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WEAK STABILITY IN THE GLOBAL ¿'-NORM
FOR SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

BLAKE TEMPLE

Abstract. We prove that solutions for systems of two conservation laws which

are generated by Glimm's method are weakly stable in the global L'-norm. The

method relies on a previous decay result of the author, together with a new

estimate for the L1 Lipschitz constant that relates solutions at different times.

The estimate shows that this constant can be bounded by the supnorm of the

solution, and is proved for any number of equations. The techniques do not

rely on the existence of a family of entropies, and moreover the results would

generalize immediately to more than two equations if one were to establish the

stability of solutions in the supnorm for more than two equations.

1. Introduction

We consider the initial value problem for systems of hyperbolic conservation

laws

(1) ut + f(u)x = 0,

(2) u(x ,0) = u0(x).

Here u = (u , ... , u") = u(x, t) ,/=(/,...,/") = f(u), - oo < x < +00,

and t > 0. We assume that ( 1 ) is strictly hyperbolic and genuinely nonlinear

in each characteristic field in a neighborhood of a state SeR" [9,19]. In this

paper we prove that for systems of two equations, solutions generated by the

random choice method are weakly stable in the global /.'-norm. Specifically,

we show that if « = 2 and u(x, t) denotes a solution generated by Glimm's

method [3] satisfying u(x ,0) = u0(x) and m0(±oo) = ïï then

(3) \\u(-,t)-ü\\v<G(t,\\u0,(-)-ü\\v),

where G is an explicitly constructed smooth function satisfying G(t, Ç) —► 0 as

IL-¡A, —► 0 for every fixed t > 0. Hence we let ||    L,  denote the /.'-norm. Thus

(3) verifies that the global L'-norm of the solution at time t > 0 is controlled

by the L -norm of the initial data at t = 0 through the nonlinear function
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G. For « = 2, Glimm's original 1965 paper [3] establishes the stability of the

solutions u(x ,t) in the total variation norm and in the supnorm for sufficiently

small initial data. The stability in the total variation norm leads to the com-

pactness of approximate solutions generated by the random choice method, and

this produced the first existence theorem for the Cauchy problem for systems of

conservation laws. For systems we still do not have a proof of the uniqueness

or the continuous dependence of solutions on initial values for solutions gener-

ated by this method. The L -norm is the most reasonable L^-norm in which

to expect uniqueness and continuous dependence to hold because it is the norm

in which the solutions of a scalar conservation law generate a contractive semi-

group [22]. The stability result (3) is the first stability result for systems in the

global L'-norm (see [22]), and although (3) is only proved for two equations,

the result does not rely on the existence of a family of entropies. Indeed, the

arguments which establish the decay result in [22] as well as the stability result

(3) would apply essentially unchanged were one to obtain the supnorm estimate

(4) ll"(-,0-"llSUp<C||«o(-)-"lls„p

for « > 2. In fact, (4) has only been established for « = 2, and this was

accomplished in Glimm's fundamental paper. A simplified proof of this was

written in [24]. Statement (3) follows from the decay result proved by the

author in [22] together with a new estimate for the growth of the L'-norm in

a solution of (1), (2) constructed by Glimm's method. This estimate is proved

for any number of equations, and can be stated as

(5) \\u(-,t)-ü\\v <C||w0(.)-M||sup/,

where || || denotes the supnorm and C denotes a generic constant (see

§2). Estimate (5) is proved in §2 for the approximate solutions generated by

Glimm's method. The result in [25] indicates that estimate (5) gives the best

coefficient of A for estimates of this type. We note that (5) requires that the

sample sequence in the method be equidistributed, but the proof given here is

elementary in that it does not require the technical theory of wave tracing. We

next derive (3) from the decay estimate in [22] together with estimate (4). In

§2 we present the proof of estimate (2).

In [22] the author proved the following decay result for solutions of (1),

(2) evolving from initial data that need not be compactly supported (cf. [22,

Theorem (1), p. 44]). The result applies to any solution u(x,t) of (1), (2)

generated by the random choice method of Glimm [9, 19, 24]. Let || ||L, denote

the L'-norm and ||    ||sup the supnorm so that

/oo ||w0(x)-ïï|| dx,
-oo

and

(7) IK(-)-«llsup-=    sup    IK(-)-"ll-
— oo<.v<+oo
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Theorem 1. Assume that « = 2.  Then for every V > 0 and 0 < a < 1 there

exists constants 5 = S(V) < 1 and C(o) > 1 such that, if u0(-) satisfies

(8) w0(±co) = w

(9) TV{u0(-)}<V,

and

(10) ll"o(-)-"llsao<¿'sup

then

where F is the positive decreasing function satisfying F(Ç) —> 0 as Ç —► +00

g/vc« by

(12) F(c;) = C(o){log(0}l/{2+a).

