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A REGULARITY THEORY FOR VARIATIONAL 
PROBLEMS WITH HIGHER ORDER DERIVATIVES 

F. H. CLARKE AND R. B. VINTER 

ABSTRACT. We consider problems in the calculus of variations in one inde-
pendent variable and where the Lagrangian involves derivatives up to order 
N, N 2: I . Existence theory supplies mild hypotheses under which there are 
minimizers for such problems, but they need to be strengthened for standard 
necessary conditions to apply. 

For problems with N > I, this paper initiates investigation of regularity 
properties, and associated necessary conditions, which obtain strictly under the 
hypotheses of existence theory. It is shown that the Nth derivative of a mini-
mizer is locally essentially bounded off a closed set of zero measure, the set of 
"points of bad behaviour". Additional hypotheses are shown to exclude occur-
rence· of points of bad behaviour. Finally a counter example suggests respects 
in which problems with N > I exhibit pathologies not present in the N = I 
case. 

1. INTRODUCTION 

The basic problem in the calculus of variations IS that of minimizing an 
integral functional 

lab L(t, x(t), x(t)) dt 

over a suitable class of functions x with fixed endpoints. Two major issues 
in the theory are existence of minimizers, and necessary conditions to identify 
the minimizers. The foundations of a general existence theory were laid by 
Tonelli [11], who showed that existence of minimizers is guaranteed in the 
class of absolutely continuous functions, under weak and verifiable hypotheses, 
which for the moment we label (HE). A centrepiece of the theory of necessary 
conditions is the Pontryagin maximum principle of optimal control theory, a 
principle which subsumes the main classical necessary conditions of the calculus 
of variations. 

Examination of the hypotheses (HE) of Tonelli's existence theory and those 
under which the maximum principle has been derived, or even makes sense, 
reveals a serious mismatch. We find there is a substantial class of problems 
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where existence theory predicts minimizers but where the hypotheses are not 
met under which we are permitted to identify them by means of such conditions 
as the maximum principle. Put another way, the difficulty is as follows. If we 
adopt hypotheses (HE), then knowledge merely that minimizers are absolutely 
continuous is inadequate for deriving the necessary conditions we should like to 
have. This suggests that we seek to overcome the difficulty by establishing that, 
while all absolutely continuous functions satisfying the end point conditions are 
considered in our search for minimizers, the minimizers are in fact confined to 
a subclass of arcs, which is more tractable from the point of view of deriving 
necessary conditions. 

Tonelli was the first to prove significant results in this spirit [11, 12]. Tonelli 
regularity theory (as it is now called) establishes that, if we supplement (HE) 
by the conditions 

(i) the arcs are scalar valued functions, 
(ii) L is C2 , and 

(iii) Lxx > 0 (strictly positive), 
then the minimizers x have the property that x is locally essentially bounded 
on an open subset n c [a, b] of full measure. This extra information about 
minimizers suffices for derivation of necessary conditions, which have the char-
acter of the Euler equation, but are somewhat weaker than those implicit in the 
maximum principle. Tonelli regularity theory and its ramifications have been 
the subject of much research in recent years [4-8]. Notably, it was proved in 
[5] that there exists a set n as described above, even when the supplementary 
hypotheses (i)-(iii) are dropped altogether. 

In the present paper, our object is to develop a regularity theory, and associ-
ated necessary conditions, for problems involving higher order derivatives, for 
instance those where we seek minimizers for an integral functional of the form 

b 1 L(t, x(t), x(t), x(t)) dt. 

Problems of this kind arise in the theory of beams and rods, for example, and 
have a long history (see [10 ] and references cited therein). Such problems are 
significant also because important cases of the optimal control problem, namely 
those with linear dynamics, can be reformulated as problems in the calculus of 
variations with higher derivatives, and regularity theory for the optimal control 
problem, outside very special situations where it can be reduced to the basic 
problem in the calculus of variations, is, to date, a completely undeveloped 
area of research. 

At this stage we need to introduce some notation. W N . 1 (I; Rn) denotes the 
space of (N - 1) times continuously differentiable n vector valued functions 
on the closed interval I whose (N - 1 )th derivatives are absolutely continu-
ous in the case N ~ 2, and it denotes the space of absolutely continuous n 
vector valued functions on I in the case N = 1. (When we say a function 
is continuously differentiable on a closed interval, incidentally, we mean it is 
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continuously differentiable in the interior, and the derivatives have limits at the 
endpoints.) Given an arc y, we denote by DO y, DI y, ... the derivatives of 
order 0, l, ... DO y is of course just y. It is convenient often to write DI y as 
Dy. For brevity we sometimes revert to standard notation Dy = y, D2y = ji 
etc. Finally, the n x (k - j + l) matrix valued function D> is defined to be 

k j j+1 k Djy(t) = col(D y(t), D y(t), ... , D y(t)). 

The following data is given: positive integers Nand n, real numbers a and 
b, b > a, vectors Ao ' ... ,AN-I and Bo ' ... ,BN_ I in Rn and a function 
L: [a, b] x RnxN x Rn -+ R. We define 

A := col(Ao' ... ,AN_I) and B:= col(Bo' ... , BN_ I ). 

The following problem provides the framework for our study of problems in 
the calculus of variations with higher order derivatives. We label it 

{
Minimize J(x):= J: L(t, D~-Iy(t), DNy(t))dt 

(P) over arcs y E W N , I ([a, b]; Rn) which satisfy 
N-I N-I b Do y(a) = A and Do y() = B. 

Dependence of the Lagrangian on the highest order derivative will have spe-
cial status in the statement of hypotheses and ensuing analysis and, cumbersome 
though it appears at present, we shall be grateful for our notation which groups 
the lower derivatives as a single argument. 

It is assumed throughout that the following hypotheses on L( t, z, w) are in 
force. 

(Hl) L(t, z, w) is locally bounded, measurable in t and convex in w. 
(H2) L(t, z, w) is locally Lipschitz continuous in (z, w), uniformly in t. 

This means that for each bounded subset C of RnxN x Rn there exists 
a constant K such that for all t E [a, b] and (ZI' WI)' (z2' w2 ) E C 
the following inequality holds 

IL(t, ZI' WI) - L(t, z2' w2 )1 ~ KI(zl - Z2' WI - w2 )1· 
(H3) L(t, z, w) is coercive in w, in the sense that there is a number a > 0 

and a convex function 8: [0, 00) -+ R such that 

(l.l ) L(t, Z, w) ;::: -aizi + 8(lwl) 

for all (t, z, w) E [a, b] x RnxN x Rn ,where 8(r)/r -+ 00 as r -+ 00. 

These mild hypotheses are representative of hypotheses under which exis-
tence of solutions to problem (P) has been proved. They impose conditions 
on L regarding its dependence on the highest derivative variable which are 
precisely those regarding dependence on the velocity variable of the Lagrangian 
function in the earlier, one derivative, theory [5]. In fact in the case N = 1 , 
the hypotheses are in all respects those of [5]. 
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In view of the pathologies we might anticipate when we pass from problems 
in one derivative to problems in higher derivatives (see §4), it is unexpected 
that, under hypotheses (Hl)-(H3) alone, bad behaviour of minimizers x can 
still be confined to the complement of an open set Q of full measure, now in 
the sense that D n x is locally essentially bounded on Q. This is the main result 
of the paper. 

