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ALGEBRAIC DISTANCE GRAPHS AND RIGIDITY

M. HOMMA AND H. MAEHARA

Abstract. An algebraic distance graph is defined to be a graph with vertices in

En in which two vertices are adjacent if and only if the distance between them

is an algebraic number. It is proved that an algebraic distance graph with finite

vertex set is complete if and only if the graph is "rigid". Applying this result,

we prove that ( 1 ) if all the sides of a convex polygon T which is inscribed in

a circle are algebraic numbers, then the circumradius and all diagonals of Y

are also algebraic numbers, (2) the chromatic number of the algebraic distance

graph on a circle of radius r is oo or 2 accordingly as r is algebraic or not.

We also prove that for any n > 0, there exists a graph G which cannot be

represented as an algebraic distance graph in En .

1. Introduction

Let X be a nonempty point set in a Euclidean space, and D a set of real

numbers. Let X(D) denote the graph with vertex set X in which two distinct

points x, y are adjacent if and only if

\x-y\ eD.

The graph X(D) is called the D-distance graph on X. Specifying D in various

ways, there arise many interesting graphs. If D = {1}, we have unit distance

graphs, e.g., [4, 9]. The case D = [0, 1] is a generalization of unit interval

graphs, e.g. [7, 8, 10]. Letting D be the set of integers, Anning and Erdös [1]

proved that if X(D) is a complete graph of infinite order, then all points of X

lie on a line. Coloring problems of the real line for various D are discussed in

[6].
In this paper we consider the case D = A, the set of all algebraic numbers.

We call X(A) the algebraic distance graph on X. We prove that for a finite

set X, the algebraic distance graph X(A) is complete if and only if X(A) is a

"rigid" graph. Applying this result, we have that if the sides of a convex polygon

T, which is inscribed in a circle, are all algebraic numbers, then all diagonals of

T and the radius of the circumcircle of T are also algebraic numbers.

Concerning the chromatic number of the algebraic distance graph on a circle

Cr of radius r, we have

( oo   if r is algebraic,

r 1 2     otherwise.
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It is not difficult to see that every finite graph G is represented as an algebraic

distance graph in Euclidean space. We also prove that for any integer zz > 0,

there is a finite graph G which cannot be represented as an algebraic distance

graph in Euclidean zz-space En .

2. Preliminary results

In this section the set D is not specified. Let D = R - D, the complement

of D in the reals. Throughout this paper, X stands for a nonempty point set

in Euclidean space. The following lemma is clear.

Lemma 1. A graph G is isomorphic to X(D) if and only if G is isomorphic to

X(D), where G is the complement of the graph G.    D

Theorem 1. Suppose that both D and D contain at least one positive, number.

Then every finite simple graph G is isomorphic to X(D) for some X.

Proof. Let vx, ... , vn be the vertices of G, and A(G) = (a ¡A) be the adjacency

matrix of G, i.e., a¡¡ = 1 or 0 accordingly as v¡, v¡ are adjacent or not. If

t > 0 is a sufficiently large number (which will be specified later), then the matrix

A(G) + tl (I : the identity matrix) is symmetric and positive definite. (Indeed,

t > n is sufficient because the minimum eigenvalue of A(G) is greater than -zz,

see, e.g., [14].) Hence it can be represented as the product of an (n x /z)-matrix

M and its transpose M' :

A(G) + tI = M-M'.

Let v¡ denote the point in Euclidean zz-space that corresponds to the z'th row

of M. Then the inner product (v¡, v ) = t if i = j, and = ai} if i ^ j.

Therefore,

\v,-vf2 = 2t-2aij.

Now, since both D and D contain at least one positive number, there exists

a frontier point c > 0 of D. Choose two positive numbers a e D, b e D

sufficiently close to c so that (l/a + l/b)\a -b\< l/n . If a < b , we put

t = b2/(b2-a2),       vl = ((b2-a2)/2)x/2v¡.

Then it can easily be verified that \v¡ -v¡\ = a if atj = 1, and = b if a¡j = 0.

Thus the D-distance graph on {vx, ... ,vn} is isomorphic to G. If a > b,

then we can prove that there exists a point set X such that X(D) is isomorphic

to G. Then, applying Lemma 1, we have the theorem.    D

Thus every finite graph is represented as X(A) for some X. The dimension

of the flat spanned by X is denoted by dim(X). For a graph G, let dim^ G

denote the minimum value of dim(X) such that X(A) is isomorphic to G. In

§6, we will investigate dim^ G.

