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THE GENERALIZED BOREL CONJECTURE
AND STRONGLY PROPER ORDERS

PAUL CORAZZA

Abstract. The Borel Conjecture is the statement that C = [R]<ü,i , where C

is the class of strong measure zero sets; it is known to be independent of ZFC.

The Generalized Borel Conjecture is the statement that C = [R]<c. We show

that this statement is also independent. The construction involves forcing with

an «2-stage iteration of strongly proper orders; this latter class of orders is

shown to include several well-known orders, such as Sacks and Silver forcing,

and to be properly contained in the class of co-proper, a>w-bounding orders.

The central lemma is the observation that A. W. Miller's proof that the statement

(*) "Every set of reals of power c can be mapped (uniformly) continuously

onto [0,1] " holds in the iterated Sacks model actually holds in several other

models as well. As a result, we show for example that (*) is not restricted by

the presence of large universal measure zero (Un) sets (as it is by the presence

of large C sets). We also investigate the er-ideal f = {X c R:X cannot

be mapped uniformly continuously onto [0, 1]} and prove various consistency

results concerning the relationships between ^, Un , and AFC (where AFC =

{X CU:X is always first category}). These latter results partially answer two

questions of J. Brown.

0. Introduction

A set X c R has strong measure zero, or property C, if for every sequence

(en: n E of) of positive reals converging to zero, there is a sequence {I„:n E co)

of intervals covering X such that for all n e co, the length of / is less than

en. The Borel Conjecture is the statement

It is well known that Martin's Axiom implies the failure of the Borel Conjec-

ture (see [M3]); on the other hand, in [La], Laver builds a model in which the

statement holds.
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As a natural generalization, we say that the Generalized Borel Conjecture is

the statement
C = [R]<c.

The conjecture fails under MA; the main result of this paper is the construction

of a model in which the conjecture holds. We have the following:

0.0   Theorem. The Generalized Borel Conjecture is independent of the axioms

of set theory.

The result is somewhat surprising since a parallel conjecture for other well-

known cj-ideals is false in ZFC; for example, if we replace C by the class U0

of universal measure zero sets or by the class AFC of always first category sets

(defined below), the conjecture is false by Theorem 0.7 and Lemma 0.9 below.

Our model is obtained by forcing with an et>2-stage countable support mixed

iteration of the Infinitely Often Equal Reals (IOER) order (see [Ml, §7] and §1

below) and the Sacks order; in [Ml], Miller observes that forcing with the IOER

order makes the set of ground model reals have strong measure zero; thus, if

one forces with an w2-stage iteration (from a model of, say, GCH), every set of

reals of power < c has strong measure zero. In [M2], Miller shows that in the

iterated Sacks model, every set of reals of power c can be mapped continuously

onto the unit interval [0,1 ] ; as we show below, "continuous" can be replaced

by "uniformly continuous"; one then shows—and this is the difficult part—that

Miller's result holds even when the Sacks order is not used on all (but at least

stationarily many) of the coordinates of the iteration. (Thus since uniformly

continuous images of strong measure zero sets have strong measure zero (see

[M3]), no such set has power c in our model.) In building our model, we

noticed that the conditions under which a partial order P could be used in a

mixed iteration with the Sacks order to produce a model of Miller's result were

satisfied by several well-known orders; we have formulated these conditions as

axioms for a class of orders we call strongly proper. Since the Sacks order is

itself strongly proper, many of the more technical arguments are made more

concise by this unified axiomatic approach.

Considering iterations of strongly proper orders also suggests an approach

to another interesting problem which arises from a closer analysis of Miller's

result. The question in its most general form is "Which sets of reals can be

mapped uniformly continuously onto [0,1]?" In ZFC, it follows from the

Tietze Extension Theorem that every set of reals containing a perfect set has

this property. (To see this for unbounded sets of reals, first use a uniformly

continuous homeomorphism, such as tan- , from R onto a bounded open

interval.) This result suggests that the interesting answers to the question lie in

the realm of totally imperfect sets, i.e., those sets which have no perfect subset;

we call this class TI. Diagram 1 describes some of the relationships between

many of the better known subclasses of TI.

We now define these classes (for a survey of results, see [Ku, §40; M3, or

BrC]).  X E L if X  is Luzin, i.e.,  X is uncountable and  \X n F\ < co for
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C"

-vo

count
(S)0 -*   TI

S  -►   X<     -►   X -► AFC    -► AFC

Diagram 1

every first category set F. X is concentrated on a set D if for every open

U D D, \X\U\ < co. I e P if I is concentrated on a countable subset of

itself. X E con if X is concentrated on some countable set of reals. X e C"

if X has the Rothberger property, i.e., for every family &n of open covers

there is a diagonal sequence Un E &n such that XC \Jneo)Un ■ X e U0 if

X has universal measure zero, i.e., p(X) = 0 whenever p is the completion

of a finite Borel measure which takes singletons to zero. X e (s)0 if for each

perfect P cR there is a perfect Q c P such that X nQ = 0 . X E count if

X is countable. X E [A]<K , where k is a cardinal, if X c A and \X\ < k .

X E S if X is Sierpinski, i.e., X is uncountable and \X n N\ < co whenever

N has Lebesgue measure zero. X e X if for all D c X , if D is countable then

D is a G g relative to X . X e X' if for every countable set E eR, XlîE E X.

X E AFC if X is always first category, i.e., XnP is first category relative to P

for each perfect set P c R. X e ÄFC (see [G2]) if f~x(X) e AFC whenever

/ is 1-1 and continuous.

A class Jf c P(R) is hereditary if P(Y) c 3t for each Y e 3? ; JT is a

a-ideal if it is hereditary and closed under countable unions. In Diagram 1,

all classes are hereditary except for L and 5 ; all are closed under countable

unions except C" , X, and TI.

For sets leR (or occasionally X c Y , where Y is some compact metric

space) we write M(X) if X can be mapped uniformly continuously onto [0,1].

As we observed above, M(X) holds whenever X <£ TI.

In [Is], Isbell improved this result for X c 2W (where 2W = the product

space of co copies of 2 = {0,1} ; recall that 2W = the Cantor set) by showing

that for all X t£ (s)Q, M(X) holds. Let us show why his result holds for

X c R as well: Using tan' as remarked above, we may assume X c [0,1 ].

Let P c [0,1] witness that X g ($) ; we may assume P is nowhere dense.

Note that X f) P & (s)0 and that by compactness of P, any homeomorphism

from P onto 2W is uniformly continuous.  Thus since M(X n P) holds, we
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can find cp:P —► [0,1], whence a <p:[0, 1] —► [0, 1] extending tp, for which

<p"(X nP) = <p"(X n P) = [0,1] ; 0 [ AT is the required function.

The class of sets satisfying M can be broadened further by observing that

there is always an X e (s)0 for which M(X) holds. We need the following

proposition:

0.1 Proposition. If X and Y are compact metric spaces, f:X —► Y is 1-1

and continuous, S c X, and f"(S) e (s)0 relative to Y, then S E (s)0 relative

to X.

Proof. Suppose P c X is perfect; since f'(P) is perfect, there is a perfect

Q C f'(P) missing /"(S) ; now f~x(Q) misses S.    D

Now by [W, Theorem 2.2] (see also [M3, 5.10]), there is an (s)0 set S c2w

of power c, where c is the cardinality of the continuum. Let /: 5 —> 2W be

a bijection and notice that by the proposition / c 2™ x 2™ is (s)0. Thus

if n:2w x 2B -< 2ffl is projection onto the second coordinate, n \ f is a

uniformly continuous map from an (s)0 set onto 2W. Since the canonical

homeomorphism from 2W onto 2W x 2W and the usual continuous map from

2W onto [0,1] are uniformly continuous, the result follows.