Some comments on our proof techniques are now in order. These are based 
on construction of an auxiliary problem with Lagrangian l. The idea is to 
replace L in some local sense by l; the special structure of l permits us to 
apply necessary conditions in [3] to minimizers for the auxiliary problem and 
thereby to establish the desired regularity properties of minimizers for (P). In 
general terms the techniques are similar to those for one derivative problems, 
previously treated in [5]. However the necessary conditions on minimizers for 
the auxiliary problem are of a more intricate nature for problems with higher 
derivatives, and this fact, together with the need to consider general polynomial 
interpolation, leads to serious technical difficulties not present in the N = 1 
case. 

Nonsmooth analysis as developed in [3] enters into this paper in a fundamen-
tal way. Even when we restrict attention to problems where L is smooth, the 
auxiliary Lagrangian is not smooth, and we require the full power of nonsmooth 
optimization techniques to analyse it. 

2. THE REGULARITY THEOREM 

The regularity theorem involves a new notion of "regular point" r of an arc 
x E W N , 1 ([a, b]; Rn). The detinition of regular point is rather complicated, 
and we first look at special cases as an aid to understanding. In the case N = 1 , 
r is a regular point if there exist sequences {t i }, {sJ. such that a ~ Si ~ r ~ 
ti ~ b, Si =I ti ' for all i, and 

1· . f Ix(t) - x(s)1 
Imm I I < 00. 
[--+00 ti - Si 

In the case N = 2 , the last inequality is replaced by 

. . f Ix(t i ) - x(s) - DX(Si)(ti - si)1 IDx(t i ) - DX(Si)1 
hmm 2 + <00. 

i--+oo It i - sil It i - sil 

Definition in general requires introduction of the function 

RnxN RnxN R R Yf: x x -t , 
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Let x E W N, I ([a, b]; Rn) and r E [a, b]. We say that r is a regular point of 
x if 

lim inf ll(D~-1 x(s), D~-I x(t), t - s) < 00. 
S ,t--+! 

a<s<r<t<b - siot -

The stipulation that r be regular may seem rather restrictive. But, on the 
contrary, as is shown in the proof of Corollary 2.2, all Lebesgue points of DN x 
are regular and so, in particular, the regular points have full measure. 

Theorem 2.1. A solution x to (P) exists. Let r be a regular point of x. Then 
(i) There is an interval I which is a neighbourhood of r in [a, b] in which 

DN x is essentially bounded, and in which the arc x satisfies the higher 
order Euler inclusion, namely, there exist Lipschitz continuous functions 
Po == 0, PI' P2' ... , PN ' such that 

(2.1) ((PI (t) + Po(t) , P2(t) + PI (t), ... ,PN(t) + PN-I (t)), PN(t)) 
N-I N E8L(t,Do x(t),D x(t)) a.e. tEl. 

(ii) If in addition, for each t in [a, b] and v in Rn the function 
w ~ L(t, D~ -I x( t) , w) is strictly convex and the function s ~ 
L(s, D~-IX(S), v) is continuous at t, then x is eN in I. 

(iii) If we add to the hypotheses of (ii) that, for each t E [a , b] the function L 
is e' in its arguments near (t, D~-I x(t), DN x(t)) for some r ~ N + 1, 
and Lww(t, D~-IX(t), DNx(t)) > 0, then x is e' in I. 

The generalized gradient 8 L(t , z, w) in (2.1) is taken with respect to the 
variables (z, w) (for fixed t). If L is e l in these variables, the condition 
implies 

N-I i 
(2.2) L (t,DON-IX(t),DNx(t))+ "(-I(q-~L (t,DoN-IX(t),DNx(t)) 

Zo L dt1 z, 
1=1 

N d N N-I N 
+(-1) dtNLw(t,Do x(t),D x(t))=O, a.e. 

In this equation Lzo' ... , L ZN _ 1 ,Lw denote gradients of 

L(t, (zo'"'' ZN_I)' w) 

with respect to the variables zO' ... , Z N-I ' W . This is a familiar higher order 
version of the Euler equation [2]. 

Corollary 2.2. Let x solve (P) and let n be the set of regular points of x. Then 
n is an open set of full measure, and DN x is locally essentially bounded on n. 
For every point r in n there is an interval I, which is a neighbourhood of r 
in [a, b], and Lipschitz continuous functions PI' ... 'PN such that the Euler 
inclusion (2.1) holds a.e. in I. 
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Note that in the case L(t, z, w) is C l in (z, w) the necessary condition 
of optimality implicit in this corollary is that the higher order Euler equation 
(2.2) holds a.e. in [a, b]. 

Proof. In view of Theorem 2.1, it suffices to show that n is an open set of 
full measure. Let r be a point in (a, b) which is also a Lebesgue point of 
t -t IDN x(t)l. Since DN x is an integrable function, the following "exact" 
Taylor expansions are valid 

(2.3) Dix(t) = 't' D) x(t~ r))-I + It IfJN
-

1 
•• ·lfJ2 DN XI'" d(JN_i 

)=i (j-l)! r r r 

for all points t E [r, b] and for i = 0, ... , N - 1. But r is a Lebesgue point 
of IDN (x) I. It follows that there exist a constant c and t I in (r, b] such that 

It - rl- I III DN X((JI) d(J,1 ::; It - rl- I II IDN x((JI)1 d(J1 ::; C 

for all points t such that r < t < t I . 

A simple calculation now yields the information that, for each choice of t in 
[r, t l ] and of index value i, the multiple integral on the right side of (2.3) is 
bounded in norm by (t - r (- i c. It is evident from these observations that r 
is a regular point of x. We have shown that n contains the Lebesgue points 

N of ID xl. It follows that the set n has full measure. 
Take an arbitrary point r in n. By Theorem 2.1 there is an interval I which 

is a neighbourhood of r in [a, b] in which DN x is essentially bounded. But 
any point at which DN x is essentially bounded is certainly a regular point. It 
follows that r lies in the interior of n relative to [a, b], and therefore that 
n is open in [a, b]. The proof is complete. 

3. PROOF OF THE THEOREM 

3.1 Existence. For purposes of proving existence of solutions, it is convenient 
to reformulate (P) as a new problem (Q), where the number of derivatives 
involved is reduced to one, but where we are forced to consider an extended 
valued Lagrangian, Lo: R x RnxN x RnxN -t R U {+oo} . 

Lo (t , (x I ' .. . , X N ), (v I ' ... , V N ) ) 

:= { L(t, (XI' ... ,xN ), vN ), 

+00, 
Problem (Q) is 

if VI = x2 ' .•. , VN _ 1 = x N ' 

otherwise. 

