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A HUREWICZ SPECTRAL SEQUENCE FOR HOMOLOGY 

DAVID A. BLANC 

ABSTRACT. For any connected space X and ring R, we describe a first-quad-
rant spectral sequence converging to H. (X; R) , whose £l-term depends only on 
the homotopy groups of X and the action of the primary homotopy operations 
on them. We show that (for simply connected X) the £2-term vanishes below 
a line of slope 1/2; computing part of the £2-term just above this line, we 
find a certain periodicity, which shows, in particular, that this vanishing line is 
best possible. We also show how the differentials in this spectral sequence can 
be used to compute certain Toda brackets. 

1. INTRODUCTION 

1.1. A Hurewicz spectral sequence. We describe here, for any pointed con-
nected space X and ring R, a first-quadrant spectral sequence, first proposed by 
H. Miller, which converges strongly to the reduced homology of X with coeffi-
cients in R. 

1.1.1. The £2 -term. For R = Z, the £2 -term of this spectral sequence is iso-
morphic to the derived functors of a certain "indecomposables" functor on the 
homotopy algebra of X (§3.12), which takes 1r*X to the graded group Q(1r*X) , 
defined to be the quotient of 1r*X by the subgroup of elements which are in the 
image of a "nontrivial" primary homotopy operation (see §2.2.1 below). 

1.1.2. The Hurewicz homomorphism. For any space X, the Hurewicz homo-
morphism h : 1r*X -+ H* (X; Z) factors through the "indecomposables" Q(1r*X); 

2 ~ 

for R = Z, the edge homomorphism of the spectral sequence, £0 * -+ H* (X; Z) , 
may be identified with this graded homomorphism Q(1r.X) -+ H*(X;Z) from 
the "indecomposables" to homology (see §2.2.3 below). 

1.2. Statement of results. We prove two types of results about the Hurewicz 
spectral sequence: 

1.2.1 Vanishing results. We show that the £2 -term of the spectral sequence 
has a vanishing line of slope 1/2, which depends on the connectivity of X and 
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the coefficients R; we also calculate part of the E2 -term above these lines for 
any 2-connected space X. More specifically, we show: 

(i) If R is any ring and X is (r - 1 )-connected for r ~ 3, then in the 
Hurewicz spectral sequence for X with coefficients in R we have E~ k = 0 for 

2 ' 
n > 2(k - r) + 1 . If r = 2, then E k = 0 for n > 2k - 2. n, 

(ii) If X is (r-I)-connected (r~3),then EI2 3::Tor(7rX,R) and E2k3:: ,r r n, 
Tor(Tor(7r,X, Z/2), R) for n = 2(k - r) + 1 ~ 3. Taking R = Z/2 = 7r,X, e.g., 
we see that the vanishing line of (i) is best possible. 

(iii) If R ~ Q (the rationals) and X is (r - I)-connected (r ~ 3), then 
E2 k = 0 for n > 2(k - r). If r = 2, then E2 k = 0 for n > 2k - 3. n, n, 

(iv) If R ~ Q and X is (r-I)-connected (r ~ 3), then E~, 3:: 7r,X0R and 
E~ k 3:: Tor(7r,X,Z/2) 0R for n = 2(k - r) ~ 2. This shows that the vanishing 
line of (iii) is also best possible. 

1.2.2. Secondary operations. We also illustrate the fact that the differentials 
in the spectral sequence are related to secondary homotopy information by 
computing a certain Toda bracket: 

For the Moore space X = L,-I Rp2 (r ~ 4), we have 7r,X 3:: Z/2 (with 
generator 0;), and 7r,+2X 3:: Z/4 (with generator P). We shall make use of 
a differential in the spectral sequence for X to give a new proof of the well-
known fact that P is in the Toda bracket (0;,2,11,) C 7r,+2X, where 11, E 7r,+1 S' 
denotes the suspended Hopf map. 

Organization. In §2 we set up the spectral sequence, and identify the edge 
map with the Hurewicz homomorphism. In §3 we describe the category of 
n-algebras, recall the definition of derived functors in this context, and identify 
the E2 -term of the spectral sequence with the derived functors of "indecompos-
abIes." In §4 we derive the vanishing lines of 1.2(i) and (iii), by constructing a 
suitable free resolution for 7r*X, and in §5 a calculation shows that these van-
ishing lines are best possible (as in 1.2(ii) and (iv)). In §6 a differential in the 
spectral sequence for L,-I Rp2 is used to compute the Toda bracket of § 1.2.2. 
Finally, in §7 we mention two related spectral sequences. 
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2. THE SPECTRAL SEQUENCE 

In this section we set up the Hurewicz spectral sequence for any space X 
and ring R (§2.I) and justify its name by identifying its edge map with the 
Hurewicz homomorphism (§2.2). 
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2.1. Setting up the spectral sequence. Let 9',:' be the category of connected 
pointed CW-complexes; we shall denote the objects of 9',:' by boldface variables 
(X, Y, ... ). 

2.1.1. Resolution of a space. In [18, §2], C. Stover constructed, for any X E 
9',:', a functorial simplicial resolution of X by wedges of spheres-that is, a 
simplicial space V:X, together with an augmentation do : VoX ---+ X, having the 
following properties: 

(a) Each ~X is a pointed CW-complex which is homotopy equivalent to a 
wedge of spheres. 

(b) Each degeneracy map s/ ~X ---+ Vn+1X is an inclusion of CW-
complexes. 

(c) For each k ~ 1, the homotopy groups of the simplicial group 7C k V:X 
(obtained by applying the functor 7C k dimensionwise to each space in V:X) 
vanish in dimensions ~ 1, and the augmentation induces an isomorphism 
7CO(7C k V:X) c:::::: 7C k X. 

In particular, this implies that the realization L1V:X of the simplicial space 
V:X (cf. [17, § 1]) is homotopy equivalent to X. 

2.1.2. A bisimplicial R-module. For any ring R, let RS denote the functor 
which assigns to a pointed topological space X the simplicial R-module of its 
singular chains with coefficients in R-that is, the free simplicial R-module 
on the singular complex SX, with basepoint * = o. Note that 7Ck (RSX) c:::::: 

Hk(X;R) for all k ~ 0 [12, §2]. 
Applying this dimensionwise to the simplicial space V:X, we get a bisimpli-

cial R-module RSV:X; its diagonal diag(RSV:X) is homotopy equivalent to 
RS(L1V:X) and thus to the simplicial R-module RSX. 

