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WEIGHTED NORM INEQUALITIES FOR
THE CONTINUOUS SQUARE FUNCTION

J. MICHAEL WILSON

This paper is dedicated to the memory of my friend
Frederick J. Zeigler (1953-1988)

ABSTRACT. We prove new weighted norm inequalities for real-variable ana-
logues of the Lusin area function. We apply our results to obtain new: (i)
weighted norm inequalities for singular integral operators; (ii) weighted Sobolev
inequalities; (iii) eigenvalue estimates for degenerate Schrodinger operators.

1. INTRODUCTION

Let v € ‘gk(Rd) be real and radial, nontrivial, satisfy [y = 0, and have
support contained in {|x| < 1}. We may clearly assume that y is normalized
so that

(*) / T lwEordt =1

T
for all £ # 0. (Here and in the sequel, * denotes the Fourier transform.) For
y >0 we define y,(x) =y y(%). For fe L, (R") and a >0 we define

1/2
(1) Sw,a(f)(x)z(/l | |fwy<t>|2%) .
x—t|<ay

Equality (1) defines the square function of f with respect to ¥ of aperture a.
For B = (B,,...,B,) a multi-index, let || = > B,. For N a positive
integer define

— oo ndy B

A ={¢eG (R): supppC{|x|<1}, || Y D¢l <1y,
|BISN oo
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and for fe Llloc(Rd) set
Gy(f)(x) = sup [¢, * f(x)],
PEA

y>0

the grand maximal function of f of order N.
In this paper we prove weighted norm inequalities for the form

2) /|GN(f)|"de§C/Sf,,a(f)ﬁde (0 < p < 0);

i.e., foreach 0 < p < oo we exhibit a “maximal operator” (or class of operators)
M such that (2) holds for all f in some suitable test class (e.g., %w(Rd) or
L’ (Rd ,dx)) and all nonnegative V' € Llloc(Rd) , for appropriate ¥ ,and N and
a large enough, with a constant C which does not depend on V or f. The
M’s we obtain are smaller than any previously known, and in particular they
do not (in general) have the Muckenhoupt A_, property. (Recall that a weight
V is said to have A4 __ if for all ¢ >0 thereisa J > 0 so that for all cubes Q

and subsets £ C Q,
<6:/V<s/ V.
IQI

See [M].) We show that, for every p, there is a k so that (2) holds for M=
Mm* , where M is the Hardy-Littlewood maximal operator; moreover, when
O<p<2,wecantake k =1.

We apply our results in two directions. When 1 < p < 2, an additional
argument lets us infer from (2) a new sufficient condition on weights V' and
W for the Sobolev inequality

[inevaxs [1vsewax

to hold for all f € %W(Rd). When p = 2 we use this inequality to ex-
tend results of [F, CW1, and CWW], obtaining new eigenvalue estimates for
Schrodinger operators of the form L = —div(A4(x)V:) — V', where A(x) is a
symmetric, positive semidefinite, matrix-valued function of x € RY.

When 1 < p < oo, (2) plus results from [CW2] let us obtain new weighted
norm inequalities for Calderén-Zygmund operators. Let Q € %°°(Rd\{0}) be
homogeneous of degree 0, and satisfy

Q(x)do(x) =

[x[=1

If, for f €U cpeo0 LP(RY dx), we set

Tf(x)_hm flx-y) (ly)dy a.e.

e—0

yl>e |
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then T is called a Calderon-Zygmund operator (see [St]). We show that, if
1 <p<2,then

/|Tf|”de < C/|f|pM(MV)dx

for all f and all weights V. We obtain analogous, but more complicated,
results for 2 < p <oo.

Our theorems are based on results in [W2, W3], and the main idea of this pa-
per is the construction of a “machine” which allows us to translate the “dyadic”
results of those papers into the continuous setting. We describe the machine in
§2. Once the machine is in place, the Sobolev and singular integral inequalities
follow relatively (though not quite) routinely. In particular, in order to obtain
(2), it is enormously convenient to assume, at one point, an additional hypoth-
esis on ¥ ; namely, that y is not too smooth. Using the methods of [FS2],
one can do without this assumption, but doing so does not seem to result in
any stronger theorems in the applications. Therefore we have stuck with our
assumption. However, in §6, we show how one may obtain the analogues of our
square functions results without it.

We prove all the square function results we need in §2. In §3 we prove the
results on Calderén-Zygmund operators. We prove the Sobolev inequalities in
84 and the eigenvalue estimates are proved in §5. In §7 we tie up a loose end
which we leave hanging in §3, which is peripheral to the line of our argument
there.

2. SQUARE FUNCTION RESULTS

We shall say that a cube Q C R is dyadic if it is of the form

_ (L Lt Ja Jatl
0= (315 ) < (3 4

for some integers k and j,, i =1, ...,d. Dyadic cubes have the well-known
property that any two of them are either disjoint, or one of them is contained in
the other. We shall denote the collection of all dyadic cubes by & . If Q is as
above we say that Q has sidelength 27k , and we denote this by /(Q) = 27k,
For fe L,'oc(Rd) and Q a cube, we set

fgsﬁfgf,

the average value of f over Q. For k an integer we set

f}( = Z fQXQ;
Qe
1@=27*

and we define

f‘(x)ESl;DVkl,
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the dyadic maximal function of f. If Q is a dyadic cube and /(Q) = 2% we
define

aQ(f) = (f;(.,.l - fk)XQ~
The dyadic square function is defined by

la,(NIE) "
a
S(f)z( 3 %) :

XEQEY

In this section we show how to reduce the study of G, and Sw o to that
of f* and S. In order to avoid getting lost in technicalities, we shall first
prove our theorems under the assumption that f € %w(Rd); at the end (of
this section) we shall show how to remove this hypothesis.

The main device in our proof is the following lemma. By the triple of a cube,
we mean the cube concentric with it but with sidelength three times as big. We
shall always denote the triple of a given cube QO by é

Lemma 2.1. Let F be the collection of all triples of dyadic cubes. There exist
disjoint families &, ..., 5, such that & = )%, and, for every k, if 0,0
arein &, then either they are disjoint or one is contained in the other. Moreover,
if Q is a proper subset of Q', then 1(Q) < $1(Q").

Remark. This is a refinement of Lemma 3.2 from [CWW]. Also, it is implicit in
work of Carleson and Garnett on interpolating sequences in R‘f" [G, p. 416].

Proof. For &= (¢,,...,¢;) €{0,]1 ,2}d and k an integer, let #/(¢) be those
Q in ¥ which are of the form
0= (3”1 :—sl ’ 3(n, +k1)+sl> .o (3nd:—ed ’ 3(nd+:)+£d>
2 2 2 2
for some integers n,,...,n,. It is clear that # (¢) ﬂ)?,;(g) =0 if §#4.

If we bisect a Q in # (&) into 2 congruent subcubes, the resulting cubes
belong to #, (2€), where we are slightly abusing notation, and saying that
g = s; if they are congruent modulo 3. Also, every such Q arises from the
subdivision of a Q' € #,_,(28) . Let us show this. It is sufficient to show that
every interval J = (3n +¢,3n + 3 + &) is either the right or left half of an
interval (6n' +2¢',6n" + 6+ 2¢'), with & = 2¢. We consider cases:

(i) e=0. If n =2k thentake n' =k, ¢ =0, and J is a left half. If
n=2k+1 thentake n' =k, ¢ =0, and J is a right half.

(i) e = 1. If n = 2k, take n' = k, ¢ =2, and J is a right half. If
n=2k+1,take n' =k, ¢ =2,and J is a left half.

