Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Algebraically invariant extensions of $\sigma$-finite measures on Euclidean space
HTML articles powered by AMS MathViewer

by Krzysztof Ciesielski PDF
Trans. Amer. Math. Soc. 318 (1990), 261-273 Request permission

Abstract:

Let $G$ be a group of algebraic transformations of ${{\mathbf {R}}^n}$, i,e., the group of functions generated by bijections of ${{\mathbf {R}}^n}$ of the form $({f_1}, \ldots ,{f_n})$ where each ${f_i}$ is a rational function with coefficients in ${\mathbf {R}}$ in $n$-variables. For a function $\gamma :G \to (0,\infty )$ we say that a measure $\mu$ on ${{\mathbf {R}}^n}$ is $\gamma$-invariant when $\mu (g[A]) = \gamma (g)\cdot \mu (A)$ for every $g \in G$ and every $\mu$-measurable set $A$. We will examine the question: "Does there exist a proper $\gamma$-invariant extension of $\mu ?$ We prove that if $\mu$ is $\sigma$-finite then such an extension exists whenever $G$ contains an uncountable subset of rational functions $H \subset {({\mathbf {R}}({X_1}, \ldots ,{X_n}))^n}$ such that $\mu (\{ x:{h_1}(x) = {h_2}(x)\} ) = 0$ for all ${h_1},{h_2} \in H,{h_1} \ne {h_2}$. In particular if $G$ is any uncountable subgroup of affine transformations of ${{\bf {R}}^n},\gamma (g{\text {)}}$ is the absolute value of the Jacobian of $g \in G$ and $\mu$ is a $\gamma$-invariant extension of the $n$-dimensional Lebesgue measure then $\mu$ has a proper $\gamma$-invariant extension. The conclusion remains true for any $\sigma$-finite measure if $G$ is a transitive group of isometries of ${{\mathbf {R}}^n}$. An easy strengthening of this last corollary gives also an answer to a problem of Harazisvili.
References
  • Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
  • Model theory, Handbook of mathematical logic, Part A, Studies in Logic and the Foundations of Math., Vol. 90, North-Holland, Amsterdam, 1977, pp. 3–313. With contributions by Jon Barwise, H. Jerome Keisler, Paul C. Eklof, Angus Macintyre, Michael Morley, K. D. Stroyan, M. Makkai, A. Kock and G. E. Reyes. MR 0491125
  • Krzysztof Ciesielski, How good is Lebesgue measure?, Math. Intelligencer 11 (1989), no. 2, 54–58. MR 994965, DOI 10.1007/BF03023824
  • Krzysztof Ciesielski and Andrzej Pelc, Extensions of invariant measures on Euclidean spaces, Fund. Math. 125 (1985), no. 1, 1–10. MR 813984, DOI 10.4064/fm-125-1-1-10
  • Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • A. B. Harazisvili, On Sierpinski’s problem concerning strict extendibility of an invariant measure, Soviet Math. Dokl. 18 (1977), 71-74.
  • A. B. Kharazishvili, Groups of transformations and absolutely negligible sets, Soobshch. Akad. Nauk Gruzin. SSR 115 (1984), no. 3, 505–508 (Russian, with English and Georgian summaries). MR 797907
  • A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962/63), 111–115. MR 142709, DOI 10.4064/fm-51-2-111-115
  • Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
  • Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
  • Jan Mycielski and Stan Wagon, Large free groups of isometries and their geometrical uses, Enseign. Math. (2) 30 (1984), no. 3-4, 247–267. MR 767903
  • Andrzej Pelc, Invariant measures and ideals on discrete groups, Dissertationes Math. (Rozprawy Mat.) 255 (1986), 47. MR 872392
  • S. S. Pkhakadze, $K$ teorii lebegovskoi miery, Trudy Tbiliss. Mat. Inst. 25 (1958). (Russian)
  • Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. MR 0075897
  • Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • E. Szpilrajn, Sur l’extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551-558. (French)
  • B. Węglorz, Large invariant ideals on algebras, Algebra Universalis 13 (1981), no. 1, 41–55. MR 631408, DOI 10.1007/BF02483821
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C10
  • Retrieve articles in all journals with MSC: 28C10
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 318 (1990), 261-273
  • MSC: Primary 28C10
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0946422-X
  • MathSciNet review: 946422