2.1.3. The spectral sequence. Now we define the Hurewicz spectral sequence 
for the space X, with coefficients in R, to be the Quillen spectral sequence of 
the bisimplicial R-module RSV:X (see [16]); it has £~ k c:::::: 7C~7C~(RSV:X) and 
converges to the associated graded R-module of the homotopy of the diagonal: 
7C n+k (diag(RSV:X)). Thus, the Hurewicz spectral sequence converges to the 
reduced homology of X with coefficients in R, since 7C n+k (diag(RSV:X)) c:::::: 

7Cn+k(RSX) c:::::: Hn+k(X;R) (by §2.l.2). 

2.2. Indecomposables and the Hurewicz homomorphism. We now identify the 
first column of the £2 -term of this spectral sequence as a functor of 7C*X and 
relate it to the Hurewicz homomorphism: 

2.2.l. Indecomposables. For any space X, the graded group 7C*X = {7CkX};:l 
has a graded subgroup P(7C*X) , generated by all elements which are in the im-
age of a nontrivial primary homotopy operation (i.e., any homotopy operation 
which vanishes in homology). Thus, P(7C*X) is generated by: 

(a) compositions no ( E 7CkX, for (} E 7C rX and (E 7CkSr , k > r > 1 ; 
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(b) Whitehead products (cf. [19, Chapter X, §3])-that is 
• elements of the form [a,p] E 7rp +Q_ IX, for any a E 7rpX and 
P E 7rqX, p, q > 1 ; 
• elements of the form a'; - a E 7rrX, for a E 7rrX (r > 1) and 
¢ E 7r I X (where a r; denotes the result of the action of ¢ on a); 
• commutators [a,p] = apa-Ip- I E 7rIX, for a,p E 7rIX, 

The quotient graded group Q(7r.X) = 7r.X/ P(7r.X) will be called the inde-
composables of 7r*X. Note that Q(7r.X) in degree 1 is simply the Abelianization 
of 7rIX-SO that Q(7r*X) is actually a graded Abelian group. 

2.2.2. The column E~,*. For an n-sphere Sn, the graded group Q(7r*Sn) is 
isomorphic to 7rn S n ~ Z in degree n and vanishes in degrees =I- n. Thus, if 
W has the homotopy type of a wedge of spheres, Hilton's theorem [4, Theorem 
A] implies that we have an isomorphism of graded Abelian groups: Q(7r* W) ~ 
H.(W;Z) . 

Combining this with the fact that V:X is a resolution of X, in the sense 
of §2.1.1, we readily see that the Oth column of the E2 -term of the spectral 
sequence for X with R = Z may be identified with the indecomposables of 
7r*X. 

A similar argument shows that for any ring R and space X E Y:, in the 
Hurewicz spectral sequence for X with coefficients in R we have an isomor-
phism of graded R-modules E~,* ~ Q(7r*X) (9 R between the Oth column of 
the E2 -term and the" R-indecomposables" of 7r*X. 

2.2.3. The Hurewicz homomorphism. For any space X, the Hurewicz homo-
morphism (considered as a morphism of graded groups h: 7r*X -+ H*(X;Z)) 
vanishes on P(7r*X) C 7r*(X), so that it factors through a graded homomor-
phism h: Q (7r * X) -+ H. (X ; Z) . It may be verified that the edge homomorphism 
of the integral Hurewicz spectral sequence-that is, the composition E~,. --
E'J:,. c.......; H.(X;Z)-is equal to this homomorphism h: Q(7r.X) -+ H.(X;Z) 

under the identification E~,. ~ Q(7r.X) . 
Thus the Oth filtration on H. (X; Z) , given by E'J:,. , is precisely the image of 

the Hurewicz homomorphism-the (graded) subgroup of all spherical elements. 

3. THE E2 -TERM AS DERIVED FUNCTORS 

We now give a description of the E2 -term of the Hurewicz spectral sequence 
in terms of derived functors (§3.3), after first reviewing the definitions of the 
category of TI-algebras (§3.1) and of non-Abelian derived functors (§3.2). 

3.1. TI-algebras. We recall the definition of the category of TI-algebras, whose 
objects are modeled on the homotopy groups of a space, together with the action 
of all primary homotopy operations on them: 
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3.1.1. Definition. Let hoS: denote the homotopy category of connected 
pointed C W -complexes, and let II c hoS: be the full subcategory whose ob-
jects are finite wedges of spheres (one for each homotopy type). A II-algebra is 
then defined to be a contravariant functor Y: II ---> Sets, which takes coprod-
ucts to products. 

Equivalently, we can think of a II-algebra Y as a graded group {n~Y}~1 
(where we write < Y for Y(sj)), together with an action of the set of primary 
homotopy operations which satisfies all universal relations on such operations. 
We denote the category of II-algebras by II-Alg. 

For any II-algebra Y we let I YI denote the least k ::; 00 for which n~X =1= O. 
If I YI > k, we say that Y is k-connected. 

3.1.2. Free II-algebras. Let n* be the functor which assigns to a pointed con-
nected space X its homotopy II-algebra n*X-i.e., n*X = {njX}~I' with the 
given action of the homotopy operations. The free II-algebras are those which 
are isomorphic to n* W , for some (possibly infinite) wedge of spheres WE S:: 

More precisely, let T be a graded set {Tj } ~ 1 ' and let W = V~ 1 V xE TJ s~ , 
where each s~ is a i-sphere. Then we say that n* W is the free II-algebra 
generated by T. We shall consider each element x E TJ to be an element 
of n* W, by identifying it with that generator of nj W which represents the 
inclusion sj L--+ W. x 

3.2. Nonabelian derived functors. We now recall Quillen's definition of derived 
functors in our context-see [14, part II, §4] and [15, §2]: 

3.2.1. Free simplicial II-algebras. A simplicial II-algebra A. is called free iff 
for each n ~ 0 there is a graded set Tn S;;; An such that An is the free II-
algebra generated by Tn (§3.1.2), and each degeneracy map Sj : An ---> An+l 
takes Tn to T n+1 • The sequence TO, Tl , ... will be called a set of generators 
for A .. 

3.2.2. Free simplicial resolutions. We define a free simplicial resolution of a II-
algebra Y to be a free simplicial II-algebra A. , together with an augmentation 
do : Ao ---> Y , such that for each k ~ 1 

(a) the homotopy groups of the simplicial group n~A. vanish in dimensions 
n ~ 1; 

(b) the augmentation induces an isomorphism no(n~A.) ~ n~ Y . 

3.2.3. Example. For any space XES:, the resolution V:X ---> X of §2.1.1 
clearly gives rise to a free simplicial resolution n* V:X of the II-algebra n*X. 
3.2.4. Definition of derived functors. Let s( be an Abelian category and T: II-
Alg ---> s( a functor. The nth left derived functor of T is the functor Ln (T) : II-
Alg ---> s( , which assigns to a II-algebra Y the object Ln (T) Y ~ nn (T A.) E s( , 
where A. ---> Y is any free simplicial resolution of Y. (As usual, different 
resolutions yield equivalent derived functors.) 
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3.3. The £2 -term. For each ll-algebra Y, we have the graded Abelian group 
of its indecomposables, Q(Y) = {Qk(Y)};;':1 ' defined as in §2.2.1. Thus for 
any ring R we have a functor Qk (-) 181 R : ll- Alg ~ R-Mod for every k ;::: 1 . 