! Minimize Jo(x) := J: Lo(t, x(t), Dx(t)) dt 

over arcs x E WI,I([a, b]: RnXN) 

which satisfy 
x(a) = A, x(b) = B. 
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It is known [9] that (P) and (Q) are equivalent in the following sense. On the 
one hand, if Y E WN,I([a, b]; Rn) then J(y) = JO(D~-Iy). On the other, 
if (YI' ... , YN) E T'VI,I([a, b]; RnxN) and JO((Y I ' ... , YN)) < 00 then Y1 E 
W N, 1 ([a, b]; Rn) and J(y l ) = JO((Y1 ' ••• , y N)). However, under hypotheses 
(Hl)-(H3), (Q) is known to have a solution (see [9, 1]). Existence of a solution 
to (P) follows. 

3.2 Hypothesis reduction. We show at the outset that we suffer no loss of gen-
erality by augmenting the basic hypotheses in certain respects. 

The function 8 of hypothesis (H3) can be replaced by the nondecreasing 
function iJ(r): [0, (0) --> R: 

iJ(r) := inf{ 8(r'): r' > I} 

since iJ is superlinear, convex and is majorized by 8. This observation coupled 
with the fact that adding a constant to L in problem (P) does not affect the 
minimizers, permits us to add to the basic hypotheses 

(H4) 8: [0, (0) --> R is positive-valued and nondecreasing. 
Now let k be a constant such that the minimizer x (for problem (P)) under 
consideration satisfies IID~ -I x 1100 < k. (Such a constant exists since x E 
WN,I.) Consider a new problem in which L in problem (P) is replaced by 
LI (t, z, w) := max[L(t, z, w), -ak+8(lwl)]+ak+ 1. Hypotheses (Hl)-(H4) 
continue to be satisfied (with iJ = 8 and a = 0). Note that (1.1) now holds 
with strict inequality. We have LI ~ L+ak+ 1 everywhere and L1(t, z, w) = 
L(t, z, w) + ak + 1 for all points in w in Rn and (t, z) in some tube about 
the function D~ -I X. SO x remains a minimizer and the assertions of the 
theorem for the new problem imply those for (P). Without loss of generality 
then we may add to the hypotheses: 

(HS) In hypothesis (H3), inequality is strict and a = 0. 

3.3 Polynomial interpolation. Polynomial functions enter into the proof of the 
theorem at several points, both in the role of comparison arcs and when we 
come to interpret necessary conditions. In the present context a polynomial p 
of degree at most m is taken to be a function of the scalar variable t, 

m 

p(t) = Lg/ 
i=O 

in which go"'" gm are n vectors. Before proceeding, we gather together 
some useful properties. 

Lemma 3.1. Corresponding to any positive number kl there exists a positive 
number k2 with the following properties. Let X (= col(Xo' ... , X N_ 1)) and 

y (= col( Yo, ... , Y N -I)) be arbitrary Rn x N vectors and s, t arbitrary real 
numbers, t > s , such that 
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and 
17((Xo' ... , X N _ 1), (Yo' ... , YN - 1 , t -s)) ~ k1· 

Then there is a unique polynomial p of degree at most (2N - 1) such that 
N-l N-l Do p(s) = X, Do p(t) = Y, 

and p satisfies 
N liD pII00,5, t ~ k2 

and 
IID~ plloo 5 t ~ k2(IIXII + IIYII)· 

In the lemma II 11 00 , a, p denotes the L 00 ([Q:, /3]) norm. We use this notation 
throughout the paper, when we wish to emphasize the domain of the functions 
concerned. 

Proof. By translating the independent variable we can arrange that s = O. An 
arbitrary polynomial p of degree at most 2N - 1 which satisfies the boundary 
conditions on the left, 

N-l Do p(O) = X, 
has representation 

(3.1 ) p(r) = g(r)· X + h(r) . Z 

in which Z (= col(Zo' ... ,ZN_l)) is some n x N vector, and g, hare N 
vector valued functions of the scalar variable r, 

g(r) = [1, r, i/2!, ... , rN-1/(N -1)!] 

and 
h(r) = [rN/N!, ... , r2N- 1/(2N -1)!]. 

Observe that 

where 

and 

Q:= 

tN/N!, 
tN-1/(N_l)!, 

N-l Do p(t) = P X + QZ 

t t2/2! .. tN- 1/(N-l)!1 
1 t .. . 
o . 

1 

tN +1 /(N + 1)! 
tN/N! 

tN /N! 
It follows that p also satisfies the boundary condition on the right 

N-l Do p(t) = Y 
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if and only if Z satisfies 

where 

and 

E:= [
liN! 

l/(N
i
- I)! 

1/(N+1)! 
liN! 

1/(2~ - I)!] 
liN! 

< ~ {[Yi -~X/-'/(j-nV t-' [' 
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However E is invertible: an inductive argument yields the following formula 
for the determinant 

(N-1)!(/N-2)! .. ·1 
det E = (2N _ 1) (2N - 2) ! ... N ! . 

We conclude that there is a unique polynomial p of degree at most 2N - 1 , 
which satisfies all the boundary conditions. Notice that I~I :::; kl ' under the 
hypotheses. It follows that 

N-I -I 
Icol(Zo' tZ I , .. ·, t ZN_I)I:::; kilE I 

(IE-II denotes the operator norm max{IE-Ixl: Ixl = I}). The assertions of 
the lemma all follow from this estimate, and equation (3.1), since It I :::; kl . 

Lemma 3.2. Let p be a polynomial of degree at most k, and let [to' t I] be 
an arbitrary compact interval. Then there exists a vector v, Iv I = 1, and a 
subinterval J c [to' t I] such that 

J c {t E [to' ttl: p(t)· v ~ ~llplloo,to,t) 

and 

Here dk = (16)-k. 
Proof. We may assume that t I > to and that p is not the zero function since, 
in these cases, the assertions of the lemma are trivial. Besides which, we may 
add to the hypotheses 

(3.2) to = 0, and Ilpll t t = 1, 
00, 0' I 

for, if these conditions were not satisfied, we could replace p by P and [to' t I]) 
by [0,1] where p(t) = (1Ipll:,l,to,t,)-lp([t l - to]t + to)' The extra hypotheses 
are now satisfied; we deduce the desired properties of p from those of p. In 
summary, we may assume (3.2). 

From this point, proof proceeds by induction on k. The case k = ° is 
trivial. Suppose now the assertions of the lemma are true for k. Let p be 
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any polynomial of degree at most k + 1 and such that Ilplloo ,0,1 = 1. Two 
possibilities need to be considered. 

(i) Suppose IIDPlloo,O,1 ~ 8/dk · Let S be a point such that Ip(s)1 = 1 andset 
v =p(s). Then p(t)·v ~ -! forall t in the interval [t-dd I6 , t+ddI6]n[0, 1]. 
But this interval contains a subinterval of length dk+1 (= dk /16), as required. 