(iii) e=2. If n =2k, take n' =k, ¢ =1 (which equals 2-2 modulo 3),
and J isaleft half. If n =2k +1,take n' =k, ¢ =1, and J is a right half.

Therefore if we set

z@) =z e,
k

then these are the desired collections. Q.E.D.
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For the time being, let us assume that f € C5})°°(Rd) , and let y be as in the
introduction (in particular, y satisfies (*)); at the end of this section we shall
show how to extend our results to general f € J, <p<oo H? (Rd ,dx), where H?
denotes the Fefferman-Stein real-variable Hardy space, as defined in [FS2]. Let
R‘f' ={(t,y): te R,y > 0} . We use A. P. Calderén’s trick to write

1= [ rrnone-nE.

Since f € %oo(Rd) , the integral converges absolutely, uniformly for all x, and
so we can cut it up however we please.
For Q a dyadic cube define

T(Q) ={(t,y) eRY": 1€ Q,I(Q) <y < 1(Q)}

and set drd
)-/ frw, 0w, (x - 2.

Clearly each &Q( f) is supported in é , 1s smooth, and has integral 0. Also,

=Y a,0
Q
For 1 <k < 3d, let &, be one of the collections obtained in Lemma 2.1. We
set
fin = 22 ap(f)
e,
and we have
3d
/= Z f(k) :
k=1

The f( x)’S are sums of smooth functions which behave very much like the dya-
dia martingale differences ay( f) . We shall make this precise with the following
definitions. Let us say that a collection of cubes & is good if forall 0, Q' € &,
either QN Q' = @ or else one is contained in the other,and Q c Q', Q0 # Q'
implies /(Q) < %I(Q’) . Given a cube Q, we will say that a function a(x) is
adapted to Q if suppa C Q, |lall, < 10|, |Val < 1(@)'|QI"""*, and
fa=0. (This is different from the usual definition of an adapted function, as
in [GJ ], where one requires suppa C Q .) Finally, we will say that a function f
is of special form if there exist a good collection & , functions a,(x) adapted
to Q € ¥, and constants XQ such that

3) f=Y dgay.

Qeg

We will say that such an f is of special form relative to & .
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Note that each f(k) is of special form relative to &, , where, for Q € 7,

~

Q €%, , we can take

dray\'"
x| < C(w,d / nPdYY)
A5l < Cly )( T(Q)If*t//y() " )

Whenever we deal with a sum like (3), it will be obvious that it converges
absolutely, uniformly for all x. Also, the family & will always be a subset of
one of our collections &, from the lemma. Since the only properties we will
use about the Q € ¥ are those entailed in the definition of goodness, it will
never be any loss of generality to assume that & is a subset of & .

Now, let £ C 2 and let f be as in (3). We define

RN
SA(f)E( 3 |—5|) )

xEQEZ

The function S, (f) “looks like” the dyadic square function S(f). The follow-
ing two lemmas explain how these functions are related.

Lemma 2.2. Let f and & be as above. There is a C(d) such that
(4) S(f) £ Cd)S,\(f)
forall x e RY.

Proof. To avoid confusion, we shall denote the adapted functions in (3) by bQ .
Let Q € & . We need to estimate l|aQ( D, . Because the bQ ’s have integral

0, we have
ag(f)= 3 Agaglby)-
QCQey
Now, the smoothness of the bQ ’s implies
lay(by)l < C@IQ' ™2 1@)'1(Q).

Therefore,

;< C(d il (L2
laglli <€) 3 igl'idy (72)

This implies that

lag (/)15 ol 1)
—oa <€) AT T AN
xegg 1% xeég Qgeg [R%)
Al 1(Q)
=C(d) L/ AN

XGQZ’G.? |Q | XG%Q’ I(Q )

Q'e¥
< C(d) Z M_Q'_ﬁ
T s 10

which is (4). Q.E.D.
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Remark. We shall need the following facts in §5, when we deal with Schrodinger
operators. For Q a dyadic cube, let fQ be the L’ projection of f onto those
functions which are linear + constant on Q. Define, for k£ an integer,

o= Do Toxgs

[(Q@)=2-*

and set a,(f) = (fenr —ﬁ()xQ ,for Q€ 2, 1(Q) =2 . We notice that a,(f)
is linear + constant on each of the immediate dyadic subcubes of Q, and is
orthogonal to any function which is linear + constant on all of Q. Define

lay (NI
Sn=2 55—

x€Q

This is the square function which Fefferman uses in [F].
We claim that S(f) < C(d)S(f). We need to estimate a,(f). Since the
&Q( f)’s have integral O, that is the same as

a, ( > &Q,(f)) :
Qcg’

so what we really need to estimate is ay(ay( ) for Qc Q.
It is obvious that |aQ(&Q(f))| < C||21Q(f)||oo . The other ZzQ,(f) ’s are linear
across @, so it is easy to see that

i i 1(Q)
29(@g ()] < Cllag(Nla -

Therefore,

lagNl} _

oco’

II&Q,(f)IIZ 1(Q)
<C — T i
QCZQ, g1 Q")

and now summing over Q 3 x yields the result.
This means that all of our inequalities for S work just as well for S.
The other fact we will need is this. Suppose that the adapted functions bQ

in Lemma 2.2 are constructed to satisfy [ b P(x)dx = 0 for all polynomials
P with degree <1, and ||D°byll,, < |Q|"'/21 Q)% forall |a| = 2. Then

lag(NII A
i) < cd) S S2-10)”
> e =i

The proof is almost exactly like that of Lemma 2.2. It uses the fact that
&Q(bQ,) =0 if Q ¢ Q (this is because of bQ, ’s extra cancellation) and
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lag(by)l < C(@)|Q1"(1(Q)/1(Q")* when Q c Q' (because of by, ’s extra
smoothness and the definition of a, ).

Our next lemma is the continuous version of a somewhat strengthened form
of the (one and only) lemma from [W3]. In [W1] we defined the functional

Y(Q,V) for cubes Q and nonnegative V € Llloc(Rd) as follows:
JoMxo")
Y(Q,V)= LV
1, i) oV =0.
This functional measures the “peakiness” (un-4_ behavior) of V' on Q:
Y(Q,V) is large if, relative to @, V has most of its mass concentrated on

a small set. In our next lemma we shall make use of a slightly less singular
version of Y(Q,V). For 0<n<1,and Q and V as above, define

fQ (x)log'(e + V(x )/ V,)dx
Y,(Q,V) = T,V dx ’
1, oV =0.

Note that Y,(Q,V) ~ Y(Q,V), i.e., their ratio is bounded above and below by
constants that depend only on d [St, p. 23].

LoV >0,

fQV>0,

Lemma 2.3. Let 0 < p < 00, 0 < n <1, and let A be a positive number.
Let £C . Let f beasin (3), and such that f* € L*(R?,V dx). Suppose
that V is a weight for which Yn(Q, V)< A forall Q € &. Then there is a
C(p,d,n) < oo such that

/If‘|"de < C(p,d,n)A”””/sg(f)de.

Remark. Essentially the same proof as the one given below shows that the dyadic
version of this lemma also holds.

Proof. Let V{---} denote the V' dx measure of the set {---}. It is enough to
show that, for all 1 > 0,

VS >224,8,(f) Svay <ep)V{f >4}

for appropriate (p), and with y > C(p,d,n)4~"/".

