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CURVATURES AND SIMILARITY OF OPERATORS WITH 
HOLOMORPHIC EIGENVECTORS 

MITSURU UCHIYAMA 

ABSTRACT. The curvature of the holomorphic vector bundle generated by eigen-
vectors of operators is estimated, and the necessary and sufficient conditions for 
contractions to be similar or quasi-similar with unilateral shifts are given. 

1. INTRODUCTION 

Let H be a separable complex Hilbert space, g,(n, H) the set of all n-
dimensional subspaces of H, and Y a mapping from an open connected set n 
in the complex plane C to g, (n , H). Then Y is called a holomorphic curve 
over n, if for each Wo in n, there is a nbhd ~ of Wo and vector valued 
holomorphic functions Yiw on ~ (i = 1, ... ,n) satisfying Yw = V{Yiw : i = 
1 , ... , n} for W in ~. In this case, the Hermitian holomorphic vector bundle 
(El" n, n) is defined as 

Ey = {(x, w) E H x n: x in Yw }, n(x, w) = W, 

and hence for this bundle, the canonical connection and curvature ~ are well 
defined [19]. We call Y1w ' ••• , Ynw a frame for El' on~. The matrix form of 
~ (w) with respect to the above frame is 

(1.1 ) - 8~ (Gy-I~C::) , 

where Gl'(w) is the Gram matrix whose (i, j) component is (yj(w) , Yi(W)) 
(cf. [4]). 

In case of n = 1 , we have especially 

8 2 2 
~(w) = - 8w 8w log IIY1wli . 

We explain some notations about relations between given bounded operators 
T1 , T2. Suppose there is an intertwining bounded operator X such that XT1 = 

d i 
T2X , then we denote by TI -< T2 , TI -< T2, TI -< T2, TI ~ T2 ,and TI ~ T2 ' 
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X with dense range, X injective, quasi-affinity (that is, X is injective and has 
dense range), invertible, and unitary, respectively. Moreover we write TI '" T2 
and say that TI and T2 are quasi-similar, if TI -< T2 and T2 -< TI . In 
[4], Cowen-Douglas defined the class Bn(Q) consisting of bounded operator T 
satisfying 

(a) 0. c a(T) , 
(b) range(T - w) = H for each w in 0., 
(c) V wEn ker( T - w) = H , 
(d) dimker(T - w) = n for w in O. 

Now we introduce the class B: (0.) as 

Definition. T belongs to B:(Q) if there is a holomorphic curve y: 0 ~ 
g,(n, H) such that y(w) c ker(T - w), and V wEn y(w) = H. It is known 
that Bn(O) c B:(Q). If T is in B:(Q) , then the bundle is well defined by the 
curve y(w). We denote it and its curvature by ET and %T' 

The purpose of this paper is to estimate %T of T in B:(Q) and to research 
what kind of operator is similar or quasi-similar to the shifts. 

Now we show some examples. Let {en}:o be a C.O.N.B. of H and A 
a weighted shift with positive weight {an}:I' that is Aen = an+len+l . Set 
bn = a l ... an and 'I (A) = limn--+oo(infk bk+n/bk)l/n. Then we have A* E 
BI ({ w: Iwl < 'I (A))) , (see [13 or 12]). Especially, the adjoint of unilateral shift 
S corresponding to an = 1 for all n and the adjoint of the Bergman shift B 
corresponding to an = In/(n + 1) forall n are both in BI(D) , where D is the 
open unit disk. And JYs.(w) = -1/(1 _lwI2)2 and ~.(w) = -2/(1 _lwI2)2. 

In [17, 18] we studied a contraction T with I - T* T in the trace class, 
and showed that S; -< T* if and only if T is in CIO (that is, Tn X ..... 0, 
T*n X ~ 0 as n ~ 00 for every X =f. 0) [17], and that these are equivalent 
with T* E B:(D) [18]. We should notice that B:(Q) c B:(Ll) for Ll c 0 (cf. 
p. 193 of [4]). 