(ii) Suppose IIDPlloo,o, I ~ 8/dk • The polynomial Dp has degree at most 
k. By the induction hypothesis then, there exists a subinterval S c [0, 1] and 
a vector v, Iv I = 1 , such that 

Dp(t) . v > -!(8/dk ) , all t E S, 

and meas{S} 2: dk . Now if p(t)·v > -! for all t E S, p clearly has the desired 
properties. The remaining case to be considered is that where p(s) . v ~ -! for 
some s E S. Observe that there is a subinterval S' of S, of length dk /4, 
separated from s by at least dk /4. For t E S' we have 

III Dp(a)· v dal > (4/dk )· dk /4 = 1 

whence 
Ip(t) . vi> 1 - Ip(s) . vi 2: -!. 

In this case too then, p(t). v 2: -! on a subinterval of length dd 4. The proof 
is complete. 

Let x be a minimizer for (P), and let r be a regular point. By definition 
of regular point there are sequences {sJ and {tJ, converging to r, with a ~ 
Si ~ r ~ ti ~ b, Sl =j:. ti' and a constant kl such that 

N-l N-l 
(3.3) t/(Do X(Si)' Do x(tJ, ti - Si) < kl 

for i = 1, 2, .... Note that, in view of the continuity of D~-l x and t/, we 
can adjust the Si'S and ti's a small amount if necessary and thereby arrange 
that, for each i, [Si' til is a neighbourhood of r in [a, b], while at the same 
time preserving the inequality (3.3). 

We denote by JI the integral functional 

f l, N-l N 
Ji(y) = L(t, Do y(t), D y(t)) dt, 

s, 

for i = 1, 2, .... Evidently the minimizer x for (P) (strictly speaking its 
restriction to [SI' tJ) is also a minimizer for (Pi) for i = 1, 2, ... , where (Pi) 
is the problem 

{
Minimize Ji (y) 

(3.4) over y E W N, I ([SI' tJ; Rn) which satisfy 
N-l N-l N-l N-l Do y(s) = Do X(Si)' Do y(ti) = Do x(tJ 

For i = 1, 2, ... , we take YI to be the polynomial of degree at most 2N - 1 
which satisfies the boundary conditions (3.4) in problem (P). (See Lemma 
3.1.) We shall refer to YI as the "interpolating polynomial" (for (P)). 



REGULARITY THEORY FOR VARIATIONAL PROBLEMS 237 

Lemma 3.3. For i = 1, 2, ... let zi E W N , I ([Si' ti ], Rn) be an arc which 
satisfies the boundary conditions (3.4) in problem (PJ and also 

Ill; N II, N-I N 2" e(ID zi(t)I) dt ::; L(t, Do y(t), D y(t)) dt. 
~ ~ 

Here Yi is the interpolating polynomial for (Pi)' Then there exist numbers 
M > 0 and Ro > 0 with the following properties 

(i) The real numbers IID~-IYilloo,s, ,1,' IID~-I zilloo,s, ,I; for i = 1,2, ... , 
and also II D~ - I X II 00 a b are all bounded by M, and 

(ii) IIDNYlloo s I < Ro'/O; i = 1,2, .... 
, /' I 

Proof. The assertions concerning the arcs x and Y i follow from Lemma 3.1 
and the fact that x is a W N , I function. It remains to bound D~ -I Z i . 

Since e is superlinear, there exists a number a such that ~e(a') > a' when-
ever a' ~ a. For each i we have 

All the terms on the right are bounded by some constant, independent of i. 
This, together with similarly derived bounds on the lower derivatives, yields the 
desired uniform bound on IID~-I zilloo,s, ,I, . 

3.4 The auxiliary Lagrangian. In what follows, M and Ro are as in Lemma 
3.3. Define co' 

(3.5) Co := max{IL(t, z, w)lt E [a, b], Izl ::; M, Iwl ::; Ro} 

and the function d: R --+ R U { +oo} 

(3.6) d(P) := inf{lwl: p E o1J)L(t, z, w), t E [a.b], Izi ::; M, Ipl ~ P} 

(the infimum here is interpreted as " +00 " when no elements exist which satisfy 
the constraints). 

Since L(t, z, w) is locally Lipschitz continuous in (z, w) , uniformly in t, 
we have 

Lemma 3.4. The function d is monotone increasing and 

lim d(P) = +00. 
P-.+oo 

Choose a number e > O. This will remain fixed hereafter. In view of Lemma 
3.4 and the superlinear growth of e, we may choose the constant RI to satisfy 
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(3.7) Ood (o(r') _ L(t, z, 0) _ 3e) > 2. (16)N- 1c 
4r' 2r' 2 0 

whenever r' ~ R 1 , t E [a, b] and Izl ::; M. 
Set 

(3.8) c1 := max{IL(t, z, w): t E [a, b], Izl ::; M, Iwl ::; R 1 } 

and 

(3.9) a l := max{I~I: ~ E 8w L(t, z, w), t E [a, b], Izl ::; M, Iwl ::; R 1}. 

Appealing once again to the convexity and superlinear growth of e, we may 
select a constant R2 > R 1 such that 0 is strictly increasing on [R2' 00) and 

(3.10) 

for all r ~ R2 . 
The function rp: Rn -+ R is defmed as follows: rp(w):=! max[O(lwl, 0(R2)]. 

We are now ready to construct the auxiliary Lagrangian I: R x R nxN x Rn -+ 

R. For each (t, z), I( t, z, .) is taken to be the convex hull of the functions 
w -+ L(t, z, w), restricted to Iwl ::; R2 and w -+ rp(w). Precisely stated, 

I(t, z, w):= inf{AL(t, z, u) + (1 - A)rp(V): 
0::; A::; 1, lui::; R2 and AU + (1- A)V = w}. 

We list important properties of the auxiliary Lagrangian. 

Proposition 3.5. (a) I(t, z, w) is locally bounded, measurable in t and convex 
in w. 

(b) I(t, z, w) is locally Lipschitz continuous in (z, w), uniformly in t E 
[a, b]. 

(c) I(t, z, w) ~ e(lwl)/2 Jorall (t, z, w). 
(d) For t E [a, b] and Izl ::; M we have I(t, z, w) = L(t, z, w) iJ 

Iwl ::; R 1 , I(t, z, w) ::; L(t, z, w) if Iwl ::; R2 and I(t, z, w) < L(t, z, w) 
iJ Iwl > R 2 · 

nxN ~ (e) For (t, z) E [a, b] x R we have L(t, z, w) = 0(lwl)/2 iJ Iwl ~ R 2 • 

Proof. I is convex in w by construction, and locally bounded since 0 ::; I ::; rp 
and rp is locally bounded. To see that I is measurable in the t variable, we 
use the fact that, for fixed z, w, the inf defining I can equivalently be taken 
over countably many measurable functions of t (obtained by taking (A, u, v) 
in a sui table dense set). (a) has been proved. ( c) is true because Land rp 
satisfy the desired inequality and w -+ ! 0 (I wi) is convex. Consider (e). Take 
arbitrary points w' E Rn , Iw'l > R2 , and (t, z) E [a, b] x RnxN. Choose 
, E 8rp(w') . By the subgradient inequality 

(3.11) rp(v) - rp(w') -,. (v - w') ~ 0, for vERn. 
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Since 8 is continuous and strictly increasing on [R2 , (0), rp(w) and 18(lwl) 
coincide on a neighbourhood of w = w' . It follows that ( is also a subgradient 
of w -+ 18(lwl) and, for all u E Rn and (t, z) E [a, b] x RnxN , 

(3.12) L(t, z, u) - rp(w ' ) - (. (u - w') ~ 18(lul) -18(lw'l) - (. (u - w') ~ o. 
From (3.11) and (3.12) we deduce 

Z(t, z, w) = inf{AL(t, z, u) + (1 - A)rp(V)} 

(the infimum is over 0::; A::; 1, lui::; R2 , AU + (1 - A)V = w) 

~ rp(w ' ) - (. (w - w'). 