Let {Qi} be the maximal dyadic cubes such that | fQ,_| > A. It is enough to
show that 4 -
Vixe Q,: 7> 22,8,(f) < 74} <e(p)V(Q)

for all Q; such that

(5) > Tl <y
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An immediate consequence of (5)—and the size and smoothness condition on
the adapted functions aQ—is that we may assume | fQ,l < (L.1)A.
g .
Let {Q,} be maximal (and not necessarily proper) subcubes of Q/’I which

belong to & . Suppose Q € & satisfies Q C Q;, but Q ¢ Q, forany k. A
moment’s thought shows that we have | fQ - fQil < C(d)yA. Therefore, if we

take y small enough, the set we are trying to bound will be contained in

Utxe Qi (/- £,)" > (8)2,5,() < 12} = UE,
k k

But Lemma 2.2 says that S(f) < C(d)S,(f). Therefore, Theorem 3.1 from
[CWW] says that, for each k,

|E,| -2
— < Bexp(—-Cy ),
0,1 p( )

where B and C are positive constants that depend on d . Since Yn(Qk , V)<

A, we will have V(E,) < e(p)V(Q,) if we take y ~ 4~'/*"_ This finishes the
proof. Q.E.D.

The next lemma is a slightly strengthened form of Lemma 2 from [W2]. Be-
fore stating it we need another definition. Let p: [1,00) — [1,00) be increasing
and satisfy p(2x) < Ap(x) for all x. We define

M,V (x)=sup p(Y(Q,V))V,.
x€Q
Our lemma is

Lemma 2.4. Let p be as above. There is a C(A,d) so that for all nonnegative
weights V and all cubes Q,

pr(@, V) [ Mixgh)dx < Cla,d) | M,(xg¥)dx.

Proof. 1t is enough to prove the lemma for Q a dyadic cube and M the dyadic
Hardy-Littlewood maximal function.
Let Q, C Q be the maximal dyadic subcubes such that

Y(Q,,V)<3Y(Q,V).

Define v
ro={ e TS
Vix), x¢UQ,.
Clearly,
(6) /QM(XQV)dxs/QM(fo/)dx-!-; [ Mixgv)ax

~ 1
< /QM(xQV)dx+ 5Y(Q,V)V(Q).
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But the left-hand side of (6) is just Y(Q, V)V (Q); therefore,
(7) /M(XQV)a’x < 2/ M(x,V)dx.

Q Q

It is obvious that

/M(xQI~/)dx§2d sup VQ. dx.
Q Q x€Q*CcQ
o¢zlJo

All of the cubes in the “sup” satisfy Y(Q",V) > 1Y(Q, V). Combining this
with (7) and p’s doubling condition yields the lemma. Q.E.D.

We are now ready to prove our main square function results. Let us fix a
function ¥ as in the introduction. We shall prove two theorems:

Theorem 2.5. Let 0<p <2 and p/2<n<1. Let V and W be nonnegative

weights such that
n V(x)
/ Vix)log' |e+ —— ] dx < / W(x)dx
0 Yo 0

for all cubes Q. Thereisa C(p,d,n) < oo so that for all f € %5°°(Rd) and all
a>3Vd,

[istvaxscw.don [ wax.
This theorem has an immediate consequence.
Corollary 2.6. Let 0<p <2 and a > 3vVd. Thereisa C(p,d) such that

[ivax<co.a) [ 55 (mvax

forall e %W(Rd) and weights V , where M is the Hardy-Littlewood maximal
operator.

Proof of Corollary 2.6. By an easy limiting argument, we can assume that V is
bounded. Then apply the previous theorem with 7 =1 and W = MV . Q.E.D.

Theorem 2.7. Let 2 < p < oo. Let R: [0,00) — [1,00) be increasing and satisfy
R(2x) < AN(x) for all x. Assume that

[o <]
ZR(k)—l/(p_]) S 1.
k=0

Set p(x) = R(logx)x"/z_l . Let V and W be weights such that

/Mp(xQV)dxsf Wdx
Q Q
Sor all cubes Q. Thereisa C(p,d,A) < oo such that

[intvaxscw.d.a [ (owds
forall fe®®R?) and a>3Vd.
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Proof of Theorem 2.5. Let &, be the collections obtained in Lemma 2.1, and
write
f= Z S

where each f ") is of special form relatlve to & .

Let us temporarlly fix k, setting f = f(k) For j a nonnegative integer
define ‘ .
F={Qeg 2 <Y (Q,V)<2"}.

eI

Q€]

Set

where the a, are the adapted functions. Define
/ p/2
p 2
ol® gl
QU)= ( X o] | X T
Q'CQeS; Q'coes;
Q'#Q
forany Q' € g, . Observe that Sx(fj) = Eer cQ(fj), and that cQ(fj) =0 if

0¢ .7I . Let f* denote the “dyadic” maximal function, relative to &, , of f.
And write

/|f|”de<cZ(1+; /|f‘| Vdx
8) < C(p,d,n)Z(l+ jyRaiern / SV dx
= C(p.d, n)Z(HJ) 27 [ ey dx

XEQEY;

=C(p.d, n)Z +J)°27P1 3 o (£)V(Q)

Qes;
9 < c<p,d,n)2<1 + ) 2PN ()W (Q)
J Qes;

= Clp.dum (1 +07 2 [ Shpyw dx
J

(10) SC(p,d,n)/Sidex,

where (8) is from Lemma 2.3, (9) is from the definition of Y, (Q,V) and the
hypothesis on V' and W, and (10) is from the fact that p/2n—-1<0.
We have thus proved the theorem for each S, ( f(k)) . But is is obvious that

ESA(f(k)) < C(d)Sw L) ifa> 3v/d . This finishes the proof. Q.E.D.
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Proof of Theorem 2.7. Let us fix k as before. After setting n = 1, let us define
Z;,J;,and c,(f;) as we did above. We write

/If*|”degzN(j)/|4*|”de
<C(p, d)ZN 2“’/2/3” £V dx

p,d>ZN<J 2737 ()Y (Q)

J Q€eg;

(11) pdAZZcQ /MXQ

J Qe

<Cp.d,A) Y c(HW(Q)

Q€%
< C(p,d,A)/Sﬁ(f)de,

where the next-to-last line follows from the fact that p > 2, and line (11) is
because of Lemma 2.4. The theorem is proved. Q.E.D.

The maximal function M , at first sight, looks quite bizarre. However, it is

not so bad as it appears. In fact it is less than or equal to C(p,d, A)Mk(”

where M* denotes the k-fold application of the Hardy-Littlewood max1mal
operator, A is X’s doubling constant, and we define k(p) = [p/2 + 1]. We
only need to prove this fact for p > 2. Let us normalize X so that X(0) =1.
Observe that R(x) < C(4)(1 +x)”, for some positive y = y(4), and therefore,
for appropriate 0 < J < 1 (large enough to ensure p/2 —4J < [p/2]),

MﬂV(X) <C(p,d,A) sup Y(Q, V)”/Z—‘s v,

<C(p,d,A) sup — /MW] oVt
x€Q IQl

<C(p.d, AM** Ny (x)
=C(p.d, HAM" "'V (x),

where we have used Holder’s inequality and the fact that

: of L V)
/QMk(XQV)dva/QV(x)log <€+TQ) dx

(see [St]).

In Theorems 2.5 and 2.7, and Lemma 2.6, the left-hand sides of the asserted
inequalities are all integrals in |f]”. But in the introduction we claimed that
we would get integrals in |G ,.(f )/’ . We shall now show how to do this. It is
here that we place an additional condition on y , which we shall assume holds
for the rest of this section.
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We shall say that y is rough enough if there are positive constants C and
B so that

(12 [0, 0PS > ca i)™
N
for all s > 0. We shall denote the left-hand side of (12) by O(s).
Define

H(x) = /loo v, * y/y(x)d7y.