3. Algebraic distance graphs and rigidity

A graph G with vertices in Euclidean space En is called a graph in En.

Thus a graph G in En is a nonempty subset of En in which a number of pairs
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are distinguished as the edges. An isotopy of a graph G in E" with vertex set

X is a parametrized family of embeddings fif.X —» En , 0 < t < s , such that

(1) f0(x) = x for all xeX,

(2) fifx) is continuous on t,

(3) \ftix)-ftiy)\ = \x-y\ for all edges xy to G.
A graph G in En is said to be flexible if there is an isotopy ft of G with

l/íW-/í(v)|^|x-y|

for some pair of points x, y of G and some ¿. If 07 is not flexible, then 07

is said to be rigid in En . For example, a complete graph in En is always rigid.

For more information on rigidity and flexibility of graphs, see, e.g., [2, 3, 13].

The next theorem will relate rigidity to algebraic distance graphs. A system

of (n + 1) points p¡, i = 0,... ,n, is said to be affinely independent if the

vectors p^px, i = 1, ... , zz, are linearly independent. Thus n points in En

are affinely independent if and only if they span a hyperplane. The following

lemma is clear, and we omit the proof.

Lemma 2. Let Gx, G2 be two rigid graphs in En with vertex sets XX,X2,

respectively. Suppose that Xx n X2 contains a set of n affinely independent

points px, ■■■ , pn- Then the following holds:

( 1 ) If an isotopy ft:Xx —> E" of Gx fixes p., i = 1, ... , n, then f( fixes all
points of 07, .

(2) If a graph G with vertex set Xx l)X2 contains Gx, G2 as subgraphs, then

G is rigid.    D

Theorem 2. For a finite set X c En, the algebraic distance graph X(A) is

complete if and only if it is rigid.

To prove this theorem, we need the following proposition concerning alge-

braic sets, the proof of which will be given in §7.

Proposition 1. Let {fx(xx, ... , xN), ... , fm(xx, ... , xN)} be a collection of

polynomials with coefficients in the set A of all real algebraic numbers. Let

V denote the real algebraic set defined by fx = ■■■ = fm = 0. Suppose that

p = (sx, ... , sN) e V is an isolated point of V. Then sx,... , sN are all

algebraic numbers.

Proof of Theorem 2. It is obvious that if X(A) is complete, then it is rigid.

Suppose that X(A) is rigid. Let zc = dim(X). Then without loss of general-

ity, we may assume that X is in Euclidean zc-space. Let X = {px,p2, ... , p } ,

and p. = (s¡ ,,..., s¡ k),  i = 1,2, ... , n.   We may further suppose that
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px,p2, ... , pk+x span the zc-space and

px = (0,...,0),

p2 = (s2 x,0, ... , 0),

P3 = is3l, s3 2, 0, ... , 0),

pk = (sk x,...,sk k_x,0).

If \p¡ -p. | is an algebraic number, then denote this number by e¡¡, that is, e¡¡ is

the "edge length". Now consider the following system of polynomial equations:

(*) for all "edges" of X(A),

x¡ ¡ = --- = x¡ k = 0   for i= I, ... ,k.

These equations define a real algebraic set V in zczi-space E " , and the point

p = (px, ... , pn) is a point of V . For a moment, suppose that p is an isolated

point of V . Then by Proposition 1, all coordinates of p are algebraic numbers,

and hence the distance between any two points of X is an algebraic number;

therefore, X(A) is a complete graph.

Thus our remaining task is to show that p is an isolated point of V . Suppose,

on the contrary, that V - {p} contains points arbitrarily close to p . Then "the

curve selection lemma" (see Milnor [11, p. 25]) asserts that there exists a real

analytic curve x: [0, e) —► V with x(0) = p and x(t) ^ p for t > 0. Denote

by fifpf the projection of x(t) e Ek x • • • x Ek = Ekn onto the z'th factor Ek ,

that is,
*(0 = iftiPi). • • • - f,iPn)) € Ek x • • • x Ek = Ekn.

Then, since x(f) (0 < t < e) lies on the algebraic set  V defined by (*),

ft: X —► Ek is an isotopy of the graph X(A). And since X(A) is rigid, we have

(1) \fitiPf-fitiPj)\ = \Pi-Pj\    for all z/;.

