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«^-EQUATIONS ON CERTAIN UNBOUNDED
WEAKLY PSEUDOCONVEX DOMAINS

HYEONBAE KANG

Abstract. We found an explicit closed formula for the relative fundamental

solution of db on the surface Hk = {(z\, z2) € C2 : Im z2 = |zi|2*} ■ We then

make estimates of the relative fundamental solution in terms of the nonisotropic

metric associated with the surface. The estimates lead us to the regularity re-

sults. We also study the problem of finding weights w so that db as an operator

from L2, to L1 has a closed range. We find the best possible weight among

radial weights.

1. Introduction

Let Q be a weakly pseudoconvex domain in C with a smooth boundary

<9Q, and let r be its defining function, i.e., Q. = {z e C \r(z) < 0} and

dr(z) t¿ 0 when r(z) = 0. Then we can define a holomorphic vector field

which is tangential to d£l by

di) L = ÉL^-°LA_
y ' ' dz2dzx    dzxdz2

Q is said to have a finite type if a finite number of commutators of Re(L)

and Im(L) together with Re(L) and Im(L) spans the tangent space to dQ

at every point [NSW1]. The tangential Cauchy Riemann operator, denoted by

db , can be abstractly defined as a restriction of the Cauchy Riemann operator

d [FoK]. In this paper, we adopt the following analytic definition because of its

relation to L. In terms of local coordinates, 9Í2 can be represented as

Im z2 = <t>(zx ,Re z2)

for some smooth function 4>. Then, db is locally defined by

(1.2) 8bu = (Lu)dzx

where L is as defined in (1.1) with r(z) = (p(zx ,Re z2) -Im z2. We denote by

L (dCl) the square integrable functions on dil and by H (<9Q) the functions
2 _ 2

in L (dQ) annihilated by L. Then, the orthogonal projection from L (dQ)
2

to 77 (dd) is called the Szegö projection.
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What we are mainly concerned with in this paper is solving

dbu = g

for a (0,1) form g on dQ, or equivalently,

(1.3) Lu = f

forfeL , so that

(1.4) u±H2(8Q)

when Q is a certain unbounded domain in C .

When Q is a bounded pseudoconvex domain of finite type in C", many

results have been obtained. First of all, the existence of a smooth solution for

a smooth data was proved by J.-P. Rosay and the existence and regularity in

L and Sobolev spaces were achieved by H. Boas, J. J. Kohn, and M. Shaw

[BS, K2, R, S]. Quite recently, an optimal Holder estimate of the solution when

n = 2 was established by C. Fefferman and J. J. Kohn, and independently by M.

Christ under the assumption that db has a closed range [C, FK]. In particular,

a microlocal analysis of a certain subelliptic operator was used in both works,

and M. Christ made pointwise estimates of the relative fundamental solutions

in terms of nonisotropic pseudometric defined by A. Nagel, E. Stein, and S.

Wainger [NSW1].

If Q is not bounded, the situation is quite different. In particular, the range

of d,  is not closed in L2 and the solution operator is not bounded in L

The domain we will be working on is Q = {(z,, z2): Im z2 > |z,|2 } where

zc is a positive integer. It is easy to see that Q is a pseudoconvex domain

of finite type. We denote the boundary of Q by Hk . On Hk the tangential

Cauchy Riemann operator 5b  is globally defined by d~bu = (Lu)dzx  where

L = -^- + z'zcz,|z,| ■§;• •  If we make a change of variables z, i->- z and

Re z2 m í, then

/1   e\ T &     ,     I  -I    i2(Ar—1> 8
(1.5) L = - + tkz\z\ -.

If zc = 1, then L is the well known Lewy operator on R  = C x R.

This paper mainly consists of three parts: finding the relative fundamental

solution, its estimates, and regularities of the solution. And in the process of

doing these, we introduce a weight œ which makes the range of db closed in
2 2

the weighted L -space Lw .

Hx after coordinate changes is a group (called the Heisenberg group) with

the group structure (z, /) • (w,s) = (z + w, t + s + 2 lm(zw)). See [N and FS]

for the properties of the Heisenberg group. In [GKS], Greiner, Kohn, and Stein

found the relative fundamental solution for the boundary Kohn Laplacian LL.

From this one can easily see the relative fundamental solution of L :

K(z,t) = —     4      2.
n2 \zf + r
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In this paper, we generalize this result and obtain an explicit formula for the

relative fundamental solution of L for arbitrary zc. We find in Theorem 3.1

that the relative fundamental solution K is given by

7. II)

(1.6) K((z,t),(w,s)) = v-2- —-+
4nLB A^-zw ' Axlk-zw\

where A = \[\z\2k + \w\2k - i(t - s)] and B = \[\z\2k - \w\2k + i(t - s)] (We

work with L instead of L because of its relation to the Szegö projection.) We

can see from (1.6) that K is homogeneous of degree -2k - 1 with respect to

the dilation ô(z,t) = (ôz,ô   t) on Hk . More precisely,

K(ô(z,t),ô(w,s)) = â-2k-XK((z,t),(w,s)).

By considering the homogeneity of the relative fundamental solution K, it is

evident that we can not expect the L -boundedness of the solution operator

without a weight. Roughly speaking, the solution operator increases the homo-

geneity by 1 and hence causes trouble at oo. Therefore, we introduce a weight

to deal with this difficulty at oo . The weight we introduce is

(1.7) co(z,t) = (l+d((0,0),(z,t))f2

where

(\z\2k + \w\2k       (s-t)\x,k 1/2
(1.8) d((z,t),(w,s))=   p_ÍE±_ + fü_í¿ \     _zW

which is introduced by K. Diaz in [D] to estimate the the Szegö kernel on Hk .

The method employed to find the relative fundamental solution is similar to

those in [GS and N].

The main theorem in this paper is as follows.

Main Theorem. Let œ be the weight in (1.7), and let f e L2 satisfy Pf = 0

where P is the Szegö projection. Then, there exists a unique solution u e Lw

which satisfies (1.3) and ( 1.4), and the solution operator f y-^ u is bounded from

L   to Lw. Furthermore, if f e L°° with a compact support, then u e Lip( ^ ).

This theorem immediately implies that L as an operator from Lm to L

has a closed range. It is also proved that the exponent -2 is the best possible

one among the radial weights.