Setting w = w' we obtain Z(t, z, w) ~ rp(w ' ). But then Z(t, z, w) 
18 (I w I) in the region I wi> R2 since rp and w -+ 18 (I wi) coincide here and 
rp majorizes Z. This remains true in the region Iw I ~ R2 ' by the continuity 
properties of convex functions. 

We turn next to (b). Take k, > 0, and let K be a Lipschitz constant for 
z -+ L(t, z, w), uniformly valid for t in [a, b], Iwl ::; R2 and Izl ::; k, . 
Take z" z2 E RnxN such that Iz,l, IZ21 ::; k,. Then for any 0> 0, tin 
[a, b] and w, we may choose u, v and A as in the definition of Z such that 

Z(t, z" w) + 0 ~ AL(t, z" u) + (1 - A)rp(V). 

It follows that 

Z(t, Z2' w) ::; AL(t, z2' u) + (1 - A)rp(V) 
::; AL(t, z" u) + Klz, - z21 + (1 - A)rp(V) 

::; Z(t, z, ' w) + Klz, - z21 + o. 
Since z, and z2 are interchangeable and 0 > 0 is arbitrary, it follows that 
z -+ Z(t, z, w) has Lipschitz rank at most K on Izl ::; k, for all t E [a, b] 
and WE Rn • 

Now take k2 ~ R2 . We shall show that w -+ Z(t, z, w) is Lipschitz contin-
uous in the region Iwl ::; k2 uniformly in (t, z) E [a, b] x RnxN . It will follow 
that Z is locally Lipschitz continuous jointly in the variables z, w, uniformly 
in t E [a, b], since it has this property in the individual variables. 

Choose (t, z) E [a, b] x RnxN , and let w -+ P . w + q be an arbitrary, 
nonconstant, affine function which is majorized by w -+ Z(t, z, w). By (e), 
we must have 

p. w + q ::; 18(lwl) 
for Iwl ~ k2 . Setting w = (k2 + l)pllpl, we obtain 

( 3. 1 3) (k2 + 1) Ip I + q ::; 1 8 (k2 + 1). 

However, since L ~ 0, we also have 

(3.14 ) Z(t, z, w) - p. w - q ~ -lplk2 - q 
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for Iwl ::; k2 • (3.13) and (3.14) yield 
~ I L( t , z , w) - P . w - q 2: Ip I - 2. 8 (k2 + 1) 

for Iwl ::; k2 . 
Set Kl = !8(k2 + 1) + 1 . It follows that 

(3.15) L(t,z,w)-p,w-q2:1 

for Iwl ::; k2' Ipi 2: Kl . 
Now the function w -t L(t , Z, w) is expressible as the pointwise supremum 

of affine functionals majorized by L. However inequality (3.15) tells us that, to 
evaluate this function in the region Iw I ::; k2 ' we may limit attention to affine 
functionals with Lipschitz rank at most K 1 • It follows that w -t L(t, z, w) 
has Lipschitz rank at most Kl here for arbitrary (t, z) E [a, b] x RnxN . 

Consider finally (d). The cases Iwl 2: R2 and R2 > Iwl > Rl follow from (e) 
and from the facts that L majorizes Land L strictly majorizes u -t !8(lul) . 
It remains to show then that the values L( t , Z , w) and L(t, z, w) coincide 
for (t, z) E [a, b] x RnxN and Iwl ::; Rl . 

Take (t, z) and w as above and choose (E 0wL(t, z, w). By (3.10) and 
definition of the constants c1 ' a 1 (see (3.8) and (3.9)) we have that 

<p(v) 2: !8(1vl) 2: a1(R I + Ivl) + c1 2: L(t, z, w) + (. (v - w) 

for points v which satisfy Ivl 2: R 2 . On the other hand 

<p(v) 2: !8(IR21) 2: a1 (Rl + R2) + c1 2: L(t, z, w) + (. (v - w) 

also for points v which satisfy Iv I ::; R 2 . By the subgradient inequality how-
ever, 

L(t, Z, u) - L(t, z, w) - ( . (u - w) 2: 0 
for all u E Rn . Scaling and adding these inequalities, we arrive at 

L(t, z, Wi) = inf{AL(t, z, u)+(I-A)<p(v): 

0::; A::; 1, lui::; R2 and AU + (1 - A)V = Wi} 

::; L(t, z, w) + ( . (Wi - w) , 

for all points Wi E Rn . Setting Wi = w yields L(t, z, w) 2: L(t, z, w). Since 
however L majorizes L we may replace inequality here by equality. The proof 
is complete. 

3.5 End of proof. Consider now the auxiliary problems (Pi)' i = 1, 2, ... : 

{
Minimize J/' L(t, D~-ly(t), DNy(t))dt 

over arcs y E W N, I (Si' t i ) which satisfy 
N-l N-l N-l () N-l ( ) Do y(Si) = Do X(Si)' Do y Ii = Do X ti . 

Parts (a)-(c) of Proposition 3.5 ensure that (P) has a solution, we write it Xi' 
for each i. 
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In order to take advantage of the remaining properties of L listed in Propo-
sition 3.5, we need to show that D~-l Xi is suitably confined. 

Lemma 3.6. IID~-lXilloo,51'11 ::; M, for all i, where M is the constant of 
Lemma 3.3. 
Proof. We have 

1jll N jll ~ N-l N "2 O(ID xi(s)1 ds ::; L(t, Do xi(t), D xi(t)) dt, 
Sj Sj 

by Proposition 3.5, part (c), 

::; jll L(t, D~-lYi(t), DN yi(t)) dt, 
51 

since Xi is a minimizer (here Yi is the interpolating polynomial), 

by Proposition 3.5, part (d) and Lemma 3.3, part (ii). The result now follows 
from Lemma 3.3, part (i). 