A computation shows that, as a distribution, H (&) = B(J¢|). Therefore if we
take y sufficiently smooth (but still satisfying (12)) then H will be a continuous
function. We shall henceforth assume that y is sufficiently smooth.

Suprisingly, the function H has compact support (the first to observe this
remarkable fact appears to be Uchiyama: see [U, p. 238]). The proof is, fortu-
nately, quite simple. From (*) we have that, as a distribution,

1
dy
H(x) =4, —/0 W, * wy(x)7,
where ¢, is the Dirac mass at 0. But the x-support of the integral is obviously

contained in {|x| < 2} . Therefore supp H C {|x| < 2}.
The lemma we must now prove is

Lemma 2.8. Let y be as above, and satisfy (12). There is an N'(B,d) such
that, forall N > N',

Gy(N(x)<C(N,B,d) sup [|H, xf(1)|

|x—1t]<3y
forall fe L,’oc(Rd) and all x eR?.
Proof. Let us take fe L. (Rd) . It is enough to show that

loc

|/ +6(0)| < C(N,B,d) |s,|u<ng*f(t)]

for all ¢ € &/, . So take ¢ € . If N > B +d then there isa g € L*(R?)
(with ||g|l, < C(N,B,d)) such that ¢ = g+ H , i.e.,

(13) $(x) = / g(s)H(x - 5)ds.

Since supp¢ C {|x| < 1} and suppH C {|x| < 2}, the integral in (13) is
unchanged if we replace g by g =g - X{ix1<3) - Therefore,

I+ ¢(0)] = 1S * H x (0)|

f*H(-s)g(s)ds

Is1<3
< sup |f « H(s)| |2l
Is1<3

< C(N,B,d) sup |f = H(s)]. Q.E.D.
s1<3




674 J. M. WILSON

Let us define
H'(N)(x)= sup_ |H, *f(1)].

|x—t]<3y
Given f € %”(Rd) , let f( K be those functions obtained via Limma 2.1, and let

f(',;) be their corresponding “dyadic” maximal functions. Then, because of the
preceding lemma, our grand maximal function results will follow immediately
once we show that

3d
H'(N)<C (Zf; +S, ,a(f))

k=1

for a >3Vd.
We begin by observing that
dtd
(14) e f0)= [ fru0ue-0=2t
n>y

It is an easy consequence of (14) that, for any (x,y) € Ri“ ,

sup |H,+ f(x) — H,» f(1)| < CS, (Nx).

|x—t|<3y

sup |H, » f(x) = H,, * f(x)] < CS, ,(/)(x)

y'<y<2y’

for a bigger than, say, 20. Therefore we only need to estimate H'(f)(x) =

SUp-—oo<j<oo |H2j * f(x)l . So we write
dtd
H,; x f(x) = [y, (Op,(x - t)_y
y>2

3d
(13) =2 D %)

k=1 Q€%

1(Q)>3-2/

where the /IQ and a, are the appropriate constants and adapted functions
which belong to the f( K - Fix k,and let Q' be the minimal cube in ¥, such

that x € Q' and /(Q’) > 3-2/ . The same sort of argument as the one in Lemma
2.2 shows that

Y Apap(x) = (fyy)o| S C@SA(fyy) -

(3
Q'co
Therefore, the sum in (15) is dominated by
3d
Cd) D _(fao) +Salf) -

k=1
This proves our inequality. The “grand maximal” versions of our results follow
immediately.
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It is now easy to extend our results to arbitrary f € H” . First choose ¥
sufficiently smooth (depending on p ), but still rough enough, so that f * y/y(t)
is well-behaved. Then, for M a positive integer, define

M),y _ . _pdtdy
FO0= [ Tenone-o

We can now decompose each F M) into 3¢ functions jék”f ), each of special
form relative to &, . The adapted funtions we get will live on cubes with side-
lengths between 3. 2™ ang 3.2¥ , so there will be no problem about sum-
ming them up; and the cubes’ disjointness properties imply that, if Q € &, and

I(Q) > 3-2™, then fQ ﬂM) = 0. This means that, for each k,

Jurevac= S [0 x Py x,

Q€%
1(Q)=32¥

and each integral in the sum is finite. Now we only need to apply our previous
arguments, let M — oo, and apply Fatou’s Lemma, to get our result.

Remark. The reader should notice that we do not need Lemma 2.3 to prove
Theorems 2.5 and 2.7: these theorems are immediate consequences of their
dyadic analogues and Lemma 2.2. We have chosen to prove them this way for
the sake of unity, because we will need Lemma 2.3 when we get to §4.

3. SINGULAR INTEGRAL OPERATORS

Let 1 <p <oo. In §2 we saw that

(16) [itvax<co.a [ (M ax
if 1l <p<2,and
(17) [irPvaxsco.d.a [ M,y ax

if 2 <p < oo, for appropriate p (A is p’s doubling constant), a sufficiently
large, and all f € |J, <p<oo L? (Rd ,dx) and weights V. Let T be a Calder6n-
Zygmund operator as defined in the introduction. In this section we will show
that, for 1 < p < o0,

/mmegc/m%hWX

for all f and V' as above, for appropriate “maximal functions” M (which
depend on p). In particular, we will show that when 1 < p < 2 we may take
M = M? , and when p = 2 we may take M= M. (Unfortunately, when
2 < p < 00, we do not know whether we are able to take M = M? for some
q9=4().)

Our main tool here will be a pair of theorems which are essentially due to
Chanillo and Wheeden [CW2]. In order to state them we shall need some
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notation. Let ¢ € C5})°°(Rd) be real and radial, have support contained in
{|x| < 1/2}, and satisfy [¢ = 0. We define

di 1/2
g;‘(f)(x)s(/Rm|f*¢y(z>|2(y+|§_,l) ‘if,‘fly) -

+

Chanillo’s and Wheeden’s theorems are
Theorem 3.1. Let A>3 and 1 <p<2. Thereisa C =C(p,d,A) such that

[ nrvaxsc [irmyax
Jor all weights V' and all locally integrable f .

Theorem 3.2, Let > 1 and 2<p <oo. Thereisa C = C(p,d,A) such that
p/2-1
/(gf(f))”desC/Ifl”MV-(#) dx
for all V and all locally integrable f .

Remark. Theorem 3.2 actually is proved by Chanillo and Wheeden. Theorem
3.1, while not proved (or claimed) in their paper, follows by an easy adaptation
of their method (see §7).

The theorems we shall prove are the following:

Theorem 3.3. Let T be a Calderon-Zygmund operator, and let 1 < p < 2.
Thereisa C(p,T) such that

/|Tf|”de < C(p,T)/|f|”M(MV)dx

for all weights V and all fe|J LP(R? dx).
I<p<oo

Theorem 3.4. Let T be a Calderon-Zygmund operator and let 2 < p < co. Let
Mp be as defined in §2 (depending on p). There isa C(p,T ,A) such that

MM V)\*!
ITfPVdx<Cp,T,A) | |/ MM V)'(-—p) dx
/ [1sraon - (S

forall V andall feU,_, o LP(RY ,dx) (A is the doubling constant of p).

Remark. We assume that f € L? for some p > 1 to ensure that Tf €
L. (RY).