Thus even "fairly small" sets satisfy M. However in ZFC one cannot expect

to map all (s)0 sets of power c uniformly continuously onto [0,1] because

assuming CH (or MA) there are Luzin and Sierpinski ( c-Luzin and c-Serpinski)

sets. (Say that X is K-Luzin (or k-Sierpinski) if \X\ > k and \X n F\ < k

whenever F is first category (or Lebesgue measure zero).) Thus by the following

corollary to an observation of Miller, and by the observation that K-Luzin and

K-Sierpinski sets are (s)0 , it is consistent that M(X) fails for some X e (s)q .

0.2 Proposition [M2]. No K-Luzin or K-Sierpinski set can be mapped contin-

uously onto [0,1].   D

We now show that every set of reals of power c satisfies M in the iterated

Sacks model; Miller [M2] actually proves this for X c 2W. Suppose X e R

and X E (s)0 ; again assume X is bounded. Notice that \X n P\ = c for some

bounded nowhere dense perfect set P (otherwise X is c-Luzin and it follows

that there is such a set in 2W , contradicting Proposition 0.2). Now map XnP

uniformly continuously onto [0,1] using Miller's result (and a homeomorphism

from P onto 2W ) and extend this map to a tp: I —> [0,1], where / is a closed

interval containing X u P . Now tp \ X is the required map.

Hence, IsbelPs result on X g (s)0 is extended to X g [R]<c in Miller's model,

and we have the consistency of

(*) Every set of reals of power c satisfies M.

In this model, the cr-ideals more restrictive than (s)0 (i.e., U0 , AFC and their

subideals; see Diagram 1) are properly contained in [R]<c. (Laver [La] showed

U0 c [R]<c ; Miller [M2] showed AFC c [R]<c ; and it follows from 0.7 and 0.9

below that the inclusions are proper.) It is natural to ask whether (*) can still
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hold in a model in which these smaller ideals have members of power c. As

Theorem 0.0 shows, it is consistent for every X <£ C to satisfy M. Moreover,

in this model there are many U0 sets of power c :

0.3 Theorem. If ZFC is consistent, so is ZFC + "Every set of reals of power

c satisfies M and there are 2C sets in U0 of power c ".

0.4 Remark. The situation in the category direction is less clear; the only

known "lower bound" for (*) in this direction is S (by Proposition 0.2). In

particular, it is unknown whether (*) can hold in a model in which there are

AFC sets of power c. A natural strategy to build such a model is to find a

strongly proper order P which forces the ground model reals to be meager.

Then by 0.7(b) and 0.9(b) below, there are 2C sets in AFC in a model obtained

by forcing with an crj2-stage countable support mixed iteration of the Sacks

order with P.

It is apparent from Isbell's result that the sets for which M fails are "small";

in fact, as we show in §3, if f = {X c R:->M(X)}, then / is a tr-ideal.

We have seen that CÇ/C (S)Q. In light of Diagram 1, it is natural to ask

what the relationship is between f and U0 and between J~ and AFC. (The

relationship between ^ and [R]<c is easily described: clearly [R]<c C ^ ; CH

implies [R]<c / f ; in Miller's model described above, [R]<c = f.) Apart

from the question of whether "^ ç AFC" is consistent (which is still open)

we give a complete description of these relationships as follows.

0.5    Theorem, (a) ZFC hU0?i/ and AFC ̂  f ;

(b) ZFC + CH h U0 n AFC qA f and f £ U0 U AFC ;

(c) Con(ZFC) -> Con(ZFC + U0 ç f + AFC ç f) ;
(d) Con(ZFC) - Con(ZFC + f ç U0).

Part (d) is established using the model in Theorem 0.0.

As a final application of our techniques, we discuss two problems raised by

J. Brown [Brl] (see also [BrC] and [Br2]). The first question is whether there is

a ZFC example of a set in U0\AFC or in AFC\U0 . As a partial answer, we

prove the following.

0.6 Theorem, (a) In the random real model (or if c is real-valued measurable)

we have U0 Ç ÄFC ç AFC.

(b) In the Cohen real model, ÄFC Ç uo (in fact, ÄFC Ç c").

(c) Con(ZFC) -> Con(ZFC + either <p or tp) where tp = "AFC C IJ0" and

y = "every set of reals of power c satisfies M, and there are 2C many AFC

sets of power c."

Part (b) of the theorem is related to the second question which concerns us.

Sierpinski [Si] showed that X' n con = count. Referring to Diagram 1, one

naturally asks whether

(**) X' n C" = count
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is true. Since "C = count " is possible (in Laver's model, see [La]; but note

also that "A' 2 count" is always true, see [M3]), it is natural to look for a

model in which C" has uncountable members and (**) fails. As a case of

special interest, Brown asks if CH -» -■(**). Todorcevic and Miller brought to

the author's attention the fact that a minor modification of Todorcevic's proof

of Theorem 4 in [GM] yields a positive answer to Brown's question. (In fact,

in unpublished work, Todorcevic has constructed an uncountable set in X' n C"

which is also a o set (i.e. a set whose relative Fa subsets are relative Gs 's)

under the weaker assumption of MA.) Here we wish to observe simply that (**)

can fail badly since Theorem 0.6(b) provides a model of X' c C" .

Let S = {X c R:X cannot be mapped continuously onto [0,1]}. In

this paper, we emphasize the study of f rather than J^ because the former

seems to be the more natural of the two classes. For example, while f is

a a-ideal, whether J^ is also a cr-ideal is independent: in Miller's model,

S = f = [R]<c ; on the other hand, assuming CH, there is a scale in cow (recall

cow = {irrationals}) which can be mapped continuously onto [0,1]; however,

if S is any scale and Q = {rationals}, then Sl)Q E J? (see [M3]). Thus S is

not hereditary under CH. ( J? is closed under countable unions; the argument

is the same as that used for ,/ in §3.) Another undecidable property of S is

whether Cc/: On the one hand, a scale is in C\¥ ; on the other hand in

Laver's model [La], C = count c J^ .

The paper is organized as follows. In §1, we introduce strongly proper or-

ders and discuss their relationship to other well-known classes of orders. In §2

we develop the machinery for iterating these orders, and in §3 we apply this

machinery to prove the results stated in this introduction.

We will make liberal use of Cichon's Diagram [F], which is presented as

Diagram 2 below. (We use the notation of [P].)

cov(^)    —    non(JT)    -     cf(JT)     -     cf(^)
T Î

t b i ,

add(^)    -   addpf)    -   covpf)    -»   non(^)

Diagram 2

If T C P(R), non(T) = min{|Z|:X g T}, cov(T) = min{|^|:^ C T

and \}W = R}, add(r) = mm{\%\.<% c T and \\1¿ £ T}, and cf(T) =
min{|^|:^ c T and every F E T is contained in a member of í¿}. Let

3¡A and A? denote the cr-ideals of first category and Lebesgue measure zero

sets, respectively. If f,g E cow, we write f <* g iff there is an n E co so

that for all m > n, f(m) < g(m). Then b - min{|^|:^" c cow and T

is <*-unbounded} and d = m\n{\W\:'V c cow and "V is <*-cofinal}. In the

diagram, an arrow —» indicates that < is provable in ZFC. We state two results

which illustrate the connection between these cardinals and the classes we have

been considering.
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0.7    Theorem [Gl, G2, G3]. (a) There is a set X E U0 of power non(^).

(b) There is a set X e AFC of power non(JT).

0.8    Theorem [FM],  covpf) < non(C").

In §3 we prove the following:

0.9   Lemma, (a) non(J?) = non(U0).

(b) non(JT) = non(ÄFC) = non(AFC).

Actually part (a) follows immediately from the fact that X e U0 if and only

if h(X)EAAf for every homeomorphism h (see [M3]).

In proving results about relationships between various classes, we often work

in [0,1], 2W , or co° instead of in R ; the fact that there are measure-preserving

and category-preserving maps between these spaces (see [M3]) is generally

enough to justify this laxity. Whenever these maps do not suffice for the ar-

gument at hand (as in some of the arguments above) we supply the necessary

additional details in the proof. In particular, in discussing strong measure zero

sets, we work only in R, [0,1] or 2W (see [Ba, §9]).