The next step is to apply necessary conditions from optimal control theory 
to the minimizer Xi' To this end we reformulate (Pi) as an optimal control 
problem (CP i ): 

Minimize t' L(t, ¢(t), u(t)) dt over functions 
5, 

¢EWl,l([Si,ti];RnXN) and UEL1([Si,ti];Rn) 
which satisfy 
~(t) = F¢(t) + Gu(t) a.e. t E [Si' til and 

N-l N 1 
¢(Si) = Do X(Si)' ¢(ti) = Do - x(tJ 

Here, once again, L is the auxiliary Lagrangian. The matrices F (nN by nN) 
and G (nN by n) are 

0 M 0 0 
0 0 M 0 

(3.16) F= and G = col{O, .. , ,0, M} 
0 0 0 M 
0 0 0 0 

in which M denotes the n x n identity matrix, and 0 the n x n zero matrix. 
Our choice of differential equation in problem (CP i) ensures that functions 

¢, u satisfy the constraints of problem (CP i) only if ¢ = D~ - 1 ¢ 1 ' and u = 
DN ¢l ' where ¢l is the first block component of ¢. Evidently (¢i = D~-l Xi' 
Ui = DN Xi) solves problem (CP i ). 
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Now (CP i ) is a problem to which the maximum principle [3, Theorem 5.2.3] 
applies, with reference to the minimizer (D~-I Xi' DN xJ. In checking the hy-
potheses involved, we notice in particular that there is a tube T about D~ -I Xi 
and a constant c such that 

IL(t, z' , u) -L(t, z" , u)1 ::; clz' - z"l 

whenever (t, z'), (t, z") E T and u E Rn. (The fact that 8zL(t, z, w) 
(= 8z qJ(lwi)) = 0 when t E [a, b], and Iwl > R2 is crucial to this asser-
tion.) Thus L has the required uniform Lipschitz continuity properties for 
application of the maximum principle. A further important observation is that 
the underlying controlled differential equation in problem (CP i ) is controllable, 
and therefore the maximum principle applies in normal form (i.e., the cost 
multiplier may be set to one). 

For each i, we deduce existence of an absolutely continuous function p 
(= row{PI ' ... , PN}) such that 

~ N-I N 
(3.17) -jJ(t)Ep(t)·F-8zL(t,Do xi(t),D xi(t)), a.e. tE[Si' tJ, 

and such that DN xi(t) maximizes 
~ N-I 

u~PN(t)u-L(t,Do xJt),u), a.e. tE[Si,tJ 

Since L is convex in its third argument, this last property can be expressed as 
~ N-I N 

(3.18) PN(t) E 8w L(t, Do xi(t), D Xi(t)). 

Lemma 3.7. For some i, there exists a polynomial f (of degree at most N - 1) 
such that 

( 3.19) 

Here B is the open unit ball and e is the positive number in (3.7). 
Proof. We appeal to the necessary conditions (3.17) and (3.18). Note that, for 
each i, p can be decomposed into the sum of two functions q (= row{ ql ' ... , 
qN}) and r, 

p(t) = q(t) + r(t), 
where q satisfies the homogeneous equation 

(3.20) -q = q . F , a.e., 

and r solves the inhomogeneous equation 

(3.21) -;- == r· F - h , a.e., 

together with the boundary condition 

( 3.22) 

Here h(t) is a measurable function which satisfies 
- N-I N 

h(t) E 8z L(t, Do xi(t), D Xi(t)) , a.e. t E [Si' tJ 
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By Proposition 3.5, parts (b) and (e), there exists a constant k" which does 
not depend on i, such that 

We deduce from the differential equation (3.21) and the associated boundary 
condition (3.22), along with Gronwall's inequality, that 

Ilrlloo s I ~ e, 
, 1'1 

provided i is chosen large enough. On the other hand the differential equation 
(3.20) implies that f:= qN is a polynomial of degree at most N - 1 . It now 
follows from (3.18) that f has the desired properties. 

Henceforth i is fixed at an index value for which the assertions of Lemma 
3.7 are true. 

N 
Lemma 3.8. liD xilloo,sj,l; ~ R,. 
Proof. Assume to the contrary that 

N 
liD xilloo 5 I > R, 

, 1'1 

on a set of positive measure. Let f be the polynomial of Lemma 3.7. We 
choose t to be a point at which the inclusion (3.19) holds and 

N -(3.23) ID xi(t)1 > R,. 

By (3.19) and the subgradient inequality, 

Let, D~-'Xi(l), o)-Let, D~-' x/i), DN x/i)) ~ -(f(l) , DN xi(l))-eIDN xi(l)l. 
It follows that 

If(l)I'IDN xiet) I ~ Let, D~-' x/i), DN xi(l)) -Let, D~-' xi(l), 0) - elDN xi(l)1 

~ 18(IDN xi(l)l) - Let, D~-' x/i), 0) - elDN xi(l)l, 
by Proposition 3.5, parts (c) and (d). By (3.5) and (3.23) 

If(l) ~ 8(r) _ Co _ e 
2r r 

for some number r> R, . 
It follows now from Lemma 3.2 that 

If(I)1 ~ 8(r) _ Co _ ~ 
4r 2r 2 

for all IE S, where S is a subinterval of [Si' IJ, of length at least 16-(N-') 
'11i - sil· 

Bearing in mind the definition of the function d (see (3.6)), we deduce from 
this bound and the inclusion (3.19) that 

N (8(r) Co 3e) ID Xi(l)1 ~ d(lf(s)l- e) ~ d 4r - 2r - ""2 
for all IE S . 
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Then for all t E S 

!O(IDN x (t)I) > !O. d (o(r) _ Co _ 3e) 
2 I - 2 4r 2r 2 ' 

since 0 is monotone, 

(3.24) N-J >co(16) , 

since r 2: R J and in view of (3.7). 
We have 

by Proposition 3.5, part (c), 

= ~ I Ods + ~ 1 Ods 
lSi ,t,l\S S 

N-J -(N-J) > co(16) . (16) ·Iti - sil = colti - sil, 
since S has length at least (16)-(N-J).lt i - sil and 0 is nonnegative valued, 
and by (3.24), 

since the interpolating polynomial satisfies 
N-J N liDo Yilloo 5 t < M and liD Yilloo 5 t ~ Ro' 

, 1'1 ' 1'1 

and by definition of co' 

I I, ~ N-J N = L(t,Do yi(t),D Yi(t))dt, 
5, 

again by the properties of Yi' and Proposition 3.5, part (d). But this contradicts 
optimality of Xi' It follows that IIDN xilloo S I ~ R] , as claimed. 