The proof of the theorem relies on the pointwise estimates of the relative fun-

damental solution. As we can see from (1.6), the relative fundamental solution

has a nonisotropic nature. Therefore, in order to obtain an optimal estimate,

a nonisotropic metric should be introduced which is related to the geometry of

the surface Hk . In this paper, we use the nonisotropic pseudodistance (1.8). In

[D], K. Diaz showed that this pseudodistance is essentially equivalent to that in

[NSW1,2]. If K is the relative fundamental solution of L on Hk , we establish

the following basic estimates

c-9» ^x-^mh)\
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and

(1.10) \DK(x,y)\
\B(x,ô)\

where S = d(x,y), B(x,ô) = {y e Hk: d(x,y) < ô} , and D is either L or L

with respect to x or v . Quite recently, M. Christ obtained these estimates on

general compact 3-dimensional CR manifolds as mentioned earlier. Here and

throughout this paper, A < (>)5 means that there is a universal constant C

such that A < (>)CB and A « B means that both A < B and A > B hold.

The method of finding the relative fundamental solution of L also enables

us to find the Szegö kernel on Hk . But, the Szegö kernels on Hk and on much

more general domains were studied in several papers [C, D, GS, NRSW].

This work is a part of my dissertation under professor Alexander Nagel at

the University of Wisconsin-Madison. I would like to take this opportunity to

express my thanks to him.

2. Relative fundamental solution on H,

The object of this section is finding the formula for the relative fundamental

solution of L on Hk . Since our method works for all radial functions, we

work with the following space. Let <p be a convex polynomial such that <p(0) =

</>'(0) = 0. And let H^ = {(z,, z2) e C2 : Im z2 = <¡>(\zx |)} . If <p(r) = r2k , then

H,=Hk. Once we find the formula for the relative fundamental solution of L
Ik

on H,, we will apply <p(r) = r to obtain an explicit and closed formula on

Hk in the next section. The method to find the formula is as follows: we first

decompose the operator L into a sum of ordinary differential equations and

after solving each ordinary differential equation in terms of an integral operator

in a proper L2-space we sum them up.

The holomorphic tangential vector field L on H, is given by

(21) L-A + /M£!l£
{ZA) L~dz + l  dz   at

after the change of variables Re z2 i-> t and zx ^ z. For this L, solving the

equation (1.3) and (1.4) is equivalent to solving the following problem:

Problem.  Let P be the orthogonal projection to the kernel of L = —L* in

L2(H.), i.e., the Szegö projection. Solve

(2.2) Lu = g-Pg

so that u is orthogonal to the kernel of L.
if)

In terms of the polar coordinates z = re   , L can be expressed as

r        e~'e ( d i   d j!t  N d   1

And every function g e C^°(R3) has a Fourier series decomposition
oo

(2.4) g(r,6,t)=   ¿2  gn(ryt)eine
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where

8n(r>t) = 2ñj   g(r,W,t)e '"vdy/.

Therefore one can see that

-id

n=-oo x '

e~l    ^  / d      n     . i     d \ ine

n=—oo s '

Define a partial Fourier transform # with respect to the t variable by

$v(r,0,x)=f    v(r,e,t)e~2nindt.
JteR

It then follows that

dLg(r,d,x) = e-J-  ¿2 (fr + "-<t>'(r)2nxhgn(r,x)ein8
n=—oo ^ '

t (K'§-r»f^(r,r)eM
-i6      oo

e

2
n=—oo

where Af is the multiplication operator M f = conf where con(r,x) =

r"e~ r'. If g e C^°(R ), then each gn also has a bounded support in

R+ x R and hence the infinite sum is well defined. These can be summarized in

one formula: If g is of the form (2.4), then

-id       oo      / ri \

(2.5) Lg(r,e,t) = e—  £ {rXM^rMmßg\(r,x)e'nd,
n=—oo ^ '

where

(2.6) œn(r,x) = re

With the help of the formula (2.5), one can reduce the original problem to

the following subproblem which is easier to solve. We note that, for fixed zz

and t, Mw is an isometry from L2(R+,dr) to L2(R+,œ~2rdr).

Subproblem. Fix zz and x. J^ is to be considered as an operator on

L2(R+,eo~ rdr). Let Pn T be the orthogonal projection to the kernel of (■§-,)*,

the adjoint of -^ in L (R+,eu~ rdr). Then, solve

so that u is orthogonal to the kernel of §-r in L2(R+,co~2rdr).

This reduction is possible because of the following proposition.
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Proposition 2.1. Let g e C0°°(R3) be of the form (2.4). Suppose that, for each

fixed n and x, un x is a solution of

d-rUn,r = McoMn-! ~ Pn ÄÄ-.)

so that unr±Ker(j-r) in L2(R+,œ~2rdr). Then, u defined by

OO

(2.8) u(r,6,t) = 2 £ (rlMw-iUn)(r,t)eind,

n=—oo

where un(r,x) = unx(r), belongs to L2(R3) and satisfies (2.2) as well as the

orthogonality requirement, namely, u ± Ker(L).

Proof. To begin with, we note that u e L (R ) as long as un T e L (R ,œn r dr)

If f(r,6,t) = E'-oc f„(r,t)eine is in Ker(L), then

-10        oo / r) \

Lf(r,e,t) = e—  £   {rXMw-^rMaßf\(r,t)e'ne = 0.

Therefore, FXM^M^ßf^r,t) = 0 and hence §-rMw$fn(r,t) = 0 for

each n.  It then follows that Mw$fn(-,x) e Ker(j-r) in L2(R+,w~2rdr) for

each zz and x. But

°°      r      r _

(M,/)L2 = 2£   /       (rlMœ-lUn)(r,t)fn(r,t)rdrdt
n=-ooJr>oJl

oo . « _

= 2 £   /        un(r,x)Mw^fn(r,x)oo-2(r,x)rdrdx = 0
n=-ooJr>oJ*

since un   L Ker(J^). Therefore, u J. Ker(L).

On the other hand,

Lu(r,e,t) = e-W  ¿   U-'M^u^rjW"6
n——oo ^ '

oo

n=—oo

oo
-1     ., n .   T ~ W .,        MÍ

-e"10  J2 ttXM^Pn,Mo>*Sn^){r,t)e
n=—oo

= g(r,d,t)-Pg(r,d,t).

The last equality comes from the following lemma.     D

Lemma 2.2. Let P and Pn T be the orthogonal projections as above.  If g e

L (R ) has a Fourier series decomposition g(r,6,t) = Y^=-ooSn(r yi)^" > men

oo

(2.9) Pg(r,e,t)=   ¿2 ^M^Pn,M^Sn_x){r,t)e(n'X)e .
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2 "5

In particular, the series in the right-hand side converges in L (R ).
2

Proof. L   convergence of the series is trivial. We first observe the following

(!) <'<+. - r-2"-xe-4^ir) = co-n2+xr and hence M^-.A^-, = M^ .