Remark. Theorem 3.3 does not hold for p > 2. First of all, it clearly fails for
p > 2, since it implies that, if f € L™, then T/ belongs to the exponential
L’ class, which is false when p > 2. However, we can see this more easily—
and that it fails for p = 2—with the following counterexample. Let T = the
Hilbert transform, V' = x, ,,, and f= (logx)_l Kooy A computation shows
that |Tf] > clogn on (0,1), and therefore

/|Tf|"de > c(logn)’ .
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But M(MV) ~log(2+ |x|)/(2+ |x]); hence

» e dx
[irmmrvyaxse [ 2,
e x(logx)?
which contradicts Theorem 3.3 as n — oo.

Let us choose ¢ as above, but such that [ @(x)P(x)dx =0 for every poly-
nomial P of degree < 2d. Let y = ¢ x ¢. Then, after multiplication by a
suitable positive constant (to get (%)), y satisfies the hypotheses stated in the
beginning of the introduction. Therefore, it will be enough to show that

S, a(THX) < Cla, 6,28, (N)(x)

for all o > 0 and f as above, for some A > 3. By dilation invariance, this
will follow immediately from

1/2
(18)  |Tf»w(x) < C&,A) ( [17 008+ - tl)““dt) .
But (18) is elementary. We have
T« p(x)| = |f * ¢ * To(x)| s/|f (0] | To(x - 1) dt.

It is easy to see that |T¢(x)| < C(T,¢)(1 + |x|)'3d" . Now (18) follows from
an application of the Cauchy-Schwarz inequality. This proves Theorems 3.3
and 3.4.

If we choose ¢ € %k(Rd), and rough enough, then y will also be rough
enough, and we may obtain appropriate “grand maximal” versions of Theroems
3.3 and 3.4. We leave the statements and proofs of these theorems to the
interested reader. We note in passing that these results have a nice corollary.
Let us define

fx—y)—=+ (y)

lyl>e ly|?
It is shown in [St, pp. 67-68] that, if fe L?, 1 <p < 0o, then
T"f < C(T)Gp(TS) + Mf]

pointwise, where M is the Hardy-Littlewood maximal function. Since we have
[FS1]

T" f(x) = sup

e>0

/ (MfYVdx < C(p,d) / \fPMV dx,

whenever 1 < p < oo, we have the following corollary to the results of this
section:
Theorems 3.3 and 3.4 remain true if Tf is replaced by T f .

4. SOBOLEV INEQUALITIES

In this section we shall assume that 1 < p <2, and all the f’s we deal with
will belong to & (R?).
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We will prove two theorems, one for the case p < 2 and the other for p = 2.
Let us first recall a definition. We say that a weight W is in the Muckenhoupt
class 4, (1 <p <oo) if

ook (@ ], v) (ﬁ/g W_”("‘”)p_l =Wl < oo.

The value of the supremum is the A, “norm” of W (see [M]).
Theorem 4.1. Let 1 <p <2 andlet W e A,. Let n>p/2. if V is a weight

Sfor which
/V ) log” (e+—g—-) dx</W(x

for every cube Q then

/]f|"de < c/|Vf|"de
forall fe %M(Rd), with a constant C that depends only on n,p,d, and the
A, norm of W.
Theorem 4.2. Let p =2 andlet M ) be as in Theorem 2.7 (for the case p = 2).
Let W € A,. If V satisfies
(16) 1(Q)2/ M, (x,V)dx s/ W dx

Q Q

for every cube Q then

/|f|2de < C/lVf|2de
forall fe %0°°(Rd). The constant C depends on d ,A (p’s doubling constant),
and the A, norm of W .

The only significant difference between the proofs of these two theorems is
that the second one is simpler. Therefore we shall only prove Theorem 4.1.

Proof of Theorem 4.1. Let y be as in the introduction. For i = 1,...,d,
define ¢, =0y /dx,. For f e &7 (RY) set

_ R _ didy
8= [, 7+ @), 000),0 -0

By Fourier transforms, f = c(w)3_, g; . The theorem will be proved if we can

show, for each i, ,
of
1P < -
[1arvax< C/'ax,

So let us now fix i, and set g = g, and ¢ = ¢,. Let & and &y be the
families and functions obtained via Lemma 2.1. For each k& we have

8wy = D Aol

Q€%
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where we may set, for é eg ,

5 2dtdy
MQ|sc(/T( 1f* 8,0 )

We shall for the moment fix k and set g = g,,. Let &;,¢;, and c,(g;) be
as defined in the proof of Theorem 2.5. The argument given there yields

/|g|dex<C(p d,n Z(1+1 2R S Q)W)

Q€%
Now, since p/2< 1,
, p/2
,1,21 -2\? 1/21 -2
cl@) " = ( y lolXO) Q',Q(/,Q) ) | o RllO "'lQ(,lQ)
QCQES; QcQ'es
Q#Q’
/2 p/2
I\— p -
o 1@ ° g P1(Q) 7
e 10 ) o2, W@l
QCQ'es; QcQ'es;
0#Q’

(Here we are using the fact that (x +a)* — x* < (y+a)* —y® if x,y,and a
are nonnegative, x >y, and 0 <a < 1. In our case,

2 -2
p |/1Q,| 1(Q)
=73 X = Z —"—l-Ql—,
QcQ'cs;
Q#0'
g 21(Q) ol’1(Q)~*
r= 2 T YT T o
0#0'

We get equality if p=2.)
Set y, EAQ-I(Q)". Summing on k and j vyields, for each i,
(17)

2 p/2
/Ig PVdx<Clp.d, n)/( '75\ ) W dx

xEQEUZ,

/2
<Co.d,n | ( .. \/d_y|f*(¢i)y<t>y"|21y’;#) W dx.

But f* (qS,.)y(t)y_l = 9t/0x; ¥, (1) Therefore the right-hand side of (17)
equals a constant times

/swf( )de
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and it is well-known [RF, K] that this is less than or equal to
af
cflax

We wish to make an observation about Theorem 4.2 which will be useful in
the following section. Let p be as in the theorem. We claim that the conclusion
of the theorem holds if W € A, and if, for all cubes Q,

(18)

I(Q)Z/Q V(x)log <e+ %) p <loglog (10+ %@)) dx < '/Q Wdx.
Q

The reason for this is that we only need for the “dyadic” version of (16) to hold,
for each family &, . But the argument from [W2] shows that

/QM,,(XQV)deC/QV(x)log <e+ @)p(loglog (10+ KT/(_QQ)) dx

q

p
Wdx

when W € 4,. Q.E.D.

is true in that case. This proves our assertion.

5. SCHRODINGER OPERATORS

In this section we shall assume that d > 2. We shall also assume that y
(see the introduction) satisfies [y (x)P(x)dx =0 for all polynomials P with
degree <1, and that y € z* (Rd) for k > 3. It is easy to see that the adapted
functions bQ defined via this y inherit y’s cancellation property and also

satisfy [[D°b, |l < CIQ|™"*1(Q)™* for all multi-indices |a| = 2.

Let A(x) = (a;;(x)) be a d x d real matrix-valued function of x € R?.
We assume that 4(x) is symmetric and positive semidefinite, with eigenvalues
A (x) £+~ < A,(x). We assume furthermore that there exist positive constants
¢, and ¢,, and an A, weight W such that

(19) oWi(x) <A <4, <6,W(x)

for all x € R®. For V nonnegative in Llloc(Rd) , we consider the Schrdinger
operator L, defined by

Lf=—div(A(x)Vf) -V -f.

We assume that ¥V and W are sufficiently regular so that everything we say
about L makes sense.