2. CURVATURES 

It was shown that the curvature of a vector bundle generated by a holomor-
phic curve was nonpositive, and if T is in BI (0) , then 

-I * (2.1) %T(W) = -traceNwNw ' 

where Nw = (T - w)l ker(T-W)2 [4]. Let 0. be a finitely connected Jordan region 
and cl 0 (closure of 0.) is a spectral set for T, that is a( T) c cl 0 and 
II/(T)II :5 11/1100 for every rational function 1 with no poles in clQ. Then the 
curvature of T in BI (0) was estimated by Misra [9] as 

~ 2 
(2.2) %T(W) :5 -Kn(w, 'III) , 

where Kn is the Szego kernel of O. His proof is based on (2.1). In this section 
we will extend (2.2) to the case of the B:(O) by virtue of the canonical model 
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theory of contraction due to Sz.-Nagy and Foias [14]; let T be a contraction 
on H in c'o' that is T*n x -+ 0 for x in H. Then there is the characteristic 
function e(z), which is a B(FI' F2)-valued holomorphic contractive function 
defined on D and e(z) is isometric from FI to F2 a.e. on the unit circle, 
where FI and F2 are the subspaces of H called defect spaces of T. And then 
T on H is unitarily equivalent to See) on H(e) given as the following: 

(2.3) H(8) = H 2(F2) e eH2(FI ) , S(8)* = M;IH(8) ' 

where M z is the multiplication by z on H 2 (F2 ) , which is the Hardy class of 
F2-valued holomorphic functions on D. We remark that Sn := S(f)" '(f)S ~ M z 

2 on H (en)' 

Theorem 2.1. Let y: n -+ g,(n, H) be a holomorphic curve such that n c 
D, n is open, V wEn Y (w) = H. Suppose there is a contraction T such that 
yew) c ker(T* - w) for WEn. Then ~(w) (= %T.(W» ~ -Inl(l-lwI2)2 
for w in n. 
Proof. Since T*ky(w) = wky(w) -+ 0 (k -+ 00), IIT*II ~ 1 implies T E c.o' 
So we may consider See) of (2.3) instead of T. For any W o En, there 
is a nbhd d of W o and a frame Ylw"'" Ynw for Yw on d. Then, since 
M;yiw = wYiw ' we can represent Yiw as the function in H(e): 

(2.4) y. (z) = yiw(O) for zED. 
IW 1 - wz 

Thus we have 

(2.5) 

and 

(YjW' YiW)H(8) = -21 r (Yjw(z) , Yiw(z»F Idzl 
7t laD 2 

1 
1 -lwl2 (Yjw(O) , yiw (O»F2 ' 

(2.6) 

which implies Yiw(O), ... , Ynw(O) are linearly independent. Hence, if we set 
Y~ = V{Yiw(O): i = 1, ... , n} for each WEd, then yO: d -+ g,(n, F2) is a 
holomorphic curve. From (1.1) and (2.6), it follows that 

(2.7) ~(W) = - In 2 2 +~o(w) for w in d. 
(1 -Iwl ) 

Since ~o(w) ~ 0, we can conclude the proof. 

Proposition 2.2. If T is a contraction in B~(D) and %T(W) = Inl(1 _lwI2)2 
on an open set d cD, then T ~ S; . 
Proof. Since %T(W) = Jfs.(w) for w in d, from Proposition 3.3 of [4], there 
is a holomorphic isometri~ bundle map U (w) satisfying U (w) ker( T - w) = 
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ker(S: - w) for w in Ll. Since T is in B;(Ll) , by the rigidity theorem (cf. p. 
202 of [4]), there is a unitary U on H such that Uker(T - w) = ker(S: - w) 
and hence UT = S: U. Thus the proof is complete. 

Let ill' n 2 be connected open sets, y: n 2 ---> g,(n, H) a holomorphic 
curve, and ¢ an injective holomorphic mapping from n l to n 2 • Then by the 
chain rule and (1.1) we have 

(2.8) ~o<p(w) = 1¢/(W)12~(¢(W)) for win n,. 