(2) (&r = ^,-.JÄ->, i« L2(R\œ-2rdr).

(3) 1f**?A.i-"**tâ)'**.x-0 fora11 "■

(4) Since L* = -L = -£(& + i& - #'(/■)&), we have

1)0

n=—00

Let us set the right-hand side of (2.9) to be Qg. It then follows from above

facts that

L*Qg(r,6,t) = -\  £   (d-lM^Mw-:¡rPn+x^MMnJgn)(r,t)e'{"+X^ = 0.

Therefore, ß#eKer(L*).

On the other hand, if g e Ker(L*), then J^Af^-i $gn_x(-,x) = 0 for each
n— 1

fixed zz and x. Therefore, by (2),

and hence Pn>TMm$gn_x = Mw$gn_x. So, Qg = g.

It is easy to show that QQ = Q. Now, we shall show that Q* = Q, which

implies that Q is the orthogonal projection onto Ker(L*), and hence Q = P.

Let / and g be in L2(R3). Then,

(Q*g,f) = (g,Qf)

=   E   / B Í8n(ryt)(S-lM<Pn+ltrMOJii+idfn(r,t))rdrdt

=   E   / n f(M«„j8n)(r,T)(Pn+l,M„nJfn)(r,x)œ-nîxrdrdx

°°      r      r _

=   E   I        (rlM  :Pn+XrM(ûnJgn)(r,t)fn(r,t)rdrdt
n=-ooJr>0Jr

= (Qg,f).
The fourth equality is true because  Pn+X T  is an orthogonal projection in

L (R+,<y~ rdr). Therefore, Q* = Q and the proof is completed.     D

Let, for each fixed zz and x, Qnz be the orthogonal projection to Ker(£:)

in L (R+,oj~ rdr). We shall seek a solution of the subproblem (2.7) in the

form of an integration against some kernel function. Therefore, first of all, we

write Pn T and Qn T as integral operators.
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Lemma 2.3. Let Pn t be the orthogonal projection to the kernel of (^)* in
2       i _2

L (R , œn r dr). Then Pn T can be represented as

rOO

(2.10) P„Mr)=        h(y)Gnx(r,y)ydy
Jo

for any he L2(R+,oj~2rdr) where

(2.11) Gn>T(r,y) = i(ryL   ^dr)    *&'''T>   if*>0andn>l

I 0 otherwise.

Proof Since (&)* = M^t§fMm->, in ¿V,^"2^), (^)*A = 0 if and
2   -1

only if 0)n rh(r) is constant, i.e., h(r) = cconr     for some constant c. But,

if c ¿ 0, 1
Therefore,

if c t¿ 0, then cee>2z-  ' e L2(R+,a>n2rdr) if and only if x > 0 and zz > 1.

2   _i

2Wl\    2 -i    a)]r~l   ifr>0andzz> 1,
(mr'.fflr-1),   "

0 otherwise,

vw =

{( /    œ2nr~X dr\      /    h(r)drco2n(r,x)r~x    if t > 0 and zz > 1,

0 otherwise

2 i _2
where  (•,•)„   is the inner product in L (R ,con rdr).   So, the lemma fol-

lows.   D

Lemma 2.4. Let Qnz be the orthogonal projection to Ker(J^) c L2 (R+, co~2 r d r).

Then, Qn    can be represented as

(2.12) Q„Mr)= rh(y)KnT(y)ydy
Jo

for any h e L2(R+,co~2rdr). Here,

\ -i
0 and n < 0,

otherwise.

In particular, Qn Th is independent of r as one can expect.

2 i _2
Proof. Since L (R , con r dr) contains nonzero constants if and only if x < 0

and zz<0, k e L2(R+,œ~2rdr) belongs to Ker(^) if and only if

{constant    if x < 0 and n < 0,

0 otherwise.

The rest goes in the same way as the proof of Lemma 2.3.     D

Being equipped with the integral formulas of Pn t and Qn T, one can solve

the subproblem in terms of an integral operator and hence the problem by the

(2A3)   Knx(y) = \{[<1{X^)xdX)     <2(''T)    ifT<

{ 0 others
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formula (2.8). We recall that wn(r ,x) = r"e~2jIZ't'^ . Considering the singulari-

ties of functions in L2(R+, <y~2z- dr) near 0, we define an integral operator An f

by

Í h(y)dy        if «> 1,

(2.14) \,Mr)=\ roo
-I    h(y)dy   if n < 0.

Jr

for h e L (R ,con rdr) with a bounded support. We note that Anxh is well

defined and §^(An xh)(r) = h(r) for both cases.

Lemma 2.5. If h e C°°(R+) has a bounded support on R+, then for each n and

Proof. Let x > 0 and zz > 1. Then, since y/0°° Gnt(r,y)dr = 1, it follows

that
/»oo rOO /*oo    /»oo

(2.15) /    (h-Pnxh)dr=        h(r)dr-        /    h(y)Gnx(r ,y)ydydr = 0.
Jo Jo Jo   Jo

Choose R > 0 so that supp( h) c [0, R]. Then, because of (2.15),

pr /«oo

Anr(h-pnMr)=      (h - Pn xh)(y) dy = -       (h-Pnxh)(y)dy,
JO Jr

and hence if r > R, then

Therefore,

/oo
(pn,xh)(y)dy.

f°°
/    \Anx(h-Pnxh)(r)\2co-2(r,x)rdr
Jo

rR\    rr

-l   \[An^h-Pn,M
Jo \Jo

fOOl    rOO

/      /    (Pnxh)(x)dx
Jr   \Jr

+

= IX+I2

r)   œn (r,x)rdr

œ~2(r,x)rdr

By the Holder inequality, we have

rRfit rr

Ix-Jo   " k ~ P"'rH IIl2(rW"^ J0 wn(y>x)y~X dy 0}~2(r,x)rdr

rR    rr

<c [  [ e-***«yyn-idy e**imr-2n+\dr
Jo Jo

rR    rr

<cf   fy2n-xdyr-2n+xdr<C.
Jo  Jo
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On the other hand,

/•OO       /»OO      rOO

=       \        /    g(x)Gnx(y,x)xdxdy
Jr   \Jr    Jo

rOO I    /»OO 2 r    /»oo

= /     /    g(x)dx     /    œ2n(y,x)y~xdy
Jr   Uo Ur

2

co~2(r,x)rdr

2

oj~2(r,x)rdr

"OO

-C[[Ír~e~*nXmy2n~Xdy
-,2

4^T0(r)   -2/1+1    ,      , ,-,
e r dr < C

since t > 0. Therefore, Anx(h - Pn xh) e L2(R+, co~2rdr).