Furthermore, since the equations x¡ ¡ = ■ ■ ■ = x¡ k = 0, i = I, ... , k, hold

on the algebraic set V, the last k — i + 1 coordinates of fifpf are zero for

i=\,... ,k, that is,

(2) fifpf = K__^, iL___0)
i-l k-i+l

First, we show that ft fixes p¡, i = I, ... , k. This is done by induction

on i. For i = 1 , fifpf = (0, ... , 0) by (2), whence fifpf) = px . Suppose
ffPf = Pt for i < j < k. By (2) we may regard {fifpf, ... , fifPj)} as a

subset of (j - l)-space Ej~x , and by (1) we may regard fit as an isotopy of

the complete graph on {ft(px), ... , ffpA)} . Then since ft fixes p,, ... , py._,

which are affinely independent, it follows from Lemma 2(1) that fifpf = Pj ■

Thus, f fixes px, ... ,pk. Now since these k points are affinely independent,
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Figure 1

applying Lemma 2(1) again, we have ft(q) = q for all q of X. Therefore,

x(t) = p, a contradiction.    D

Example 1. Let G be the graph obtained from the complete graph K4 by re-

moving one edge (see Figure 1). Since any graph in the plane isomorphic to 07

is rigid, as is easily seen, 07 cannot be represented by an algebraic graph in the

plane. However, it can be represented in 3-space. (How ?) Hence dim^ 07 = 3.

4.  A FEW APPLICATIONS

Let T be a triangle with sides a, b, c all algebraic numbers. Then by

Heron's formula, the area of T is also algebraic. Let r be the radius of the

circumcircle of T. Then by the sine law, c/(siny) = 2r, where y is the angle

opposite the side c. Hence the area of T is represented as (l/2)ab(siny) =

abc/(4r). Therefore the circumradius r of T is also an algebraic number. The

next theorem genrealizes this result.

Theorem 3. Let A be an n-dimensional simplex in E" whose sides are all

algebraic numbers. Then the radius of the circumsphere of A (i.e., the sphere

passing through all vertices of A) is also an algebraic number.

Proof. Let r be the radius of the circumsphere of A. We regard A as a simplex

lying on a hyperplane H in En+X . Let L be the line passing through the

circumcenter of A, and perpendicular to the hyperplane H. Let p, q be the

two points on L, each at distance

(m — r)

from the circumcenter, where m is a sufficiently large integer. Then the vertices

of A and p, q, induce together an algebraic distance graph G, which is rigid

by Lemma 2(2). Hence by Theorem 2, 07 is a complete graph, and hence

\p - q\ = 2(m - r ) '   is algebraic. Therefore, r is algebraic.    D

By a polygon in the plane, we mean a closed polygonal curve possibly hav-

ing self-intersections. Let O denote the origin. The area of a polygon Y =

P\Pi'"Pn is defined by

n

area(T) = £e,(area of AOp^,)       (pn+x :=px),
(=i

where e¡ = +1 if O -► p. -► pí+1 -» O is counter-clockwise, and e¡ = -1

otherwise. Note that for a convex polygon, this definition agrees with the usual
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definition of area in absolute value. The winding number wind(T) of a polygon

T = px-pn around the origin O is defined by

1    "
WÍnd(r) = 2^^Z/,'0p'+''

;=1

where ¿piOpi+x is the signed angle. If Y passes through the origin, then we

define wind(T) = 0. For example, a convex polygon T has winding number

±1 if r contains the origin O inside, and wind(T) = 0 otherwise.

For a polygon T = pxp2 ■ ■ -pn in the xp-plane in E , the "suspension graph"

of T with poles qx = (0, 0, z), q2 = (0, 0, -z) is the graph with vertices

Qi. <72 > Pi ' • • • ' Pn and edSes PiPi+i ' QjPi> i=l,...,n,j = 1,2. The fol-

lowing theorem is a special case of the results of Connelly [5, Theorems 1, 2].

Theorem C (Connelly). Let T be a polygon in the xy-plane in E and G be

the suspension graph of Y with poles qx = (0, 0, z) and q2 = (0, 0, -z). If

G is flexible, then

area(r) = 0   and   wind(T) = 0.   □

If the length of every side of a polygon is an algebraic number, then it will

be called an algebraic polygon.

Theorem 4. Let Y be an algebraic polygon inscribed in a circle with center at

the origin. If (area(T), wind(T)) ,¿(0,0), then the radius r of the circle and

the all diagonals of Y are also algebraic numbers.

