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ON THE INTERIOR OF SUBSEMIGROUPS OF LIE GROUPS 

KARL H. HOFMANN AND WOLFGANG A. F. RUPPERT 

ABSTRACT. Let G denote a Lie group with Lie algebra 9 and with a subsemi-
group S whose infinitesimal generators generate g. We construct real analytic 
curves y: R+ -+ S such that y(O) is a preassigned tangent vector of S at the 
origin and that y(t) is in the interior of S for all positive t. Among the con-
sequences, we find that the boundary of S has to be reasonably well behaved. 
Our procedure involves the construction of certain linear generating sets from 
a given Lie algebra generating set, and this may be of independent interest. 

O. INTRODUCTION 

This paper presents results on subsemigroups of Lie groups whose geometric 
significance is best explained in terms of control theory. 

Let E be a system of smooth vector fields, defined on a manifold M -the 
space of states. Then to every X E E and each point m EM, there exists 
a unique trajectory t ....... xm(t) satisfying xm(t) = X(xm(t)) and xm(O) = m. 
Moreover, for each time t the map m ....... xm (t) is a diffeomorphism; we denote 
this diffeomorphism by exp t· X , so that xm(t) = (exp t· X)(m) . As X ranges 
through the generating set E and t through R+ = [0, oc[, the maps exp(t· X) 
generate a semigroup S of diffeomorphisms and, together with their inverses, 
a group G; in many cases of interest G is a Lie group. Steering this system 
means that we are allowed to choose a function t ....... X t : [0, T] -+ R+ . E from a 
set of previously given steering functions and to obtain for every point m E M a 
trajectory t ....... ym(t) starting at y(O) = m and satisfying ym(t) = Xt(ym(t)). If 
our steering functions are the piecewise constant maps [0, T] -+ E, (T E R+) , 
then every point p on a trajectory Y m can be written as 

p =ym(t) = (exp(t-tn_I),Xn)o(exp(tn_I-tn_2),Xn_l)ooo.o(exptl·X)(m), 

hence these points exactly form the orbit Sm of the semigroup S. With a 
more liberal supply of steering functions, we reach the points of Sm. 

The geometry of this set of reachable points is of great interest in geometric 
control theory. Does it have interior points? If so, how singular can boundary 
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points be? Can one reach its interior starting from m on a smooth curve? 
Clearly, all of these questions remain relevant in the particular case where M = 
G and G acts on M by left translations. Answers to our questions in this 
special case promise answers in the general one. 

In the special case the problem can be posed in a slightly more general and 
concise manner: 

Let E be a subset of the Lie algebra g of a Lie group G and suppose that 
S is a subsemigroup of G with exp R+ . E ~ S . 

(i) Does Shave nonempty interior intS in G? 
(ii) Are there smooth curves in S connecting 1 with points in intS? 

It is known that int S =I 0 as soon as the Lie algebra generated by E in g is all 
of g. Better still, the interior is a dense ideal of S and agrees with intS. (Cf. 
[1, Chapter V] for more information and references.) Our result will reestablish 
this insight and will add information allowing us to answer the question on arc 
connectivity in the affirmative. Indeed we shall show that, under the assumption 
that E generates g as a Lie algebra, to each point pES (notably, to 1 or any 
boundary point) there is a real analytic curve y: R+ -+ S with y(O) = p and 
y(t) E int Sift> O. In fact, there are generalized one-parameter subgroups, 
that is, curves of the form t 1--+ y(t) = exp t . Xl ... exp t . Xn with suitable 
elements Xj E R+ . E such that y(t) E int S for 0 < t ::; 1 . 

A subtangent vector X of S S; G at 1 is an element X E g satisfying 
X = lim r n . X n with exp X n E S and X n -+ O. The set of all subtangent vectors 
of S at 1 is denoted L(S) (cf. [1]). 

It is obvious that the initial velocity y(O) of y is a subtangent vector of S at 
1 ; once one such curve y is obtained, it is not hard to show that every subtangent 
vector of S at 1 is the velocity vector of an analytic curve diving into the 
interior int S . Also we establish quickly that every connected component of S 
is connected by smooth arcs. 