(We let C denote a generic constant depending only on f,V and appended

arguments, while M denotes a generic constant depending only on /). In fact,

(11) actually only holds for all t > \\u0(-) - ïï||L, since F(£,) is only defined

and positive for £ > 1. This represents no real restriction because (11) is only

interesting for large values of the argument of F. For our purposes we require

that F be everywhere positive and bounded. For this reason, define

( CMin{ô,F(Ç)}    ifí>l,
(13) F(Ç) = Iv    ; y^'     \CS    if ^ < 1,

where C, which depends only on / and V, is large enough so that

(14) IK(-,í)-siLp<c¿

(Statement (14) is just (4), which is statement (14) on p. 47 of [22]. This

estimate was first obtained by Glimm in [9] for systems in which there exists a

coordinate system of Riemann invariants; see also [24].) In this case it is clear

that F can be replaced by F in (11). So as not to carry the tilde along, we

replace F by F in ( 11 ) and write

(11) ^■••)-~"^<-F{wfñf)-
where we assume that F is given in (13) so that (11) holds for all values of

í=IK(-)-"ll¿. -0'
and we can assume that F is bounded:

(15) \F(t)\<CÔ.

Fixing the initial data and letting t —» +00 in (11) gives that solutions decay to

the constant state ü in the supnorm at a rate depending only on the L'-norm

of the initial data.
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The purpose of the present paper is to use ( 11 ) to prove the following theorem

which is a restatement of (3) and states that the constant state is weakly stable

in the global L -norm:

Theorem 2. Assume the hypotheses of Theorem 1, and assume that

(16) ||k0(-)-m||l, <oo.

Then

(17) \\u(-,t)-u\\0<G(t,\\uQ(-)-U\\v),

where G(t, Ç) —► 0 as ¿; —► 0 for fixed A > 0. Specifically, G is given by

(18) G(t,Q=c; + C^F(£j dr,

where C is a constant depending only on f and V.

Since F is bounded and tends to zero as its argument tends to infinity,

G(t, ¿i) —> 0 as c; —► 0, so that ( 17) gives a rate at which the global L -norm of

the solution at time A > 0 tends to zero with the L -norm of the initial data.

Thus (17) verifies the weak stability of the constant state in the global L -norm

for systems of two equations.

We note that, as in [22], the only reason our analysis fails to obtain Theorems

1 and 2 for « > 2 is that the supnorm estimate (14) is required, and has only

been obtained in the presence of a coordinate system of Riemann invariants

(see [24]). Note that (ii) gives directly the weak stability of the constant state

in L,'oc (see [22]).
We now deduce Theorem 2 from Theorem 1 together with the following

lemma whose proof is the subject of §2. The author believes that this lemma,

which gives an improved estimate for the growth of the L -norm in the solution

of an arbitrarily large system of conservation laws, is interesting in its own right.

For convenience, let

(19)
/oo

\\u(x ,t) -ïï|| dx
-oo

where \\u - v\\ denotes the sum of the differences in the Riemann invariants

between u and v (see §2, (2.4)). Let u(x,t) denote a weak solution of (1.1),

(1.2) generated by the random choice method from initial data u0(x). As-

sume 1(0) < oo and that the sample sequence in the random choice method is

equidistributed.

Lemma 1. Assume that « = 2 and that u satisfies the hypotheses of Theorem

1. Then there exists a constant M > 0 depending only on f such that

(20) I(t)<I(s) + MVS\t-s\,

for all 0 < s < t < oo.

In the case « > 2 we obtain (20) under the corresponding condition on u0(-)

required in the proof of convergence of the random choice method (see [9, 19]).
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Lemma 2. Assume « > 2, and that u(x ,t) is a weak solution of the random

choice method satisfying

(21) TV{u(-,t)}<V,    \\u(.,t)-ulup<S,

for all t > 0. Then there exists a constant M > 0 depending only on f such

that

(22) I(t)<I(s) + MVÔ\t-s\,

for all 0 < s < t < +oo.