If n < 0, then Pnxh = 0 and

/oo h(y)dy.

Therefore,  Anx(h - Pnxh)  has a bounded support and hence it belongs to

L2(R+,co~2rdr).

If zz > 1 and t < 0, then P/z = 0 and A   h = constant for all r > R.
— n,x n,T

So one can easily see that /0°° \Anxh(r)\2oj~2(r,x)rdr < oo since x < 0. This

completes the proof,   o

For each zz and x, we define an operator Tn   by

(2.16) Tnxh(r) = Anx(h - Pnxh)(r) - Qn,xAnx(h - Pnxh)(r)

for a C°°(R+)  function h with a bounded support.   Then, by Lemma 2.5,

TnxheL2(R+,co;2rdr). Moreover, §-rTnxh = h-Pnxh and r„T/z±Ker(£)
2       i        _2

C L (R , con rdr). We then define an operator T, accordingly to the formula

(2.8), by

OO

(2.17) Tg(r,d,t) = 2 ¿2 trXM^TnxMwZgn_x)(r,t)e'ne
n——oo

for each g(r,6,t) = Y^L-«, ^(''O^'"6 e C0°°(R3). Then, by Proposition 2.1,

one can see that LTg = g - Pg and Tg L Ker(L). Moreover, by Lemma 2.5

and (2.1'

theorem.

and (2.17), it is easy to see that Tg e L2(R ). In short, we obtain the following

Theorem 2.6. Let f be in CQX>(R ) and satisfy the condition Pf = 0. Then,

there exists a unique solution u e L such that Lu = f and u ± Ker(L).

Moreover, the solution formula is given by (2.16) and (2.17).

We now express T as an integral operator against a singular kernel. That

singular kernel is going to be our relative fundamental solution. If zz > 1, then

Qnx = 0 and hence

/•OO

(2.18) Tnxh(r) = Anx(h-Pnxh)=        h(y)Bnx(r,y)dy
Jo
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where

(2.19) Bnx(r,y) =

l~y I Gnx(x,y)dx   ifO<y<r,

-y / GnM'y)dx    tir<y
*•       Jo

with Gnx given in (2.11).

On the other hand, if zz < 0, then Pn x = 0 and hence

/■OO

(2.20) Tnxh(r) = Anxh(r)-QnxAnxh(r)= /    h(y)Bnx(r ,y)dy
Jo

where

■1 + /   K   (x)xdx   ify> r,
Jo

[ Knx(x)xdx ifO <y<r,
v Jo

with Kn    given in (2.13). Now, it follows from the formula (2.17) that

(2.21) Bnx(r,y) = <

Tg(r,e,t) = 2 ¿2 $   M^pn,MœZgn_x)(r,t)ein0
/! = —OO

= 2E   [/     lgn-^yS)le2^-s)œ-nX(r,x)
«=-oo L^O Js Jt

xcon(y,x)Bnx(r,y)dxdyds

'itXfJ  /«-*-*fCr.r.*>
71 n^ooU-x Jy>OJs

x lie2*      s)oj~X(t,x)con(y,x)Bnx(r,y)dx)dwdyds

if g(y,W,s) = E^°_oo Sn(yys)e""l/ ■ Therefore, we have

(2.22)     Tg(r,6,t)=r  í     Íg(y,¥,s)K((r,e,t),(y,V,s))ydydtifds
J — n Jy>0 Js

where

K((r,e,t),(y,y/,s))

i      °°= — E •in(0-y>)+

ny

»V   /"    2n/T(i-
í)etín'(r,T)wn(j;,T)finr(r,y)£ÍT.

Recall that w„(r, t) = r".?"2*^. if We put z = re>'0 and */; = ye*"" , then

(2.23)  K((z,t),(w,s))
1 °°      /   - \ n     r
1       y^   /M)\      /    2nh(t-s)   2nt(0(|z|)-0(|u)|))„     ,.   ,   ,     ,,   ,

= ^  E    T)      e e U)Bnx(\z\,\w\)dx

Here, 5n r is the kernel given in (2.19) and (2.21). In conclusion, we establish

the following theorem.
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Theorem 2.7. Let K((z, t), (w,s)) be as in (2.23), and let

(2.24) Tf(z,t)= [   f(w,s)K((z,t),(w,s))dV(w,s).
Jw ,s

Then, for any f e C0°°(R3),  Tf e L2(R3) and satisfies LTf = f - Pf and
Tf ± Ker(L). The integration in (2.24) is defined in the sense of distributions.

By the same computation as we did for Theorem 2.7, the following theorem

can be obtained from (2.9).

Theorem 2.8. The Szegö projection on H, is given by

i     oo roo    2aít(í-í)-2bt[^(|z|)+0(|i«|)]

(2.25) S((z,t),(w,s)) = =-Y(zw)n       —-=—,-7-rn-dx.
2n¿-£     > J0        J™r2ne-4nxmrdr

The integration is defined in the sense of distributions.

3. Relative fundamental solution on Hk

In this section, we deduce an explicit closed formula for the relative funda-

mental solution of L on Hk, i.e., the case when <j>(r) = r , from the formula

(2.23) in previous section. Recall that

i        oo     / - \ n    r
vu       t\   i \\ 1       V*   I W \ 2nh(t-s)   2m(4>(\z\)-<f>(\w\)) n      /,   .   ,     nJ
K((z,t),(w,s)) = —  2^ ( — l      e >e Wl  wBnßz\,\w\)dx.

n=—oo ^     '        T

We may assume that 0 < \w\ < \z\ since the computations for 0 < \z\ < \w\

case go parallel. Throughout this paper we use the following notations for

convenience:

(3.1) ^ = ^[(|z|2* + H2*)-/(í-í)]

and

(3.2) B=2-[(\z\2k-\w\2k) + i(t-s)].

Put

and put

i 4^fwsn

nw ^—'\ z
n=\

fe'"BB„,(\zl,\wl)dT

'-¿t(f)7«**^^I.M)*
n=—oo x      '     J

where Bn    is as in (2.19) and (2.21). Then, the relative fundamental solution

K is equal to I + J.

