* ¿ Q. Following [F], we are able to write ß\ß# as

a disjoint union of cubes Qa satisfying A(ßa, V) < c3l(Qa) W(Qa). For

each positive integer n , there are no more than 2 - 1 Qa 's with sidelength

2~nl(Q). Each of these cubes will satisfy VQ <2" (VxEiQk^Q- Finally, let us

define n(x) = log(e + x)p(loglog( 10 + x)), and observe that there is a C such

that n(ab) < C(n(a) + n(b)) for all nonnegative a and b. Therefore,

A(ß/%))<CE Í^)W/tó¿
<C-c3¿2¡(Qa) -2lV(Qa) + CJ2n        E       V(Qay

a n=\       l(Q„)=2-"l(Q)

oo

^c'c3E   E   '(ßar2^(ßjn + "2]
n=l/(e„)=2-"/(ö)

(38) <C-cc-(2d - l)l(Q)~2W(Q)Ë22"2-^"[l + zi2]

(39) <Cc3l(Q) 2W(Q),

where (38) is because W e RD„ and (39) is because ß > 2/d. This proves

Theorem 5.2 when VjW e L°° and V has compact support.

Let us now show how to remove our restriction on V. For R > 0 define

V(x) if V(x) < RW(x) and \x\<R,

RW(x) if V(x) > RW(x) and |x| < R,

0 if\x\>R.

VR(x)

Define LR = - div(/l(x)V-) - VR. Assume that L has at least AT negative

eigenvalues, i.e., that there exist orthonormal 4>x, ... ,<j>Ne ̂ °(Rd) such that

(L<j>,,4>7) < 0 for each i. Then, for R sufficiently large, LR will also have

N negative eigenvalues, and the minimal cubes obtained for VR will satisfy

A(ß, V) > c3l(Q)~2W(Q), with possibly a smaller c3. This finishes the proof
of Theorem 5.2.   Q.E.D.

Remark. Using the same argument as above, one can prove the following theo-

rem:

Theorem 5.3. Let V ,W, and L be as in Theorem 5.2. Let E > 0.



688 J. M. WILSON

(i) If there exist cubes Qx, ... , QN with disjoint doubles, such that

VQi-cxl(Q7)-2WQ>c2E

for each i, then L has at least N eigenvalues <-E.

(ii) Assume that W e RD„ for some ß < 2/d. If L has at least N < oo

eigenvalues < -E, then there exist disjoint cubes Qx, ... , QM, with M > c3N,

such that

(40) W\HQ' ' V) ~ C4/(ß;)"Vß *■ csE

for each i, where the positive constants cx, ... ,c5 depend on the usual param-

eters.

Remark. The c4 in Theorem 5.3 can be taken to equal the c3 in Theorem 5.2.

Proof of Theorem 5.3. Again, (i) is almost obvious, and we will not prove it.

We prove (ii) almost exactly as in Theorem 5.2. The only difference is that

instead of looking for the minimal ß e 77?k which have

MQ,v)>Cil(Q)-2w(Q),

we look for the minimal ß which satisfy (40). Details are left to the reader.

Q.E.D.
Remark. Theorem 5.3(h) does not quite have the same form as its analogues in

[F and CW1]. The appropriate analogue should be

Let L have N eigenvalues < -E. Let B be those minimal cubes obtained

in Theorem 5.2. Then there exist Qx, ... ,QM, with M > cxN, belonging to

B, such that
l(Q7)-2WQ>c2E

for each i.
We have stated our results the way we have because in order to prove the

preceding statement, we need to assume an additional hypothesis on W, such

as that  W e D   for some p < 1 + 2/d.  The reason for this is that, in the
— i ii

two-weight case, the place of the cubes with sidelength ~ E        is taken by the

maximal "dyadic" cubes for which l(Q)~ WQ > cE, and if we do not make

some such hypothesis on W, we do not know that such maximal cubes exist

(see [CW1]).

6. Smooth ^'s

In this section we sketch how to prove (the analogues of) the square functions

results from §2 in the case when y/ e '^(R ) ■

Let H be as defined in §2. In this case we do not have the straightforward

estimate of Lemma 2.8. However, we have replacement. For X > 1 define

H¡*(f)(x)=    sup    \f*Hy(t)\(       ?        )     .
(í,y)GRO' \y + \x-t\j
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This is the "tangential" maximal function introduced by Fefferman and Stein

in [FS2].

We have the following theorem [FS2]:

Theorem 6.1. For every X > 0 there is an N = N(H ,X) such that

GN(f)(x) < CH"(f)(x)

for all f e LxXoc(Rd) and all x e Rd . The constant C depends on H,N, and

X.

Therefore we will have our grand maximal theorems once we find some way

to control H**. Let us set H+(f)(x) = supj;>0 |/* H (x)\ ; we already know

how to control H+ .