We note that in the above settings the estimate

(23) \\u(-,t)-u(-,s)\\v<MV\t-s\,

which gives the Lipschitz continuity of the solution u in L , was proved in [9]

and was required for the compactness argument in Glimm's convergence proof.

In contrast to (21), one can show by simple examples that \\u(-, t) - u(- ,s)\\v

cannot in general be bounded by a constant times the supnorm times A, but

only by the total variation times A as in (23). Moreover, the negative result in

[25] indicates that estimate (22) is best possible.

Theorem 2 now follows from Theorem 1 together with Lemma 1 as follows.

Assume that u satisfies the conditions of Theorem 2, and fix 7* > 0. Define

for each A > 0 the partition of [0, T] given by

(24) tk = kAt,    At=T/N.

By ( 11 ) we know that

(25) \\u(-,t)-u\\sup<F(t/I(0)).

Since F is nonincreasing we know that for t e[tk,tk+x],

(26) \\u(-,t)-u\\sup<F(tk/I(0)),

so by (20) of Lemma 1,

(27) \I(tk+x)-I(tk)\<MF{tk/I(0))At.

Here M denotes a generic constant depending only on / and V. Thus we

can write

(28) |/(7*) - /(0)| < ¿ |/(/t+1) - I(tk)\ < ¿ MF (A.) AA.
1=0 i=o v  ^  >A

Taking the limit A —* +oo in (28) gives

(29) \I(T)-I(0)\<M j^F(j^jdx.

Therefore we conclude that

7(7*) < 7(0)+ |/(7*)-/(0)|

(30)
< m + Afj  F^j^jdz = G(T,I(0)),
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which verifies the conclusion (17) of Theorem 2. The next section is devoted

to the proof of Lemmas 1 and 2.

2. The l'-derivative estimate

Let u(x, t) denote a weak solution of ( 1 ), (2) generated by Glimm's method.

Assume that m0(±oo) = w, and without loss of generality assume ïï = 0. Here

we present a proof of Lemma 1 which is the estimate

(2.1) \\u(-,t)\\v<MVÔt

in the case « = 2. The case « > 2, stated in Lemma 2, can be proved

in the same manner. The reason the stronger assumptions (21) must replace

assumptions (8)—( 10) when « > 2 is due only to the stronger assumptions

required for Glimm's existence proof when n > 2.

Let A( denote the eigenvalues and R¡ the corresponding eigenvectors of the

« x « matrix df. Assume without loss of generality that ô is so small that

Xfu) < Xiv) for all i < j, u,v eU, where U is a neighborhood of w = 0 in

which the solutions of Lemmas 1 or 2 take their values. Let

(2.2) z = (zX ,...,zn) = z(u)

denote an approximate coordinate system of Riemann invariants which we as-

sume, without loss of generality, is defined and regular in U. By an approximate

coordinate system of Riemann invariants we mean that

(2.3) z(0) = 0,    -?-        -
oz    2=o

Let

(2.4A) \z\ = \zx\ + \z2\

/v,(0).

and also let

(2.4B) \\u\\ = \z(u)\ = \zX(u)\ + \z2(u)\.

Define the L'-norm of a function u: R —> U by

/oo
\\u(x)\\dx.

-oo

We now restrict to the case « = 2 so that our notation requires keeping track

of only two families of waves. Our reason for using an approximate coordinate

system of Riemann invariants instead of a full coordinate system of Riemann

invariants which exists for « = 2 is only to see that our argument generalizes

to the case « > 2. We first give a precise statement of the existence theorem

of Glimm for « = 2 as modified in [24]:

Theorem (Glimm). For every V > 0 there exists a constant ô << 1 depending

only on f and V such that if

(2.6) K(-)Lp<*,
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and

(2.7) TV{u0(-)}<V,

then there exists a solution generated by the random choice method satisfying

(2.8) \\u(-,t)lap<CS,

(2.9) TV{u(-)}<MV,

(2.10) ||«(',0-«(-.*)llLi <C|/-5|.

Here, as before, C denotes a generic constant depending only on / and

V, while M denotes a generic constant depending only on /. We now give a

proof of Lemma 1 which we restate more precisely as follows:

Lemma 1. For every V > 0 there exists a S « 1 such that if u(x,t) is

any weak solution of (I.I), (1.2) constructed by Theorem (Glimm) satisfying

u0(±oo) = 0, then

(2.11) /(A) < 7(0) + MVÔt

for all A > 0. Here

/oo
\\u(x,t)\\dx.

-oo

Proof. First, for simplicity assume that kx(u) < 0 < k2(v) for all u,v e U.