Such operators have recieved a great deal of attention recently. In particular,
the case where A = I, the identity, was studied in [F, CWW, and KS]; while
the case of nonconstant 4 was treated in [CW1]. We shall describe some of
these results and show their relation to our own. Since [F] was the earliest of
these papers, and it established the basic procedure which the other researchers
have followed, our discussion of [F] will be the most complete.
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In studying the spectrum of operators like L, the central question is: When
is L nonnegative? In the case when A is the identity matrix, integration by
parts shows that L ’s nonnegativity is equivalent to

(20) /|f|2de $/|Vf|2dx,

for all f € %“(Rd). In [F], the following is shown; given p > 1 there is a
y(p,d) > 0 so that if, for all cubes Q,

(21) 10)? (,é, / v? dx)”p <(p.d)

then L is nonnegative. Using this result, one is able to get rather precise es-
timates of the size of L’s lowest (negative) eigenvalue, in the case when L is
not nonnegative. Call this eigenvalue A,(L). One has

1/p _
¢ sxép[VQ— ,1(Q)” 1< -2 (L)<c3sup l(lQl/ Vpdx) -, (Q) 2]

where the positive constants ¢; depend only on p and 4.

One can also count the negative eigenvalues of L, in the following sense.
Let A > 0. If there exist cubes Q,,...,Q, with disjoint doubles such that,
for each i, Vo, > cll(Q,.)_2 , 1(Q) < czl"/z , where the ¢, > 0 depend on d,
then L has at least N eigenvalues less then or equal to —A. And: if L has N
negative eigenvalues, and p > 1, then there exist ¢, N disjoint cubes Q; such
that

1 p Lir -2 -1/2
— | V'dx >cl(Q) 7, 1(Q,) <c.A ,
(IQ,I Qi ) 2 ! ! 3
for each i, where, again, the c; are positive constants that depend on p and
d.

In order to sharpen these resutls, one first of all wants to find something
strictly weaker than (21) which will imply L > 0. One such condition is given
in [CWW]. Let ¢:[0,00) — [1,00) be increasing and satisfy ¢(4x) < Ad(x)
for all x, for some A <297, In [CWW] it is shown that if

® dx
/1 00 = !
and

(22) sup /(Q)’ / V(x)6(1(Q)*V (x))dx < c(d, A)
Q Q

then L > 0. At first sight, (20) may not seem to be the right extension of (21),
since the homogeneity appears to be wrong. The right extension, one thinks,
should be

(23) sup(Q)’ / V(x)qS(VISx)) dx <c'(d, A).
Q Q Q
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But, in fact, (23) implies (22), since (23) implies that Vo < c'(d ,A)I(Q)_2 . By
means of the same procedure as that in [F], the analogous eigenvalue estimates
now follow.

In [KS], Kerman and Sawyer found (modulo a positive multiplicative con-
stant) a highly nontrivial necessary and sufficient condition on V' for L to be
nonnegative. Define

= l—(_@
MIV(x)_:Lelg 0] /Qth.

Their result is the following: There is a C; < oo such that

/|f|2de5 Cl/|Vf|2a’x

for all test functions f, if and only if there is a C, < oo such that

/Q (M, (2, dx < C, /Q Vdx

for all cubes Q, where C,/C, is bounded above and below by positive constants
that depend only on the dimension. They obtain results, analogous to those of
[F], in which [,[M,(x,V)I’/ f,V plays the role of 1(Q)*(s; [o¥")'"."

Now let L be as in the first paragraph of this section, but with 4 # I.
Integration by parts shows that L > 0 follows from the inequality

(24) /|f|2de < c/lVf|2de

for all test functions f, for ¢ > 0 sufficiently small. The methods of [KS] show
that (24) holds if and only if

(25) /Q[MI()(QV)]ZW_I dx < C/Qde

for all cubes Q. This is because, if W € 4,, (24) is equivalent to an inequality
involving Riesz potentials, to which the methods of [KS] apply.

Unfortunately, although (25) is an inequality that only needs to be tested
over cubes, if V is not simple, this can still be rather difficult to verify, even if
W = 1. Therefore it is desirable to find a condition on V and W which, while
less sharp than (25), looks more like those in [CWW and F], and is therefore
easier to check.

One way to do this is to apply the method of [CWW] directly to the weighted
case. This has been done by Chanillo and Wheeden [CW1]. Let ¢: [0,00) —
[1,00) be increasing. Suppose that ¢ satisfies

® dt
(26) /, s <.

! The Fefferman-Phong and Kerman-Sawyer results have also been obtained, through different
means, by Schechter [Sch].
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Chanillo and Wheeden show that if V' and W are weights such that
2 [ (UQ*V(x) /
27) 10) /Q é (W) Vedr s [ W dx

for all cubes Q then (24) holds, with a constant ¢ that depends on ¢,d, W ’s
A, norm, and the constants in (19). By choosing ¢ = (1 + 1) they are able to
show that (24) follows if

IQVQ&/VﬁWscmW’

for all cubes Q, forany p > 1. This is the right generalization of the Fefferman-
Phong condition; in particular, it has the correct homogeneity. Following [F],
Chanillo and Wheeden are able to get the appropriate eigenvalue estimates for
L. However, there does not seem any way to transform (27), for general ¢,
into the appropriate homogeneous form.

The other approach to this problem is to derive (24) from a two-weight square
function inequality, and this is what we have done. Let p: [0,00) — [1,00) be
increasing and satisfy p(2x) < Ap(x) for all x. Furthermore assume that
3>~ 1/p(k) < 1. In the previous section it was shown that if
(28)

I(Q)Z/Q V(x)log <e + %) p (loglog (10+ Véj)) dx < /Q W(x)dx

for all cubes Q, then (24) holds with a constant ¢ that depends on A4,d,
the 4, norm of W, and the constants in (19). It should be noticed that
¢ =log(e = x)p(loglog(10+x)) satisfies (26). Therefore (28) is the appropriate
homogeneous form of the Chanillo-Wheeden result, and is thus the appropriate
weighted form of the result from [CWW].

Let us know fix p for the rest of this section, and define

AQ,V)= /V(x)log(e+ (Q)) (loglog(10+ Iﬁj)) dx.

We are now ready to state our theorems (4 will henceforth refer to p’s doubling
constant).

Theorem 5.1. Let A(x) be as in the first paragraph of this section, with W € A, .
let L =—div(A(x):) = V(x)-, and let A,(L) be L's lowest nonpositive eigen-
value. There are constants c, ,c,,cy,c, which depend on A,d, the constants in
(19), and W ’s A, norm, such that

(29)

Slépq[VQ — (@) Wol<-4(L) < Sup ¢ =A@, V) - cl(Q)

IQI

Remark. The upper bound in (29) is thc analogue to an estimate obtained in
[CWI1, Theorem 1.10]. However, it is assume there that W ¢ D, for u <
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1 + 2/d, where we say that W € D, if there is a finite C so that

w(Q) < c(al/1e' N w(Q)

for all cubes Q O Q'. Since we are assuming W € A, , we have W € Dti for
some B > 0. But our result holds without assuming an upper bound on 8.

In order to apply the Fefferman-Phong recipe to L we shall need to assume,
at one point, an additional hypothesis on W . Let us say that W € RDﬂ (reverse

doubling of order B > 0) if there is a finite C so that for all cubes Q c Q',
w(Q) < c(al/IQ w(Q).

Theorem 5.2. Let L be as above. There are constants c,,c,,c,, depending
on A,d, the constants in (19), and W's A, norm, such that the following
statements hold:

(i) If there are cubes Q,, ..., Q. with disjoint doubles such that

2

HQ)V(Q) 2 e, W(Q)

for each i, then L has at least N negative eigenvalues,

(ii) Assume that, in addition, W € RD, forsome B >2/d. If L has at least
N < oo negative eigenvalues, then there are disjoint cubes Q,, ... ,Q,,, where
M > c,N, such that

(Q,)’AMQ;.V) 2 ;W (Q))
for each j.