Proposition 2.3. If T is a bounded operator in Bn(n), where n is an open 
connected set, then 

%T(W) < - 2 In 22 forw En. 
- (lITil -Iwl ) 

Proof. From (2.8) %T/IITII(w/ liTII ) = II TIl 2 %T(W) follows. Since Q/IITII cD, 
Theorem 2.1 implies the above inequality. 

Theorem 2.S. Let n be a p-ply connected Jordan region, and T E B; (Ll) for 
some Ll en. Suppose cl n is a spectral set of T. Then we have 

~ 2 
Jt;(w) ~ -Kn(w, w) In for WEll. 

Proof. For each Wo in Ll there is a holomorphic function F from n to a 
p-sheeted disc such that F(wo) = 0, F' (wo) =/; 0, and F is continuous on cl n 
(cf. [7,2]). From Mergerlyan's theorem there is a sequence of rational functions 
with no poles in cl n which uniformly converges to F on cl n. We denote it by 
{Rn}. Then Riesz functional Rn(T) is well defined and {Rn(T)} converges 
uniformly. We represent its limit by F(T). Then for a holomorphic curve 
y(w) C ker(T - w) on Ll, IIF(T)II ~ IIFII = 1, and {F(T) - F(w)}y(w) = 0 
follows, because {Rn(T) - Rn(w)}y(w) = o. From F' (wo) =/; 0 we can take 
neighbourhoods n, of Wo and n 2 of 0 such that Flo. : n, ---> Q 2 is bijective. 

I 

Let ¢ be the inverse of Fin, . Then we have {F(T) - z}y(¢(z)) = 0 for z in 
n 2 • Since 

V{y(¢(z)): z E n 2 } = V{y(w): WEn,} = V{y(w): WEn} = H 

follows from p. 194 of [4], a contraction F (T) and curve y 0 ¢ satisfy the 
conditions of Theorem 2.1. Thus at the origin ~o<p(O) ~ -In' from which, 
using (2.8), we get 

I 2 ~ 2 
~(wo) ~ -IF (wo)1 In = -Kn(wo' Wo) In' 

because the second equality follows from p. 118 of [2]. Consequently we can 
conclude the proof. 

At the end of this section we consider the question proposed on p. 329 of 
[5], that is, if T, and T2 are contractions in B, (D) such that %T ~ %T ' then 

I 2 
does there exist a bounded operator X such that XT, = T2X? Corollary 2.2 
shows %T ~~. for any contraction T in B, (D), and the existence of X 
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with dense range satisfying XT = S* X is well known (cf. [16], or see the proof 
of Proposition 3.6). Hence the question is true in the case of T2 = S* . In [10] 
Misra showed that a contraction T in B\ (D) is unitarily equivalent to ¢(T) for 
every Mobius transformation ¢ of D if and only if %T(W) = -o:/(1-lwI2)2, 
where 0: is a constant and 0: ~ 1 . 

Proposition 2.6. Let T\, T2 be contractions in B \ (D) with curvature %T (w) = 
_o:j(1_lwI2)2 (O:i~l). Then next conditions are equivalent: (i) %T ~%T' 

2 I 

(ii) there is a bounded operator X such that XT2 = ~X, and (iii) T2 -< T) . 
Proof· Let Ai be the weighted shift with weight ani = In/(O:i + n - 1) for 
i = 1, 2. Then we have r) (Ai) = 1 and hence A; E B) (D). Since the 
square of the norm of a holomorphic eigenvector of A; - W is (1 - IwI2)"! , 
~;(w) = %T/W) , and hence A; ::::: Ti (see [5]). Thus we may identify A; 
with Ti . Assume (i). Then diagonal quasi-affinity Y defined by Yen = 
{(a\2, .. an2)!(all, .. an))}en satisfies YA) = A 2 Y and hence Y*T2 = 
T) y* , which implies (iii). Assume (ii). Since X* A) = A2X* , setting bm n = 
(X* en' em) , we obtain 

b a = { 0 (m = 0), 
m n+\ n+) \ b a (m> 1). m-\n m2 -

Since there is a nonvanishing bi} (i ~ j), boundedness of X implies that 
n;;:) a i+k 2/ a}+k) is bounded. To show (i), suppose 0:) > 0:2 , then each term 
of the infinite product is larger than 1. Hence 

f= ( ( 0: \ + j : : - 1 / 0:2 + /: : - 1) _ 1 ) 
k=) 

must converge, however this is impossible. Consequently (i) follows. (iii) obvi-
ously implies (ii), and the proof is complete. 