Proof. Let px, ... ,pn be the vertices of the polygon Y. We may suppose that

the circle lies in the xy-plane in E3 with center at the origin. Take an integer

m > r, and put

qx = (0,0,(m- r2)XI2),        q2 = (0,0, -(m - r2)1'2).

Let X = {px, ... ,pn,qx, q2}. Then, since \p¡ - q¡\ = m, the graph X(A)

contains, as a spanning subgraph, the suspension graph of Y with poles qx, q2.

However, since (area(r), wind(T)) ^ (0,0), the suspension graph of T is

rigid by Theorem C. Hence X(A) is also rigid, and hence X(A) is complete
2    1 II

by Theorem 2. Therefore, all diagonals of F and \qx - q2\ = 2(m - r ) are

algebraic numbers.    D

We denote by Cr the circumference of a circle of radius r.

Corollary 1. Let Y be a convex polygon inscribed in a circle Cr. If the sides of

T are all algebraic numbers, then the radius r and the all diagonals of Y are

also algebraic numbers.    D

Corollary 2. Let Y be an algebraic polygon inscribed in a circle of center O and

transcendental radius. Then area(T) = wind(T) = 0.    D
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5. The algebraic distance graph on a circle

In this section we study the (infinite) algebraic distance graph Cr(A) on Cr,

the circumference of a circle of radius r.

Theorem 5. Suppose r > 0 is algebraic. Then every connected component of

Cr(A) is complete.

Proof. Let p0 be the center of Cr. If pxp2P3 is a path in the graph Cr(A), then

p¡, i = 0, 1,2,3 , induce a rigid algebraic distance graph, whence |p, -p3| e A,

and p, and p3 are adjacent in Cr(A). From this it follows easily that if two

vertices of Cr(A) are connected by a path, then the two vertices are adjacent.

Therefore, every connected component of Cr(A) is complete.    D

Next, we are going to show that if r > 0 is transcendental, then Cr(A)

contains no odd cycle. We begin with a lemma.

Lemma 3. Let a¡, i = I, ... , n, be n distinct algebraic numbers, and let w

be a transcendental number such that w > a¡, i = I, ... , n. Then n real

numbers (w - afx/2, i = I, ... , n, are linearly independent over the field A

of real algebraic numbers.

Proof. Suppose that there is a nontrivial linear combination of the (w-afl/2 's

such that

bx(w - ax)l/2 + ■■■ + bn(w - an)x'2 = 0,       b¡eA.

Let f(x) be the function obtained from the left-hand side of the above formula

by replacing w by x. Then f(x) is a nontrivial algebraic function over A

(that is, f(x) is algebraic over the field of rational functions A(x)). Hence

there exists an irreducible polynomial over A(x)

F(x, y) = g0(x)yk + gx(x)yk~x +--- + gk(x),        gfx)eA(x),

such that F(x, f(x)) = 0. Note that gk(x) ^ 0. Without loss of generality, we

may assume that the g¡(x) 's are all polynomials over A . Now, since f(w) = 0,

we have

0 = F(w, f(w)) = gk(w),

which is a contradiction since w is transcendental.    D

Theorem 6. Let r > 0 be a transcendental number. Then the algebraic distance

graph Cr(A) contains no odd cycle.

Proof. Without loss of generality, we may assume that the center of the circle

Cr is at the origin O. We show that every cycle of Cr(A) is of even order.

Consider a cycle of Cr(A), and let Y = px--pn be the corresponding algebraic

polygon inscribed in Cr. We must show that n is even. Let c¡ = \p¡ - P¡+x\,

i = I, ... , n - I, cn = \pn - p, |. Then by Corollary 2, the area of Y is zero,

and since the area of the triangle Op¡p¡+x is (c¡/2)(r - (c¡/2)2)x/2, we have

(*) 0 = area(r) = f>,(c(/2)(r2 - (c,/2)2)1/2,
i=i
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where e = +1  if the orientation of the triangle Op¡pj+x  is counter-clockwise,

e¡ = -1 otherwise. Let ax, ... ,am be the distinct numbers in {cx/2, ... , cJ2}

and let w = r . Then, since (w -a¡)1'  , i = I, ... , m , are linearly indepen-

dent over A by Lemma 3, it follows from (*) that for each j (1 < j < m),

0 =  £ «i(C|/2) = aj  £ e¡.
c¡l2=a¡ c,/2=a]

Hence the number of subscripts i such that c(/2 = a. is even for every j.