For 7, we first observe from (2.19) and (2.21) that

[ 1 ifr<0,

Bn,M>\w\)= | \w\i°° Gnx(n,\w\)dn   ift>0.
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Since /0°° œ2n(r, x)r~x dr = 2^(4nx)~"/kr(n/k), it follows that

[1 ifr<0,

5„T(IZI>M) = \   ~>,,a      sn/kr,    //-."I   f°°    2"-!   -*Wk j tU"•tVI  '  '   u     I 2zc(47tt) ' T(n/k) n      e dn   otherwise.
I J\z\

Therefore,

i      °°   / „v. \ " r   roo

/°°      2/7-1     -47tTf72*   j      j f0 4/tTB   jz;      e dndx+        e      dx
,z\ J—oo

1 OO     /    _ \   /I

7TtZ) ¿-fV*/n=l

Put pn = n2k -B. Then,

And, since /0°° ̂ ""'(^t)"7* rfr = ^p~n/k~xT(n/k + 1), it follows that

Tl ZZ     /*°°    2/î-l    -n/k-l j

'1*1

And

./—o<

4»itB j 1
/„ = /     e       at =

4^5"

Therefore,

.        1   ^fwVfn    [°°   u-i   -n/k-l,   ^     1    \

1       f00^    /tDz/2 y   -i   -i , 1 tí)/z

x2wJ\z\ fa   \zpl/kJ « 4n2i2n2wJ\z\f^x   \zp]¡k) " 4n2Bwl-ü>/2

1     1   i00 d A     zDz?2 \-'^      _j_1_

'2n2wBJ\z\  dn\      Zpln/k)      t,+ 4n2Bz-w

1 z

47r25^1/A:-ztí;

On the other hand,

o

'-¿r(î)7'~-VW.M>.*.
«=-oo \    .V ,y

oo   /     \n   r

E(l) /«"^*-..-,<w.i«d*.
1

7ttí)
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here, we made changes of variables n >-> -« and x ^ -x.  If t < 0 then

Bn _x = 0 for any zz. If x > 0 and zz > 0 then

r\w\

B_n_x(\z\,\w\)= /      K_n_x(n)ndn
Jo

-u
= 2Zc(47TT)("+1)/i:r((zZ+l)/Zc)_1   f

Jo

-2 \        fm     -2
0}_n(t, -x)rdr\      I     oj_n(t], -x)ndn.

2/1+1   -4nxr2k   ,
re ezz-,

.2*by the same reason as above. Therefore, if we put X  = B + n     then, we can

obtain

2n2wt^ W   Jo "■1=0

Note that a, , = ^4 and obtain from the same computation as above that
>l

J =
1 w

2n2BAXlk-
zw

Combining all these computations, we finally obtain the following theorem:

Theorem 3.1. Let

A = \[\z\2k + \w\2k -i(t-s)]

and

And let

(3.3)

,2k 2k
B = j[\z\    -\w\    +i(t-s)]

K((z,t),(w,s))
1

4n2B

w

Ax'k-zw     AX'k-zw

Define an operator T by

(3.4) Tf(z,t) = j f(w,s)K((z,t),(w,s))dV(w,s).

Then, for any f e C0°°(R3),  Tf e L2 and Tf satisfies LTf = f - Pf and
Tf ± Ker(L). Here, P is the Szegö projection.

The kernel K in (3.3) is called the relative fundamental solution. By the

same computation starting from the identity (2.25), we can also obtain the

following theorem.

Theorem 3.2 (Greiner and Stein). The Szegö kernel on Hk is given by

-2

S((z,t),(w,s)) = -^  1-
47T     .

ZW -1/fc-l
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Remark 3.3. If zc = 1, B = A~ - \w\2 = -A + \z\2 and hence z(A~ - zw) +

w(A - zw) = B(z - w). Therefore,

__,,      .   .       .,        1      z - w 1 z-w
K((z,t),(w,s)) = —j—--j = — ---4—■-——--j

4zr   \A - zw\       n   \z - w\  + \t - s + 21m(zw)\

which is exactly the one in [GKS].

Remark 3.4. The singularity of K may seem strange because B vanishes at the

points \z\ = \w\ and t = s. But, at the point ((z, t), (-z, t)), the singularities

are cancelled out if we put the fractions together, namely,

nn v((,    A    ,.,,    „-,-,        A((z,t),(W,S))(3.5) K((z, t), (w,s)) = ,--z-
\Al'K - zw\¿

where

(3.6) A((z,t),(w,s))
.2

~Hl/k       I      |2 i    |2 Alk
A     - \w\ \z\   - A '

■-!-!-in-—!-
2k W   ,_,2A:        A

4nAV    A-\wr \z

4.  POINTWISE ESTIMATES OF THE RELATIVE FUNDAMENTAL SOLUTION

In this section, we shall make pointwise estimates of the relative fundamental

solution K given by (3.3), in terms of the nonisotropic pseudodistance and the

size of ball defined by the pseudodistance. The pseudodistance to be used is the

one introduced by K Diaz. In [D], K. Diaz used the following pseudodistance

to estimate the Szegö kernel on Hk :

(4.1) d((z,t),(w,s)) = \AX,k-zw\\

We recall that A = \[(\z\2k + \w\2k) - i(t - s)]. She proved

Theorem 4.1 (Diaz).   (R3, d) is a space of homogeneous type as defined in [CW].

The distance function (4.1 ) is convenient to use since it is in a closed form

and the formula itself is very much related to those of the Szegö kernels and

the relative fundamental solution. K. Diaz showed that d((z,t),(w,s)) rs \z —

w\ + \t - s\ '    if z and w are bounded.

Lemma 4.2. (1) \z - w\ < d((z, t), (w,s)).

(2) If \z\ is bounded and if d((z,t), (w,s)) = 1, then either \z - w\ « 1 or

\t-s\*l.

Proof. Lemma 4.2 follows from Lemma 3.2.1 of [D].    G

Lemma 4.3. Let A = ±[|z|2* + \w\2k - i(t - s)]. Then

(1) \A\*\z\2k + d((z,t),(w,s))2k

(2) \AXlk - \w\2e2niilk\ « |z|2 + d((z,t),(w,s))2

(3) \Ax/k -\z\2e2nU/k\^\w\2 + d((z,t),(w,s))2, j = 0,1,2,3, ... ,k - 1.