We can apply the previous result to show that S -< B, where B is the 
Bergman shift, but there is not a bounded operator X such that X B = SX, 
though it is possible to get them by another simple method. 

3. EXACT SEQUENCE AND INTERTWINING OPERATORS 

In this section we give the conditions for a contraction T to be T -< Sn or 
T;::;; Sn . At the beginning we will refer to a result about exact sequence of Hardy 
classes and use it to show that if T -< Sn' then T* E Bn(D). A B(F) , F2 )-

valued holomorphic function r(z) on D is called bounded if sup zED Itr(z)11 < 
00. In this case a bounded operator r from H2(F)) to H 2(F2 ) is determined 
by (r f)(z) = r(z)f(z) . 

Theorem 3.1. Let r), r 2 be operator-valued bounded holomorphic functions on 
D, and suppose 
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is exact and r 2 has the dense range. Then the next sequence is exact for every 
z in D: 

F rl(z) F r 2(z) C 0 
1 ~ 2 ~ n~· 

Proof. Since r 2(z)rl (z) = 0, we have only to show kerr2(z) c r 1 (z)F . Since 
r 2 has the dense range, from the Cauchy integral formula, the range of r 2(z) 
is dense and hence coincident with Cn • Thus r; (z) := r 2(z)* is injective 
with closed range. Fix an arbitrary Zo in D. There is an isometry V from 
Cn to F2 such that det v*r;(zo) =f. O. Then Q:= {z ED: det v*r;(z) = O} 
is a set of isolated points. In the same way as Theorem 1 of [17] or p. 94 
of [8] we can obtain a B(F, F2)-valued bounded holomorphic function <l>(z) 
defined on D such that r; (z)Cn EB <l>(z)F = F2 for z E D\Q, where F is 
an auxiliary Hilbert space. This implies kerr2(z) = <l>(z)F for z E D\Q and 
hence r2<l> = O. Thus we have <l>H2(F) c kerr2 = r 1H 2 (F1). Taking F-
valued constant functions we get <l>(z)F c r l (z)FI for zED. Thus we have 
kerr2(zo) = <l>(zo)F c r l (zo)FI . The proof is complete. 

Remark. The converse assertion of the theorem is false. In fact, set 

r I (z) = (exp l~ ~ ), r 2 (z) = (0, 1), 

then 

is exact for each z, but 
2 _ z+1 2 c 2 _ r1H (C1) - exp z _ 1 H (C1) EB 0 *- H (C1) EB 0 - kerr2• 

Corollary 3.2 (K. Takahashi [16]). Let T be a contraction with T -< Sn' then 
T* E Bn(D). 

Proof. Since T is in class C.O' we may identify S(()) given by (2.3) with T. 
Let X be a quasi-affinity such that XS(()) = SnX. Then, from the lifting 
theorem (see [14]) there is a B(F2' Cn)-valued bounded holomorphic function 
f(z) defined on D such that r() = 0 and Xh = rh for h in H(()). That X 
is a quasi-affinity implies that 

H2(FI) ~ H 2(F2) I.. H2(Cn ) 

is exact, and that r has the dense range. Thus from the theorem we get ()(w)F1 
is closed and dim{ F2 e ()( w )F1} = n for w in D. The next equivalent condi-
tions: 

(1) ()(w)FI is closed in F2 , 

(2) {_-:zH2(F2) EB ~~~ is closed in H2(F2) ' 
(3) r::zH2(F2) + ()H2(F1) is closed in H2(F2) ' 
(4) PH (()) 1Z:::zH(()) is closed in H(()) , 
(5) (S(()) - w)(/ - WS(()))-I H(()) is closed in H(()) , 
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show that the range of (S(O) - w)* is closed for w in D. Similarly we have 
dimker(S(O) - w)* = n, hence the proof is complete. 