In closing this introduction I would like to thank A. W. Miller for several

helpful discussions that have resulted in additional applications of the main

construction, and A. Kanamori for asking what happens when c is real-valued

measurable. I would also like to thank my thesis committee, Stewart Baldwin,

Robert Beaudoin, Jack Brown, Peg Daniels, and Gary Gruenhage, for having

listened patiently to several versions of this material.

1. Strongly proper orders

Let P denote the Sacks order (see [S or BL] for definitions and basic results),

and for all p E P and s E p let ps = {t E p: t D s or î c (}. For m,n E co

and q,p E P, write (q,m) < (p,n) if m > n , q < p , and for each s e pn2"

there are t ^ t' in q n 2m which extend s. It is well known that if n E co and

p Ih à E V , then there are q E P , m E co and x E V for each s E q02n such

that (q ,m) < (p, n) and qs Ih à = xs ; moreover, since the set {qs:s E q n 2"}

is a maximal antichain below q , it follows that q Ih à E {xs:s E q n 2"} .

The properties described above are to a large extent preserved by countable

support iterations of the Sacks order, and Miller's consistency result [M2] relies

heavily on this fact. Since several well-known partial orders have these prop-

erties, and since much of Miller's machinery goes through for any such partial

order, we have formulated the properties as axioms for a class of orders which

we will call strongly proper. Ultimately, we will use a particular strongly proper

order along with the Sacks order in a countable support iteration to obtain most

of the results discussed in §0.

1.0    Definition (strongly proper orders). A partial order  (P,  <)  is strongly

proper if there are orderings {<m n:n < m eco} and a constructible sequence
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T = (Tn:n eco) of finite sets satisfying:

(1) To = {0}.
(2) If q <m n p (which we will write (q,m) < (p,n)), then m > n ,q < p ,

and whenever m > m and n < n then (q,m) < (p,n).

(3) (Fusion) If {(pn,mn):n E co} is a sequence such that for all n E co,

(P„+i <m„+\) < (Pn >mn) ' triere isa p E P such that for all n e co, (p ,mn+x) <

(pn ,mn). Such a sequence will be called afusión sequence and the condition p

will be called a fusion of this sequence.

(4) For each p e P, n E co, there is a nonempty A n c Tn and a map

<p n:Ap n —> P (whose images tp n(s) we denote by ps whenever n is fixed)

such that

(a) <Pp,0(s)=P;

(b) the set {ps:s E Ap n} is a maximal antichain below p ;

(c) Vp,q E P((q,m)<(p,n)-+Aqn=Apn);

(d) Vp,q,rEP[((r,m) < (q ,n)/\q < p/\Aq<n = Apn) - (r,m) < (p,n)];

(e) If p Ih "à e V" and n E co, then there are m > n and çeP such

that (q ,m) < (p, n) and for each s g /I there is an xs E V so that

qs Ih à = xs.

1.1 Notation. For p ,q E P and « g w we write (q,n) < (p ,n) if q <p and

Miller points out that much of the strength of these axioms is embodied in the

notion of «"-bounding orders, discussed by Shelah in [Sh]. (A partial order Q

is C7jw-bounding if for each f E VQ for which lh„ /: co —> co, there is g E V ,

g:co —► co, such that lh„ Vn f(n) < g(n) ; note that strongly proper orders have

this property by Axioms 3, 4(e).) Shelah [Sh, p. 169] shows that "coproper +

cow-bounding" is preserved by countable support iterations. One might hope

to replace our somewhat lengthy list of axioms with this more concise list of

two. In §2, however, we show that our central lemma (Theorem 2.23) fails if

"strongly proper" is replaced by " coproper + of -bounding" (see Remark 2.24).

We now briefly examine the relationship between strongly proper orders and

other well-known classes of orders. We show that the strongly proper orders

are properly included in the class of coproper, of -bounding orders and that

cox -closed orders are strongly proper, as are several other familiar orders. We

first show the following:

1.2 Theorem. Strongly proper orders do not add Cohen or random reals.

Proof. That Cohen reals are not added follows from the en^-bounding property:

If x E VP , \r-p x E of , and f:co -> co is in V with lhp **Vn(jfc(n) < /(«))"

then the set {g E of\Mn(g(n) < f(n))} is nowhere dense, coded in V, and

contains x.

That random reals are not added follows from Remark 2.23; we give a direct

proof which does not involve the machinery of iterations in an essential way.
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Lemma. If P is strongly proper, p E P, p Ih "à & V and aE2w", and n E co,

then there is a finite X E V and a q E P such that (q ,n) <(p, n) and

q\\-3xE X[x \ 2(\X\ + n) = ä\ 2(\X\ + n)].

Proof. We postpone the proof to §2 where we prove a much more general state-

ment (see Lemma 2.15).

Lemma. // P is strongly proper, p E P, and p Ih "à (£ V and à E 2a", then

there is a sequence (Xn :n eco) eV of finite sets and a condition q < p so that

for all n E co,

q\A3xE Xn[x \ 2(\Xn\ + n) = à \ 2(\XJ + »)].

Proof. We use fusion and Axiom 4(e). By induction, build a fusion sequence

{(pn,mn):n eco} and a sequence (Xn: n E co) of finite sets so that

( 1 )   P0= P and m0 is arbitrary;

(2)   pn+x Ih 3x E Xn[x r 2(\Xn\ + n) = ä\ 2{\X„\ + n)].

If (pn, mn) have been defined, let (r,mn) < (pn , mn) and Xn be as in the

first lemma, and let (pn+x >mn+x) < {r,mn) be as in Axiom 4(e). Now by Axiom

4(d), (pn+x, mn+x) < (p„,m„), and the induction is complete. Clearly, if q is

a fusion of the (pn,mn), q satisfies the conclusion of the lemma.

We now finish the proof of Theorem 1.2. Suppose p Ih "à ^ V and à E 2e"".

Let q < p and (Xn: n eco) be as in the second lemma. Then if q e G, G P-

generic over V, then in V[G] the set

f| |J {/ G 2W: f \ 2(\Xn\ + n) = x\ 2(\XJ + n)}
77    X€X„

is coded in V , contains à, and has measure zero. (To see the last part, notice

that before taking the intersection, the n th union has measure < 1/21 "l+" .)   D

1.3 Corollary. The class of strongly proper orders is properly included in the

class of co-proper, cow-bounding orders.

Proof. Because of our earlier remarks, to prove inclusion we have only to prove

that strongly proper orders are coproper; the proof of the latter is a straightfor-

ward modification of the argument that Axiom A orders are proper (using the

model-theoretic definition of proper) (see [Sh, p. 169] for definitions).

To see that inclusion is proper, we show that the random real order is co-

proper and crj^-bounding (we have already seen it is not strongly proper): Being

ccc, it is coproper; that it is also C7jw-bounding is folklore (see [J2, p. 14] for a

proof).   □

1.4 Remark. The similarity between strongly proper orders and Axiom A or-

ders is evident; 1.2 shows the classes are different and suggests the following

questions.

1.5 Questions, (i) Does every strongly proper order satisfy Axiom A?

(ii) Is there a nonatomic ccc order which is strongly proper?
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We proceed to several examples.

1.6 Proposition. The Sacks order is strongly proper.

Proof. Define Tn, Apn, tppn , and <mn as follows: Tn = 2" ; Apn =pn2n ;

$? „(s) = ps ; and (q ,m) < (p ,n) is defined as in the first paragraph of this

section.    D

1.7 Remark. One reason we opted for the <m orderings rather than the

simpler Axiom A orderings <n is that the analogue to Axiom 4(e) fails for the

Sacks order if the usual <n orderings are used in place of the <m (see [Ba,

§7] for definitions and results).

1.8 Proposition. Each cox-closed order is strongly proper.

Proof. Let Tn = Apn = {0}, <ppn(0) = p , and let <m n be < .   d

1.9 Definition. Let P = {p:A —> 2<W\A c co is coinfinite and for all n E A ,

p(n) E 2"} and write q < p if q D p . P is called the Infinitely Often Equal

Reals (IOER) order (see [Ml, §7]).