Proof. For convenience, we assume that k > 2. By the homogeneity of A with

respect to the dilation ô(z, t) = (Sz,S2 t), we may assume that

d((z,t),(w,s)) = l.
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We note that if d((z, t), (w,s)) = 1 and z is bounded, then either \z - w\ « 1

or \t - s| « 1 by Lemma 4.2.

It is easy to see that \A\ < \z\ + 1. If \z\ is large or if \z\ is small and

\t - s\ «s 1, then \A\ > |z|2 + 1 . If \z\ is small and \z - w\ « 1, then

\z\2k + \w\2k > 1 and hence \A\ > \(\z\2k + \w\2k) > 1 > \z\2k + 1, and this

completes the proof of (1).

For (2), we first suppose that \A\ ' > \w\ . If we put A = \A\e' , then

|0| < § and it follows from (1) that

\ÄXlk-\w\2e2*ulk\>\A\xlkcos(dlk)
,2

1
w\ cos(2nj/k)

>M|1A>|z|2 + l
\A\x,kcos(d/k)

for j = l,2,...,k-l. If \A\x/k < \w\2 and either 0<^<^or^<

2^-<2n, then

p|1/fcsin(0/zc) - \w\2 sin(2nj/k)\ > |u;|2(|sin(2n;7zc)| - |sin(0/zc)|)

>\w\2>\A\X/k >\z\2 + l.

If \A\x/k < \w\2 and % < ?$■ < ¿f , it follows that

|M|1/A:cos(0/zc) - |w;|2cos(27r>/zc)| = |^|1/fccos(0/zc) + M2|cos(27tj7zc)|

> \w\2 > |z|2+l

since cosi2^) < 0. Therefore, in both cases, we have

\2l/k - \w\2e2niilk\ > p|lAsin(0/zc) - |w|2sin(2^7zc)|

+ ||J|1/A:cos(0/zc) - |uz|2cos(27r7/zc)|

> |z|2 + l.

If j = 0, then

\AX'k - \w\2\ < \AXlk - zw\ + \zw - \w\2\

= d((z,t),(w,s)) + \w\\z-w\ < |u;|2 + 1 « |z|2+ 1.

The opposite inequality is trivial. (3) can be shown in the same way.     o

Lemma 4.4. Let A be the quantity given in Lemma 4.3, then

(4.2) Lz t(lX/k -zw)zd((z, t), (w,s))

where the subscript z,t means that L acts on (z,t) variables.

Proof. Again, we may assume that d((z, t), (w,s)) = 1. We first see that

"F      ,-Mk s       ,/;-7'/*-l-r     -1 —jrl/*—1,    ,2(t-l)
Lzt(A     - zw) = 1/kA        LztA-w = A        \z\        'z-w

,-7-l/Zc.    ,2,k-l, ,   ,       „i    ,2-[-\/k.k-\       .,
= (A       \z\ )     (z -w) + w((\z\ A      )      - 1).
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Since \z\2\A\  x/k < C for some constant C and since \z - w\ < 1 provided

that d((z,t),(w,s)) = 1,

Klzl2!-17')^1 - 1| < \\z\2Ä~X/k - 1| = \Tl/k(\z\2 -AXlk)\

= \A      (\z\  -zw) + A      (zw - A    )\

\A\-X/k(\z\ + l),

and hence
i^/k

\LzM   -2W^ ~ \z - w\+ \A\    (\zw\ + M)

Izuzl + luz I
&\Z-W\+*--i;-!—1 <  1

1*1 +1
since d((z, t), (w,s)) = 1. This completes the proof.     G

Lemma 4.5. Let

A((z,0,(w,s)) = —j
4n

r   ~illk      i     |2
A     - \w\

z^
A -\w

,2k
— W-

\z\2-AX/k

\z\2k-A

Then

(4.3)

and

(4.4)

\A«z,t),(w,s))\Z

\LztA((z,t),(w,s))\

,2k-2   ,   r2lfc-2
\z\2k-2 + ô'

1
|z|2fc-2 + ¿2/c-2

w/zere f5 = d((z, t), (w,s)).

Proof. We may assume that ô = 1 by the homogeneity. One can easily observe

that if d((z,t),(w,s)) = 1, then |z|2+ 1 « |u;|2+ 1 since |z-u;| < 1. We will

use this fact without mentioning. Since

k-\

ak-bk = (a-b)Y[(a-be2niilk),

;=i

we can write A as

A((z,t),(w,s)) = (z-w)

"71/*       I     |2
A     -\w\

A — |itz,

(z -w)Px +wP2

,2k
+ W

1l/k       I     |2 Á\lk       i    i2n
^       - \w\        A '    -  Z

L ¿-I«; 2*
4-|Z

2A

where

and

k-\
n        TT/T1/*      i     |2   2niijk,-\
pi = \[{¿     -\w\ e        )

;=i

rfcW* - \z\2e2KU/k) - rfc'ff"* - \w\2e2n,j/k)

nk:!(Äl/k - \w\2eUiJ'k){Al'k - \z\2e2*ij/k)
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We can easily see from Lemma 4.3(2) that

IP.ISdzl^-' + l)-1.
On the other hand,

lfc-1 fc-i
n,  Ak       |    .2   2mjk,       TT/-J1/*       i     |2   Inijk,

(A1   -\z\e        )-llM     -|«z| e        )
i=i 7=1

fc-i ¿-i
n,.l/fc      ,   .2   Inijlk,       TTiA'/k      i     |2   Inijlk,

(A     -\z\ e        )- [[(A '   -\w\ e        )

;=i 7=i

+

fc-1 k-\
n, Alk      .     .2   2nijlk.       Tf i~lxlk      i     |2   2nij/k,

(A     - \w\ e        )- [[(A     -\w\ e        )

7=1 7=1

= Ex + E2

If we multiply the products out, it then follows from Lemma 4.3(a) that

exz^2\\z\2J -\w\2J\\4k-x-J)/k
7 = 1

^J2\\z\-\w\\(\z\2j-x + \w\2j~X)\Atk-X-j)/k

7=1

k-\

sj;iw-Ni(i*r +D(i*r ■""+D2(^-1-7)

7 = 1

<|z-ui|(|z|2^3 + l)

And
fc-l

7 = 1

,1/fc       -j-l/fc.

^^11^12(^-1-7)

fc-l

7 = 1

M^-^KIzi^ + i).