Remark. The latter half in the above proof is trivial if we notice that 0 is the 
characteristic function of S(O) [14]. But we showed it directly. 

Theorem 3.3. Let T be a contraction. Then T ~ Sn if and only if To. E B~ (D) 
and there is a frame {Ylw, ... , Ynw } for ker(To. - w) on D such that 

sup(1 -lwI2)IIYiwIl2 < 00 for each i. 
wED 

Proof. Let {e l , ... , en} be the O.N.B. of Cn . Then eigenvectors of (S; - w) 
are el /(1 - wz), ... , en/(l- wz). If X is the quasi-affinity such that XT = 
SnX, then Yiw = X" ed(1 - wz) satisfies the norm condition. The rest of 
"only if' part is clear. In order to show "if' part, we consider S(O) instead of 
T. Then Yiw is given by (2.4). By the norm condition and (2.6), IIYiw(O)1I is 
uniformly bounded for w in D. For each z in D, we determine the operator 
r(z): F2 -+ Cn by 

n 
r(z)y = ~)y, YUt(O)ei· 

i=1 

Then from (2.5) we have r(z)O(z) = 0, and clearly SUPZED IIr(z)1I < 00. Let 
us determine the bounded operator X: H(O) -+ H2(Cn) by Xh = rh for h in 
H(O). Then it clearly follows that XS(O) = SnX, For any i, k, and any' , 
w in D, since z is the variable of a function, we have 

( xo. ei Yk'(O)) = (ei " (Yk,(O) , YiZ(O))ei ) 
1 - wz' 1 - 'Z 1 - wz ' W 1 - 'Z H(O) ] H2(Cn ) 

= (YiZ(O) , Yk'(O)) = (p 2 Yiz(O) , Yk'(O)) 
1 - wz 1 - 'Z H (F2) 1 - wz 1 - 'Z 

L2(F2) H2(F2) 

( Yiw(O) Yk'(O)) 
= 1 - wz' 1 - 'Z = (Yiw ' Yk')H(O) ' 

H(O) 

which shows that X* ed(1 - wz) = Yiw ' because V k, Yk' = H(O), and hence 
that X* has the dense range. Thus X is injective. Since the rank of r(z) is 
n, SnlclXH(O) = SnlclrH2(F2) is unitarily equivalent to Sn' To accomplish the 
proof, it suffices to take P X to be the intertwining quasi-affinity, where P is 
the projection from H2(Cn) to clXH(O). The proof is complete. 

Suppose T be a completely nonunitary (c.n.u.) contraction. In [1], Alexan-
der called vectors hI' ... ,hn analytically independent under T if a relation 
<PI (T)hl + ... + <pn(T)hn = 0 with <Pi E HOC implies <PI = ... = <Pn = 0, and 
showed that Sn -< T if and only if T has n cyclic vectors which are analyti-
cally independent under T. We remark that a contraction T with the adjoint 
in B~(D) satisfies T*n -+ 0 so that T is c.n.u. 
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Corollary 3.4. Let T be a contraction. Then T ~ Sn if and only if T has n-
cyclic vectors, T* E B~(D) and there is a frame {Ylw , ... , Ynw } for ker(T* -w) 
on D such that 

2 2 
sup(1 -iwi )IIYiwll < 00 for each i. 
wED 

Proof. We have only to show "if' part. From above theorem T -< Sn fol-
lows. Let X be a quasi-affinity satisfying XT = SnX , and hi' ... ,hn cyclic 
vectors for T. Then Xh l , ... , Xhn are cyclic vectors for Sn' It is triv-
ial to show that for each Z in D (Xhl)(z), ... , (Xhn)(z) spanCn and hence 
det((Xhl)(z) , ... , (Xhn)(z)) i= O. Thus, from [1], Xh l , ... ,Xhn are analyt-
ically independent under Sn' Since X ¢i(T)hi = ¢i(Sn)(Xh) , hi' ... ,hn are 
analytically independent under T. Thus we obtain Sn -< T and hence Sn ~ T. 