1.10 Proposition. The IOER order is strongly proper.

Proof. We define Tn,Apn, <pp n, and <mn as follows:

Tn = {s:s is a partial function from n into 2<n

such that for all /' g doms, s(i) E 2'} ;

A      = {s E Tn:doms = 7i\domp} ;

Vp.n^) =pu*;

(q,m) <(p,n) if m > n,q <p,Apn = Aqn, and

there is /, n < i < m, such that i £ dorn q.

We verify that Axioms 4(b) and 4(e) hold; the others are immediate.

It is clear that the set {p U s:s E Ap J is an antichain; if q < p, then q

must agree with some s E A on their common domain; thus the set is in fact

maximal below p.

For 4(e), assume p Ih "à g F", « G co. Write Ap n = {sx, ... ,sk}. Build

(q, n) > (q2, n) > ■ ■ ■ > (qk , n) and {xx, ... ,xk} E V so that for I < i < k,

a. Ui- Ih a = x .   Given  qt, obtain  q   < q, Ur,   and x¡,,  E V  so that
'It I *l — / itl ("hi

q' Ih à = xi+x . Let q¡+] = q'\s¡+x . Now let q = qk and let m be large enough

so that (q,m)<(q,n). Then (q,m) is the required pair.    D

1.11 Remark, (i) The verification of 4(e) above is a minor modification of a

similar proof by Miller [Ml, §7].

(ii) Let P = {p: A —► 2\A c co is coinfinite} and say q < p if q D p . P is

Silver forcing and an argument similar to the one given above shows that P is

strongly proper.
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2. Iterations

In this section we develop the machinery for iterating strongly proper orders.

Our notation and terminology for general iterated forcing follow [Ba]; our ar-

guments are patterned after [BL] and [M2]. Recall that if Pa is an a-stage

iteration and p E Pa, then for all ß < a, p \ ß E Pß and lh^ p(ß) E Qß .

However, if we need to verify that a particular p (having the right kind of

support) is in Pa, it suffices to check that for all ß < a, p \ ß E Pß and

p \ ß Ih „ p(ß) e Qn (see [Ba]); we use this fact without special mention.

For the rest of this section, Pa will denote a countable support a-stage iter-

ation and for all ß < a, Tß = {T¡j: n E co} is a constructible set of finite sets,

and {Ax n:n E co and lh„ r G Qß}, {<PT n'-n G co and lh^ r E Qß} are sets of

terms such that

lh^ "Tß , {Äßxn}xn , and {<pß „}r n witness that Qß is strongly proper".

In practice, the fact that we use only canonical terms for the Tß is not a

restriction at all since in any application of such an iteration, we would have

a particular (constructible) definition of 77 in mind for each factor Qß (and

canonical names would be perfectly general). (Of course for a general theory

of iterated strongly proper orders, arbitrary terms for the r would have to be

allowed.)

2.0 Definition. If F G [a]<w and n < m E co, then (q,m) <F (p,n) if

q < p, m > n , and q \ ß Ih "(q(ß), m) < (p(ß), «)" for all ß eF.

2.1 Lemma (Fusion). Suppose {(Pn,Fn,mn):n E co} is a sequence such that

for all n, pnEPa, FnE [a]<co, (pn+x,mn+x) <Fn (pn,mn), Fn c Fn+X and

U„ F„ = U„ suppt(/>J . Then there is P E Pa such that for all n, (p, mn+]) <F¡¡

{pn,mr).

Proof. Define p \ ß by induction on ß < a so that for all n , (p \ ß,m x)

<Fn (Pn \ ß,mn) and suppt(/> f ß) = (\jnFn)C\ß. If y9 is a limit, take the

union of the restricitons defined below ß . To obtain p \ ß + 1  from p \ ß

where ß < a, let p(ß) = 1 if ß £ \JnFn ; if ß E \JnFn, use the fact p \ ß

forces Axiom (4) to hold for Qß to obtain p(ß) as follows: Let n be least

such that ß E Fn. For k E co, let qk= Pn+k(ß) and let jk = mn+k . Now

p \ ß Ih "((qk ,jk): k E co) is a fusion sequence".

Let p(ß) be a term forced by p \ ß to be the fusion of the (qk,jk). To

complete the proof it suffices to verify that (p \ ß + 1, mj+, ) <F (p¡ \ ß+l ,m¡)

for all i E co. For i > n, this follows from the definition of p(ß) ; as a

consequence we have that

Wieœ(p \ ß+l<p,\ ß + l).

From this and the induction hypothesis we have the result for i < n as well.

a
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2.2 Remark. The sequence {(pn,Fn,mn):n E co} will be called afusión se-

quence and the condition p constructed above will be called a fusion of

{(pn,Fn,mn):nEco}.

2.3 Definition. For F E [a]<M, n E co, a function o on F is called an

(F, n)-function if for all ß E F , o(ß) G Tß . If o is an (F, «)-function define

p\c7 by

\p(ß) ifß^F,

(In other words, if ß e F, p\o(ß) = p(ß)a{?).)

Notice that, in general, p\o need not be in P .

2.4 Definition. A function o on F is (F ,n)-consistent with p if a is an

(F, n)-function and, for all ß E F ,

(p\o) \ß\Y-a(ß)EAßp(ß)n.

(In other words, modulo our convention, p\o E Pa.)

2.5 Definition. The condition p e Pa is (F ,n)-determined if for each (F, «)-

function a, either cr is (F ,«)-consistent with p or

3ß E F (a \ F n ß is (F n ß , «)-consistent with p \ ß

1 ii- "^•cß^ d H
P(ß),nand (p\o) r /3 Ih "a(/3) g /if

2.6 Notation. We write Y.(p,F ,n) for the set {a:a is (7r,«)-consistent with

P}-

2.7 Definition. If p, q e P(i , n E co, F E [a]<w, then (q,n) <F (p,n) if

q < p and q \ ß Ih (q(ß), n) < (p(ß), n) for all ß E F .

2.8 Proposition, (i) If (q,m) <F (p,n), m > m, ri < n, then (q,m) <F

{P,n).

(ii) If (q , m) <F (p,n), then (q ,n) <F (p,n).

(iii) // (r,m) <F (q,n) and (q,n) <F (p,n),

then (r ,m) <F (p ,n).

(iv) If a ^ x are in l(p,F,n), then p\o Ap\r.

Proof. Proceed by induction on ß G F ; for (i) use Axiom (2); for (ii) use

Axiom 4(c); for (iii) use Axiom 4(d); and for (iv) use Axiom 4(b).   n

2.9 Lemma. For all p e P(>, if p is (F, n)-determined, {p\o: o G Z(p ,F,n)}

is a maximal antichain below p .

Proof. By 2.8, it suffices to prove maximality. Suppose q < p. By induction

on ß < a we find q \ ß, o \ F n ß , and r \ ß so that r \ ß < q \ ß ,

(p\a \ F n ß) \ ß . The cases in which ß is a limit and ß = y + 1  with y c¿ F
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are easy. We assume ß = y + 1 and y G F . Assuming r \ y, o \ F n y , and

q \ y have been defined, it follows from 4(b) that there is a term i such that

(*) r \ y Ih "j g Ä',.    and p(y)k is compatible with q(y)".

Let r <r \ y and s G Tyn be such that r' \\- s = s, and let er(}>) = 5.

Claim,  o \ F n ß is (F r\ ß, /inconsistent with p .

Proof of Claim. If p\o \ y ¥ o(y) E ÀL, n then by (77,«)-determinedness of

p , "o(y) & Ä1. . n" is forced by p\o \ y, and hence by r . But this contradicts

(*), and the claim is proven.

Again by (*) we can find a term r(y) such that r \ y Ih r(y) < q(y),p(y)a(y]

(note that r \ y Ih o(y) E ÀL , J . This completes the induction step and the

proof of Lemma 2.9.   D

2.10 Lemma. If p is (F,n)-determined and (q,n) <F (p,n), then q is

(F, n)-determined.