We prove Lemma 1 by obtaining (2.11) for an approximate solution generated

by the random choice method. We first establish notation. Let Ax be a mesh

length in x and AA a mesh length in A. Define the grid of mesh points x¡ =

iAx, tj = jAt, and let a = {afffiry be any fixed equidistributed sequence of

numbers, 0 < a < 1. Let u^x, t) be the approximate solution of the random

choice method defined as follows:

Let

(2.13) uAx(x,0) = u0(xj + a0Ax)

define the solution at t = 0. Then assuming that the solution is defined and is

constant on intervals x¡ < x < x¡+x, t = t., define u^x ,t) for A < A < A +1

to be the solution of ( 1 ) obtained by solving for time AA the Riemann problems

posed at t = t . Assume that

^£ = A>2 sup |A,(iO|,
At u€U

1=1,2

so that waves do not interact in [i,,/.+1) when the values of u^ lie in U [9].

Finally, complete the definition of u^ by defining

(2.14) ^^(x ^j+x+) = u^(Xi + aj+xAx ,tj+x-)
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for x¡ < x < xi+x . Theorem (Glimm) is obtained by proving that if u0 satisfies

(2.6) and (2.7), then (see [24])

(2-8)^ \\uàx(;t)\\tup<CÔ,

(2-9)^ TV{UAx(-,t)}<MÔ,

(2-10)^ ||Ma^(.,A)-uA;((.,ä)||li <C{|A-5|+Ax},

so that in particular u^ e U for all x and A > 0, and thus can be defined con-

sistently by the above procedure. The weak solution to (1.1), (1.2) constructed

by the method of Glimm is given by

(2.15) u = lim w.

for some sequence of mesh lengths Ax —> 0, and the convergence is in LXoc

at each time, uniform on compact time intervals. Without loss of generality,

assume that Ax is in this sequence. For fixed Ax, let yf denote the p-wave

in the solution of the Riemann problem posed at xi, A in the approximate

solution u^, p = 1,2 [22]. If the wave -¡f. has left state uL and right state

uR , then let y¡¡ also refer to the vector

(2.16) yPi} = z(uR)-z(uL),

and let the strength of the wave also be the strength as measured in the approx-

imate coordinate system of Riemann invariants, so that

oo

(2-17) rÁX(tj+)= E \^j\àx = Ij,
i= — oo

where

(2.18) zu = ziu^iXj + ajAx.tj-))

are the z-coordinates of the constant states appearing in the function u^ at

time A +. Now because u^ —> u in Lloc at each time, Lemma 1 is a direct

consequence of the following lemma:

Lemma 2.1. Let A > 0 and a be fixed. Let J = /(Ax) denote the integer such

that tj_x <t<tj. Then for Ax sufficiently small,

(2.19) \Ij-If\<MVÖtj.

Note that \I¡^(t) -If = o(Ax) by (2.1) ̂  , so that taking the limit Ax ->• 0 in

(2.19) clearly yields (2.11) of Lemma 1. Thus it remains only to verify (2.19).

We obtain (2.19) by estimating the increase in the L'-norm over each time step

of u^ . We derive two estimates at each t. depending on where the sample

points x + a Ax fall relative to the waves in the solutions of the Riemann

problems posed at time A _, . The idea is that if sample points x; + a} Ax fall
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on the same side of the waves in the same family in each rectangle at t — t¡,

then the estimate

(2.20) |/,.-/,._,! <MW;-A,.-j    Aj-v

is obtained.   But when the sample points fall on various sides or within the

waves of the same family at A = A , then estimate (2.20) may fail. The second

estimate states that this can only happen MôJ times between A = 0 and A = A

because the sequence a is equidistributed. These two estimates are enough to

obtain (2.19).

To be precise, let

(2.21) yo)> P = l,2.

Since the eigenvalues X    depend smoothly on  U, it is clear that for u

u&xixj),

(2.22) \X(u)-X\<MÔ,       p=l,2,

for some M depending only on /. Now consider the 2-wave emanating from

the mesh point (xi,tj_x) in the approximate solution u^ . By (2.22), the states

in this wave will intersect the times A = A   within an x-interval estimated by

(x¡ + (k2 - MS) At, x¡ + (X2 + MÔ)At). Thus at A = A , a sample point xi + a. Ax

can fall within the 2-wave v.. only if

(2.23) "•(
X2-MS .^H.io,,,.