These results call for some comment. Firstly, even in vector groups like 
R2 , for which we can write g = G with the identity function as exponential 
function, subsemigroups can have rather bizarre boundaries. The next best 
thing in semigroups to the famous "closure of the sin ~ graph" is the following 
example ("the Shark's Tooth"). 

Example 0.1. For each n EN define Sn ~f {(x, y) E R21 rn < 2nx < y}. A 
straightforward calculation shows that Sm + Sn S; Sm whenever m < n, hence 
S ~f UnEN Sn is an open subsemigroup of G. Also, 1 = (0, 0) E S. 

This construction yields a connected closed submonoid S of R2 with dense 
interior such that the path component of the identity 1 is {O} X R+ and agrees 
with L(S) = expL(S). No arc whatsoever starting from a boundary point of 
the form (0, y) can ever reach the interior intS. (This example also plays a 
role in the theory of congruences on open subsemigroups of Lie groups, cf. [2] 
or [1, §V.7].) 
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Example 0.1 shows how badly arc connectivity can fail for connected closed 
monoids with dense interior if they are far enough from being "infinitesimally 
generated" (see [1]) and emphasizes the importance of the hypothesis that E 
generates 9 as Lie algebra. We know that if S is an open semigroup in G with 
1 E S then S, and therefore S, too, must be connected if G is connected and 
solvable (cf. [3]); however, this does not imply that S is pathwise connected. 

It is also instructive to recall at this point that any semisimple Lie algebra 
can be generated by two vectors. Thus semigroups of arbitrarily large dimension 
may be generated by two one-parameter semigroups. An intuitively persuasive 
low dimensional illustration of this phenomenon is provided by the smallest 
nilpotent nonabelian Lie algebra and its simply connected Lie group. It contains 
a semigroup, sometimes called "the Heisenberg beak" which is generated by 
exp R . E , where E consists of two vectors. 

Example 0.2. Denote with G the Heisenberg group, written as the set of all real 
3-vectors with multiplication 

(a, b, c)(a', b', c') = (a+a', b+b', c+ab' +c') 

and define S to be the open subsemigroup 

S = {(a, b, c) E GI 0 < a, 0 < b, 0 < c < ab}. 

Here L(S) is a two-dimensional wedge and generates the whole Lie algebra 
g. Every two points (a, b, c) and (a', b' ,c') in S can be joined by an 
analytic arc a: [0, 1] --+ S with a(]O, 1 [) c S. For instance we may define 
a(t) = (ta + (1 - t)a' + t(1 - t)e, tb + (1 - t)b' + t(1 - t)e, t2c + (1 - t)2C') , 
where e is any positive real number. However every generalized one-parameter 
semigroup 

+ -y: R --+ S, t 1---+ exp t . Xl exp t . X2 ... exp t . Xn 

meeting the boundary of S in a point ::j:. 1 must remain on the surface without 
ever meeting the interior of S. 
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1. GENERATORS OF A REAL LIE ALGEBRA 

The first difficulty encountered in the proof of our main result is that there 
is no obvious way of utilizing the assumption "E generates g as a Lie alge-
bra." What we need is a machinery associating with every set E of Lie algebra 
generators a set B which linearly spans g and is structured suitably for our 
purposes. Such a device is provided by the following result, which may also be 
of independent interest. 

Theorem 1.1. Suppose that the set E c g generates g as a Lie algebra and 
satisfies R+ . E = E. Then there exists an ordered n-tuple (XI' ... , Xn) E En 
such that for every t E]O, 1] the space g is the linear span of 

{X t·adX.X t·adX • ... t'adx2X } n' e n-J' ... , eel . 
The proof of this theorem will proceed through several steps. 
For the purposes of the proof only, we first introduce the following ad hoc 

terminology. 