Proof of Theorem 5.1. We will only prove the right-hand inequality in (29) (the
left-hand one is clementary' see [F, CW1]). Assume that, for all cubes Q,

(30) HAMQ. V) = ¢l(Q) W, < B,

IQI

where ¢, will be chosen later. We will show that L > —cB, for some positive
constant c.
Inequality (30) implies that

AQ,V) < c,l(Q)"*W(Q) + BIQ|

for all Q. Now take f € %W(Rd) and write f = c(y)2; (&) where the
(8;)x) are as in the proof of Theorem 4.1. For each (g,.)(k) we have

i)l vax<c ¥ ||cQz|| @,v)

Qeg;
(31) <ccy B Pol' 1oy wi0) + Blal
Lo

< Cc4/|Vf|2de+cB/|f|2dx,
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where (31) follows from the arguments in §4 and the fact that the square func-
tion is bounded on LZ(Rd ,dx). Summing on i and k implies

[itvax<ce, [19siwax+ep [ 117 dx.

Thus, if ¢, is small enough, we get L > —cB. Q.E.D.

Proof of Theorem 5.2. Since (i) is obvious (see [F]), we will only prove (ii). We
shall first assume, much as in [F], that ' < RW , for some R > 0, and that V
has compact support; the bounds we get will not depend on R or the size of the
support; at the end we will show how to remove this restriction. For 1 < k < 3¢
let {Qf} be the minimal Q € & such that A(Q,V) > csl(Q)'zW(Q) , where
¢; > 0 is to be determined. 2 Let n, be the number of such cubes. The cubes
in the conclusion of the theorem will be the minimal Q € % for which n ; is
largest; we will show that L has at most C ) n, negative eigenvalues.

Let us temporarily fix k. Following the procedure described in [F], we pick
additional cubes {Q:‘j)} C &, . We can do this because the cubes in & have the
same inclusion properties as the dyadic cubes. It is shown in [F] that we get no
more than C 7, additional cubes. Take the union of {Qf} and {Qf‘j)} , and

call resulting set {Qf}. For 1 <i<d and 1<k <3 let us defined bounded
linear operators l,.,k : Lz(Rd,dx) — Lz(Rd ,dx) by l,.’k(f) = (g,.)(k) , where the
(&) (k) areas in the proof of Theorem 4.1. We define a closed subspace H C L
by saying that f € H if, for each i and k,

(33) /Q L (NP(x)dx =0 vQe{Q"},

for all polynomials P of degree < 1. Clearly H has codimension <c) n, .
We will be done once we show that

(34) /1f|2de5c/|Vf|2de

forall fe HN %“(Rd) , for sufficiently small c. So let us take such an f and
write f = c(¥) 32(&,) ), Where each (g,),, satisfies (33).

We shall follow the arguments in [F and CW1]. Define Qg = R?. For each
1 <k <3%, let B, bethose Q € &, such that A(Q,V) > ¢,/(Q)*W(Q).
For each Q € {Qj.‘} define

EQ=0\ U ¢,
jigfco
0¥ #£0

2 These minimal cubes exist if ¥ < RW , since W € A implies A(Q, V) < CrA(Q, W) <
C - CRW/(Q) . Similarly, the analogous maximal cubes exist because W € RDg (B > 2/d) and
V' has compact support.
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and set
E(Qy) =R\|J .
Jj>0

We will have (34) once we show the following two statements:

i)If Q€% and Q¢ Q;‘ for any j then A(Q,V)< C -c3l(Q)_2W(Q)
(note: we shall call this family of cubes % ).

(i) If Qe &, and QC Qf for some j,but Q ¢ Qf, for any Qf, strictly
contained in Qf , then A(Q, VXE(QJ")) < C-c31(Q)_2W(Q) (note: we shall call
this family of cubes ﬂj ).

We shall first show that (i) and (ii) imply (34). Let us set Qg =R?, and fix
g= (gi)( k) - For Qe % , let &Q(g) be the corresponding “dyadic” martingale

difference as defined in the remark following the proof of Lemma 2.2. Let §(-)
denote the corresponding dyadic square function. Set, for j > 0,

& = Z &Q(g)-

QeZ,

Since g satisfies (33), we have g = g; on E(Q ), forall j. Also, the E(Q )’s
make a partition of R?. Therefore,

2 2
gl Vdx = / lg,|"Vdx
/ z,: B

lla, @l
(35) <cy ¥ o —ES Q. Vg )
J Q€%
(36) SCog) ) “aQ,(le)"21<Q> w(Q)
J QEX,
lay()I3
<C-c l(Q)
= e

(37) <C- /Z llgl Wdx

xX€Q

<C- C3/S.,,a( ){)Wd
_<_C-c3/

ox

i

where (35) and (37) are from the remark following the proof of Lemma 2.2
((35) holds because the same good- A inequality argument works for S as for
S'; see [W2]), (36) is from (i) and (ii), and the last line is because W € 4, .
Therefore we only need to prove (i) and (ii).
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Our argument follows that in [F] almost verbatim. We can assusme that
Q € %, and, because of Lemma 5.3 and the argument in [F], we only need to

check the case where Q € ﬂj , O # Qf , and Qf is (in the sense of [F]) not
branching. We let Q* € &, be the (unique) maximal subcube of Qj.‘ ‘which
is either branching or minimal. As in [F], if Q € &, and QNE (Qf) #J,
then Q"l C Q and Q# # @. Following [F], we are able to write Q\Q* as
a disjoint union of cubes Q, satisfying A(Q,,V) < c31(Qa)‘2W(Qa) . For
each positive integer n, there are no more than y Q,’s with sidelength
27"1(Q) . Each of these cubes will satisfy Vo, < 2"y EQY) ))g - Finally, let us

define n(x) = log(e + x)p(loglog(10 + x)), and observe that there is a C such
that n(ab) < C(n(a)+ (b)) for all nonnegative a and b. Therefore,

- V,,
AQ, VXE(Q"))<C2[ e ( Ve. )dx+/ V(x)n((V E(Q"))Q) dxl

SC-C3ZI(Q,,)'2W(Q,,)+CZn2 > v,
a n=1 1(Q.)=2""1(Q)

<CogY. Y HQ)TW(QIL+ 1Y

n=11(Q.)=2""1(Q)
(38) <C-c-(2-1)IQ)” Q)Ezz"z““’”[l +n’)
n=1
(39) <C-l(@)7w(Q),

where (38) is because W e RD, and (39) is because B > 2/d. This proves
Theorem 5.2 when V/W € L™ and V has compact support.
Let us now show how to remove our restriction on V. For R > 0 define
V(x) if V(x) < RW(x) and |x| <R,
vR(x)={ RW(x) if V(x)> RW(x) and |x| < R,
0 if |[x| > R.

Define L% = —div(4(x)V-) — VR . Assume that L has at least N negative
eigenvalues, i.e., that there exist orthonormal ¢, ... ,¢, € %w(Rd) such that
(Lé;,9,) < 0 for each i. Then, for R sufficiently large, L® will also have
N negative elgenvalues and the minimal cubes obtained for V'? will satisfy

AQ,V) 2 cl(Q) W(Q) with possibly a smaller c;. This finishes the proof
of Theorem 5.2. Q.E.D.