Similarly, the sample points at A = A   can fall within the 1-waves emanating

from the mesh point (x¡+x, A,_,) only if

(2.24) •>'( i^,,.^),^,,,,,,

In particular, if aj e [0,1] \AT = f, where AT = ATx(jA7~2, then the sample
♦ "7 1

points xi + aAx must fall to the same side of the waves yi _, and yj+x _,

for all values of i. We assume that ô is sufficiently small so that J~ consists

of the three disjoint sets

oA MS

X2 + MÔ Xx+ MÔ

■0Xx-Mô

The following lemma is a restatement of (2.20):
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Lemma 2.2. If a^ef, then we have (2.20):

(2.20) \Ij -Ij_x\ < MVÔAt.

Proof. We do the case a. e J^. The case a. e f2 is trivial and a. e ^ is

similar. Since j is fixed, leta; = y! ._,, ßi = y,- ,_, , and zi = zi , , . Then

we have

oo

(2.25) /._,=  J2 \Zi\te>
i=—oo

and

(2.26) /.=  ¿ |z,. + a,.+ 1|Ax,

('= —oo

where we have used the fact that

(2.27) zij = zi + aM

because j e^x. Thus

oo

(2.28) ',-'/-! =  EiK + ̂ .l-W}^-
l'= —oo

Since ||z;. + a(+11 - |z(|| < A/|of/+11, it is easy to see that

(2.29) \Ij - Ij_x\ < MVAt.

But by our definition of a( and ßi as vectors in z-space, we also have z( =

z,_i +a\ +ß,■ • Now since p-waves lie on integral curves of Rp to within errors

which are quadratic in the wave strength, (2.3) implies that

(2.30) |q2|< Ma\a¡\,

(2.31) \fif<MÔ^\,

where ofi , ßf denote the /7-components of the vectors a¡, ßi, respectively,

p = 1,2. These estimates imply that

(2.32) \z,+ai+x\ - |z,| = \z)+a)+l\ - \z)\±M3\aM\,

and

(2.33) \z)\ = \z)_x+a)+ß)\ = \z)_x +a)\±MO\ßi\,

where for clarity we let ±M denote big 0(1). Putting (2.32) and (2.33) together

gives

(2.34) |z, + a    \ - |z,.| = \z\ + a]+x\ - \z)_x +a)\± Mô(\ai+X\ + \ß.\).
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Therefore,

(2.35)

E   il*, + «ml-l*il>l

oo

EiK1+«!+.i-K1-.+a!i}
'=—oo

oo

+ MÔ EiK+il + l/5!-!}

<MVÔ,

because the first sum on the R.H.S. of (2.35) is a collapsing sum. Thus we use

(2.35), (2.28) to conclude that

\Ij-Ij_x\<MVÔAx,

which is (2.20). This completes the proof of Lemma 2.2. We now complete the

proof of Lemma 1 by giving the

Proof of Lemma 2.2. For a given integer N > 0, let

(2.36) AK = {je[0,N]:aje3r),

(2.37) m= Card JA.

Since a is equidistributed, we can choose A so large that

(2.38) m/N <\AT\ + MÔ = MÔ,

where we have used (2.23) and (2.24) to obtain \AT\ < MS, AT = ATuAT,. Here

I^H = \&[\ +1^21 denotes the sum of the length of the interval ATX and AT,, and

M is again a generic constant depending only on /.

Now we write

|/(A„)-/(0)| =

(2.39)

v

EC-'a-i)
;=i

= Ei',-',-ii
A=i

+ \h-h-l\
/€[1 ,N\IJT

By (2.29) and (2.38), if A is sufficiently large, then

(2.40) YL I7; - Ij-\I ^ rnMVAt < MVSNAt = MVStN.
jeyr

But for j e [1, N] \JA Lemma (2.2) applies and we can estimate

(2.41) J2     \Ij - Ij_x\ < NMVÔAt < MVÔtN.
je[0,N]\js

Putting (2.40) and (2.41) into (2.39) gives the result that for sufficient large A,

(2.42) \I(tN)-I(0)\<MVStN.



684 BLAKE TEMPLE

Now for fixed A, we can choose Ax sufficiently small so that J > N, where A

is sufficient for (2.42), and we can conclude that for Ax sufficiently small,

\Ij-IQ\<MVStj,

which is (2.20) of Lemma 2.2. This completes the proof of Lemma (2.2), and

the proofs of Lemma 2.1 and Theorem 2 are complete.
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