Definition 1.2. (i) For any choice of elements XI' ... , Xn E E, we shall call 
the set 

B(X X ) ~f {X adX. X adX. adX2X } 
I' ... , n - n' en_I' ... , e ... e I 

a basic system. 
(ii) A vector subspace n of g shall be called nice if it is spanned by a basic 

system B(XI' ... ,Xn) and has maximal dimension among all vector spaces 
spanned by basic systems. 

Lemma 1.3. If n = spanB(XI , ... ,Xn) is nice, then E £;:; n. 

Proof. Suppose there is an X E E with X fI. n. Then e- adX X = X fI. n, and 
thus X fI. eadXn. Now let n' = R·X +eadXn = spanB(X, XI' ... ,Xn). Then 
dim n' = dim t) + 1 and n' is spanned by a basic system. This contradicts the 
maximality of the dimension of t). 0 

Lemma 1.4. If n = span B(XI ' ... ,Xn) is nice and X E E, then eadX n is nice. 
Proof. We consider t)' = R· X + eadXn = spanB(X, XI' ... ,Xn). Then 
dim t)' ~ dim nand n' is spanned by a basic system. Hence t)' is nice. By 
Lemma 1.3 we know that X En, whence n' = eadX n. 0 

Lemma 1.5. There exist basic systems which spang. 
Proof. It suffices to find XI' ... , Xn E E such that B(t· XI' ... , t· Xn) spans 
the Lie algebra of G for all t E]O, 1]. We form 

u = n{nl n is nice}. 

Then E £;:; u by Lemma 1.3, and u is invariant under eadX for every X E E 
by Lemma 1.4. It follows that /'ad xu£;:; u for X E E and t E R, and thus 
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[X, Y] = limOit_OCI(etadXy - Y) E u for any Y E u. Now the normalizer 
{Z E gl [Z, u] ~ u} of u in 9 contains E, hence the Lie algebra 9 generated 
by E. Thus u is an ideal in g, and since it contains E it agrees with g. 
Therefore every basic system B(XI , ... , Xn) spanning a space of maximal 
dimension spans g. 0 

Proof of Theorem 1.1. We begin with a basic system B(XI ' ... ,Xn) spanning 
9 according to Lemma 1.5. 

Let m denote dim 9 and fix a basis of g. Then with respect to this basis, 
the coefficients of the vectors in the basic system 

B(t.XI , ... , t·Xn) 

form an m x n-matrix giving us (~) subdeterminants of size m x m , say 

DI (t), ... , D(~) (t). 

Since 9 = spanB(X\, '" , Xn), there is a k E {I, ... , (~)} such that Dk(l) =I-
O. The zeroes of the nonconstant real analytic function Dk form a discrete 
subset of R, so there exists an e > 0 such that 0 < t ~ e implies Dk (t) =I- O. 
Now spanB(t· XI ' ... , t . Xn) = 9 for all t E]O, e] and replacing the set 
{XI' '" ,Xn} by {e· XI' .. , , e· Xn} we get the results claimed. 0 

The proof of Theorem 1.1 actually yields a slightly sharper result: 

Corollary 1.6. Under the circumstances of Theorem 1.1, there exist basic systems 
spanning g, and if B(XI ' ... ,Xn) is such a system, then 9 is spanned by every 
basic system B(t· XI' ... , t . Xn), where t lies in a subset of R with discrete 
complement. 0 

Example 1.7. (i) Let 9 = sl(2, R) and write P 1;f (8b), Q 1;f (?8), H 1;f 
(b ~I ). Then the elements Hand Z 1;f P + Q generate 9 as a Lie algebra; 

. adt'H adt'H adt·Z }' the baSIC system B(t· H, t· Z , t· H) = {t· H, t· e Z, t· e e H IS 
a vector space basis of 9 for every t E R\{O}. 