ü-DAi^l^-i-v)

But, since |VA - ^1//c| = 2|^l|lA sin(0/Zc) < (|z|2 + l)|r - i|, we have

£,<(|z|2* 3 + l)|i-s|

Now, Lemma 4.3(2) and (3) together with above inequalities lead us to

estimate
,2k-l       ,,-l

1   2l ~ ,,_,2   ,   M2(fc-1) ~ ^Z| + l'
i*r +ir

And, we finally have

\A((z,t),(w,s))\ < \z-w\\Px\ + \w\\P2\ < —^—-
z + 1
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For Lz A, we perform the logarithmic derivative to have

- -z k~X    \z\2{k~x)zAx/k~x

Lz'A = Tlk:}(A-yk-\w\2e2*iJ/k) S (ÄX/k-\w\2e2^k)

w k^ ze2*iJ/k
+

\[kZxx(Axlk - \z\2e2nij/k) jti (Ax/k - \z\2e2niilk) '

It then follows from Lemma 4.3(2) and (3) that

i   |2/i   i2—ï— l/*Nfc-l i   .2  .   i ,
II   A, - izl (1*1 A      )        |     1*1  + 1    ^_\_

z'' (|*|2+1)* (|z|2+l)*~ |z|u-2+l

2_\/k
since \z\ A        is bounded. This completes the proof of Lemma 4.5.   D

Lemma 4.6. Let K be the relative fundamental solution of L on Hk. Then, off

the diagonal, -Lz tK is the Szegö kernel and Lw SK is the complex conjugate

of the Szegö kernel.

Proof. It is easy since Lzl(B) = Lz/^—) = 0 and Lw SB = Lw/lu^-r)

= 0.     D

Here and throughout this paper, we denote by B((z ,t),S) the ball of radius

ô defined by the distance function (4.1). Proposition 3.4.4 of [D] shows that

\B((z,t),ô)\^ô4(\z\2k~2+ S2k~2) where |-| is the Lebesgue measure.

Theorem 4.7. Let K be the relative fundamental solution for L on Hk. Then,

K satisfies estimates

(4-5) |^((z;0)(^,,))!<__£__

and

(4.6) \DK((z,t),(w,s))\  -
B((z,t),S)\

where ô = d((z,t),(w,s)) and D is one of Lzl,Lzi,Lws, and Lws.

Proof. If we use the identity (3.5), (4.5) comes from Lemma 4.5. Lemma 4.6

and Proposition 6.1.1 in [D] imply (4.6) when D = Lz t or Lw s. If D = Lz t,

(4.6) comes from Lemmas 4.3 and 4.5 since

T^r tK - ALT , ( —T-fT-5- ) + —TTT-t!, ,A.
z,t z'<\\Ax/k-zw\2)     \Al/k-zw\2   z''

D = L,„ , case is also easy to show,   o

5. Regularity of the solution operator

In this section, we study the regularity properties of the solution operator

T defined by the relative fundamental solution (3.3) in terms of spaces such
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as Lp , weighted L , and the Lipschitz class Lip(a). Since Hk is unbounded

and K is homogeneous of degree -2k - 1, it is evident that we can not expect
2

L -boundedness of T without a weight. In this section the points in Hk are

denoted by £, Ç, etc.

Our first theorem is analogous to a theorem on the Heisenberg group due to

Folland and Stein (Theorem 15.3 of [FS]).

Theorem 5.1. Let K be a homogeneous kernel function of degree -2k - 1 and

C°° off the diagonal, i.e.,

K(ÔÇ,SÇ) = â-2k~xK(U)   for any ô > 0

where C and Ç are points in Hk. Assume that K satisfies the estimate (4.5).

Define an operator T by

Tf(Q= f AZ)K{M)dV(i),

where dV is the Lebesgue measure on Hk = R3. Then, for any f e Lp,

\\Tf\\qZ\\f\\p

where q~x = p~x + (2k + l)/(2k + 2) - 1.

Proof. By Lemma 15.3 of [FS], it suffices to show that K(Ç,-)  is in weak-

Ü uniformly in Ç and #(•,£)  is in weak-Lr  uniformly in <¡f where r =

(2A:+l)/(2zc + 2). But,

f dV(C;) = a'~r [ dV(ct)Za~r
J\K(U)\>a J\K(U)\>1

where the equality is from the change of variables and the homogeneity of K,

and the inequality is due to the following lemma.

The same argument works for fiK,r¿)\>adV(Q .     □

Lemma 5.2. Let K be the same kernel as in Theorem 5.1. Then,

dV(£) < C      independently ofÇ,
J\K'\K(U)\>\

and

dV(Q < C      independently ofÇ,
J\K'I*(M)I>1

Proof. It follows from the estimate (4.5) that

/ dV{£)<( |*(C,0|dK(i)
J\K[C£)\>\ J\K(C£)\>i

dV(tV),

'|^(Í,Í)I>1 J\K(U)\>1

d(M)LiJC(«)i>iiÄ(f,rf«:,{))i
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But, d(U) > \B(C,d(U))\ Z d(^)4[\z\2k-2 + d(C,02k'2] provided that

|*(C,f)| > 1. Therefore, d(C,Ç)~3 > d(^)2k~2 and hence d(Ç,Ç) < C. It
then follows that

°° - f i
"§2   h-j+><d«¿)<C2-iWU(C,Z))\dm

^y»2-y \B(C,C2-J)\   cC
~j¿       \B(C,C2-J+l)\

by the doubling property of d. The second estimate can also be done in the

same way.     D

Theorem 5.3. Let K and T be as in Theorem 5.1. If f is bounded and has a

compact support, then Tf belongs to Lip(l/2zc).

Proof. This follows immediately from Theorem 14(b) of [RS].     D

Lemma 5.4. Let K be a positive kernel function satisfying the assumptions of

Theorem 5.1. Then, for 1 < a < 2zc + 2,

(5.1) jm + iyxK(U)dv(Z) < (ici + irA+1.

Proof. Let M be a constant for the pseudo-triangular inequality, namely,

d(c,o<M(d(C,e) + d(e,0)
for any Ç, £, and 6.

If |C| < 1 , we have to prove

j(\c-\+l)-AK(U)dV(0<C.

Let us split the integral into two parts, namely, the integral over {Ç\d(Ç,Ç) >

2M} and that over {i\d(Ç,i) < 2M} and call them 7, and I2 respectively.

Then, by the proof of Lemma 5.2,

72</ K(C,í)dV(í)<C.
Jd(r,()<2M

If </(i,{) > IM and |f| < 1, then </(££) « |{| and hence

/ < f _J_d(ÇA)
x~Jd{(,()>2Md(U)x\B(i:,d(U))\   [Ç>

= Í -FT^-dV(Ç)
Jd(U)>2M d(U)X-X\B(C,d(U))\
oo - .