Proof. Suppose o is (F ,ri)-consistent with q. First observe that o is (F ,«)-

consistent with p as well: if not, let ß < a be least for which this is false,

i.e.,

p\a \ß¥o(ß)EAßp(ß)n.

By (F, «)-determinedness of p and the fact that q < p we have

q\o \ ß\y-o-(ß)fAßp{ß)n.

But since

(**) ^\ß\r-Aßp{ß)n=Äßq{ßhn,

we get the contradiction

q\o \ß\r-o-(ß)$Aß{ß)n.

Now to prove the lemma, let a be an (ir,«)-function and let ß be least in

F such that

q\a\ß¥a(ß)EAßq(ß)n.

Use (**) again, the fact that q < p , and the observation above to get

p\a \ßra(ß)EAßp(ß)n.

Now (**) and (i*",«)-determinedness of p give us

q\a\ß<p\a\ ß \Y-a(ß) t Aßp(ß)n =Aßq(ß)n

as required.   D

2.11 Lemma. If p is (F, n)-determined and (q, n) <F (p ,n), then "L(q ,F ,n)

= Z(p,F,n).

Proof. The proof of Lemma 2.10 shows that ~L(q,F ,n) ç Z(p ,F,n). To get

inclusion in the other direction, use (F, «)-determinedness of q .   o
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The next theorem is the analogue to Axiom 4(e); most of our machinery has

been set up to make this theorem true. We include parts (ii) and (iii) in order

to make the induction work; they are (essentially) true for any proper order.

2.12 Theorem, (i) If p E Pn, F E [a]<w, n E co, and p Ih à E V, then there

are q,m and, for each o E Y,(q,F,n), a set xa E V such that (q,m) <F

(p,n), q is (F, n)-determined, and for each oE~L(q,F,n),

q\o Ih à = xa.

Moreover, if x = {xa: o E X(<7, F, ri)}, then

q Ih a E x.

(ii) If p E Pa, F E [a]<w, n Eco, and p Ih "AI c Va À is countable ", then

there are q,m, and a countable set B E V such that (q,m) <F (p,n) and

qW-ÀcB.
(iii) If p E Pa, F E [a]<w, n E co, y > a, and p\V- f E P , then there are

q,m, and g E P    such that (q,m) <F (p,n) and q Ih / = g.

Proof. We prove (i), (ii) and (iii) simultaneously by induction on a. Assume

the result holds for all ß < a .

(i) Case 1. a = ß+l and ß E F .

Since p Í ß Ih p(ß) Ih à E V , applying Axiom 4(e) in Qß , we obtain terms

m, r, and for each s E Tß , xs such that

P [ ß Ih "Vs G Tß[xs EVA(SE Aßp(ß)n ̂rhà = xs)

A(r,m)<(p(ß),n)T.

Since

p \ß\Y-(m,Aßn,(xs:sETß))EV,

by the induction hypothesis there are q ,m0, and for each a E Y.(q ,Fnß,n),

sets (ma,ßa,(xaAs:s E T¡¡)) E V such that (q ,m0) <Fnß (p \ ß ,n), q is

(F n ß ,n)- determined for each a E J.(q ,Fnß,n), and, for all s ETß ,

q\o Ih "w = ma , À.n = Ba ,    and xs = xa";

moreover, if mx = ma\{ma: o E Z(q' ,Fc\ß,n)}, then

(2) q Ih m < mx.

Now let m = max{w0 , m,} and let q = q'Af.

Claim 1.   (q,m)<F (p,n).

Proof, (q \ ß ,m) <Fnß (p \ ß ,n) by Proposition 2.8(i); that q \ ß Ih

(q(ß),m) < (p(ß),n) follows from (1) and (2).

Claim 2.   q is (F ,n)-determined.
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Proof. By the induction hypothesis, it suffices to consider the case in which t

is an (F, «)-function, ct = t \ F n ß , s = z(ß), and q\o \ ß ¥ s G Aq{ß) n.

We have the following implications:

q\o\ß\AAßq{ß)n = Ba^q\o\ß¥sEBa

^s$Ba

^q\a\ßhs$Aßq{ß)n.

Claim 3. For each t g T(q,F,n), there is xr E V such that q Ih a — xr ;

moreover, if x = {xz: r E T(q, F, n)}, then q Ih à E x .

Proof. The second clause follows from the first because of Lemma 2.9.   Let

o = t \ ß and 5 = x(ß). Then

q \ ß Ih "(<?(/?) Ih à = xs) A (1 Ih xs = xa„sY.

Case 2.  a is a limit or a = ß + 1 where ß <£ F .

In case a is a limit, choose ß so that max F < ß < a. Then

p \ ß Ih / Ih à E V.

Let f,b E VPß be such that

p \ ß Ih "/ < pß , b E V, and / Ih à = ¿".

Use the induction hypothesis to obtain qx and mx such that (qx,mx) <Fnß

(p Í ß,n), qx is ( F flß,n) -determined, and for each o E l,(qx ,Fnß,n) there

is xa E V such that

qx\a Ih b =xa.

By 2.8(ii), (q , n) <Fnß (p \ ß, n) ; use part (iii) of the induction hypothesis to

obtain q2,m2, and g E Pßa so that (q2,m2) <Fnß (qx,n) and

Q2 Ih / = g.

Note that by 2.8(ii) and 2.10, q2 is (F n ß, «)-determined.

Now, using the fact that F c ß, one easily shows that (q2u g ,m) is the

required pair.

(ii) Let p,F,n , and À be as in the hypothesis and let /g Vf" be such that

p Ih "/: co —' A is a bijection". Obtain a fusion sequence {(qn , Fn , mn): n E co}

and a sequence {^„: « G co} of finite sets so that q0= p and <7n+] Ih f(n) E xn .

Now let B = (jnxn and let q be the fusion of the (q ,Fn,mn).

(iii) Given y > a,p ,F ,n , and / with /? lhQ / G P , let q ,m,B be such

that B E V is countable, (<?,m) <f (/>,«) and tj Ih suppt/ c ß. For each

p E B, notice that /? forces f(p) to be a term in the language of forcing over

V . Thus we let g(p) be such a term denoting the same object in V[G ] (where

q E GM \ a) as f(p) denotes in V[GJ[Gnp] (where q E Ga). Now g e Pay

and q \r- f = g . (See [Ba, §7] for a similar argument.)    o
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2.13 Corollary.  Pa does not collapse cox.   a

As a further application which we will use later in the proof of Theorem 2.22,

we show the following:

2.14 Lemma. Suppose cf(a) = cox and Ga is Pa-generic over V. Then for

every f e V[Ga] n 2W, there is ß < a such that f E V[GA .

Proof. Let p Ih /:co -* 2 and define a fusion sequence {(qn,Fn ,mn):n E co}

so that q0 = p, qn+x  is (Fn,mn)-determined for all « G co, and for all o g

qn+ï\o h f(n) = xa.

Let q be a fusion of the qn and let ß be such that sup(supptg) < ß < a.

Now if q \ ß e Gß , define gEw2f) V[Gß] by

g(n) = xa    iff   a is the unique member of

1(7? \ß,Fn,mn) for which (q\a) \ ßEGß.

Notice g is well defined because

I(<7 \ß,Fn,mn) = l(qn,Fn,mn) = -L(qn+x,Fn,mn).

Thus q Ih ( "g E V[Gß] A f — g" , as required.    D

As a final technical lemma, we show that arbitrarily large initial segments of

a new real are determined by a finite set of old reals.

2.15 Lemma. If p Ih "a <¿ V and à E 2W", n E co, F E [a]<CXJ, Y E [2w]<aC\V

and p is (F, n)-determined, there are X e [2W]<W n V and for each k < co a

condition q    such that

(a) (qk ,n) <F (p,n);

(b) q    is (F ,n)-determined;

(c) qk Ih 3x E X(x \k = ä\ k);  and

(d) XnY = 0.