As noted in §3.2.3, for any space X the free simplicial ll-algebra 'lC* J-":X 
is a free simplicial resolution of the ll-algebra 'lC*X. On the other hand, by 
§2.2.2 and §2.1.I(a), we know that 'lC~RSJ-":X ~ Hk(J-":X;R) is isomorphic to 
the simplicial R-module Qk('lC* J-":X) 181 R. 

Thus, by Definitions 2.1.3 and 3.2.4, the kth row of the £2 -term of the 
Hurewicz spectral sequence for X with coefficients in R may be identified 
with the derived functors of Qk (-) 181 R, evaluated on 'lC*X: 

£~ k ~ 'lC~'lC~RSJ-":X ~ 'lCn(Qk('lC* J-":X) 181 R) ~ Ln(Qk(-) 181 R)'lC*X. 

4. VANISHING RESULTS 

As we have just seen, each row in the £2 -term of the Hurewicz spectral 
sequence for a space X can be identified with certain derived functors evaluated 
on the ll-algebra 'lC*X. In this section we show that, for 2-connected X, the 
£2 -term has the vanishing lines of § 1.2.1 (i) and (iii), by showing that the derived 
functors of Qk vanish beyond a certain point: 

4.1. Theorem. Let k ;::: r ;::: 3, and let Y be an (r - 1 )-connected ll-algebra; 
then (LnQk)Y = 0 for n > 2(k - r). If k ;::: r = 2, then (LnQk)Y = 0 for 
n > 2k - 3. 

Applying the universal coefficients theorem for homology, we obtain the fol-
lowing 

4.1.1. Corollary. For k ;::: r, and Y as above, we have 
(i) For any ring R, 

{ n > 2(k - r) + 1 
Ln(Qk(-) 181 R)Y = 0 for n > 2k _ 2 

(ii) If R <;;; Q, then 

ifr;::: 3, 
ifr = 2. 

{ n>2(k-r) ifr;:::3, 
Ln(Qk(-)I8IR)Y=O for n>2k-l ifr=2. 

Theorem 4.1 is proved in §4.2, using a certain resolution A. ~ Y described 
in Proposition 4.2.2 below. After some remarks on constructing resolutions in 
§4.3, the proof of the proposition is outlined in §4.4 and completed in §4.S. 

4.2. Proof of Theorem 4.1. In order to calculate the derived functors of Qk 
evaluated on Y, any free simplicial resolution A. ~ Y can be used; we wish 
to describe a particular one, for which we need the following definitions: 

4.2.1. Basic ll-algebras. Given a free simplicial ll-algebra A. and a set of 
generators TO, Tl , ... as in §3.2.1, we define the nth basic ll-algebra for 
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A. , denoted An' to be the sub-free II-algebra of An generated by the non-
degenerate elements in Tn . 

A sequence A o' AI' ... ,An' ... of basic II-algebras for a free simplicial 11-
algebra A. is called a CW-basis for A. (cf. [7, §5.I]) iff for each n ~ 0 we 
have d·I-A = 0 for I ::; j ::; n. We call the morphism do = do I-A : A +1 --> A J n n+! n n 
the attaching map for An+1 . With these definitions we have the following 

4.2.2. Proposition. Let Y be an (r - I )-connected II-algebra (r ~ 2); then 
Y has a free simplicial resolution A. --> Y, with a CW-basis A o' AI' ... , such 
that 

(a) for each n ~ 0 we have n::; 2'(IAnl-r)+I ifr ~ 3, and n::; 21Anl-2 
/fr=2; 

(b) for n = 2(k - r) + I, if r ~ 3 (respectively n = 2k - 2, if r = 2), the 
attaching map do : An --> An_I' in degree k, is a monomorphism into 
1-

nkAn_ 1 • 

4.2.3. Proof of the theorem. Let Y be an (r - I )-connected II-algebra (r ~ 2) , 
and for k ~ r let N = 2(k - r) + 1 if r ~ 3 (or N = 2k - 2 if r = 2). 

(I) Take A. --> Y to be the resolution of Proposition 4.2.2, and let B. = 
QkA.; by Definition 3.2.4 we have (Ln Qk) Y ~ nnB.. Now recall that for a 
simplicial Abelian group such as B., we have the associated normalized chain-
complex {N B * ' a} , where for each n ~ 0 we let 

NBn = n ker{dj : Bn --> Bn_ 1} C Bn , and an = dolNBn; 
I'::;j'::;n 

then nnB. ~ Hn(NBJ (cf. [12, §17]). 
Moreover, if DBn denotes the subgroup of Bn generated by the degenerate 

elements, we have NBn nDBn = 0 (cf. [12, Corollary 22.2]). 
(II) In the free simplicial II-algebra A. we can write each An as a coproduct 

of An with the images of the Am's (for 0::; m < n) under various degeneracy 
maps (see §4.5.1 below). However, the functor Qk' when restricted to the 
subcategory of free II-algebras, clearly preserves coproducts; also, it vanishes 
on any k-connected II-algebra. Since k < IAnl for n > N = 2(k - r) + I by 
Proposition 4.2.2(a), we have Bn = DBn , so that (I) implies N Bn = 0, and 
thus (LnQk)Y ~ nnB. ~ Hn(NBJ = 0 for n > N. 

(III) Note that if f: X --> Y is a map between two (k - I)-connected free 
fI-algebras which is a monomorphism in degree k (k ~ 2), then Qkf is a 
monomorphism, too (cf. §2.2.2). Now for B = QkAN we have Bn ~ BffiDBN . 
However, by 4.2.2(b) do: AN --> AN -1 is a monomorphism in degree k into 
the (k - I)-connected free fI-algebra AN_I; therefore, Qk(dob) = (Qk dOnB 
is a monomorphism. Thus by (I) we see that B. has no N-cycles, so that 
(LNQk)Y ~ nNB. = O. 0 

4.3. Constructing free simplicial resolutions. To prove Proposition 4.2.2, we 
wish to construct a suitable free simplicial resolution A --> Y. Now a free 
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simplicial II-algebra A. with CW-basis Ao ,Ai' ... may be constructed by a 
process analogous to that of attaching cells in building up a CW-complex: 

4.3.1. Normalized cycles. For any simplicial II-algebra A. , we have the usual 
normalization process, which yields chains and cycles (as defined in [13] for 
simplicial groups): in particular, the n-cycles II-algebra of A. is the sub-II-
algebra of An defined by 

ZAn= n ker{dj:An-+An_ i }· 
O-:5,j-:5,n 

4.3.2. CW-construction. By analogy with CW-complexes, we can construct 
a free simplicial II-algebra by an inductive process, in which we assume we 
are given an free simplicial II-algebra A., and obtain a new free simplicial 
II-algebra A: by "attaching" a free II-algebra A in dimension n, by means of 
an attaching map do: A -+ An (cf. [8, §3]). 