(ii) Let 9 be the three-dimensional Lie algebra spanned by three vectors X, 
Y, Z satisfying the relations [X, Y] = Z, [X, Z] = -Y and [Y, Z] = 0 (so 
that 9 is isomorphic with the Lie algebra of the group of Euclidean motions 
in the plane). Then the vectors X, Y generate 9 as a Lie algebra. The basic 
system B (t . Y , t· X , t· Y) = {t . Y , t· (X - t . Z), t· (cos t . Y + sin t . Z)} is a 
vector space basis of 9 if and only if t is not an integer multiple of 11: • 

We remark in passing that it is not known whether the elements XI' ... , Xn 
can be chosen so that the associated basic systems B(t,XI ' ... , t·Xn) , t E]O, 1] 
are vector space bases of g. Note also that our arguments do not give an explicit 
construction of a basic system (say, by recursion). Indeed, the proof looks for 
basic systems of maximal dimension rather than for maximal basic systems. It 
is not clear that every basic system is contained in a basic system of maximal 
dimension. 
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2. A DIRECT PATH INTO THE INTERIOR 

We now formulate and prove the main result. 

Theorem 2.1. Let S be a subsemigroup of a Lie group G satisfying the following 
condition (g): 

(g) There is a subset E ~ g such that exp R+ . E ~ Sand E generates g 
as Lie algebra. Then there exist elements Xl' ... , Xn E R+ . E such that the 
analytic curve '1': R -+ G given by rp(t) = exp tXn ... exp tXl satisfies '1'(0) = 1 
and rp(t) E intS for all t E]O, 1]. 
Proof. According to Theorem 1.1 we select Xl' ... ,Xn in R+· E in such a 
fashion that for all t E]O, 1], the basic system B(t· Xl' ... , t· Xn) spans g. 
We shall prove that the theorem holds for these vectors. 

First we show that for each t E]O, 1] the set S is a neighborhood of rp(t). 
For this purpose we consider the function f: [0, It -+ G given by 

f(tl'"'' tn) = exptn .Xn ·· ·exptl .Xl· 
It suffices to verify that the derivative 

df(sl' ... , sn): Rn -+ Tg(G) , g = expsn . Xn··· expsl . Xl 
is surjective for all (Sl"'" sn) = (t, ... ,t) with 0 < t ::; 1. To carry out 
the calculation we identify Tg(G) with g via the isomorphism dpg(I): g = 
Tl (G) -+ Tg(G) , where Pg(x) = xg. 

def h For k = 1, ... ,n we introduce small numbers hk and set tk = Sk + k' 
Then, with gk ~f expsk . Xk , 

exptn . Xn · .. exptl . Xl = (exphn . Xn)gn'" (exph l . Xl)gl 
= (exphn . Xn)(exphn_ l . Ad(gn)Xn_l ) 

... (exp hn . Ad(gn)'" Ad(g2)Xl )gn ... g2 gl 
= (exp(hn . Xn * hn- l . Ad(gn)Xn_l * ... * hn . Ad(gn)'" Ad(g2)Xl ))g· 

This implies for every (u l ' ... , un) ERn 

df(sl' ... , Sn)(U I ' ... , un) 
= un . Xn + un_I' Ad(gn)Xn_l + ... + ul . Ad(gn) ... Ad(g2)Xl , 

Thus df(sl' ... 'Sn) is surjective if and only if the set 
C = {Xn' Ad(gn)Xn_l ,,,,, Ad(gn) .. ·Ad(g2)Xl} 

spans g. Now we recall that gk = expsk .Xk , consequently, Ad(gk) = eSk'adXk . 
Therefore C = B(SI . Xl ' ... , sn . Xn)' Hence by our choice of Xl' ... , Xn 
and Theorem 1.1 the set C spans g whenever Sl = ... = sn = t E]O, 1]. We 
have shown that rp(t) E intS for t E]O, 1]. 0 

Remark. If S has nonempty interior then by Proposition V.0.15 of [1] we 
know that int S = int S. Thus for semigroups S with int S f:. 0, we may 
replace the condition" exp R+ . E ~ S" in 2.1 by the slightly weaker condition 
"expR+· E ~ S". 
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Example 2.2 ("The Parking Ramp"). Let G be the semidirect product G = 
C ~ R with the multiplication (c, t) (c', t') = (c + eit c' , t + t'). We claim that 
the set S =SI U S2 ' with 

def { is 1 + } SI = (re ,t) r E R ,0 ~ s ~ t ~ n , 

S2 ~f {(c, t)1 c E C, t> n}, 

is the ray subsemigroup of G which is generated by the one-parameter semi-
groups {(r, 0)1 r E R+} and {(O, t)1 t E R+}. (Note that S, though generated 
by only two one-parameter subsemigroups, has dense interior but is not closed 
in G.) 