In [20], P. Y. Wu gave a necessary and sufficient condition for the character-
istic function of T to be T ~ Sn' That S~ has a cyclic vector was shown by 
D. Sarason. Now we can extend it as follows: 

Theorem 3.5. If Q is a connected open set and T* E B~ (Q), then T* has a 
cyclic vector. Especially if T is a contraction with T* E B~ (D), then S -< T* . 
Proof. Fix an arbitrary W o in Q, then there is a nbhd .1 of wo' and a frame 
Ylw ' .,. ,Ynw for ker(T* - w) on .1. Since B~(Q) C B~(.1), 

V {YiW : 1 ~ i ~ n, w E.1} = H 

follows. By the Taylor expansion we have V {yjk): 1 ~ i ~ n, 1 ~ k < oo} = H, 
where y;k) = (dkYiwldwk)w=wo E H. From (T* - w)yiw = 0, it follows that 

(T* - wo)y;kl = kyjk-l) . Setting ak = 11k!, clearly 2::;:0 Ily;k)lladk! < 00. In 
case of n = 1, x = 2::;:0 y~kl ad k! is a cyclic vector. In fact, 

implies that 

00 y(k) 
(T* - wo)m x = L k! am+k 

k=O 

II (T* - wo)m x - yiOll1 ~ am+1 f IIYi~)11 am+k ~ am+1 (f Ilyi~)11 ak ) -+ 0 
am am k=1 k. am+1 am k=1 k. al 

as m -+ 00. Thus yiO l E V:=o(T* - wo)m x . From 

11
_1 ((T* - W )m-I x _ a /Ol) _ y(llll 
a ° m-I 1 1 m 

< am+1 f Ily;k)11 ak -+ 0 (m -+ 00), 
- a k! a2 m k=2 

we have y~l) E V:=o(T* - wo)mx . Similarly we get y;kl E V:=o(T* - wo)mx , 
consequently V:=o(T* - wo)m x = H, and hence V:=o T*m x = H. In case of 
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n> 1 
(I) (2) (n-I) 

(0) Y2 Y3 Yn 
X = YI ao + ITal + T!a2 + ... + -:-(n-'-'_----:-l7":')!an- 1 

(n) (n+l) 
YI Y2 + -, an + -( -=---1-)' an+1 + ... n. n + . 

is a cyclic vector for T* . To show the rest, suppose ¢( T*)x = 0 for ¢ E H oo • 

Since ¢(T*)T*rnx = T*rn¢(T*)x = 0, we have ¢(T*) = O. From T*YiW = 
WYiw ,it follows that ¢(T*)YiW = ¢(W)Yiw for every W in D and hence ¢(w) = 
0, which implies that x is analytically independent under T* . Consequently 
we get S -< T* . 

Proposition 3.6. If T is a contraction and T -< Sn' then there is an invariant 
subspace L for T such that TIL ~ Sn' 
Proof. Let us consider S( 0) instead of T. Then the eigenvector YiO of T* is 
given by (2.4). Since it is constant vector valued, we can determine a bounded 
operator Y from H2(Cn) = H 2(C I )tB .. ·tBH2(C I ) to'H(O) by 

Y(hl tB··· tB hn) = PH((})(hlylO + ... + hnYnO)' 

Suppose Y(hl tB ... tB hn) = O. Then E hiyiO E OH2(FI ) so that there is 
f in H2(FI) such that EhiyiO = Of. By (2.5) and linear independence of 
ylO(O) , ... , YnO(O) , we have hi(O) = 0 and f(O) = O. Since 

L h;(O)yiO(O) = 0' (O)f(O) + 0(0)/ (0) = 0(0)/ (0) , 

we have h;(O) = 0 and r (0) = 0 too. Thus to show hi = 0 it suffices to 
continue this process. Set L = cl YH2(Cn). Then TL eLand Sn -< TIL' 
Let X be a quasi-affinity satisfying XT = SnX, Then XY is injective and 
commutes with Sn' From the characterizations of invariant subspaces for Sn' 
it follows that SnlclXL = SnlclXYH2(Cn) ~ Sn' and hence TIL -< Sn' Thus we 
have TIL ~ Sn and the proof is complete. 