For the simplicial identities to hold in the simplicial II-algebra A: so ob-
tained, we require that do satisfy dj 0 do = 0 for 0 ::; j ::; n-that is, that 
do: A -+ An factor through ZAn '-4 An. Note that a free simplicial II-algebra 
is completely determined by specifying a C W -basis, together with the attaching 
maps. 

4.3.3. Identifying resolutions. In particular, one can show that an free simpli-
cial II-algebra A., with a C W -basis A o ' Ai' ... and an augmentation Ao -+ 

Y, is a free simplicial resolution of Y (Definition 3.2.2) iff for all n ~ -1 , 
the attaching map do: An+i -+ An factors through an epimorphism do: An+i -
ZAn (where we set ZA_ i = A_i = Y). 

4.3.4. N-resolutions. If condition 4.3.3 is satisfied only for 0 ::; n < N, we 
call A. -+ Y an N-resolution. As in §3.2.2, this is equivalent to requiring that 
for each k ~ 1, the simplicial group n~A. has homotopy groups nj(n~A.) = 0 
for 1 ::; j < N, and that the augmentation induces an isomorphism no(n~A.) ~ 
n~Y . 

4.4. Construction of the resolution. Given an (r - 1 )-connected II-algebra Y 
(r ~ 2) , we now construct a free simplicial resolution A. -+ Y, along with a 
given CW-basis Ao,Ai , ... , as required in Proposition 4.2.2. For simplicity 
suppose first that r ~ 3 . 

4.4.1. An inductive construction. The free simplicial n-algebra A. is con-
structed by induction on n ~ -1 . At the nth stage we assume we have an aug-
mented free simplicial II-algebra A~ -+ Y, with CW-basis A o' Ai' ... ,An' 0, 
... , satisfying the following hypotheses: 

(i) A~ is an n-resolution of Y (Definition 4.3.4); 
(ii) for each m ~ 0 we have m::; 2· (IAml- r) + 1; 

(iii) for m = 2(k - r) + 1 ::; n the attaching map do: Am -+ A:::=: ' in degree 
k, is a monomorphism into <Am_i. 
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A~+ I is then constructed as in §4.3.2 by suitable choice of the free II-algebra 
An+1 and attaching map dO:An+I--+A~. We start the induction with ZA:::; = 
A -I = Y and A -I = 0 . -I . 

Finally, set A. = U:o A~ ; the induction hypotheses clearly ensure that A. 
will satisfy the requirements of Proposition 4.2.2. Note that we have An = A: 
for m 2: n ; in particular, we shall write An for A~. In fact, A~ will just be 
the n-skeleton, in the usual sense, of A .. 

4.4.2. The inductive condition. By §4.3.4, all we need in order for A~+I so 
constructed to be an (n + I )-resolution is that the attaching map do: A n+ I -

n - -
ZAn = ZAn be an epimorphism. Thus we may choose An+l so that IAn+11 = 
IZAnl· 

Therefore, in order to get an A~+I satisfying the requirements 4.4.1 (i) and 
(ii), it suffices to show that the following holds: 

( 1 ) 

(since we can then let An+1 be the free II-algebra on the underlying set of 
ZAn' with the obvious attaching map). 

Thus we are interested in the connectivity of the n-cycles II-algebra. Now 
for each n 2: 0, let ZAn = An n ZAn = Ker{do: An --+ An_I}; it turns out that 
these "cycles with nondegenerate support" have the following property: 

4.4.3. Lemma. Let r 2: 3. and let A. be a/ree simplicial II-algebra with CW-
basis A o' AI' '" • such that for each m 2: 0 we have m :s 2· (IAml- r) + 1 (as 
in 4.4.I(ii)). Then/or n 2: 2(t - r) 2: 0 we have n;ZAn = n;ZAn' 

4.4.4. The two-step construction. Given this lemma, we can now describe the 
construction of A. as required in Proposition 4.2.2, proceeding two steps at a 
time: 

Let n = 2m - 1 and assume the augmented free simplicial II-algebra A~ --+ 

Y has been chosen, satisfying condition (1) for n, as well as the induction 
hypotheses of §4.4.I. 

(I) The first step is immediate, given (1): we can obviously choose an (m + 
r - I)-connected free II-algebra An+1 which has an epimorphism do: An+1 -
ZAn' as in §4.4.2-and so obtain the free simplicial II-algebra A~+I , satisfying 
§4.4.I (i)-(ii). 

(II) Note that by Definition 3.1.2, AI1 + I ~ n. (V:IIl+r V TJ SJ) for some graded 
set T, so that n:n+rAI1+ I is isomorphic to the free Abelian group generated by 
T,n+r' Now consider the II-algebra ZA I1 + I . Using Lemma 4.4.3, we see that 
<1+rZAn+1 = n:n+rZAn+1 <:;;; n:'1+rAn+l is free Abelian. This allows us to choose 
A"+2 as follows: 

Let K be a basis for the free Abelian group <l+rZAn+1 ' and let B be the 
free II-algebra generated by the graded set S, where SIIl+r = K and Si = 0 
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for i =I- m + r (cf. §3.1.2). There is an obvious map f: B --+ ZAn+1 ' with 
7r~+rf: 7r;n+rB --+ 7r~+rZAn+1 an isomorphism. 

Let Z' denote the (m + r)-connected ll-algebra obtained from ZAn+1 by 
setting 7r~+rZAn+1 equal to 0; choose an (m + r)-connected free ll-algebra C 
which has an epimorphism g: C -» Z' , as in §4.4.2. 

Now let An+2 = B II C; we have a morphism do: An+2 --+ ZAn+1 induced 
by f and g; this is an epimorphism, since 7r~ do is surjective for each j 2: 
1. Moreover, since 7r~+r do: 7r~+rAn+2 --+ An+1 is an isomorphism, we have ,- , o = 7rm+rZAn+2 = 7rm+rZAn+2 (using Lemma 4.4.3), so that hypotheses of 
§4.4.1(i)-(iii) hold for n + 2, too. 