Therefore zz is even.    D

Corollary 3. If r > 0 is transcendental, then Cr(A) is a bipartite graph.    D

Corollary 4. The chromatic number of Cr(A) is

oo   if r is algebraic,

2     otherwise.   DXiCfA)) = |

The algebraic distance graph on Cr with r transcendental has even cycle of

arbitrary order 2«.

'»+i

Figure 2

Example 2. For any integer n > 1, the graph Cr(A), r > 0, contains a cycle of

order 2n . This can be seen as follows: Take a path P = pxp2 ■ ■ -pn+x of order

zz + 1 in Cr(A) (see Figure 2). This is clearly possible. Then reflect this path

with respect to the perpendicular bisector of the line segment pxpn+x (in Figure

2, the reflected path is indicated by dotted line). These two paths together make

a cycle of order 2« . Of course we must choose a path P so that P and its

reflection share only two vertices in common.

Theorem 7. For any r > 0, the graph CfA) is disconnected.

Proof. First suppose that r is an algebraic number. Let p, q e Cr be two

points such that  \p - q\  is a transcendental number.   Then by Theorem 5,



ALGEBRAIC DISTANCE GRAPHS AND RIGIDITY 56«

p and q cannot belong to the same component of Cr. Hence Cr(A) is dis-

connected. Now suppose that r is transcendental and Cr(A) is connected. Let

P = pxp2---p„ be a path of minimum order that connects a pair of diametri-

cally opposite points. Since the diameter 2r is transcendental, n is greater than

2. Let Q = qxq2 ■ ■ ■ qn be the path obtained by rotating P around the center

O of Cr through the angle n. Then qx = pn and qn= px. Since the path P

is a path of minimum order that connects px,pn, the paths P, Q share only

two points in common. Note that

¿pxOp2 + ■■■ + A-Pn_xOpn = ¿qxOq2 + --- + ¿qn_xOqn = (2m + l)n

for some integer m. Let Y be the algebraic polygon

PxP2-Pn-\Qia2'Qn-\-

Then, wind(T) = (2m + 1)^0, which contradicts Corollary 2.     D

6. The minimum dimensional representations

First note that if H is an "induced" subgraph of 07, then dim^ H < dim^ G.

This is not the case for a subgraph. For example, dim^ K4 = 1, but

dirn^Ä^,- one edge) = 3 as already seen.

Theorem 8. For a complete bipartite graph K(m, n) with order m + n > 3, we

have dim^K(m, n) = 2.

Thus, for any m, n > 0, there exists a flexible graph in the plane which is

isomorphic to K(m, n).

Proof. It is clear that dim AK(m, n) > 1 for m+n > 3 . We represent K(m, n)

as an algebraic distance graph in the plane E . Let p¡ = ((i + n)xl , 0), i =

I, ... , m; qj, = (0, (j + 3 - 7t)1/2), j = 1, ... ,n. Then \p¡ - q^ is algebraic,

but \p¡ — Pf, \q¡ - qß are not algebraic unless i = j. Hence the algebraic

distance graph on {p,, ... , pm , qx, ... , qf} is isomorphic to K(m, n).    D

Now there arises a question: as a function on finite graphs G, is dim^ G

unbounded?

Lemma 4. Let W, X, Y, Z be four sets in Euclidean space such that

(1) Z = X\JY,  W = XV\Y,

(2) W(A), X(A), Y (A) are complete, but Z(A) is not complete, and

(3) dim^)^ i-2.
Then dim(Z) > z, and max{dim(X), dim(7)} > i - 1.

Proof. By (3), there exist z - 1 affinely independent points in W. If Z is

contained in (z- l)-space E'~x, then by Lemma 2(2), Z(A) must be rigid and

hence complete, a contradiction. Therefore, dim(Z) > z. Since dim(W) >

i -2, there must be a point z in Z such that dim(W u {z}) > i - 1. Hence

max{dim(X), dim(F)} > z - 1.    D
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Theorem 9. Denote by Gn the complete n-partite graph K(2, ... , 2). Then

dim, Gn>n.

Thus, dim^ 07 is unbounded as a function on finite graphs G.