Now, it is easy to see that

-kdk_**
H,  (f)(x) < C //+(/)W + E2 SUP     \f*Hy(x)-f*Hy(t)\

k=° \x-t\<3*y J

-kdX,
But each term in the summation is less than or equal to Ck2       S   b.2k (/).

This clearly implies that

H"(f)(x) < C(H+(f)(x) + g¡,(f)(x))

for X' > X - e , with e > 0 as small as we please. Therefore,

GN(f)(x) < C(H+(f)(x) + g¡(f)(x)).

Since is is obvious that S   a(f) < Cg*k(f), we can now state the appropriate

analogue of our results from §2:

Theorem 6.2. For 0 < p < oo let V and W satisfy the hypotheses of one of the

theorems from §2. Let X > 1. There is a finite C so that

j\GN(f)\pVdx < C j(g*k(f))pWdx

for all f in the appropriate test class (depending on p).

1. Appendix: the Chanillo-Wheeden inequality

We wish to supply the small argument needed to prove Theorem 3.1.

Since g*y (/) < g*x (/) whenever X > X, it is sufficient to prove the theorem

for 3 < X < 4.

Following [CW2], we set, for p > 0, Q = {x e Rd : Mf(x) > p) . By [FS1],

V(0)<- ¡\f\MVdx,

and therefore the theorem will follow from

(41) V{xtÇl:g*x(f)>p}<C-j\f\MVdx

and interpolation with the L   inequality.
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Write Q = U Q}., where the ß   are Whitney cubes, and set

r/(x),       x{n, if(x)-fQj,      xeQj,

8{X)~\fQj,        xeQj,       bJ{x)'\0, xtQj.

It is enough (see [CW2]) to show that

(42) V{x i Q : g*k (E¿,) >p}< -pj\f\MVdx.

Since g*x  is subadditive, (42) will follow from

ZR^ÍÍ

which will in turn follow from

(43)

Ei      g[(bWdx<C ¡\f\MVdx,

í      g¡(b,)Vdx<C f  \f\MVdx
Jrf\n JQj

for some C independent of j and p . We shall now prove (43).

Let x   = the center of ß .   We need to estimate b, * <f> (t).   We have

two cases: (i) y < l(Q,) ; (ii) y > l(Q,).  In case (i), the best we can do is

\bj * <i>y(t)\ < C\\b,\\ xy~   . In case (ii), we can use the fact that / b = 0 and get

\bJ*<i>y(t)\<C\\bj\\xl(QJ)y-d-x.

If x <£ Q, then \x - x,\ > cl(Q}). Also, b] * (py(t) = 0 unless \t - x,\ <

c[y + l(Qj)].

Thus, for x ^ il, we have

dX

<c-
\X - Xj

\dX/2

,d/2

I

dtdy
yd+x.

dX-2d-d-\

I1/2

y<KQj)
dy

1/2

(44)
< C^^'/(g^„  l(Q.fdx-id)l2

X -x \dXI2

<C
ll^ll,/(ß,)"

(l + |x-x.|//(ß;))rfA/2

<C\fxQi\*r,(Qj)(x),

where t(x) = 1/(1 + |x|)<//l/'2 e L1 , and inequality (44) is because X > 3
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For the next part of the integral we consider two cases:  d = 1 and d >

If d = 1,

(45)

/.

dtdy

'(öj)<.v<l*-*;l      y

IIMl/(6;)

d+l

1/2

<c- 5*1  f
x..^2 \Ll{Qj)<y<\x-Xj\

-4      X   -2   ,
y  y y y   dy

|x-x;.|A/2        J

<C- P>;ll,/(g/
(l + |x-x.|//(ß;)//2

<C\fxQi\*o,m(x),

1/2

where o(x) = 1/(1 + |x|) '  , and (45) is because X < 4.

On the other hand, if d > 1,

(46)

L dtdy
1/2

l{Qj)<y<\x-Xj\      y
d+l

<c-
x - x \dX/2 Í

JlU\J HQj)<y<\x-Xj\

dX/2-d-\

-2d-2   dX   d   -d-\   ,
y      y y y      dy

1/2

|x-x/A/2 J

i(Q,yd

<C\fxQj\*P,m(x),

\d+l
where P(x) s 1/(1 + |x|p' and (46) is because X > 3 > 2 + 2/d.

Finally (since y/(y + |x - x|) < 1),

/J y>\x—x

dtdy

y>\x-x,\       y
d+i

1/2

<C||/3,l|,/(ß,)   / y-2d~3dy
\Jy>\x-x,\

ïC\fXQl\*Pl{Qi)(x)-

1/2
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Therefore, if x <£ Q, and d > 1, then g¡(bj) < C\fxQ J * P,(Q)(x). And

thus:

/      g*x(b)Vdx<cf      \fxQ\*Pl(Q)Vdx
Jw\n       ' Jr«\sï     q>      m>)

(47) =Cj  \f\(P,(Q])*V)dx

<C [  \f\MVdx,
JQj

where (47) is because P is even. If d = 1 we get the same thing, but with P

replaced by o .   Q.E.D.
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