Let us first show that S is a semigroup. Clearly, SS2 U S2S ~ S2' Assume 
that a = (rle iS} , tl ) and b = (r2e iS2 , t2) are in SI' If tl + t2 > n then 
ab E S2' so let us suppose that tl + t2 ~ n. Then the angle between rle iSI and 
r2e i (tI+t2) is less than n, hence arg(rle iSI + r2e i (S I +s2)) ~ tl + t2 and therefore 

b ( iSI i(tl +s2) t t) S Th S· . a = rle +r2e 'I + 2 E I' us IS a semlgroup. 
It remains to show that S is contained in the semigroup S* generated by 

the elements (r, 0) and (0, t), with r E R+, t E R+. For a proof of this 
claim we first observe that every element x E G has a unique representation 
x = (re iS , t), with r E R+, 0 ~ S < 2n, t E R. Suppose that XES. If s ~ t, 
then x = (0, s)(r, 0)(0, t - s) E S* ' in particular, SI ~ S*. Thus we are left 
with the task to show XES. for those x E S2 where s > t, so assume that 
2n > s > t > n. Pick a number t' E]n, t[. Then -n < t' - 2n < t' - s < 
t' - t < 0 , hence the numbers 

rsins a=-.-, , 
smt 

d b rsin(t' - s) 
an = ., 

smt 
are positive. A straightforward calculation now shows that 

x = (b, 0)(0, t')(a, 0)(0, t - t'), 
and we conclude °Lhat XES •. 

We note that the Lie algebra 9 of G can be identified with that in Example 
1.7(ii),sothat expt·Z=(t,O), expt'Y=(it,O) and expt·X=(O,t). The 
generalized one-parameter subgroup 

ot 
rp: R - G, t 1-+ exp t·Y exp t·X exp t·Y = (it, 0)(0, t)(it, 0) = (2t cos ~e'2 , t) 

satisfies rp(O) = 1 and rp(t) E intS for all t> O. If we apply the arguments in 
the proof of Theorem 2.1 to this example then we only get rp (t) E int S for all t 
outside a discrete set (cf. Example 1.7(ii)). It is still open whether a generalized 
one-parameter subsemigroup of S can intersect the boundary in a nonsingleton 
discrete subset. 

The proof of the following local version of the preceding theorem is left 
to the reader. For the definition of a local semigroup with respect to some 
Campbell-Hausdorff neighborhood in a Lie algebra, see [1, IV.1.2]. 
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Remark 2.3. Let N be a C-H neighborhood in 9 and S ~ N a local subsemi-
group with respect to N. Suppose that there is a set E ~ S with [0, 1]· E = E 
generating 9 as a Lie algebra. Then there exists an analytic curve rp: [0, 1] -+ 9 
with rp(O) =0 and rp(t)EintS for all tE]O, 1]. 0 

Corollary 2.4. Under the hypotheses of Theorem 2.1, there is an analytic curve 
u: R -+ G such that 

(i) u(O) = 1, 
(ii) u(R\{O}) ~ intS, 

(iii) &(0) = o. 
Proof. We define a: R -+ R by setting a(t) = (~ arctan t)2 . Then a is analytic, 
a(O) = 0, and 0 :5 a(t) < 1. Moreover, a(t) = 0 if and only if t = O. Now 
let rp: R -+ G be as in Theorem 2.1. We set u = rp 0 a and observe that all 
requirements are satisfied. 0 

Corollary 2.5 (The Analytic Deformation Theorem). Let S denote a subsemi-
group of a Lie group G satisfying condition (g) of Theorem 2.1. Suppose that 
1': I -+ G denotes an analytic curve defined on an interval I ~ R taking its 
values in intS. Then there is an analytic function r: I x R -+ G with 0 E I 
such that 

(i) r(t, 0) = y(t) for all tEl, 
(ii) r«I\{O}) x (R\{O})) ~ intS, 

(iii) r(0, r) = 1'(0) for all r E R, 
(iv) ft It=or(t , r) = 5'(0) for every r E R. 