Proof. List !(/? ,F,n) as {o0,ox , ... , oN_,}. We build a sequence of terms

(sf. i E co) and conditions (q¡: i G co) and an co x N matrix [r..] so that for all

i E co , j E N ,

(1) q.\a.\\-'*tr=sj,si is an initial segment of à , and Vy G Y (y ^> í(.)";

(2) (qi+x,n) <F (q,,n);

(3) qj is (F,«)-determined.

To get the 0th row, note there is a term i0 such that

p Ih "i0 is an initial segment of à and Vy G Y(y ~fi s0)n.

Use Theorem 2.12 to obtain q0,mQ, and tQ-, j < N, so that (q,m0) <F

(p,n) (whence (q0,n) <F (p,n)) and for all j < N, q0\Oj Ih i0 = tQj.

Note that Y.(p , F, n) = I.(q0 ,F ,n) and qQ is (F, «)-determined (by (F ,«)-

determinedness of p ).
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Having satisfied (1) and (2) at stage i, note that there is a term s¡+x  such

that

Q¡ "~ "^i+i 2 s i and si+] is an initial segment of â".

Find qi+x, m¡+x, f.+, j (j < N) so that (qi+x, mi+l) <F (<?,, n) and for each ; ,

Qi+Mj lh á7+i = h+ij ■ Note that X^7+i 'F ' ") = XK ,f,n)=l(p,F,n) and
<7(+1 is (F,«)-determined.

Having completed the induction, we let X be the set of unions of the columns

of [/,,], i.e.,
¡r

x:3j[x= \Jtu\ \={x0,xx,...,xN_x}.

X E [2W]<W because, as one shows by induction, the ti are strictly increasing

for fixed j.

Now we modify the q¡ slightly to satisfy condition (c): To get q  , let nk be

so large that

V/ < N(domtn   ■) D k and V/c' < k(nk > nk,)

and let qk = qn . Then for all j < N,

qk\Oj =qHt\Ojfrà \ k = tu \ k

and so

qk\oA\-3xEX(x \k = ä\k).

Now by Propositon 2.9, condition (c) is satisfied and we are done.   G

From now on we will be a little more specific about the particulars of the

iteration P .   We shall assume that   V h "2e" = co.   and 2W| = co".   Let
a 1 2

P be some strongly proper order defined in V by 6(x) and witnessed by a

constructible sequence of finite sets T = {Tn:n e co}. Let P' denote the Sacks

order.  Let Z = {a < co2:cfa = co}.  Let P     denote an co-stage countable
co2

nsupport iteration such that for all ß E Z , T = T, and {APT n:n E coA Ih „ t g

Qß}, {<PßM:n € coa Ih^ x E Qp} are terms so that Ih^ "|ß^| < c and 6(Qß)

and Tß , {Aßn}Tn , {<Pß„}z„ witness that Qß is strongly proper". For ß g

Z' = co2\Z , assume Ih „ Qß is the Sacks order, and we will have corresponding

T ,Aßn,cpßn for these coordinates as well. Using familiar techniques (which

can be found in [Ba] and [J2]), we have the following theorem.

2.16 Theorem, (i) If ß e Z' and P(u is a term for the iteration P^ defined

in VP*, then Ih, Pßmj = P(ú} ;

(ii)   V/J < co2 \Aß CH ;

(iii)   Pw   has the W-,-cc and all cardinals and cofinalities are preserved;

(iv)   ||-„h c = co7.<>>.
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Proof (Outline), (i) See [Ba, §5; J2, 7.13]; for each ß, the /?th stage forces

Pß w to be an iteration of some kind in Vp" ; then since (a) for ß E Z' the

factors "line up", and (b) the type of iteration being considered (i.e. count-

able support) is absolute for V, V[Gß] (by 2.12(H)), the iteration in V " is

isomorphic to A     .

(ii) One shows by induction on ß < co-, that (a) lh„ CH and (b) there is

a dense set Dß c Pß of power N, . To construct the dense set, each factor

must be forced to have power < N, and CH is used; since \DA < N,, an

unpublished observation of Baumgartner (which says that whenever CH holds,

posets of power < N, which do not collapse N, preserve CH) guarantees that

H-ß CH.

(iii) A A-system argument gives the N2-cc. The rest follows from 2.13.

(iv) We have added N2 Sacks reals; because of CH and the fact that 2Wl =

co2, the continuum is at most co2.   D

2.17 Remark. In our applications, a mixed iteration Pw of just two orders

of cardinality c, as described above, will suffice. As we shall see, the only

restrictions to increasing the number of factors are (a) the set Y of coordinates

ß < co2 for which Ih „ "Qß is the Sacks order" should include the set {0} u

{y.cfy = cox}, and (b) for all ß E Y, lh„ Pßa = Pw . Thus, for example, if

we let Y = {0}U{y:cf y = cox}u{p- v.cfp = cox and cfi/= co}, then since for

every pair p < v of successive members of Y, the interval (p,v) is a copy

of (0, co, ), we can obtain an iteration of co, many strongly proper orders—so

that (a) and (b) are satisfied—by (essentially) repeating the sequence of orders

defined over (0,co,) over each interval (p,v), and putting the Sacks order

elsewhere.

In the remainder of this section, we show how iterations of two factors de-

scribed above yield forcing extensions which model Miller's result, i.e., that

for every X c 2W of power c, there is a continuous f: 2W —► 2W such that

f"X = 2W . The main idea is that each new real can be mapped continuously

onto the first Sacks real by a map coded in V. Then, given X E V[GW],

X c 2W, which cannot be mapped continuously onto 2W, one shows that

X c V[Gn] for some a < co2 by using the map above to force each new

real not in V[Ga] to lie outside of X. The proofs follow [M2] closely. As

a notational convenience, we will henceforth identify 5 G 2<0) with the map

s: {0} -» 2<w defined by 5(0) = s .

2.18 Lemma. If p Ih "à <¿ V and à E 2W", n E co, Fe [co2]<w, and p is

(F, n)-determined, then there are q E PWi and a collection {Cs:s E q(0) n 2"}

of disjoint clopen subsets of 201 such that

(i)   (q,n) <F (p,n), and

(ii)   VsEq(0)n2"(q\s\r-àEC).
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Proof. Let {s0, ... ,sN_x} enumerate p(0)n2" . Apply Lemma 2.15 using p\s0

and Y = 0 to obtain a finite set XQ c 2wnF and conditions q0 < p\s0 , k eco ,

such that

q0 Ih 3x E X0(à \k = x \ k).

Having defined X¡, qi for i < N - I , apply Lemma 2.15 again, using

p\si+x and Y = \J.<¡ X., to obtain qk+x < p\sj+x and a finite set Xj+X c2Mn-/

disjoint from Y such that

qkM \\-3xEXi+x(à \k = x \k).

Let k be large enough so that if i ^ j, x, E X¡, x, E X. then x. \ k / x t

fc. Let Cs¡ = lJveA-, ̂ (where ^ = {/ e ¿"V => 0) • Now ëlue together

the qk as follows: Let ö(0) = \Ji<Nqk(0). Notice (?(0),n) < (p(0),n). For

0 < ß < co2, proceed by induction to define q \ ß using as the induction

hypothesis the following:

(a) (q\ ß,n) <Fnß (p \ ß,n), and

(b) (q\S¡) \ ß = qk \ ß.

For limit ß, let q \ ß be the union of the q \ ß', ß' < ß . If q \ ß is

defined, let q(ß) be a term defined by cases:

(Vi<N)(q\Si)\ß\\-q(ß) = qk(ß).

By (b) of the induction hypothesis, q\si \ ß Ih u(q(ß),n) < (p(ß),n)n if

ß E F , and so (a) is satisfied. (Note that q \ ß is ({0} ,«)-determined.)