4.5. Proof of Lemma 4.4.3. The remainder of this section is devoted to the proof 
of Lemma 4.4.3. We first need the following 

4.5.1. Explicit description. If A. is a free simplicial ll-algebra with CW-basis 
Ao' AI' ... , then each An can be described explicitly as a coproduct of basic 
ll-algebras, as follows (compare [12, p. 95(i))): 

For each n 2: 0 and 0 ::; A ::; n , let ~ n denote the set of all sequences of 
A nonnegative integers i I < i2 < ... < iA ' (iA < n), with Sl = Si; 0 ... Si2 0 Si 1 

the corresponding A-fold degeneracy. (We allow A = 0, with the corresponding 
Sl = id.) Then 

(2) li A , n-A 

where for I E ~,n ' the copy of An_A indexed by I is in the image of the 
A-fold degeneracy SI' in the obvious sense. 

Thus given A. as above, for each n 2: 0 we can write: 
where each X is in the image of some A -fold degeneracy n a 
situation we have the following 

A -::= 11 X n - nEKn 0:' 

(A" 2: 0). In this 

4.5.2. Lemma. Assume that 11;=1 XUi is a subcoproduct of the above An -::= 

11 EK X , which satisfies 
0: n 0: 

q 

(3) "(n - A ) < n. L-t rt, i=1 
Then for some 0 ::; j < n, each X"i (1::; i ::; q) is in the image of Sj . 

4.5.3. Proof. Let M = (m i) be the q x n matrix with 

m. = {O if X"i is in the image of Sj' 

I) 1 otherwise. 
Then each X is in the image of at least A of the n possible degeneracy 

o[ (..\:/ 

maps s. : A I -t A ,so there are at most (n - A ) entries of 1 in the ith row J n- n O'.i 

of M. But then condition (3) implies there is some column of O's in M-i.e., 
that all the X 's have some common direction of degeneracy. 0 

0, 
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4.5.4. Completion 0/ proof. We now apply Lemma 4.5.2 to prove Lemma 
4.4.3: 

One can use (2) of §4.5.1 to write An as a coproduct of copies of the first 
n + 1 basic II-algebras of A.: An s:: llo::;;.::;n llIEY;:,n An-A. 

By hypothesis 4.4. 1 (ii), for each A we have 

(4) 

Using Hilton's theorem [4, Theorem A] applied to the coproduct (2), we have 
a direct-sum decomposition of :n:;An' so that any Y E :n:;ZAn C :n:;An can be 
written as a sum Y = L: Yk ' with each Yk an element of some summand in this 
decomposition: 

!- - -
That is, hE:n:t(An_AtII···IIAn_Aq),whereeach An-Aj is one of the cop rod-

uct-summands of (2) and thus is in the image of some Ai-fold degeneracy (Ai ~ 
0). Moreover, we know that 

(5) 
q 

L:(IAn-Ajl- 1) ~ t - 1, where 2t ~ n + 2r. 
i=I 

Combining (4) and (5), we find that if q ~ 2 we have 

q 

L:(n - Ai) < n 
i=I 

(since r ~ 3), so that by Lemma 4.5.3, Yk is degenerate. Therefore, every 
nondegenerate Yk-for which necessarily q = I-is in :n:;An' and so is itself 
an n-chain (by the definition of a CW-basis-§4.2.1). Since Y E Z:n:;An is in 
particular an n-chain, this implies that the sum of the degenerate Yk 's is also 
an n-chain. 

However, t ~ r ~ 2, so that B. = :n:;A. is a simplicial Abelian group and 
NBnnDBn = 0 (see 4.2.3(1)). Thus the sum of the degenerate Yk 's must vanish, 
and we can assume q = 1, Al = 0 for each summand Yk in y. This implies 

!-
that Y E :n: tA n ' as required. 0 

With the obvious modifications in Lemma 4.4.3 for the case r = 2, this 
completes the proof of Proposition 4.2.2. 

5. A CALCULATION 

In this section we calculate the derived functors of the functors Qk of §3.3 
just above the vanishing lines of Theorem 4.1, to show: 

5.1. Theorem. For r ~ 3, let Y be an (r - 1 )-connected II-algebra. Then 
(LoQ,)Y s:: :n:~Y, and/or n = 2(k - r) ~ 2 we have (LnQk)Y s:: Tor(:n:~Y, Zj2). 
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Again, by the universal coefficients theorem we have the following: 

5.1.1. Corollary. Let rand Y be as above; then 
(i) for any ring R, we have LI(Q,(-) 0 R)Y 3: Tor(1!~Y ,R), and if n 

2(k - r) + 1 2: 3, we have 

Ln(Qk(-) 0 R)Y 3: Tor(Tor(1!~Y ,Z/2) ,R). 

(ii) If R r; Q, we have Lo(Q,(-) 0 R)Y 3: 1!~Y 0 R, and if n = 2(k - r) 2: 2, 
we have 

Ln(Qk(-) 0 R)Y 3: Tor(1!~Y ,Z/2) 0 R. 

This shows that the vanishing results of Corollary 4.1.1 are the best possible 
for these rings-at least for 2-connected II-algebras-as claimed in § 1.2(ii) and 
(iv). (Note also that part (i) of the corollary, together with 4.1.1(i), implies 
4. 1.1 (ii) for r 2: 3.) 

The theorem is proved in §5.2, using an explicit construction of a free sim-
plicial resolution in §5.3. 

5.2. Proof of Theorem 5.1. In order to calculate the derived functors, we need 
the following partial description of a specific resolution for Y: 

5.2.1. Proposition. Let Y be an (r - I)-connected II-algebra (r 2: 3), and 
let 

i' j' 0-+ H -+ G -+ 1!,Y -+ 0 and 0 -+ L -+ K -+ Tor(1!,Y ,Z/2) -+ 0 

be presentations of the respective Abelian groups (with G, H, K, L free 
Abelian). There there are a free simplicial resolution A. -+ Y with ew-
basis Ao' AI' ... and free II-algebras B m and em for each m 2: 0 such 
that Am = Bm II em and 

(i) for each k 2: rand m = 2(k - r), the free II-algebras Bm and Bm+1 
are generated by graded sets concentrated in degree k-that is, each is 
the homotopy II-algebra of a wedge of k-spheres; 

(ii) the attaching map dol-B factors through B '---+ A for each m 2: 0; 
m+1 m m 

(iii) there are isomorphisms f: 1!~B 0 3: F and g: 1!~B I 3: H such that 
f 0 1!' d = i 0 g . 

, 0 ' 
(iv) for each m = 2(k - r) > 0, there are isomorphisms f: 1!~B m 3: K and 

g: 1!~]jm+1 3: L such that f 0 1!~ (dol sm+ l ) = jog; 
(v) r + 1 ~ I eo I, and for each m > 0, we have m ~ 2 . (I em I - r) ; 

(vi) for m = 2(k - r) - 1 > 1, the attaching map dol-c ,when projected 
m+l 

onto em' is a monomorphism in degree k. 