Next we will give the conditions for contractions to be similar to Sn by using 
the Rosenblum's infinite corona theorem [11]. Suppose 

n 00 

sup L L Ihij (z)1 2 < 00, where hij E H OO • 

zED j=1 i=1 

Then a B(Cn, 12)-valued holomorphic function A(z) = (hij(z)) is bounded on 
D. Under this setting we have 

Proposition 3.7. There is a B(P, Cn)-valued bounded holomorphicfunction B(z) 
such that B( z )A( z) = I for z in D, if and only if there is a positive constant 
J such that IIA(z)xll ~ Jllxll for every x in Cn and every z in D. 

Proof. Suppose IIA(z)xll ~ Jllxll. Then A(z)* A(z) ~ J2 and hence 
2n * L 2 J ~ det(A(z) A(z)) = I detAi ... i (z)1 , 

I n 
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where Aj ... j is the n x n submatrix of A. Since det(A(z)* A(z)) is upper 
1 • 

bounded, by the infinite corona theorem, there are bj ... j E H oo such that 
1 • 

sup I: Ibj ... j (z)1 2 < 00, I:bj ... j detA j ... j = 1 on D. 
zED. . 1 • I. I. 11< ... <1. 

Thus we can construct a bounded holomorphic function B(z) such that 
B(z)A(z) = I in the same way as Fuhrmann [6]. The converse is trivial, so 
we can conclude the proof. 
Theorem 3.8. Let T be a contraction. Then T is similar to Sn if and only if 
T* E B~(D), and there is a holomorphic frame Ylw ' .,. , Ynw for ker(T* - w) 
and positive constants M, J such that for any Xj E C and WED 

(3.1) M~ Ixl ;, (1 ~ Iwl') II~ViWII' ;,. ~ Ixl 
Proof. We use the notations in the proof of Theorem 3.3. Let Y be an invertible 
operator satisfying YT = Sn Y . Then Yjw = Y* ej( 1 - w z) satisfies (3.1). It is 
clear that T* is in B~(D) . Thus we must only show "if' part. We represent Yiw 
as (2.4), and determine r(z): F2 ---- en by r(z)y = E;=I (y, Yjz(O))e j . Then 
we have r~(z)x = E;=I (x, ej)yjz(O) for x E Cn , zED. Thus, since 

IIr~(z)xI12 = 11I:(x, e;)Yjz (o)11 2 

= (1 - Iz12) III:(X , ej)yjz 112 for every ZED, 
applying Proposition 3.7, r(z) has the bounded right inverse. Therefore we 
have H2(Cn) = rH2(F2) = rH(O) , because ro = O. Consequently X given by 
Xh = rh is an invertible operator from H(O) to H2(Cn) satisfying XT = SnX 
(see the proof of Theorem 3.3). Hence the proof is complete. 

We observe that we can substitute (1 - IwhG(w) for the middle term of 
(3.1), where G(w) is the Gram matrix of Yiw ' ... , Ynw ' 
Proposition 3.9. The contraction T is similar to the isometry if and only if T 
satisfies one of the following equivalent conditions: 

(a) there is a positive constant J such that II Tn xii ~ Jllxll for x in H. 
(b) There is a power-bounded operator B satisfying B T = I . 
(c) There is a bounded operator B such that B T = I and for any w in D 

(I - WB*)-I exists and SUPWED(1 -lwl)lI(I - WB*)-III < 00 

Proof. In [15], Sz.-Nagy and Foias showed that T satisfies (a) if and only if T 
is similar to isometry. (a) ¢:> (b) is trivial. Moreover it is clear that (c) follows 
from similarity of T and isometry, and its converse is able to be shown in the 
same way as Castern [3], by considering 

00 00 I: rn eint B*n + I: rn e -int T*n 
n=1 n=1 

instead of E:-oo rn eint Sn on p. 191 of [3]. 
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At the end of this section we remark that from the above proposition we can 
get conditions for T to be similar to Sn . For instance it suffices to add T E C.O 
and dim ker T* = n to each condition of the above. 
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