Proof. We take the function u: R -+ G of Corollary 2.4 and define r(t, r) = 
u(rt)y(t). Then r(t, 0) = a(O)y(t) = y(t). This proves (i). Since intS is an 
ideal of int S by [1, Proposition V.O.IS], we conclude (ii) from the fact that 
u(rt) E int S for t =I- O. Next r(0, r) = a(O)y(O) = 1'(0) , proving (iii). Finally 
frlt=or(r, t) = frlt=oa(rt)y(t) = r· &(rt) + 5'(0) = 5'(0) in view of Corollary 
2.4(iii). (We note that this calculation takes place in the tangent space Ty(O)(G) 
which is identified with 9 via dpY(O)(l).) 0 

If, in the preceding corollary, I' is only assumed to be a smooth curve, then 
r retains all of its properties except that, in general, it is only smooth but no 
longer analytic. 

For the following corollary we need a lemma: 

Lemma 2.6. Let T be an open subsemigroup of a Lie group G and suppose 
that T has a connected component To with 1 E To. Then the closure of any 
connected component of T is open in T. Thus the connected components of T 
are just the closures of the connected components of T . 
Proof. Let p E T. If q lies in the open neighborhood TO- 1 Top n T of p in 
T then the connected subsets Toq and ToP of int(T) = T have nonempty 
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intersection, hence belong to the same connected of T. Thus p and q lie in 
the same connected component of T and the assertion follows. 0 

A semigroup S in a Lie group satisfying condition (g) of Theorem 2.1. is 
certainly preanalytic since S U S-l generates G. Its tangent Lie wedge L(S) 
is therefore well defined as the set of all subtangent vectors of the set exp -1 (S) 
in g at O. (Cf. [1].) 

Corollary 2.7. Suppose that S is a subsemigroup of a Lie group G satisfying 
condition (g) of Theorem 2.1. Then the following conclusions hold. 

(i) For each vector X E L(S) there is an analytic curve rp: R -+ G such 
that rp(O) = 1, ¢(O) = X and rp(t) E intS for all t> o. 

(ii) For each vector X in the algebraic interior algintL(S), there is a gen-
eralized one-parameter subgroup 

a: R -+ G, t 1-+ exp t· Xl exp t· X2 ... exp t· Xn' 
such that a(O) = 1, &(0) = X and a(t) E intS for every t E]O, 1]. 

(iii) For each s E (exp L(S)) , there is a piecewise analytic curve I{I: [0, 1] -+ 

S such that I{I(O) = 1, 1{I(1) = sand I{I(]O, 1[) ~ intS. In particular, 
(expL(S)) is connected by smooth curves. 

(iv) If a and b are two points in the closure of a path component C of S, 
then there is a smooth curve y: [0, 1] -+ C with y(O) = a, y( 1) = b, 
and y(]O, 1 D ~ int C. As a consequence, C is open-closed in Sand 
connected by smooth arcs. 

Proof. For a proof of (i) we set I = [0, oo[ and define y: I -+ G by y(t) = 
expt·X. Then y(t)EintS for all tEl by[l, TheoremV.1.13],and )1(0) =X. 
Applying Corollary 2.4 and setting rp(t) = r(t, 1) we obtain (i). 

(ii) We know by Theorem 2.1 that there is a generalized one-parameter 
subgroup ao: R -+ G, t 1-+ exp t· Xl exp t . X2 ... exp t . Xn ' such that ao(O) = 1 
and ao(t) E intS for every t E]O, 1]. Write Y for the velocity Xl + ... + Xn 
of ao at o. Since X E algint L(S) there is an e > 0 such that X - e· Y E L(S) . 
Then the generalized one-parameter group a: R -+ G, t 1-+ exp t·(X -e· Y)ao(te) 
has the required properties. 