5.2.2. Proof of the Theorem. Let A. -+ Y be the resolution of Proposition 
5.2.1. By 5.2.1 (iii) and (v), it is clear that 

, 
(LOQk)Y 3: 1!oQkA. 3: Cok{i: H -+ G} 3: 1!/"Y. 
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To calculate (LnQk)Y ~ 7rnQkA. for n = 2(k - r) :::: 2, by 5.2.1(ii) and (v) 
we need only consider the" k-spheres" of 

- do - - - - do 
Bn+l -+ Bn '---+ Bn 11 C n = An -+ An_I' 

However, by 5.2.1(vi), Qk(dolc) is a monomorphism, as in §4.2.3(III), while 
d~IBn factors through B n_ l by 5.2.1(ii), so that Qk(doIB) = 0 by 5.2.1(i). 

Thus we need only consider B n+l -+ B n -+ 0 in degree k, and by 5.2.1 (iv) 
and §2.2.2 we therefore have 

7r nQk A. ~ Cok{j: K -+ L} ~ Tor(7r;Y, Z/2). D 

5.3. Proof of Proposition 5.2.1. Given an (r - 1 )-connected ll-algebra Y, with 
r :::: 3, the resolution A. -+ Y described in Proposition 5.2.1 is constructed (as 
in §4.4) by induction on the skeleta, two steps at a time: 

5.3.1. Beginning the induction. We start the induction with k = r, choosing 
B o' Bl to satisfy 5.2.1 (i) and (iii). Because r:::: 3, by the argument of §4.5.4 we 
can also choose Co' C I satisfying 5.2.1 (v), with the free simplicial ll-algebra 
obtained at this stage being a I-resolution. Since r:::: 3, we have 7rr+ I Sr ~ Z/2; 
thus 

I - I - I - I 
7rr+IZBI = Ker{7rr+l (do): 7rr+IBI -+ 7rr+ IBO} 

~ Ker{(i ® Z/2): G ® Z/2 -+ F ® Z/2} ~ Tor(7r;Y, Z/2) 

as in §5.2.2. 

5.3.2. The inductive step. Now for each k :::: r, let n = 2(k-r)+ 1, and assume 
Ao,A I , ••• ,An and the Bm 's and C m 's have been chosen so that (i)-(vi) of 
the proposition are satisfied for 0:::; m :::; n . 

Note that (i) and (iv) imply that condition 4.4.1 (ii) of §4.4 holds-i.e., for 
each n :::: 0, we have n :::; 2 . (IAn I - r) + 1 , so that Lemma 4.4.3 applies. In 
fact, setting Z B n = ZAn n B n ' we have the following 

5.3.3. Lemma. Assume that requirements 5.2.1 (i) and (v) hold for 0 :::; m :::; 
n = 2(k - r) + 1; then 7r~+IZAn ~ 7r~+IZBn ffiF, where F is a free Abelian 
group 
5.3.4. Proof of Lemma 5.3.2. Since r:::: 3, we can use the argument of §4.5.4 
to show that 

I I - - I - 1-
7rk+IZAn s;:; 7rk+I (Bn 11 Cn) ~ 7rk+IB n ffi 7rk+ I Cn · 

Now let 7r~+ I Z An ~ 7r~+1 (B n 11 C n) .!. 7r~+1 C n be the inclusion and projection, 
respectively. Then we have a short exact sequence of Abelian groups 

0-+ Ker(p 0 i) -+ 7r~+IZAn -+ Im(p 0 i) -+ O. 

By 5.2.1(v) we have ICnl :::: k + 1, so that 7r~+ICn is a free Abelian group. 
Thus F = Im(p 0 i) is free Abelian, too-and the sequence splits. Clearly 
7r~+IZBn = Ker(p 0 i), so that 7r~+IZAn ~ 7r~+IZBI1 ffi F, as required. D 
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5.3.5. Completing the induction. For n = 2(k - r) + 1 ~ 3, we use assumptions 
5.2.1(i) and (iv) to see that as in 5.3.1: 

7r~+IZBn ~ Ker{(j @Z/2): K @Z/2 -+ L @ Z/2} 

~ Tor(Tor(7r~Y, Z/2), Z/2) ~ Tor(7r~Y, Z/2). 

Lemmas 5.3.2 and 4.4.3 then allow us to choose do: Bn+2 -+ B n+l satisfying 
5.2.1(i) and (iv), as well as C n+1 and Cn+2 satisfying 5.2.1(v) and (vi). This 
completes the proof of Proposition 5.2.1. 

6. DIFFERENTIALS IN THE SPECTRAL SEQUENCE 

We now illustrate the fact that the differentials in the Hurewicz spectral se-
quence depend on higher-order homotopy information by using one to compute 
a certain Toda bracket for Lr- 1Rp2 . 

In §6.1 we calculate the derived functors of Qk on the II-algebra 7r.Lr- 1Rp2 

and find a nonvanishing differential in the E2 -term. In §6.2 we recall the con-
struction of V:X and use it to give an explicit description of the differential 
in §6.3. Throughout this section R = Z, and all homology is with integral 
coefficients. 

6.1. A calculation for 7r.Lr- 1Rp2. Let X denote the Z/2-Moore space 
L r- 1 Rp2 , with r ~ 4. The first three nonvanishing rows in the E2 -term of 
the Hurewicz spectral sequence for X may then be calculated as follows: 

6.1.1. ll-algebra structure. The ll-algebra structure of 7r.X in the first three 
nontrivial degrees in given by: 

(i) 7rrX ~ Z/2, generated by an element a; 
(ii) 7rr+lX ~ Z/2, generated by a 0 11r; 

(iii) 7rr+2X ~ Z/4, generated by an element p, with 2P = a 0 11r 0 11r+l . 
(This may be computed using [5, 6], for example). 

6.1.2. Notation for free II-algebras. Recall (§3.1.1) that II denotes the ho-
motopy category finite wedges of spheres, and let !JT C II-Alg denote the full 
subcategory of free II-algebras (§3.1.2). The functor 7r.: y: -+ II-Alg, when 
restricted to II, induces an equivalence of categories between II and !JT (cf. 
[10, IV, 4]). We can thus describe free II-algebras and their morphisms in terms 
of spheres and homotopy classes of maps between them. 

In particular, we shall write Sk = 7r.Sk for the free II-algebra generated by a 
graded set having a single element in degree k . For k ~ 3 we let 11k denote the 
generator of 7r~+ISk ~ 7rk+ 1Sk ~ Z/2, as well as the corresponding morphism 
Sk+l -+ Sk . 

6.1.3. A partial resolution. We are interested in the resolution of the II-algebra 
7r.X only in degrees ::; r + 2. In the above notation, we can partially describe a 
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C W -basis for a resolution A. -+ Y as follows (omitting all "spheres" Sk with 
k > r + 2 ); subscripts indicate the simplicial dimension: 

(i) Ao = S[o) IIS[~2 , with the augmentation do: Ao -+ Y induced by a on 
S[o) and p on S[~2 , respectively. 