It is clear that the resulting q satisfies the conclusion of the lemma.   G

The fact that any new real appearing at any stage can be mapped continuously

onto the first Sacks real by a F-coded map derives from this lemma, and in

particular, from the fact that having the Sacks order on the first coordinate

allows us to paste together conditions below p of our choosing to obtain a

condition which is "fat" with respect to p (and hence preparing for fusion).

This property appears to be unique to the Sacks order (at least among strongly

proper orders which add reals).

2.19 Theorem. If p Ih à & V and à E 2L0 , there is q < p and for each n E co

there is m > n and a family {Cs:s E í(0) n 2'"} of disjoint clopen subsets of

2°' such that

VsEp(0)f)2m(q\s\r-àECs).

Proof. Build a fusion sequence {(qn ,Fn,mn):nEco} and disjoint clopen sets

{Cs:s G qn(0) n 2"'"} for n > 0 so that

(a)' qn+x  is (77,«)-determined;

(b)   (qn+x,mn+x)<Fn (qn,mn);

(C)   VsEqn(0)n2m"(qn+]\s\r-äECs).
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WLOG, assume 0 G suppt(/?) and begin building the sequence by letting

0 G F0 , q0 = P , and letting mQ be arbitrary. Now if (qn , Fn , mn), n > 0 , has

been defined, use 2.12(i) to get q   so that

(*) (q ,mn) <F   (qn,mn)    and   q is (F,n)-determined.

Let q" , {Cs:s E qnf)2m"} be as in Lemma 2.17 and finally let (qn+x,m    x) <F

(q" ,mn) be as in 2.12(i) again. Choose Fn+X D Fn using an appropriate recipe

to ensure \JnEn = U„suPPt(i„- Now any fusion of {(qn,Fn,mn):n G co} is

the desired condition,   a

2.20 Corollary. If p Ih a & V and à E 2W, there is q < p and for each n E co

a family Wn = {Cs:s e q(0) n 2"} of disjoint clopen subsets of 201 such that

(a) Wn is a partition of 2W ;

(b) if set then C(cCs;

(c) q\s\r-äECs.

Proof. This is straightforward (see [M2, §4]).    G

2.21 Theorem (Key Lemma). Suppose p Ih à g V and à G 2W. Then there

are q < p and f coded in V such that

q Ih^ "/: 2W —* [q(0)\, f is continuous, and f(a) - x0",

where x0 denotes the first Sacks real.

2.22 Remark, g has a code in V if the sequence ((g~ (Us):s E 2<w) is

coded in V. Note this sequence is coded as a subset of co. As above, we

denote the evaluation in V of such a code with an undotted letter (say / ) and

its evaluation in an extension by a dotted letter (say /).

Proof of 2.21. Let q < p and {^n:n E co} be as in the corollary. Define

/: 2W -» fo(0)] in V by putting

scf(x)   iff   xgCs.

Now, referring to 2.19, / is a function because of (a) and (b); / is continuous

by clopenness of the Cs ; and q Ih f(a) = x0 because of (c).   a

2.23 Theorem. Ih "Every set of reals of power c is mapped uniformly con-

tinuously onto [0,1] ".

Proof. By our remarks in the Introduction, it suffices to reproduce Miller's proof

(for iterated Sacks forcing) that for each X c2w , \X\ — c, there is a continuous

/: 2W -» 2W for which f'X = 2W. Assume there is an X for which the

statement fails; for each f:2w -* 2W, let zf E 2io\f'X. Let Cß(2w) = {/G

2W n V[G   ]:f is coded in V[Gß]}, where Gœi is ^-generic over V .

Claim. There is ß E Z' such that for all / G Cß(2W), zf E V[Gß] n 2W .

Proof of Claim. Use the K2-cc to construct a Löwenheim-Skolem type argument

as in [BL, §4.5], which yields a club of ß with the property that for all y < ß
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if / G C7(2W) then zf E V[Gyl] for some y' < ß . Thus there is such a ß of

cofinality cox (hence ß E Z' ); now if / G C (2W) with code c e2w , use 2.14

to obtain y < ß such that c E V[Gy]. Then by the choice of ß , zfE V[Gß].

Now by 2.16(i) we may assume that for each f E C (2W), zf e 2w n V . We

show Ih^ X c V by showing that if p Ih "à G 2W and a <£ V" then there is

q < p for which q Ih à cf. X.

Let q<p and /:2W - [# (0)] be as in 2.20. Define g = gx o£2:[#(0)] -» 2W

as follows: g2: [#(0)] —> 2W x 2W is a homeomorphism and g,: 2" x 2W —> 2W is

projection onto the first coordinate. Note that for each z e2w , g~ (z) = [rz]

is a perfect subset of [q(0)]. Define qz(0) = rz and for ß > 0, qz(ß) = q(ß);

then qz Ih g(xQ) = z . Thus let q = q7 where z = z ,. Then c/ Ih g(f(a)) = z

and <? Ih z g g(f(X)). It follows that c/ Ih à £ X.   a

2.24 Remark. Note that Theorem 2.23 cannot be proven if we allow arbi-

trary co-proper, cow-bounding orders in place of strongly proper orders in the

iteration; for example, if the random real order is used as a factor on the Z-

coordinates, \Aw   "There is a c-Sierpinski set" (recall Proposition 0.2).

3. Proofs and questions

In this section we complete the proofs of the results introduced in §0 and

state several open problems along the way. Henceforth, let us denote by V'

the model obtained by forcing with a mixed iteration as in §2 using the IOER

order on the Z-coordinates. We observe that V' satisfies the Generalized Borel

Conjecture by Theorem 2.23, the fact that forcing with the IOER order makes

the ground model reals have strong measure zero, and that the mixed iteration

is cow-bounding. (This proves Theorem 0.0.) By the same fact,

V' hnon(C0) = c.

As was observed in §0 (see remark following 0.9) non(t/n) = non(^) ; so by

Grzegorek's result (0.7(a)), we have in V' a U0 set (hence 2C U0 sets) of power

c. This proves Theorem 0.3.

As noted before, Theorem 0.0 is a somewhat unusual result for hereditary

classes over R. For a class $/ c (s)0, we write GBC(jaf) if it is consis-

tent that stf = [R]<c. We observed in the introduction that -iGBC(U0) and

-GBC(AFC) ; similarly, -hGBQÄFC) . We now briefly consider the other

classes in Diagram 1. Since L and S are not hereditary, we augment them

with count: Let L1 = Lu count and 5' = 5u count. Still, -.GBC(L') and

-iGBC(5"') hold because of the easily proved fact that there is in ZFC a set of

reals of power K, which is neither Luzin nor Sierpinski. Thus if CH holds we

have sets X, Y c R with X e L\[R]<c and Y G 5'\[R]<C and if -CH holds

we have a set in [R]<c\(5'' U L1). Turning to A sets, we use the fact (proven in

an article by van Douwen [vD]) that b is the least cardinal k for which there

is a A set of power k that is not a X' set to show that -GBC(A) : The case
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in which b = c is immediate; if b < c, let A c R, A countable, and X E A

be such that \X\ = b and XuA g X (i.e., A witnesses that X & X'). Then

X (j A E [R]<C\X. Miller points out that -GBC(C") (see [FM]) and -.GBC(y)

( 7 sets are defined in [GM]).

On the other hand, GBC does hold for a few classes. Letting C' — {X c

R:f"X E C for all continuous f}(C' was introduced by Rothberger in [R]),

it is clear that GBC(C) — GBC(C'). It is well known that under MA,

{X:X isaQset} = [R]<c.

(A Q set is a set all of whose subsets are relative Gs 's; see [M3].) Finally, an

unpublished result of Miller states that GBC(A') holds in Laver's model [La].