~E2_;(A"'7 lB(r dlr m àViS)TZ Jc2i-><d(C,()<C2J \B(Ç,a((,,ç))\
7=0

oo

■< t-yW-l)   \B(t;,C2J)\

o

provided that A > 1

fe \B(C,C2j'x)\-
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To prove the estimate (5.1) when |Ç| > 1, it is enough, by the homogeneity,

to show that

(5.2) j\t\~ÁK(U)dV(c:)<C

independently of C such that |£| = 1. Let |C| = 1 and split the integral in the

left-hand side of (5.2) into three parts: an integral over {if (£,£;) < l/(2M)},

one over {|£| < l,d(Z,() > 1/(2M)}, and another over {|£| > l,rf(C,í) >

l/(2M)} . Let us call them JX,J2, and 73. If d(Ç,Ç) < l/(2Af), then |¿;| > C

for some constant C since |£| = 1. Therefore, it follows from the proof of

Lemma 5.2 that

/ K(U)dV(i)zC.
Jd([.£Xl/2Mld(U)<l/2M

If rf(Ci) > l/(2Af), then |Ä(C,d(C,f))l > C for some constant C and hence,
by the estimate (4.5),

J2< I    \t\-xdv(c:)zc
J\z\<\

provided that X < 2k + 2. If |£| > 1 and d{C,Z) > 1/(2M), then \H\ > </(C,i)
and therefore,

,<i -7-j-l-dV{£)
3    Jd(U)>u(2M) d(C,¿:)Á-l\B(C.d(C.c:))\

oo

<y-2-7(A-D /" _1_rfKi«
~^       Jc2J<d<uwc2J+i \B(c,d(c,m   [Ç>

7=0

.f:-/(>i-i)|i>(C,C2y+')| <c~¿5 |B(C,C2>)| -

if a > 1 . This completes the proof.

Now, we are ready to show our main theorem.   We shall make use of a

theorem due to S. Bloom [B, Theorem 1].

Theorem 5.5. Let K(Ç,Ç) be a positive kernel function satisfying the assumptions

in Theorem 5.1, and let Tf(Q = ¡K(C,Z)M)dV(Ç). Let co(Q = (|C| + l)"2
2 1

where \Ç\ = d(0,Q . Then, T is a bounded operator from L   to Lw.

Proof. By Theorem 1 of [B], it suffices to show that there is a nonnegative

function aeL2 such that cox,2T(a) < Ca and T*(acox/2) < Co. where T* is

the adjoint operator of T, i.e., T*f(Q = JK{Z,Qf{£)dV(C). We note that
K(Ç, C) also satisfies the assumptions of Theorem 5.1.

Choose a to be a(Q = (|Ç| + l)~k~À  for some /.   It then follows from

Lemma 5.4 that if I - k < k <k + 2, then

T(a) = j{\(\ + l)-k-XK(Ç,Ç)dV(Z) < (Kl + 1)""""+1 = a(Qœ(Q-X/2 .
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And it also follows that if -& < / < ze + 1, then

T*(acoXß) = J(\i\ + l)-k-k~XK(U)dV(cl) < a(Q .

Choose A = 3/2. Then, a obviously belongs to L   and proof is completed.

Combining Theorems 3.1 and 5.5, one can show the following theorem.

Theorem 5.6. Let K and T be as defined in Theorem 3.1 and let co(Q =

(Id + l)-2. If f e L2(R3) satisfy the solvability condition Pf = 0, then there

exists a unique ueLw such that Lu = f and \\ u \\2 œ<\\ f \\2.

Remark 5.7. In the next section, we will demonstrate that the exponent -2 for

the weight is the best possible among the radial weights.

6. Counterexamples

One of the differences between Hk and bounded domains is that the tangen-
2 2

tial holomorphic vector field L on Hk as an operator from L to L does

not have a closed range. In this section, we prove this fact by giving a coun-

terexample. Our example also shows that the exponent -2 for the weight in

Theorem 5.6 is the best possible one that one can have.

Let us put coa(Q = (Id + l)~a for any number a. Then eo2 = et; which

was introduced in previous section. If a > 2, then by Holder's inequality and

Theorem 5.1, it can be shown that if K and T are as defined in Theorem 5.1,

then

\\Tf\\2t0)z[fa>a(CYBdV(C)\l/P\\f\\2

where p = zc + 1. But, if a > 2, then

J œa(C)p dV(C) = J (I + \Q)-a{k+x)dV(Q

f     (l + \Ç\)-a{k+x)dV(0

/OO

s-a{k+x)s2k+xds<C.

2 2
Therefore, T is a bounded operator from L   to Lw   if a > 2. Now, we prove

2 2
that T is not bounded from L   to I„   if a < 2.

By the closed range theorem, the operator L has a closed range if and only

if Range(L) = Ker(L*)x where L* is the adjoint of the operator L from L2m

into L . We can easily see that L* = co~xL* = -co~xL. Therefore, L has a

closed range if and only if Range(L) = (H2)± .

Theorem 6.1. Let T be the operator defined in Theorem 5.1. Then, the following

are equivalent:

(1) L: Lu —► L   has a closed range and it is (H )   ,

(2) T: (H2f - L2    is bounded.

<C +
NCI»

r-OO
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Proof. Well known.     D

Theorem 6.2. (2) is false and hence so is (I) if a < 2.

Proof. Since the construction of a function in the following relies only on the

homogeneity, we may assume that k = 1. Let a < 2, and choose ß so that

2 < ß < 3 - a/2. Define a smooth function g by

„(0 = jKr'+1 if ici > i,
\0 if ICI < 1/2.

and let / = Lg. Then, / is homogeneous of degree —ß for |C| > 1. Fur-

thermore, f e L2 and Pf = PLg = 0, namely, f e (H2)L . We claim that

TftLl ifo<2.
In fact, we define F to be / for |C| > 1 and extend it to all of R3 by the

homogeneity. Define /. = F - f. Then,

ll/ill$</     \C\-<ßßdV(Qz[ls-4ß/Mds<
'        J\r\<\ Jo

since ß < 3 - a/2. It then follows from Theorem 5.1 that Tfx e L2 c L2 o.

On the other hand, TF defined by TF = Tfx + Tf is not in Lw   as one can
t 2

see easily from the homogeneity. Therefore, Tf £ Lw . This completes the

proof.
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