(ii) Al = S[I) II S[~2 . The attaching map do: Al -+ AD, restricted to S[I) , 
is a map of degree 2 S[!) -+ S[o) , while on S[~2 it is the sum of a map 

f d 2 Sr+2 Sr+2 d h Sr+2 Sr o egree (I) -+ (0) an t e map '1r 0 '1r+l: (I) -+ (0)' 

(iii) A2 = S[~I, with do: A2 -+ Al given by '1r : S[r~1 -+ S[!). 
. - r+ I . d- -. r+ I r+ I (IV) A3 = S(3) ,wIth 0: A3 -+ A2 gIven by a map of degree 2 S(3) -+ S(2) . 

(v) An = 0 in degrees S r + 2 n ~ 4. 

6.1.4. The £2 -term. Using this resolution, it is easy to calculate the first three 
nonvanishing rows of £~ k ~ (Ln Qk)7r*X for the Hurewicz spectral sequence 
of X, as follows: ' 

r + 2 Zj2 0 0 0 

r + 1 0 0 Zj2 0 

r Zj2 0 0 0 

o 2 3 k n 
6.1.5. A differential. The spectral sequence converges to the reduced integral 
homology of the Moore space X, where HrX ~ Zj2 and HiX = 0 for i -=1= r. 
Therefore, the differential d 2 : £;,r+1 -+ £~,r+2 is necessarily nontrivial (and so 
an isomorphism). 

2 2 6.1.6. £0,r+2' By §2.2.1, we know that the nonzero element of £0,r+2 ~ Zj2 
may be represented by the generator P E 7rr+2X, modulo the subgroup of 7rr+2X 
generated by the single "composable" a 0 '1r 0 '1r+1 = 2· P , so that the indeter-
minacy is just in the choice of the generator P for Zj4 ~ 7rr+2X, 

6.2. The simplicial space V:X. We now recall the construction of V:X from 
[18, §2], and introduce some notation: 

6.2.1. The cotriple 'J/. V:X is constructed by means of a cotriple 'J/: s: -+ 

s: ' which assigns to each pointed connected space XES: the space 
00 

'J/(X) = V V 
n= I Hom7. (sn ,X) 

V 
n=1 Hom7. (e n+ 1 ,X) 

n+1 e 

For each n ~ I, choose a fixed homeomorphism rjJ: 8 (en+ I) ~ Sn between 
the boundary of the (n + I )-disc and the n-sphere. The (n + I )-disc indexed 
by F: en+ I ---+ X is then attached by rjJ to the n-sphere Sn indexed by f = 

FliJ(e'" I) . 
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The counit of r, a natural transformation e: r -+ id,7. ' is given by the 
"evaluation on the index" map ex: r(X) -+ X. This maps the sphere Sn c 
r (X) indexed by I E Hom7. (Sn ,X) into the space X by the map I, and 
similarly for discs. 

6.2.2. VX. The simplicial space VX is then defined by setting VnX = 
rn+Ix, with the usual face and degeneracy maps induced by the counit and 
comultiplication of the cotriple (cf. [2, I, §4.1 D. 

To avoid confusion, the face and degeneracy maps of VX will be consid-
ered to be "horizontal" (by analogy with the bisimplicial set SVX) and will be 
marked with a superscript h (e.g., dJ). 

6.2.3. Notation lor VX. To describe some of the spheres of VX, we can use 
the following notation: 

For any map I E Hom7- (Sn ,X) , we denote the n-sphere in VaX indexed 
by I by SU)' Similarly, if F E Hom7. (en+I ,X) is a nullhomotopy of I, we 
denote the corresponding (n + I )-disc in VoX by e~;)1 , so that S~f) ue~;/ c VaX. 

In certain special cases, we can also use such a notation for the spheres of ~X 
(n ~ 1): if the map g: Sm -+ VaX factors through the inclusion S~f) '-+ VaX, 
we denote the m-sphere of ~ X corresponding to g by a double index: Su ,g) , 

and so on. 
In such cases, the face maps of VX have a particularly simple description. 

For example, the face map d;: VI X -+ VoX on S~f ,g) is just I: S~f ,g) -+ 

S;~) '-+ VoX, while d~ is given by a homeomorphism SUo ,g) -=. S~fog) '-+ VaX. 
Other face maps on such spheres are also included by suitable "compositions of 
indices." 

6.3. The differential d 2 • We now want to understand the nontrivial differential 
of §6.15: 

6.3.1. The double complex. Recall from §2.1.3 that our spectral sequence is the 
Quillen spectral sequence of the bisimplicial Abelian group ZS VX. If K is the 
functor which takes a simplicial Abelian group to its associated chain complex 
[11, p. 235], then applying K twice to ZSVX yields a double chain complex 
C .. ' = K(ZSVX) , and our spectral sequence is isomorphic to the usual spectral 
sequence of this double complex [3, Chapter XV, §6], with E~,k ~ H; H{ c.,. . 
6.3.2. Eg,r+I' In the notation of §6.2.3, we have the following spheres in VX: 

Choose some map a: Sr -+ X representing the element a E 7rr(X) ; as above, 
we denote by S~a) the corresponding r-sphere in VaX. Similarly, let S(a ,I) C 

~ X correspond to a map t: Sr ---> S~a) '-+ VaX of degree 2, and let S~;,II ,h) C r-;X 
h Sr+ I Sr+ I V X . Sr correspond to a map: ---> (a ,1) '-+ I representmg YJr E 7rr+I (a ,I) • 
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The generator of H; H;~I C.,. ~ Ei,r+l ~ Z/2 may then be represented by 
the element l·a E C2,r+l ~ E~,r+l' where a E Sr+lS~;,II,h) is a singular (r+ 1)-

simplex representing a generator of Hr+ I S~;,ll ,h) . 

6.3.3. A diagram chase. With this description, we need only the usual diagram 
chase to calculate the differential of §6.l.S: 

(i) The horizontal differential oh: Hrt~l C2 ,. ~ H;~l C1 ,. is given as the alter-
nating sum of the horizontal face maps, so that by §6.2.3 we have: 

h h h h '" o (1· a) = (do (a) - d1 (a) + d2 (a)) = (hJa)) - (a ) + (a ), 

. h ' S Sr+l " r+l. . . WIt a E r+l (aol,h) and a E Sr+l S(a ,Ioh) belllg singular (r + i)-SImplIces 
representing generators in homology, and h. (a) E Sr+l S~a ,1) a singular (r + 1)-
simplex representing the generator flr E nr+1 S~a ,I) . 