We now show ' '" 

(3.25) N liD xlloo 5 t ~ R2 ' 
, I' I 

which will mean that DN X is locally essentially bounded on the interval [Si' til. 
Suppose to the contrary that 

N ID x(t)1 > R2 

on a subset T C [Si' tJ of positive measure. Since IID~-Jxlloo,a,b ~ M we 
know from Proposition 3.5, part (d) that 

(3.26) ~ N-J N N-J N 
L(t, Do x(t), D x(t)) < L(t, Do x(t), D x(t)) , for t E T. 
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Then 

j l' N-J N jl' N-J N L(t, Do x(t), D x(t)) dt s L(t, Do xi(t), D xJt)) dt, 
~ ~ 

by optimality of x, 

since IIDN Xi 1100 5 I s R J and by Proposition 3.5, part (d), 
, i' I 

S jl'l(t,D~-JX(t),DNX(t))dt, 
5, 

by optimality of Xi ' 

j~ N-J N < L(t,Do x(t),D x(t))dt, 
5, 

by (3.26), and since L majorizes I. This contradiction implies (3.25). 
To show that x satisfies the Euler inclusion, we note that the state function 

c; = D~-J x and associated control function u = DN x (restricted to [Si' ti]) 
solve a modified form of the optimal control problem (CP) introduced earlier, 
in which L replaces I as cost integrand. Now apply the maximum principle [3, 
Theorem 5.2.3] at (c;, u). (The reader may check that the relevant hypotheses 
are satisfied; the essential boundedness of u is used here.) This tells us there 
exists a Lipschitz continuous function P (= row(p J ' ••• , P N)) which satisfies 

-p E P . F - ozL, a.e. on [Si' til 

and 

(3.27) PN E owL, a.e. on [Si' t i ], 

F is as in (3.16). These relationships imply (2.1). 
Under the extra continuity and strict convexity hypotheses imposed in part 

(ii) of the theorem, the function 

g(t) := argmin{PN(t) . v - L(t, c;(t) , v): Ivl S R2 } 

is continuous on [Si' t i ]. However strict convexity permits us to replace (3.27) 
by the statement that the functions u and g coincide a.e. on [Si' t i ]. Thus 
u (= DN x) is continuous as claimed, following adjustment on a null set. 

Consider now the assertions in part (iii) of the theorem. These are proved 
by an adaptation of Weierstrass' classical argument, to accomodate the higher 
derivatives. Under the extra hypotheses the Euler inclusion is expressible as the 
following integral equation 

(3.28) 

N-J N jl N-J N Lw(t, Do x(t), D x(t)) = q(t) + 5, L ZN _ 1 (0", Do x, D x) dO" 
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in which q is a polynomial function. The hypotheses ensure that the right 
side of (3.28) and also (t, w) ---t L(t, D~-1 x(t), w) are e 1 functions. Since 
Lww > 0, the implicit function theorem tells us that DN x is e 1 • We may 
differentiate across equation (3.28) then and solve for D N + 1 x; 

DN+1X(t) = L:L [ - Lt,w - LZO"",ZN_I'W' D~ x(t) 

(3.29) + Dq(t) + LZ,'_I -It L ZN _2 da + ... J. 
Suppose x is known to be e a - 1 for N + I ::; a ::; r, then the right side of 
(3 29) ' e ct- 1- N d h . D N +1 . . ect H . eN . IS an ence so IS x , 1.e., x IS . owever x IS 

by part (ii) and it follows by induction that x is er • 

4. HYPOTHESES RESTRICTING POINTS OF BAD BEHAVIOUR AND A 

CONJECTURE REGARDING AUTONOMOUS PROBLEMS 

Theorem 2.1 gives information about points at which a minimizer x is badly 
behaved, i.e. points in a neighbourhood of which DN x is not locally essentially 
bounded; we are told that bad points are confined to a closed set of zero measure. 
It is interesting to know when we can further restrict the points of bad behaviour. 
Of special interest are hypotheses under which the set Q of Corollary 2.2. is the 
set [a, b], i.e. we can eliminate bad points altogether. In such circumstances x 
has the property that DN x is essentially bounded on the whole interval [a, b], 
and x satisfies a strong form of the Euler inclusion, in which a single set of 
Lipschitz continuous functions Pi serves for the entire interval [a, b] . 

In the case N = 1, many hypotheses are known which restrict the points 
of bad behaviour. A variety of hypotheses of this type are given in [5 and 6]. 
For example, if N = 1 and the hypotheses (HI )-(H3) are supplemented by the 
requirement that L is polynomial, then points of bad behaviour are confined 
to a countable set having, at most, a finite number of cluster points. (See [8]). 
Concerning hypotheses which are known to eliminate the possibility of points 
of bad behaviour in the N = 1 case we have the following. 

Theorem 4.1. Let x be a minimizer for (P). Suppose (in addition to hypotheses 
(Hl)-(H3)) that N = 1, and either condition (i) or (ii) below is satisfied. Then 
Q=[a,b]. 

(i) (Morrey-type conditions). There exist some a E Ll[a, b] such that 
18zL(t, x(t), Dx(t))1 ::; a(t), a.e. t E [a, b]. 

(ii) (The autonomous case). L(t, z, w) is independent of the t variable. 

These results are proved in [5]. 
It is important to appreciate the role theorems such as Theorem 2.1 can play 

in establishing refined regularity properties of minimizers, under additional hy-
potheses. [5] provides numerous illustrations in the N = 1 case. The regularity 
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information about x supplied by Theorem 2.1 can be put to work alongside the 
Euler inclusion (2.1) and extra hypotheses, to generate further regularity prop-
erties. Proof of the following theorem, which imposes Morrey type conditions 
to eliminate points of bad behaviour, illustrates how Theorem 2.1 can be used 
to obtain refined regularity results for problems where N > 1 . 

Theorem 4.2. Let x be a minimizer for (P). Suppose (in addition to (H1)-(H3)) 
that there exists some a E L J [a , b] such that 

N-J N 
18zL(t, Do x(t), D x(t))1 ~ a(t), a.e. t E [a, b]. 

Then n = [a, b] . 

Proof. Take tEn n (a, b). We define 

tmax := sup{t > t: DN x is essentially bounded on [t, tl}. 

We show presently that DN x is essentially bounded on [t, tmaxl. This implies 
that tmax is a regular point of x; it follows from Theorem 2.1 that tmax = b 
and x is essentially bounded on [t, b]. Similar arguments applied to intervals 
to the left of the point t establish that DN x is essentially bounded on [a, t] 
also. Putting these conclusions together, we deduce that DN x is essentially 
bounded on [a, b], i.e., n = [a, b]. 

We turn now to the task of showing that DN x is essentially, bounded on 
[t, tmaxl· Notice that tmax > t by Theorem 2.1. Let {tJ be an increasing 
sequence in (t, tmaxl such that ti -> tmax ' Then there exists e > 0 such that 
[t,t+e]cn and t+eE[t,t i ] for all i. 