We are left with the following questions:

3.0 Question. Does GBC hold for con or P?

Recall that (*) is the statement that every set of reals of power c satisfies

M. As was mentioned in the introduction, a model of "(*)+ there is an AFC

set of power c " could be obtained if there were a strongly proper order forcing

the ground model reals to be meager. Although all our examples of strongly

proper orders force the ground reals to be "badly" nonmeager (what is actually

forced is the statement "Every meager set is contained in a meager set coded in

the ground model"), the axioms in 1.0 do not seem to imply this. The reason

appears to be that the Sacks, IOER, and Silver orders all satisfy the following

additional axiom which does not follow readily from the other axioms:

(5) For each s E A      and each q < p\s there is (r,n) < (p,n) so that

rs=P-

Adding (5) to the list in 1.0, we can show that iterations satisfy a similar

property and hence that each meager set in V[GW ] is covered by a meager set

coded in  V (see [Ml, §7.2] for a prototypical proof). A natural question is:

3.1 Question. Does Axiom (5) follow from Axioms 1-4?

Models obtained by forcing as in §2 must satisfy "cov(^) < c and cov(^) <

c" since (*) itself implies these relations (for example, if cov(^) = c there

is a c-Luzin set). However, though our models must satisfy "d < c" (since

the iterations are cow-bounding), it is unclear whether (*) implies this. More

generally, we ask:

3.2 Question. Is "(*) +b = c" consistent?

Note that a positive answer would give a model of " (*) + there are 2C X sets

of power c ".

We now turn to a discussion of the class f — {X c R: ->M(X)} introduced

earlier. We first note that unlike C, J' must contain uncountable members,

for if CH holds, there is a Luzin set; if CH fails, there is a set X c R with
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co < \X\ < c (and such a set is in f ). We have

3.3 Proposition. ^ has uncountable members.   G

We now show that J" is a a-ideal; we use an argument of Miller's which he

used to show that S (mentioned in the Introduction) is closed under countable

unions.

3.4 Proposition.  J' is a a-ideal.

Proof. ^ is hereditary since uniformly continuous maps extend to the whole

space. To see / is closed under countable unions, first note that J~ is closed

under uniformly continuous maps and recall that ,/ is a subclass of the cr-ideal

(s)Q. Thus, if Xn E f and X = (J„ Xn for each n E co, and f:X ->[0,l] is

uniformly continuous, then

/'X = \JfXnE(s)0;
n

thus f"X ^¿[0,1]. Now since / was arbitrary, it follows that le/,   a

Next, we restate and prove Theorem 0.5:

Theorem, (a) ZFC hU0J¿/ and AFC ¿ f ;

(b) ZFC + CH h U0 n AFC £ f and f £ U0 U AFC ;

(c) Con(ZFC) -» Con(ZFC) + U0 ç f + AFC ç f) ;

(d) Con(ZFC) -♦ Con(ZFC + /ÇU0).

Proof, (a) We use 0.7. If non(^) < c, there is A' G [R]<C\C0 and clearly such

X is in f . If nonfJ?) = c, argue as in the proof that in ZFC there is always

a member of (s)0 satisfying M : Note that U0 is closed under 1-1 continuous

preimages (see [M3, 9.3.1]) and so if / is a bijection from a U0 set in 2W onto

2W , then / c 2W x 2W is U0 . Now projection onto the second coordinate gives

rise to a uniformly continuous map from a U0 set onto [0,1].

For AFC, if non(JT) < c we have an X e [R]<C\AFC as before. If non(JT)

= c, argue as above using AFC (which is closed under 1-1 continuous pre-

images; see [G2]) in place of U0 . We get a uniformly continuous map from an

AFC (hence AFC) set onto [0,1].

(b) To see U0 n AFC ^ f, we take any uncountable set ieU0n AFC (a

Hausdorffgap for example; see [La, M3]). By CH, \X\ — c. Now argue as in

part (a) to get a uniformly continuous map from X onto [0,1]. To see that

JF <£ U0 U AFC, consider the union of a Luzin set and a Sierpinski set.

(c) The required model is obtained by iterated perfect set forcing [M2]; it

has already been observed that U0 U AFC c [R]<c in this model.

(d) The model is that of Theorem 0.0 in which f = [R]<c and non(^) =

C     G

Next we prove Lemma 0.9; we begin with the following lemma.
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3.5 Lemma. The following are equivalent for any perfect Polish space Z and

X cZ:

(i) XgAFC.
(ii) X is meager and for all nowhere dense perfect sets P, X n P is meager

relative to P.

(iii) For all P c Z , if P is perfect nowhere dense or if P is the closure of a

basic open set, then X n P is meager relative to P.

Proof, (i) —► (ii) and (ii) —► (iii) are immediate. For (iii) —► (i) let Q' =

P\int P and write Q' = Q U C, where Q is perfect nowhere dense and C is

countable. Note that for each basic open set B c Z , X C\B is meager relative

to B . Thus X n int P is meager relative to int P, hence to P ; also, X C\Q,

hence X n ß', is meager relative to P. The result follows,   a

We now restate and prove Lemma 0.9:

Lemma, (a) non(^) = non(i70) ;  and (b) non(^) = non(AFC) = non(AFC).

Proof, (a) was proven in the remarks following 0.9. For (b), first note that

non(AFC) < non(AFC) < non(^). We prove non(^) < non(AFC) : Suppose

Y £ AFC. Let f:X -* Y be 1-1 continuous so that X £ AFC. By 3.5(iii),
there is a perfect nowhere dense set P such that X n P is nonmeager relative

to P. Let h:P —> 2W be a homeomorphism and g:2œ —> [0,1] the canonical

onto map. Then g(h(X n P)) <¿JT and \g(h(X nP))\ < \Y\.   a

Finally we prove Theorem 0.6:

Theorem, (a) In the random real model (or if c is real-valued measurable) we

have U0ÇÂFC.

(b) In the Cohen model, AFC Ç U0 (in fact, ÄFC Cfj").
(c) Con(ZFC) -» (Con(ZFC) + either tp or tp) where tp = "AFC <= U0" and

y/ = " every set of reals of power c satisfies M and there are 2C many AFC sets

of power c ".

Proof, (a) In [M2], Miller shows that in the model obtained by adding co2

random reals to a model of GCH, every U0 set has power < c. Now, using

Lemma 0.9(b) and the fact the model also satisfies "non(JT) = c", we get that

"U0 c AFC" holds as well. Using 0.7(b), we conclude that inclusion is proper.

To obtain the result from the theory "ZFC + c is real-valued measurable",

begin with an atomless, nonzero, c-additive probability measure p defined on

&>(R). By [Ma, 3.1(i)], X e U0 iff each diffused measure on 38(X) (i.e.

the Borel sets relative to X ) vanishes identically. (Say p is diffused if it takes

singletons to zero.) Thus, since p is diffused (being atomless) and its properties

are preserved under bijections, there is no U0 set of cardinality c. Thus, as

above, it suffices to prove non(^) = c. Referring to Diagram 2, it is enough

to prove cov(J?) = c. Suppose {Na:a < k} is a cover of [0,1] by Lebesgue

measure zero sets where k < c ; we may assume each TV is a Borel set. If 33 —

{ Borel sets on [0,1]}, then p \ 3§ is a finite diffused Borel measure and there
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is a continuous function F: [0,1] -> [0,1] such that A [ 3S = (p o F~x) \ AS

(where X is Lebesgue measure). Hence {F~ (Na):a < k} is a cover of [0,1]

by /¿-measure zero sets; by c-additivity of M, k = c, and the result follows.

(b) In [M2], Miller shows that in the model obtained by adding co2 Cohen

reals to a model of GCH, every set of reals of power c contains a 1-1 continuous

image of a Luzin set. Since such sets are not AFC and since the latter is closed

under 1-1 continuous preimages, it follows that no AFC set has cardinality c.

Since the Cohen model satisfies "cov(^) = c" (see [K]), and since cov(^) <

non(C") (Theorem 0.8 above), it follows that AFC c C". The inclusion is

proper since there is a Luzin set of power c.

(c) Consider the model V' of Theorem 0.0. If there is an AFC set of power

c in this model, then there are 2C of them, and y/ holds. If every AFC set has

cardinality < c, then since non(J?) = c, we can use 0.7(a) and 0.9(a) again to

conclude that AFC ç UQ .
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