(ii) Since Hr+1S;a,l) = 0, the cycle h.(a) E ZSr+lS~a,l) has a singular (r+2)-
chain Y E ZSr+2S~a,t) with O"(y) = hJa). 

Furthermore, a 0 t: S~aot) ~ X (representing 20: E n rX ) is nullhomotopic, so 
that the sphere S~aOI) C VoX indexed by a 0 t has various (r + 1 )-discs attached 
to it, corresponding to all possible nullhomotopies of a 0 t: let F: er+ I ~ X be 
one such nullhomotopy, and e~;~ c VaX the corresponding (r + 1 )-disc. 

We can therefore extend the map h: S;;o\ ,h) ~ S;aol) to a map Ch: e~;~Ch) ~ 
r+ I h r+ 2 V X . h d Sr+ I . I h elF) , were elF ,Ch) C I IS attac e to (aol,h)' In partlcu ar, we ave a 

singular (r + 2)-simplex (E Sr+2e~rCh) with OV (1 . () = a' , which represents 
f H~ (r+2 Sr+l ) a generator 0 r+2 elF ,Ch)' (aol,h) . 

Similarly, since [t 0 h] = 2flr = 0 E nr+1Sr , we can choose a nullhomotopy 
G: er+1 ~ S~a) for to h; let <;~) C ~X be the corresponding (r + 2)-disc. 
We have a singular (r + 2)-simplex " E Sr+2e;;~G) with OV (n = a" . Thus 

/! , '" h v o (y-(+n=(h.(a)-a +a )=0 (l.a)EHr+1C1,. 

(iii) Finally, d2 (a) E EL+2 is represented in 

C ~Eo o .r+2 - 2,r+2 

by oh (y - ( + n , where oh = d~ - d~ . 
By §6.2.3 we have oh(y) = tJy) - ;/; but neither of the (r + 2)-chains 

t.(y) E ZSr+2S;a) and y' E ZSr+2S;aOI) contributes anything to Hr+2 VoX, for 
dimensional reasons. 

Also, oh(() = (Ch).(O - ~, where (Ch).(O E Sr+2S;aOI) again contributes 
nothing to Hr+2 (VaX), and ~ E Sr+2e;;:Ch) represents a generator of 
~ (r+2 Sr+l 
Hr+2 e(FoCh) ' (aoloh))' 



352 D. A. BLANC 

Similarly, oh(n = G*(n-~' , with G)n in S'+2S~a) contributing nothing 
H~ T/ X d):1 S ,+2. f ~ (,+2 S,+l ) to ,+2 ~ 0 ' an .. E ,+2e(aoG) agam a generator 0 H'+2 e(aoG)' (a%h) . 

Now, since the two (r + 2)-cells <;~Ch) and <:o2G) are both attached to 
the same (r + 1 )-sphere S~::tOh) c VaX, they together form an (r + 2)-sphere 
S~;)2 c VaX (though not one of those explicitly included in the definition of 
VaX = r(X) in §6.2.1). Here b: S,+2 -t X represents the element in the Toda 
bracket 

[b] E (ex, 2,17,) C 7r,+2X 

which is determined by the maps a, t, h (representing the homotopy classes 
ex, 2, 17, respectively) and the nUllhomotopies F: a 0 t ~ 0, G: t 0 h ~ 0 . 

Thus the part of oh (y - , + n which does not vanish in H'+2 VaX represents 
~ ,+2 . I ~ ~ 

a homology generator (alb)) E H,+2 S (b) , so m £0,,+2 = H'+2 VaX we have 

h 1 1 ~ 

{o (y -, +')) = (~- ~) = (alb)) E H'+2 VOX. 

Since we know that d 2 {a) = (fJ) E £6,,+2 (§6.1.5), we conclude that the genera-
tor fJ of 7r,+2L,-IRp2 ~ Z/4 is in the Toda bracket (ex, 2,17,) (with the same 
indeterminacy as in the choice of generator for Z/4, by §6.1.6). 

7. RELATED SPECTRAL SEQUENCES 

We now note the existence of two related spectral sequences: one for any 
generalized homology theory (§7.1) and one a "Kunneth spectral sequence" for 
the smash of two spectra (§7.2). 

7.1. Generalized homology theories. First, we can generalize the Hurewicz spec-
tral sequence for ordinary homology H* to any reduced generalized homology 
theory k*, to obtain 

7.1.1. A generalized Hurewicz spectral sequence. Let X E 3'.: be a pointed con-
nected space, and V:X the augmented simplicial space of §2.1.1, with ~v:X c:::: 

X. The realization ~v:X has a filtration by subcomplexes ~ov:X C ~l V:X··· C 
~ V:X, where ~ n V:X is the realization of the n-skeleton of the simplicial space 
V:X (cf. [17, §5]). 

Applying the generalized homology functor k* to this filtration, we obtain 
a spectral sequence abutting to k*~ V:X ~ k*X, with £; 5 = 7r ,k2 J':X, as in 
[17, Proposition 5.1]. The spectral sequence converges stro~gly to k*X if k* is 
connective. 

7.1.2. The £2 -term as derived functors. Recall from §6.1.2 that the functor 
7r* : II -t.'iT induces an equivalence of categories between II, the homotopy 
category of finite wedges of spheres, and !T c II-Alg, the full subcategory of 
free II-algebras. Thus, we can describe a functor on .r (noncanonically) by 
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specifying it on II. Moreover, we only need a functor defined on :T in order 
for the derived functors to be defined for all II-algebras, by §3.2.4. 

In particular, for any generalized homology theory k* each of the functors 
- 2 k j : hoy;' -+ Abgp defines a functor k j : :T -+ Abgp; as in §3.3, the E -term 

of the above generalized Hurewicz spectral sequence may be described in terms 
of derived functors: 

2 -
En,j = 7rnkj V.X ~ L n(k)7r*X. 

Thus, if k* is connective, the proof of Theorem 4.1 carries over to yield a 
similar vanishing line for the E2 -term. If the coefficients k* (pt) are torsion 
free, Corollary 4.l.1 (ii) also applies. 

7.2. A stable spectral sequence. It should be pointed out that a stable version 
of the Hurewicz spectral sequence has long been known: in [9, Theorem 4.8], 
T. Y. Lin describes a Kilnneth spectral sequence for the smash of two spectra, 
as follows: 

Let 1C* denote the stable homotopy ring of spheres: 1C* = 7r*So, and let 
X, Y be two spectra, with Y connected. Then there is a spectral sequence 
converging to 7r*(X 1\ Y), with E;,5 ~ Torn. (7r*X, 7r* y) (cf. [1, p. 7]). Thus, 
if Y is a spectrum corresponding to a connective homology theory k*, this 

2 gives us a spectral sequence converging to k*X, whose E -term depends only 
on k* and the 1C* -module structure of 7r*X. 
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