On [t, t + e], DN x is essentially bounded and consequently the Euler in-
clusion is available to us. The inclusion may be expressed as follows: for 
each i there exists a Lipschitz continuous nN row vector function i = 
row(p; , ... , p~) and an essentially bounded nN row vector function qi such 
that 

(4.1) qi(t) E 8zL(t, D~-Jx(t), DN x(t)) , -i/(t) = pi(t). F - qi(t) , 

i N-J i N N-J N (4.2) PN(t)·w-L(t, Do x(t), w) ~ PN(t)·D x(t)-L(t, Do x(t), D x(t)) 

for all WE Rn , a.e. t E [t, t i ]. (F is as in (3.16).) 
Since L is convex in its final argument, (4.2) implies 

( 4.3) 

for some essentially bounded n row vector function ri satisfying 
N-J N 

r/t) E 81f!L(t, Do x(t), D x(t)) , a.e. t E [t, til 

(G is as in (3. 16) ). 
From (4.1) and the variation of constants formula, we deduce that 

pi(t) = pi (7) . e -F(t-t) + Si(t), all t E [t, til, 
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where Si(t) := J{ qJs)e -F(l-S) ds. Postmultiplying the penultimate relation by 
GH(t) , where 

H(t):= de-F'U-I), 

integrating over [7, 7 + e], and taking note of (4.3), we obtain 

( 4.4) 

Here W (7, 7 + e) is the controllability grammian of (-F , G) , namely 

- - -Fs I -F S 11+0 I 

W(t, t+e):= I e GGe ds. 

However the right side of (4.4) is norm bounded by a number C which does 
not depend on i, since r i and qi' hence Si' are expressible in terms of se-
lectors of 8z L and 8w L, and these generalized gradients are bounded on 
[7, 7+e]. Concerning the left side, we note that (-F , G) is controllable, whence 
W(7, 7 + e) is nonsingular. We conclude then 

1/(7)1 ~ I[W(7, 7 + e)r1lc 

(I W-11 denotes the operator norm). Bearing in mind now the integrable bound 
on 8z L, and since qi is a selector of 8z L, we deduce from (4.1) and Gronwall's 
lemma that 

Here c 1 is another number which does not depend on i. 
Now (4.2) implies 

N-l N i N i 
L(t, Do x(t), D x(t)) - PN(t) . D x(t) ~ IpNI + c2 

where 
N-l c2 =sup{L(t,Do x(t),w):tE[a,b]'lwl~1}. 

By hypothesis (H3) and (4.5) we have 
N N -aM + e(ID x(t)I) - cllD x(t)1 ~ c1 + c2 ' 

a.e. t E [7, til where M is an upper bound for ID~-lx(t)I. It follows that 
N 

liD xlloo I I ~ R, 
, , I 

where R is a number such that 

O(r)/r> c1 + (c1 + c2 + aM)/r 

whenever r> R. But since ti ~ t max and R does not depend on i, 
N 

liD xlloo t I ~ R. , , max 

We have exhibited the desired bound. 
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We note the following corollary of Theorem 4.2, which is of interest because 
the hypotheses involved are directly verifiable. 

Corollary 4.3. Let x be a minimizer jar (P). Suppose (in addition to (H 1)-
(H3)) that there exist an integrable junction I, a locally bounded junction r 
and a constant c I such that 

( 4.5) IOzL(t, z, w)1 ~ c1 (L(t, z, w) + Iwl) + l(t)r(z) 

a.e. t E [a, b],jor (z, w) E RnxN x Rn. Then n = [a, b]. 
Proof. We have merely to note that the hypotheses are strengthened versions 
of those in Theorem 4.2. In particular, the right side of (4.5) evaluated along a 
minimizer x gives 

N-I N N N-I c1 (L(t, Do x(t), D x(t)) + ID x(t)l) + l(t)r(Do x(t)). 

All the terms here are integrable, by the properties of minimizers. This deals 
with the last hypothesis in Theorem 4.2. 

We have in Theorems 2.1 and 4.2 two instances where previously known 
regularity results treating the N = 1 case have counterparts for problems with 
N > 1, and they encourage us to look for others. However we now advance 
strong evidence that, at least in one important respect, our quest will be unsuc-
cessful, and that problems where N > 2 can exhibit pathologies not present 
when N = 1. 

Consider the class of autonomous problems which satisfy the hypotheses 
(Hl)-(H3). We conjecture that minimizers can have points of bad behaviour 
when N > 1. Recall that, by contrast, minimizers for autonomous problems 
have no points of bad behaviour when N = 1 . (See Theorem 4.1.) 

The following proposition falls somewhat short of proving this conjecture. 
It does however give evidence of it by exhibiting an extremal with a bad point 
at t = 0 for an autonomous problem where hypotheses (Hl)-(H3) are in force 
and where N = 2. Extremals (i.e. arcs satisfying necessary conditions of opti-
mality, in this case the Euler equation (2.2) and the boundary conditions) are 
not guaranteed to be minimizers, but are strong candidates for being so. 

We offer as an open research problem verification that the extremal involved 
is a minimizer (for e > 0 appropriately chosen). Techniques of [7] should be 
helpful. Application of field theory to this problem appears to be problematic 
however, because of the complications introduced by the second order deriva-
tive. 

We define the function Ie: R x R x R -+ R to be 
2 5 2 22 2 

Ie(zo' Zl' w):= Izo - zll Iwl + elwl 
for e > O. The problem below, formulated in terms of Ie, is a second-order 
extension of the Ball-Mizel problem which provided a significant example in 
the case N = 1 (see [7]). 
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Proposition 4.4. There exists a number e * > ° and a COO function k: (-e * , e *) 
---+ R with the following properties. For e > 0, take the problem P( e) to be 

1 
Minimize fo1 Ie (y(t) , y(t) , ji( t)) d t 

over arcs y E W 2 , 1([0, 1]; R) 
which satisfy 
x(O)=O, x(O)=o, x(1)=k(e), x(1) = (5j3)k(e). 

Then for each e E (0, eO), P(e) satisfies (H1)-(H3) and the function 

(4.6) x(t) = k(e)t5/ 3 

satisfies both the boundary conditions and the equation 

(4.7) ( Lz -dd L. + d 2
2Lw ) (x(t),x(t),x(t)) =0, forO<t~1, 

o t"1 dt 

where L = Ie. 
Proof. The data of problem P(e) clearly satisfies hypotheses (H1)-(H3) for 
e > 0. We see that x(t) given by (4.6) satisfies the boundary conditions, 
regardless of the manner in which we choose k (e) . 

Substitution of x(t) = kt5/3 into the left side of (4.7) yields 

c(F(k) + e)t- 7/ 3• 

Here c is a nonzero constant and F is a polynomial. Set k = (~) 5/3 . We find 
that 

- d -
F(k) = ° and dkF(k) =f 0. 

By the implicit function theorem there exists e * > ° and a COO function 
k: (-e* , +e*) ---+ R for which 

F(k(e)) + e = 0, for all e E (-e*, +e*). 

Making this choice of function k(e), we see that x(t) given by (4.6) satisfies 
equation (4.7) for each e E ( -e * , +e *) , as required. 

A final remark. The conjecture that x(t) = k(e)t5/ 3 is a minimizer for P(e) IS 

not inconsistent with Theorem 4.2. Notice that, for problem P(e), 

L ~ t- 7/ 3 
Zo 

along x, i.e., L is not integrably bounded. Thus the hypotheses of Theorem 
Zo 

4.2 are violated, and so Theorem 4.2 does not rule out the possible existence of 
points of bad behaviour. 
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