Proof. Let Un be a point set such that Un(A) is isomorphic to Gn . Then,

corresponding to the nested sequence of induced subgraphs

G2cG3c-cGn_xcGn,

there is a nested sequence of subsets

U2GU3C---CUn_xcUn

such that U¡(A) is isomorphic to G¡. Then \Ui+x - U¡\ = 2. We claim that

for each i = 2, ... , n, U¡ contains subsets W¡, X¡, Y¡, Z¡ satisfying the

conditions of Lemma 4. This is proved by induction on i. For i = 2, take a

path PxP2Pi in U2(A), and let

W2 = iP2}>       X2 = {P\>P2)'       Y2 = {P2'P3}>       Z2 = {p, , P2 , P3}-

Then these four sets satisfy the conditions. Suppose that U¡ contains subsets

W¡, X¡, Y¡, Z¡ satisfying (l)-(3). We may suppose dim^) > z - 1 . Let

{x, y} = Ú¡+x - U¡. Then the algebraic distance graphs induced by X¡ U {x}

and by X¡ U {y} are both complete. Hence letting

Wi+x=X¡,    X¡+x=X¡u{x},    Yi+x=X¡U{y},    Z¡+l=X¡U{x,y},

we have the (i + l)-case.

Therefore dim(Un) > dim(Zn) > zz.    D

Example 3.

dim^ 07n = dim^ K (2, ... , 2) = n   for zz < 4.

n

Proof. We show only the case zz = 4. In the plane E , take four points

p¡, i = 1, 2, 3, 4, on the circle of radius n centered at the origin such that

\P\-P2\, \P2-pf\, \P-i -Pf\, \P4 -Pi\ are all algebraic, see Example 2. Then

by Theorem 3, \p2 -p4| and \px -p3| are transcendental numbers. Take four

points q¡,  i = 1,2,3,4, with similar property on the circle of, this time,
■y     | j'y

radius (m-n ) ' , centered at the origin, where m is a sufficiently large integer.

Since the radius (m - n2)x/2 is transcendental, it also follows from Theorem 3

that \q2 - q4\ and \qx - q3\ are transcendental. Now, in £ = E x E , let X

be the set of eight points

(px,0),     (p2,0),     (p3,0),     (p4,0),

(0,9,),     (0,q2),     (0,qf,     (0,qf.

Then it can be easily verified that X(A) is isomorphic to GA .
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7. Proof of Proposition 1

As usual, the symbols Q, R, C stand for the set of rational numbers, the

set of real numbers, the set of complex numbers, respectively. The algebraic

closure of the field Q is denoted by Q. Thus, A = Q n R.

Let $ be the prime ideal of A[xx, ... , xN] defined as the kernel of the

^-algebra homomorphism

A[XX   ,   . . .   ,   XjyJ   —►  K ,

x¡ -» s¡

where s¡ is the z'th coordinate of the isolated point p = (sx, ... , sN) of the

algebraic set V . Let us denote by F(<!ß) the quotient field A[xx, ... , xN]/ty.

Since A c F(Vß) C R, the field A is algebraically closed in F (Iß), that is,

F(9ß) is a regular extension of A . Hence the ideal *p is absolutely prime; that

is, for every extension K of A , the ideal ^3• K[xx, ... , xN] is prime (see [16,

Chapter VII, Theorem 39]).

For each field K = Q, R, C, let WR denote the algebraic set in KN defined

by the ideal <p • K[xx, ... , x^]. Then p e WR c Wc , and since Wc is defined

over A and Q is the algebraic closure of A, we have

(1) 0¿WqCWc.

Since ?ß is absolutely prime,

N
(2) Wc is an irreducible algebraic set in C .

Suppose, for a moment, that the algebraic dimension, dim Wc , of Wc is

equal to zero. Then, since Wc is irreducible, we have Wc = {p}, and hence

by (1), Wq = {p}, i.e., p = (sx,... ,sN)eQ   .
Now we show that dim Wc = 0. Suppose, on the contrary, dim Wc > 0. In

this case, any isolated point of WR is a singular point of Wc . This fact can

be proved by using the implicit function theorem; see [15, Chapter II, 2.3] for

details. Then, since p e WR c V, p is an isolated point of WR, and hence p

is a singular point of Wc . Let

8X ■< • • • i 8m ^ ■™\xx, ... , xN\

be a system of generators of <p and let r be the rank of the M x N matrix

(dg¡/dXj) evaluated on Wc. Then, since p is a singular point of Wc, the

values of all rxr minors of the matrix (dg¡/dx ) at p are zero. Now, by the

definitions of <p and Wc , we have that

g e A[xx, ... , xN], g(p) = 0 implies that g = 0 on Wc

(i.e., p is an "^-generic point" in the sense of Mumford [12]). Therefore, all

rxr minors vanish on Wc , a contradiction.    D
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