In order to prove assertion (iii) we consider any s E (expL(S)). Then t 1-+ 

srp(t) is an analytic curve connecting s with Sl = srp(I), and srp(]O, 1] ~ 
int(expL(S)) ~ intS since int(expL(S)) is an ideal of (expL(S)). Further, 
s 1-+ rp(s): [0,1] -+ G is an analytic curve with rp(]O, 1]) ~ int(expL(S)). The 
two points s 1 and S2 = rp ( 1) may be connected in the path connected open 
submanifold int(expL(S)) by a piecewise analytic arc. Joining these three 
curves with appropriate parametrization, we obtain I{I. Finally, with the aid of 
COO -smoothing of the corners we find a smooth curve joining 1 and s through 
the interior of S . 

(iv) Let rp: [0,1] -+ S denote a smooth path with rp(O) = 1 and rp(]O, 1]) ~ 
intS. Then Crp([O, 1]) is a path connected set meeting C, hence is in C. 
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First let us assume that a and b are in C. If y: I -+ S is any path 
connecting a and b then t 1-+ y(t)qJ( 1) is a path connecting a' = aqJ( 1) with 
b' = bqJ(1) through the interior of S. Thus the points a' and b' are in the 
same path component of the manifold int S , hence they can be connected by 
a smooth path in the interior of S. But t 1-+ aqJ(t) , bqJ(t) are analytic curves 
connecting a with a' with b with b' through the interior of S, respectively. 
We find a smooth path connecting a with b in S running in intS-with the 
possible exception of the endpoints-by connecting the arcs we found and by 
smoothing comers. 

This shows that C has dense interior and that its interior int C is path 
connected. Now assume that a is in C. If SI denotes the arc component 
of 1, then CSI is arc connected and contains C, hence CSI ~ C. Then 
CSI ~ C, and thus aSI is an arc connected subset of C containing the open 
set a(int SI)' Since int C is dense in C, we know that aSI n C =F 0 , and this 
shows a E C since C is a maximal arcwise connected subset. It follows that 
C is closed. 

Now we apply Lemma 2.6 with the dense ideal T = int S of S and consider 
c E int C ~ T. Then the component Tc is a manifold, hence is path connected 
and thus Tc ~ C. Now Lemma 2.6 shows that Tc is the connected component 
of c in T = S whence C ~ Tc' that is, C = Tc' Since Lemma 2.6 also shows 
that Tc is open in S, we know that C is open in S. Now (iv) is completely 
proved. 0 

Example 0.2 shows that the assertion of (ii) cannot be improved. 

In this entire section we explicitly or implicitly made the hypothesis that 
the Lie algebra g is generated by L(S). This hypothesis is necessary in view 
of [1, Proposition V.2.1 and Theorem V.l.13]. However, if S is an an arbi-
trary infinitesimally generated subsemigroup of a Lie group group G (see [1, 
Definition V. 1. 11]), then the results of this section apply still to the Lie group 
G(S) = (exp L(S)uexp -L(S)) and the subsemigroup S with the induced topol-
ogy. The injective morphism l: G(S) -+ G implemented by the inclusion is an 
immersion of analytic manifolds. Thus any analytic curve y: I -+ G(S) pro-
duces an analytic curve lOY: I -+ G. Hence the results of Corollary 2.6(i) and 
the relation between ray semigroups and infinitesimally generated semigroups 
expressed in Theorems V.1.13 and V.1.16 of [1] yield the following results: 

Corollary 2.8. Let S denote an infinitesimally generated subsemigroup of the 
Lie group G. Then for each X E L(S) there is an analytic curve "': R -+ G 
such that ",(0) = 1, vi(O) = X, and ",nO, ooD ~ intG(S) S. 0 

The Analytic Deformation Theorem for infinitesimally generated semigroups 
has a simple generalization to this setting. Its formulation is an exercise. 
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