Remark. Using the same argument as above, one can prove the following theo-
rem:

Theorem 5.3. Let V , W, and L be as in Theorem 5.2. Let E > 0.
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(i) If there exist cubes Q,, ... ,Q, with disjoint doubles, such that
V, —cl(Q) W, > c,E

for each i, then L has at least N eigenvalues < —E .
(i1) Assume that W e RD, for some B < 2/d. If L has at least N < oo

eigenvalues < —E , then there exist disjoint cubes Q,, ... ,Q,,, with M > ¢;N,
such that

1 -2
(40) gTAQ@ V) = (@)W 2 o F
Jor each i, where the positive constants c,, ... ,cs depend on the usual param-
eters.

Remark. The ¢, in Theorem 5.3 can be taken to equal the ¢, in Theorem 5.2.

Proof of Theorem 5.3. Again, (i) is almost obvious, and we will not prove it.
We prove (ii) almost exactly as in Theorem 5.2. The only difference is that
instead of looking for the minimal Q € &, which have

A(Q,V) 2 ¢l(Q) "W(Q),

we look for the minimal Q which satisfy (40). Details are left to the reader.
Q.E.D.

Remark. Theorem 5.3(ii) does not quite have the same form as its analogues in
[F and CW1]. The appropriate analogue should be

Let L have N eigenvalues < —E. Let B be those minimal cubes obtained
in Theorem 5.2. Then there exist Q,,...,Q,,, with M > ¢ N, belonging to
B, such that

-2

-2
Q) "W, z¢qE
for each i.
We have stated our results the way we have because in order to prove the

preceding statement, we need to assume an additional hypothesis on W, such

as that W € D, for some u < 1+ 2/d . The reason for this is that, in the
two-weight case, the place of the cubes with sidelength ~ E ~1/2 is taken by the
maximal “dyadic” cubes for which I(Q)_ZWQ > cFE, and if we do not make
some such hypothesis on W, we do not know that such maximal cubes exist

(see [CW1]).
6. SMOOTH Y’s

In this section we sketch how to prove (the analogues of) the square functions

results from §2 in the case when y € %W(Rd) .
Let H be as defined in §2. In this case we do not have the straightforward
estimate of Lemma 2.8. However, we have replacement. For 4 > 1 define

y+Ilx -t

di
H™(f)(x)=  sup |f*H,(z)|(——l’—) .

(t.y)ERI™!
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This is the “tangential” maximal function introduced by Fefferman and Stein
in [FS2].
We have the following theorem [FS2]:

Theorem 6.1. For every A > 0 there isan N = N(H,A) such that

Gy(N(x) < CH™(f)(x)
forall f e L,'OC(Rd) and all x € R®. The constant C depends on H,N, and
A.

Therefore we will have our grand maximal theorems once we find some way
to control H,". Let us set H'(f)(x) = sup, ,|f * H,(x)|; we already know

how to control H" .
Now, it is easy to see that

H (D) < C[HY (M) + 27 4 sup | H,(x) = f + H,(0)
k=0 >
|x—t|<2"y

But each term in the summation is less than or equal to ck27F ‘“Sw ()
This clearly implies that

H,"(f)(x) < C(H" (f)(x) + g5,(f)(x))
for ' > A —¢, with ¢ > 0 as small as we please. Therefore,
Gy(N(x) < CAH"(f)(x) + &, (Nx)).

Since is is obvious that SW of N < Cg; (f), we can now state the appropriate
analogue of our results from §2:

Theorem 6.2. For 0 < p < oo let V and W satisfy the hypotheses of one of the
theorems from §2. Let A > 1. There is a finite C so that

[i6unrvaxsc [ uywax

for all f in the appropriate test class (depending on p) .

7. APPENDIX: THE CHANILLO-WHEEDEN INEQUALITY

We wish to supply the small argument needed to prove Theorem 3.1.

Since g;,(f) < g; (f) whenever A" > 4, it is sufficient to prove the theorem
for 3<i<4.

Following [CW2], we set, for p >0, Q={x€ RY: Mf(x)> p}. By [FS1],

V@) < [ 17187 dx,
and therefore the theorem will follow from

(41) Vix ¢ Q:g](0)>py< 5 [ 1MV dx

and interpolation with the L’ inequality.




690 J. M. WILSON

Write Q= Q B where the Q . are Whitney cubes, and set

_ f(X), X¢Q, _ f(x)_fQj> er‘,
g"‘)={fgj, ceo. bf(")={o, ‘eQ,
It is enough (see [CW2]) to show that
(42) vix¢a:g(X5)>0) /lflMde.

Since g; is subadditive, (42) will follow from

Z/ de<C/|f|Mde

R"'\Q

which will in turn follow from

(43) / g (b)V dx < c/ 1MV dx
RI\Q Q;

for some C independent of j and p. We shall now prove (43).

Let x;, = the center of Q;. We need to estimate bj * ¢,(1). We have
two cases: (1) y < I(Qj); (i) y > I(Qj). In case (i), the best we can do is
b,+¢,(1)] < Cllbjllly_d. In case (ii), we can use the fact that [b, =0 and get

—d—-
b, ¢,(0] < Clib, I, 1(@)y™" "

If x ¢ Q, then |x -—le > cl(QJ.). Also, bj. *d)y(t) = 0 unless |¢ —le <
ey +1(Q))].

Thus, for x ¢ Q, we have

2 y d dtdy 2
[/<I(Q 16+, <y+|x—t|) yd“}

4/ 12
||b ,/(Q)) / [/ == dy]
- Ix X; I‘W2 y<I(Q))

I Y2 sy
< C—— Q)

x - x|
IIb,llll(Q,)'d
(1+1x = x,|/1(Q,)™*

< Clfxg | * Ty, (*),

where 7(x)=1/(1+ |x|)d’1/2 € L', and inequality (44) is because 4 > 3.
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For the next part of the integral we consider two cases: d =1 and d > 1.
Ifd=1,

1/2
[ / m] /
1Q)<y<ix—x  y*!

b, 1(Q; - -
SCM [/ y oyl dy

Ix = x| 1(Q))<y<lx—x)|

I5,1,1(Q;)

45 <Cc—L =l Q)R
(43) SOl

6,11, 4@~
(1+x — x,|/1Q))?
< leXle * a[(Qj)(x) )

1/2

where a(x) = 1/(1 + |x|)*/?, and (45) is because 4 < 4.
On the other hand, if d > 1,

1/2
[ i dﬂz]/
(Q)<y<ix—x Y+

16;11,1(Q;) ~2d-2 di_d_—d-1
scle—'x-lmfﬁ /1 y Y YT dy
—X; (Qj)<y<|x—x,|

(46) < C———"bf”‘l(?{/)z |

x - x|

(@)™
(1+|x = x,|/1(@,)**!
< Clfxg | * Py, (%)

1/2

dij2—d—1

i1

< Clig, I,

where P(x)=1/(1+ |x|)d+l and (46) is because A >3>2+2/d.
Finally (since y/(y +|x - x,) < 1),

1/2 1/2
dtdy / -2d-3
222 < CYbL Q. d
[/y>|x—x,-| ! ] oA, [ pote—xt” y]

< Clf xg |+ Pyg ().
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Therefore, if x ¢ Q, and d > 1, then g;(b;) < C|fx, | * P, ,(x). And
thus: i j

S (b)Vdx <
/RZ\Q g (b))Vdx < C/Rd\Q |foJ| *P[(Qj)de
(47) = C/Q |f|(P,(QJ) * V)dx

<cC / IMV dx,
Q,

where (47) is because P is even. If d = 1 we get the same thing, but with P
replaced by . Q.E.D.
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