Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the convergence of moment problems
HTML articles powered by AMS MathViewer

by J. M. Borwein and A. S. Lewis PDF
Trans. Amer. Math. Soc. 325 (1991), 249-271 Request permission

Abstract:

We study the problem of estimating a nonnegative density, given a finite number of moments. Such problems arise in numerous practical applications. As the number of moments increases, the estimates will always converge weak$^\ast$ as measures, but need not converge weakly in ${L_1}$. This is related to the existence of functions on a compact metric space which are not essentially Riemann integrable (in some suitable sense). We characterize the type of weak convergence we can expect in terms of Riemann integrability, and in some cases give error bounds. When the estimates are chosen to minimize an objective function with weakly compact level sets (such as the Bolzmann-Shannon entropy) they will converge weakly in ${L_1}$. When an ${L_p}$ norm $(1 < p < \infty )$ is used as the objective, the estimates actually converge in norm. These results provide theoretical support to the growing popularity of such methods in practice.
References
  • Robert B. Ash, Measure, integration, and functional analysis, Academic Press, New York-London, 1972. MR 0435321
  • A. Baker and P. Graves-Morris, 1980: Pade approximants, Addison-Wesley, Reading, Mass.
  • A. Ben-Tal, J. M. Borwein, and M. Teboulle, A dual approach to multidimensional $L_p$ spectral estimation problems, SIAM J. Control Optim. 26 (1988), no. 4, 985–996. MR 948654, DOI 10.1137/0326053
  • —, 1988(b): Spectral estimation via convex programming (to appear).
  • Jonathan M. Borwein, Semi-infinite programming duality: how special is it?, Semi-infinite programming and applications (Austin, Tex., 1981) Lecture Notes in Econom. and Math. Systems, vol. 215, Springer, Berlin-New York, 1983, pp. 10–36. MR 709266
  • M. Borwein and A. S. Lewis, 1988(a): Partially finite convex programming, Parts I and II, Math. Programming (to appear).
  • J. M. Borwein and A. S. Lewis, Duality relationships for entropy-like minimization problems, SIAM J. Control Optim. 29 (1991), no. 2, 325–338. MR 1092730, DOI 10.1137/0329017
  • P. Burg, 1975: Maximum entropy spectral analysis, Ph. D. dissertation, Stanford University, Stanford, Calif.
  • E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0222517
  • Mahlon M. Day, Normed linear spaces, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962. MR 0145316
  • Dunford and J. T. Schwartz, 1958: Linear operators, Part I, Interscience, New York.
  • B. Forte, W. Hughes, and Z. Páles, Maximum entropy estimators and the problem of moments, Rend. Mat. Appl. (7) 9 (1989), no. 4, 689–699 (1990) (English, with Italian summary). MR 1056231
  • K. Goodrich and A. Steinhardt, 1986: ${L_2}$ spectral estimation, SIAM J. Appl. Math. 46, 417-428.
  • Felix Hausdorff, Summationsmethoden und Momentfolgen. I, Math. Z. 9 (1921), no. 1-2, 74–109 (German). MR 1544453, DOI 10.1007/BF01378337
  • Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335
  • Larry D. Irvine, Samuel P. Marin, and Philip W. Smith, Constrained interpolation and smoothing, Constr. Approx. 2 (1986), no. 2, 129–151. MR 891965, DOI 10.1007/BF01893421
  • Konrad Jacobs, Measure and integral, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. With an appendix by Jaroslav Kurzweil. MR 514702
  • G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London; Halsted Press [John Wiley & Sons, Inc.], New York, 1974. MR 0463890
  • Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
  • Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
  • M. Kay and S. L. Marple, 1981: Spectrum analysis—a modern perspective, Proc. IEEE 69, 1380-1419.
  • John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
  • Henry J. Landau (ed.), Moments in mathematics, Proceedings of Symposia in Applied Mathematics, vol. 37, American Mathematical Society, Providence, RI, 1987. Papers from the American Mathematical Society annual meeting held in San Antonio, Tex., January 20–22, 1987; AMS Short Course Lecture Notes. MR 921081, DOI 10.1090/psapm/037
  • W. Lang and J. H. McClellan, 1983: Spectral estimation for sensor arrays, IEEE Trans. Acoust. Speech Signal Process. 31, 349-358.
  • A. S. Lewis, The convergence of entropic estimates for moment problems, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 100–115. MR 1009598, DOI 10.1017/S0030605300027575
  • G. G. Lorentz, Approximation of functions, 2nd ed., Chelsea Publishing Co., New York, 1986. MR 917270
  • Lawrence R. Mead and N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys. 25 (1984), no. 8, 2404–2417. MR 751523, DOI 10.1063/1.526446
  • R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539. MR 236689
  • —, 1974: Conjugate duality and optimization, SIAM, Philadelphia, Pa.
  • Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
  • Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978
  • Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981. MR 604364
  • David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A60, 90C90
  • Retrieve articles in all journals with MSC: 44A60, 90C90
Additional Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 325 (1991), 249-271
  • MSC: Primary 44A60; Secondary 90C90
  • DOI: https://doi.org/10.1090/S0002-9947-1991-1008695-8
  • MathSciNet review: 1008695